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Abstract 

Motivation: Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly af-

fects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario 

even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering 

their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture tech-

niques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to sim-

ultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even 

though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement sig-

nals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement 

locations de novo have been missing.  

Results: In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chro-

mosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications 

and deletions (HiCnv), (ii) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) 

to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for 

and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a 

total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for 

two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among 

chromosomes with CNV events for a breast cancer cell line (r=0.89) and capture most of the CNVs we simulate using Avesim. For 

HiCtrans predictions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer cell lines. Further-

more, we show that our tools identify and correctly classify relatively understudied rearrangements such as double minutes (DMs) and 

homogeneously staining regions (HSRs).   

Conclusions: Considering the inherent limitations of existing techniques for karyotyping (i.e., missing balanced rearrangements and 

those near repetitive regions), the accurate identification of CNVs and translocations in a cost-effective and high-throughput setting is 

still a challenge. Our results show that the set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100-300 

million reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-established cancer cell lines. With 

the decrease in required number of cells and the increase in attainable resolution, we believe that our framework will pave the way 

towards comprehensive mapping of genomic rearrangements in primary cells from cancer patients using Hi-C.  

Availability:   

• CNV calling: https://github.com/ay-lab/HiCnv  

• Translocation calling: https://github.com/ay-lab/HiCtrans 

• Hi-C simulation: https://github.com/ay-lab/AveSim 
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1 Introduction  
 
Cancer is a disease that is strongly associated with genomic abnormalities and rearrangements, such as CNVs (e.g., amplifications and 

deletions) and chromosomal translocations (Mitelman et al. 2007; Zack et al. 2013). These often recurrent genomic rearrangements, 

such as the  Philadelphia Chromosome  formation in chronic myeloid leukemia (Rowley 1973), are generally associated with certain 

cancer types and subtypes. Therefore, systematic identification of these rearrangements is critical for understanding the molecular 

mechanism of oncogenesis as well as for clinical decision making in personalized medicine.  

Recent studies have shown that rearrangements in cancer not only alter the one-dimensional (1D) but also the three-dimensional 

(3D) structure of the genome and individual chromosomes (Engreitz et al. 2012; Ay et al. 2015; Barutcu et al. 2015; Harewood et al. 

2017; Seaman et al. 2017). These studies were made possible by the development of high-throughput chromosome conformation cap-

ture techniques (e.g., Hi-C) (Lieberman-Aiden et al. 2009; Rao et al. 2014), which also revealed novel relationships between spatial 

arrangement of the genome and its function (Dixon et al. 2012; Ay et al. 2014; Pope et al. 2014; Sexton and Cavalli 2015). More recent 

work also link the variation in tightly regulated features of the 3D genome architecture to dysregulation of genes and, increased disease 

risk in several diseases including cancer (Groschel et al. 2014; Lupianez et al. 2015; Javierre et al. 2016; Lupianez et al. 2016; 

Schmiedel et al. 2016).  

Even though Hi-C data has been used to visually confirm changes in 3D structure due to known genomic rearrangements 

(Engreitz et al. 2012; Ay et al. 2015; Barutcu et al. 2015; Harewood et al. 2017), to date, there are no computational methods to pre-

cisely identify multiple classes of rearrangements de novo from Hi-C data. Traditional methods such as PCR, southern blotting and 

fluorescent in situ hybridization are low throughput, whereas karyotyping is not precise in finding breakpoints of rearrangements 

(Schrock et al. 1996; Speicher et al. 1996; Davies et al. 2005; LaFramboise 2009). When compared to more recent high-throughput 

methods for detection of genomic rearrangements, Hi-C has several advantages (Harewood et al. 2017). First, copy number neutral 

