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Abstract 

 

Gene expression changes have been recognized as important drivers of adaptation to changing 

environmental conditions. Little is known about the relative roles of plastic and evolutionary 
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responses in complex gene expression networks during the early stages of divergence. Large gene 

expression data sets coupled with in silico methods for identifying co-expressed modules now enable 

systems genetics approaches also in non-model species for better understanding of gene expression 

responses during early divergence. Here, we combined gene co-expression analyses with population 

genetics to separate plastic and population (evolutionary) effects in expression networks using small 

salmonid populations as a model system. We show that plastic and population effects were highly 

variable among the six identified modules and that the plastic effects explained larger proportion of 

the total eigengene expression than population effects. A more detailed analysis of the population 