(i.e., balanced) events (e.g., balanced translocations) that are missed by coverage-based methods, such as comparative genomic hybrid-

ization (array-CGH) and whole-genome sequencing (WGS), are still detectable by Hi-C. Second, because Hi-C read pairs span all 

genomic distances (megabases) rather than a fixed insert size, such as 200-800bp, 1kb, 2-5kb for WGS, short-range and long-range 

mate pair sequencing, respectively, rearrangements involving repetitive regions (e.g., translocations involving a centromere) could be 

detected by Hi-C from the contact patterns of the surrounding mappable regions. Third, with moderate sequencing depths (150-300M 

reads or 5-10x coverage), unlike shallow WGS with similar costs, Hi-C allows detection of rearrangements beyond CNVs (Harewood 

et al. 2017). However, it is important to note that, Hi-C based methods will have limited power to detect fine-scale rearrangements 

(<50kb in size) due to inherent limitations of the assay (e.g., digestion sites are ~1-4 kb apart) and/or the cost of sequencing required to 

achieve sub-10kb resolution contact maps.  

Here we provide a set of computational methods, which allow us to predict, simulate and validate genomic rearrangements in 

cancer with Hi-C data (Figure 1). The inherent challenge in detecting CNVs and translocations from Hi-C data lies in distinguishing 

the rearrangement related contact patterns from the expected 3D folding of normal chromosomal regions and from technical and exper-

imental biases of the assay. In order to overcome these challenges, here we develop computational methods to detect CNVs (HiCnv) 

and translocations (HiCtrans), and, in addition, a versatile pipeline to simulate (AveSim) realistic Hi-C contact maps with introduced 

chromosomal abnormalities. HiCnv works on contact counts at the single restriction enzyme (RE) fragment level in order to leverage 

Hi-C data at its highest possible and native resolution. Briefly, HiCnv first computes 1D read coverage for each RE fragment, followed 

by normalization, smoothing (kernel density estimation, KDE) and segmentation (Hidden Markov Model, HMM). The CNV segments 

are further processed for refinement of their breakpoint coordinates (segment ends) and assignment of their CNV labels (Figure 1). 

HiCtrans, on the other hand, scans fixed-size resolution (e.g., 40kb). interchromosomal contact maps of each chromosome pair for 

potential translocations using change-point statistics (Figure 1).   
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Our results suggest that HiCnv and HiCtrans can accurately predict large scale CNVs (>1Mb) and translocations from both rea

Hi-C data of cancer cell lines and in simulated contact maps with desired rearrangements. We compare our CNV calls with existing

sequencing-based (WGS) and array-based (HAIB) genotyping efforts and show that our results largely agree with WGS and to a lesse

extent with HAIB. The agreement between WGS and HAIB CNV calls were also low. Both HiCnv and WGS results are consisten

with previous karyotyping at the chromosomal level. We show that our CNV segment breakpoint predictions are at a median distance

of 3 RE sites (~12kb) from simulated breakpoints and are enriched for transition of WGS coverage scores. For translocations, we iden

tify a total of 90 translocating chromosome pairs in our 10 cancer cell lines giving rise to 227 distinct contact enrichments in inter

chromosomal maps. We find evidence in the literature for 30 of our 90 reported translocations. Finally, we report two highly amplified

regions that we predict as double minutes through simulations of expected contact patterns. Our results demonstrate the power of Hi-C

data in predicting a wide range of large scale genomic rearrangements and the importance of developing flexible tools to simulate Hi-C

data with custom made genomic rearrangements. 

 

Fig. 1. Overall summary of the methods developed in this work. HiCnv and HiCtrans are the two methods we develop for identify

ing copy number variations (CNV) and translocations from Hi-C data. AveSim is our simulation pipeline that generates simulated Hi-C

data with genomic rearrangements introduced. AveSim works either at restriction enzyme (RE) site/fragment resolution or with fixed

size genomic bins to create intra- and inter-chromosomal Hi-C contact maps with the desired rearrangements in the genome.  
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2 Methods 

2.1. Data Collection 

We download raw reads for publicly available Hi-C data for 12 cancer cell lines from the ENCODE project portal (encodeproject.org) 

as well as from two normal diploid cell lines, namely hESC (Dixon et al. 2012) and IMR90 (Jin et al. 2013). We discard two cancer 

cell lines due to concerns about Hi-C data quality and mapping rates (SJCRH30 and SKNDZ) (Table 1). All of these Hi-C libraries 

were generated using the 6-bp cutter HindIII restriction enzyme (cut site: A|AGCTT). We process the raw reads for each cell line with 

HiCPro (Servant et al. 2015) to generate raw intra- and inter-chromosomal matrices at a single RE resolution and with fixed-size bins 

(e.g., 40kb). For comparing our CNV calls, we use a ~30x coverage WGS data processed at 50kb bins for the T47D cell line (personal 

communication with Feng Yue). We also use CNV calls from ENCODE Illumina BeadChip array data generated by Hudson Alpha 

Institute (HAIB) and processed by circular binary segmentation (CBS) (Olshen et al. 2004) for four of our cancer cell lines, namely 

T47D, PANC1, LNCaP and A549 (wgEncodeHaibGenotype). For known translocations, we use karyotype information from several 

websites as well as previous publications about each cell line. We perform all of our analysis using the human genome build GRCh37 

(hg19).  

2.2. Copy Number Variation calling from Hi-C (HiCnv) 

For calling CNVs, we first compute Hi-C read coverage at each restriction site throughout the genome. Since all of our samples are 

digested using HindIII, we get coverage measurements on average from every 4kb of the genome. This restriction site based approach, 

instead of fixed size genomic bins allows us to utilize Hi-C data at its native and highest possible resolution. We filter out RE frag-

ments with low GC-content (<0.2), mappability (<0.5) or any overlap with blacklisted genomic regions as prescribed by ENCODE 

(Consortium 2012). Since the CNV information is reflected in a region’s coverage, commonly used Hi-C normalization methods that 

aim to equalize coverage (Imakaev et al. 2012; Rao et al. 2014) are not appropriate because they cancel out the copy number aberra-

tions (Supp. Fig. 1). Therefore, starting from a previously described regression-based method, HiCNorm (Hu et al. 2012), here we 

employ a one-dimensional regression-based normalization (1Dreg) on the RE fragment level coverage counts that corrects for factors 

that are known to bias Hi-C data (i.e., GC content, mappability, fragment length) without removing the CNV signal (Figure 2). Since it 

works on 1D coverages rather than 2D contact maps, our regression is scalable to RE fragment level data. For a given chromosome, let 

ci denote total number of read ends that map to the ith RE fragment where i=1..n and fragi, gci and mapi represent the effective frag-

ment length, GC content and mappability of the fragment i. The equation for our Poisson regression model is as follows:  
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Here w0 denotes the intercept, wfrag, wgc and wmap represent the fragment length, GC content, and mappability biases, respective-

ly. We assume that ci follows a Poisson distribution with rate mi and estimate the normalized count for RE fragment i as the residual ri 

= ci /mi. Supp. Fig. 2 shows that 1Dreg effectively removes aforementioned biases but not the differences between regions with differ-

ent copy numbers.  

Next, we use the normalized coverage values for bivariate kernel density estimation, which provides a probabilistic measure to 

find a certain magnitude of count for each RE site in a given chromosome. We use bkde2d function in R (Wand 1994) for KDE as 

follows: 
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Here pi and ri denote the index and the normalized coverage of an RE site, where i=1..n. K is the standard Gaussian probability 

density function, and hp, hr correspond to x-axis and y-axis bandwidths used for KDE, respectively. f(p, r) gives the final probability 
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density of observing contact counts surrounding an RE position in the genome. We then assign each RE site the count that is associated

with highest density in the density estimate. Supp. Fig. 3 shows that KDE is an essential step as it eliminates much of the unwanted

noise from the Hi-C reads prior to the segmentation process. Since the choice of bandwidth parameter for the x-axis (number of con

secutive RE sites) has a significant effect on the number of false positive and false negative identifications, we assess different band

width values on simulated data (Supp. Fig. 4).  

Fig. 2. Identification of CNVs from Hi-C data. A) Our HiCnv pipeline starts with extracting a 1D coverage vector for each RE site

from the intra-chromosomal contact matrix. We then use a 1D Poisson regression model (1Dreg) to normalize the raw coverages fo

GC content, mappability and fragment length biases, and apply kernel smoothing to further remove noise. Next, we use an HMM

based approach to find the possible CNV segments from the normalized and smoothed coverage values. We assign CNV labels such a

amplified or deleted by comparing the mean segment coverage against that of a diploid reference chromosome. We also correct fo

edge effects due to smoothing to refine our CNV breakpoint calls. B) Comparison of HiCnv (red) and WGS (black) coverage score

for chromosome 3 of T47D (Pearson corr. 0.92). We also plot the bedlogR scores and CNV labels for the same chromosome obtaine

from HAIB genotype (WGS vs HAIB bedlogR corr. 0.81). HAIB CNV labels largely disagree with both HiCnv and WGS, wherea

HiCnv and WGS labels agree with each other and with karyotyping (top left inset). 
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Consequently, we use a Hidden Markov Model-based approach (HMM) to perform a segmentation on the KDE smoothed RE 

site coverage values. We use the RHmm package (https://github.com/cran/RHmm) to fit a univariate-Gaussian model to our coverages 

in order to identify change points in the data. We use Bayesian information criterion (BIC) to select the optimum number of states in 

input coverages and subsequently the mostly likely hidden state that correspond to copy number variation status. However, since can-

cer cell lines can have very high modal numbers (e.g., hyper-triploid HeLA cell line), assigning CNV labels such as delet-

ed/normal/amplified is not trivial because the genome-wide average may not reflect a truly diploid reference point. We, thus, choose a 

reference chromosome based on available biological information such as whole genome sequencing or karyotyping information as a 

baseline to determine the true copy number of each chromosome and accurate labelling of the segmented regions within a chromo-

some. Even though finding such a reference chromosome is possible for all of our cell lines and can be partially automated, it should 

be noted that, only our whole chromosome level estimates are dependent on it (i.e., distinguishing two full copies of a chromosome 

from three full copies). Our segmentation within each chromosome can label CNVs as amplified or deleted relative to each other with-

out a reference.  

Next, we assign CNV labels by calculating an average normalized coverage per RE site for each CNV segment i, NCi. We then 

divide this number by the sum of all such coverages across all chromosomes to get a proportion of interaction count, PICi, per chromo-

some or per a given segment. In the case of a given diploid reference chromosome ref, we determine CNV labels by comparing the 

segment mean PIC value to PICref. We use a percentage threshold on the increase or decrease of a segment’s mean with respect to the 

reference in order to label it as an amplification or deletion. We assess different threshold values in Supp. Fig. 4. Without a reference 

chromosome, the same process could be followed using the average PIC value either across all chromosomes or within each chromo-

some. 

One important step remaining after labeling CNVs is the refinement of segment breakpoint coordinates, which may be off be-

cause of edge effects introduced by the KDE smoothing (Supp. Fig. 5). Such effects are known to be present at the segment bounda-

ries, where the coverage is discontinuous and in transitive phase from one segment to the next (Chiu 2000). In order to detect precise 

breakpoint coordinates of a CNV segment, we compute the ratio between the median coverage of 10 upstream and 10 downstream RE 

sites for each individual RE within a distance less than the selected bandwidth from each segment end. We report RE sites with peaks 

or dips of this ratio as the breakpoints between two adjacent segments with differing CNV labels (Supp. Fig. 5). 

2.3. Translocation calling from Hi-C data (HiCtrans) 

In order to detect translocation events, we analyze the inter-chromosomal contact matrices at a fixed-size bin resolution (40kb in this 

work) for each possible pair of chromosomes from a given cell line. For a given pair of chromosomes, we perform binary segmentation 

first on each row and then on each column of the inter-chromosomal Hi-C matrix of that chromosome pair (Figure 3). For binary seg-

mentation, we use the BINGSEG function from the changepoint package in R, which runs very fast and reports more than one single 

segment only when a significant change is detected in a given contact count row/column (Scott 1974). This allows us to efficiently 

scan the full inter-chromosomal contact matrix to detect candidate change-point events from the perspective of each chromosome.  

Next, we sequentially scan each row for the existence of a change point. Let row i be the first such row with a change point at co-

ordinate j. We then determine an interval of [i, i+x-1], which consists of consecutive rows that all have a change point at j. We perform 

a similar operation on the columns of the interchromosomal matrix, which provides us another interval [j, j+y-1] of consecutive col-

umns with a common change point from the interval [i, i+x-1]. This provides us with a rectangular box of size x by y in the 

interchromosomal matrix spanning x rows of the first chromosome and y rows of the second chromosome that are in consideration. 

These boxes represent regions of inter-chromosomal contact enrichment, which may correspond to translocation events. We then test 

the significance of this enrichment within a given box compared to the overall inter-chromosomal matrix by comparing the mean con-

tact counts of the two using a Poisson test. We then correct the resulting p-value for the number of such boxes tested for a given chro-

mosome pair and consider further only boxes with an adjusted p-value less than 0.05. This ensures filtering of spurious boxes from the 

segmentation that do not have significant enrichment of contacts expected as a result of a real translocation event. For each box that 
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passes the significance test, we then find the maximum inter-chromosomal count within that box and report the corresponding row and

column as the breakpoints at which the two translocating regions ligate to each other. We further eliminate weak inter-chromosoma

signals, by only reporting boxes with a maximum count greater than five as our translocation breakpoints.   

Fig. 3. Identification of translocations from Hi-C data. A) Our HiCtrans pipeline starts with performing binary segmentation inde

pendently on each row and column of an inter-chromosomal matrix. HiCtrans then aggregates the change points identified from the

perspective of each chromosome to determine rectangular boxes of contact enrichment with respect to the overall inter-chromosoma

matrix. For each box, HiCtrans computes a statistical significance for enrichment and for boxes passing this significance test, it report

the pair of regions with the highest contact count as the breakpoints. Two previously validated/observed real case examples of translo

cations identified by HiCtrans in B) T47D and C) NCIH460 (lung cancer) cell line. 

2.4. A versatile pipeline for simulating Hi-C data with genomic rearrangements (AveSim) 

In order to provide a benchmark for our HiCnv and HiCtrans calls, we develop a simulation pipeline for generating Hi-C data from

chromosomes with inserted genomic rearrangements. We carry out these simulations either at the RE site resolution or with fixed-size

genomic bins, which are described in detail below.  

Simulating rearrangements at the RE fragment level: For the amplification, deletion and translocation simulations, we first gener

ate a rearranged sequence with an extra copy, deleted or translocated region of a chromosome, respectively (Figure 1, Supp. Fig. 6-9

The rearranged sequence is then in silico digested with desired restriction enzyme (e.g., HindIII) to get the all possible RE sites. We

use Hi-C data from a karyotypically normal cell line (e.g., IMR90) to learn scaling of contact probability with respect to genomic dis

tance using a smooth spline fit. We then use the selected probability distribution to draw random contact counts among the pairs of RE
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sites in the rearranged genome using their genomic distance, and generate paired-end reads from 50bp regions randomly selected with-

in 500bp of each RE site. This pipeline also allows us to mix and match user defined proportions of reads from the normal and rear-

ranged genomes in order to simulate homogeneous (e.g., 10M reads from the rearranged copy) and heterogeneous rearrangements 

(e.g., 5M reads each from the normal and rearranged copies, 50% rearrangement) (Supp. Fig. 6-9).  

Simulating translocations with fixed-size genomic bins: Apart from simulating at RE site resolution, we also carry out translocation 

simulations with fixed-size genomic bins. For this, we generate different biologically relevant translocation types, namely reciprocal-

balanced, non-reciprocal-balanced and unbalanced (Figure 1, Supp. Fig. 10-11). For each type, we first choose a pair of chromosomes 

and a pair of genomic positions to be exchanged/translocated. Next, we simulate intra- and inter-chromosomal Hi-C contact counts 

based on the assumption that exchanged genomic regions will interact with their new neighboring regions in a distance-dependent 

manner similar to real intra-chromosomal neighbors and that they will interact with their previous locations similar to what is expected 

from inter-chromosomal partners. In order to generate these simulated counts, we use contact probabilities from either Poisson or nega-

tive binomial (NB) distributions by determining the best fit using Bayesian information criterion (BIC). We use NB for intra-

chromosomal counts as it is the better fit for distances up to 100Mb, and Poisson for inter-chromosomal counts (Supp. Fig. 10-11).  

 

3 Results 

3.1. Evaluation of CNV predictions from HiCnv  

We first ask how HiCnv prediction performance is affected by selection of the KDE bandwidth and CNV labeling threshold parame-

ters. For this, we generate a total of 508 amplifications and 453 deletions with sizes ranging from 1Mb to 30Mb in randomly selected 

regions genome-wide (Supp. Fig. 4). We observe that the optimal KDE bandwidth value estimated by the bkde2 function outper-

formed two other bandwidth values in terms of both low false positive and false negative rates (Supp. Fig. 4). Among CNV labeling 

thresholds, we observe that 40% and 45% give balanced results compared to smaller percentages with higher false positive rates and 

compared to 50%, which has a very low recall. With these  

selected parameter settings (optimal bandwidth and 45% threshold) and a stringent criterion for defining true positives (predicted CNV 

needs to cover 100% of the simulated), we correctly identify 313 and 291 simulated amplifications and deletions with only 3 and 47 

false positives, respectively(Supp. Fig. 4). For the correctly identified CNV segments, we predict segment boundaries very accurately 

with a median offset of 3 RE sites (~12kb). Since the simulated CNVs were scattered across the genome, we get varying performance 

depending on the genomic features and coverage variation of the region of CNV insertion.   

We then run HiCnv on 10 cancer and 2 normal cell lines resulting in a total of 105 amplifications and 45 deletion calls (Table 1, 

Supp. File 1). The only CNV reported from the normal cell lines was the whole X chromosome as a deletion in hESC, which is ex-

pected as it was derived from a male donor. We then compare our calls with WGS data from T47D, which showed that HiCnv 

coverages and CNV calls highly agree with the WGS scores at the genome-wide level (Supp. Fig. 12), at the level of whole chromo-

somes (Figure 4A) and CNVs within individual chromosomes (Figure 2B, Figure 4B). Across all chromosomes with CNVs, HiCnv 

and WGS scores show 0.89 overall correlation and an average correlation of 0.83 with a standard deviation of 0.11 per chromosome 

(Supp. Fig. 12). Similar to simulation results, we also assess whether our segment breakpoint calls are accurate in T47D by making 

aggregate plots of WGS scores around the coordinates of HiCnv predicted breakpoints between normal and amplified regions. Our 

results show that the refinement step of HiCnv successfully corrects edge effects and reports breakpoints that are at the transition of 

WGS scores (Figure 4C). 

We also use compare our CNV calls to those from HAIB genotype for four cancer cell lines (Figure 2B, Supp. Fig. 13). Our re-

sults show that the overlap between segments from the two sets highly varies among cell lines and depends heavily on whether its cov-

erage is computed from HiCnv or HAIB segments. For instance, for T47D cell line, 30 of the 31 regions identified as amplified by 

HAIB are fully contained in HiCnv calls, whereas only 7 out of the 26 HiCnv amplifications were covered by HAIB. Figure 2B pro-

vides a potential explanation to the low number in the latter case as it shows that HAIB CNV labels can be incorrect due to overestima-
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tion of “normal” for chromosomes that are mainly amplified. For the example in Figure 2B, CNV labels from HAIB also disagree with

WGS and karyotyping results, even though the HAIB scores correlate well with WGS (r=0.81).  

3.2. Evaluation of translocation calls from HiCtrans 

A translocation event introduces one or more regions of contact enrichment depending on the type of the translocation (Supp. Fig. 9

11). These enrichment regions correspond to breakpoints, at which two previously inter-chromosomal regions ligate to one anothe

(Supp. Fig. 8, 10). Here we capitalize on two observations: 1) due to formation of chromosome territories, only a very small fraction

of interactions occur between chromosomes compared to within, 2) for a pair of chromosomes with a translocation, the inter

chromosomal Hi-C matrix exhibits contact enrichments that are comparable to intra-chromosomal contacts and are distance dependent

Our method HiCtrans identifies and reports these contact enrichments (i.e., breakpoints) as the inter-chromosomal translocation signa

tures (Figure 3A). To evaluate predictions by HiCtrans, we first simulate different types of naturally occurring translocations through

our AveSim pipeline. We show that HiCtrans accurately identifies the exact breakpoint locations of 176 translocations with 12 false

positives from a total of 200 simulations of reciprocal and non-reciprocal balanced translocations carried out at 40kb resolution (Supp

Fig. 10). 
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Fig. 4. Summary of results. A) Relative copy numbers of each human chromosome in one cancer (T47D) and two karyotypically 

normal (IMR90: fibroblast, hESC: embryonic stem cells) cell lines computed by HiCnv using chromosome 2 as our diploid reference 

chromosome. Karyotype information from T47D is shown for a subset of chromosomes. For chromosomes with CNVs other that 

whole chromosome deletions or amplifications in T47D, the relative copy number reflects chromosomal average (e.g., chr1, chr3, 

chr10, chr20) rather than true copy numbers (e.g., chr2, chr4, chr5, chr13). Both IMR90 and hESC relative copy numbers are 2+/-0.2 

confirming that all chromosomes have two copies except for chromosome X in hESC, which was derived from a male donor. B) Read 

coverage plots for three example chromosomes and their corresponding segmentations using HiCnv from T47D Hi-C data (left panel) 

and T47D WGS data (right panel). C) The distribution of T47D WGS scores flanking the HiCnv identified breakpoints between adja-

cent CNVs. We orient 47 such transitions such that all transition go from a normal to an amplified region and plot the median value of 

each 50kb region within +/-500kb of the identified breakpoint.  D) An example inter-chromosomal Hi-C contact map from the breast 

cancer cell line T47D with a known translocation (Davidson et al. 2000) between chromosomes 10 and 20, and a depiction of reported 

breakpoint coordinates and rearrangement reported by HiCtrans (left). E) Heatmap of a known translocation (Espino et al. 2009) in a 

pancreas cancer cell line (PANC1) identified by HiCtrans. F-G) Heatmaps depicting the contact patterns generated by the two highly 

amplified regions we identify in NCIH460 and PANC1 cell lines that are of size 1.71Mb (chr8) and 1.07Mb (chr19), respectively. H-I) 

Two panels show contact patterns generated by AveSim for an introduced double minute (DM) and a homogeneously staining region 

(HSR), respectively, suggesting that both of the highly amplified regions in F and G are DMs and not HSRs.  

 

Next, we assess the robustness of our translocations calls to noise or heterogeneity in Hi-C data. For this purpose, we use Avesim 

to generate RE site level simulations, which create paired-end read libraries that contain a mixture of translocated and normal copies of 

the chromosomes (Supp. Fig. 6-9). Our results in this setting show that HiCtrans is very robust to heterogeneity and can accurately 

identify translocations even when only 5% of the reads come from translocated copies (Supp. Fig. 9B). This suggests HiCtrans could 

detect low prevalence sub clonal translocations within, even though we do not know how the success at 5% from our simulations 

would translate into real sub clonal events.  

We then apply HiCtrans to our 10 cancer cell lines, which resulted in identifications of 90 translocations corresponding to a total 

227 contact enrichments (Table 1, Supp. File 2). Even though there are no comprehensive sets of validated translocation calls, previ-

ous studies on A549 (lung), LNCaP (prostate), NCIH-460 (lung), PANC1 (pancreas), SKMEL5 (skin), SKNMC (brain) and, T47D 

(breast) cancer cell lines identified several translocations, against which we compare our calls (Takahashi et al. 1989; Davidson et al. 

2000; Espino et al. 2009; Peng et al. 2010; Rondon-Lagos et al. 2014). We find that 30 out of our 90 translocations were previously 

reported (Supp. File 2). One of these examples is a non-reciprocal translocation between chromosomes 7 and 15 in T47D cells 

(Davidson et al. 2000), which results in two copies of t(7:15) translocation products, two copies of normal chromosome 7 and one copy 

of the normal chromosome 15 (Figure 3B). Another example is the formation of t(7;9) (Takahashi et al. 1989), which is a marker 

chromosome of the NCIH-460 non-small cell lung cancer cell line (Figure 3C). Figure 4D-E show two additional translocations that 

are also characterized before (Davidson et al. 2000; Espino et al. 2009). We also show contact patterns from a number of other known 

translocations in Supp. Fig. 14, and in Supp. Fig. 15 we provide similar heatmaps from 12 translocations that are novel predictions by 

HiCtrans to the best of our knowledge. Even though further experiments (e.g., FISH, PCR) are needed to confirm these potentially 

novel translocations, we believe that the similarity of contact patterns of known translocations to these new predictions provides strong 

evidence for their presence in these cell lines.   

 

4 Discussion 

Here we proposed two new methodologies (HiCnv and HiCtrans) that utilize chromatin contact maps to identify CNVs and transloca-

tions in cancer cell lines. Our comparisons with whole genome sequencing, HAIB genotype and karyotyping demonstrated that our 
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methods accurately detect large scale CNVs (>1Mb) and translocations from moderately sequenced Hi-C libraries, thereby, extending 

the utility of Hi-C data to detection of genomic rearrangements in cancer.  

Due to lack of precise maps of genomic rearrangements, which could be used as true gold standards for evaluating our predic-

tions, we also developed a simulation framework (AveSim) that can introduce rearrangements in Hi-C contact maps. This framework 

provided us with two different approaches to generate simulated Hi-C data as well as the ability to introduce several different types of 

naturally occurring rearrangements into contact matrices. An interesting example was the highly amplified regions identified in two 

cancer cell lines NCIH460 (chr8:128691158-130402069) and PANC1 (chr19:39774739-40847406) (Figure 4F-G). Such aberrant 

amplifications have been reported previously in neuroblastoma (Balaban-Malenbaum and Gilbert 1977; Storlazzi et al. 2010) and fall 

into two classes depending on whether the amplified regions are localized to their native locus (homogenously staining regions –HSRs) 

or created extrachromosomal DNA loci (double minutes –DMs). By simulating both of these possible scenarios (Figure 4H-I), we 

show that both regions we identify produce contact patterns consistent with DMs and not with HSRs. This example highlights the 

power of Hi-C data and the importance of a versatile simulation method, in not only evaluating the performance and tuning the param-

eters of developed methods, but also in generating signature contact patterns from complex rearrangements. Such complex rearrange-

ments remain difficult to identify with any high-throughput method including Hi-C.  

We believe that the framework we put forward here for identifying genomic rearrangements solely from Hi-C data, as well as a 

pipeline for simulating such rearrangements in Hi-C contact maps, which can be used as a benchmark for predictions methods devel-

oped here and later on, is valuable to the fields of cancer research and 3D/4D nucleome. We believe one future direction is to develop 

probabilistic methods that will utilize higher resolution Hi-C datasets to identify CNVs that only occur in a subset of cells from a po-

tentially heterogeneous tumor sample. Another important direction is the integration and reconciliation of rearrangement calls from 

multiple high-throughput experiments, such as conventional whole genome sequencing (WGS), linked-read WGS, single-molecule 

imaging (Bionano Irys) and Hi-C (Zheng et al. 2016; Dixon 2017), in order to come up with comprehensive and accurate maps of ge-

nomic rearrangements in cancer.  

 

Table 1. Summary of Hi-C data used in this work. The number of reads, valid pairs (in millions); amplifications (Amp), deletion 

(Del), translocations (Trans) and double minutes (DMs) are given.  

Cell line                             Raw/Valid pairs (M)              Amp/Del/Trans/DMs   

A549 251.9/133.1 1/2/4/0 

CAKI2 323.7/158.0 2/5/20/0 

G401 340.9/140.4 0/4/2/0 

LNCaP 306.5/90.6 0/5/4/0 

NCIH460 313.2/143.9 29/2/12/1 

PANC1 289.0/152.4 5/5/18/1 

RPMI7951 335.9/178.4 21/2/2/0 

SKMEL5 303.5/75.5 13/9/7/0 

SKNMC 313.8/146/6 2/8/5/0 

T47D 247.7/132.6 32/2/16/0 

IMR90 529.1/113.1 0/0/0/0 

hESC 237.6/43.6 0/1/0/0 
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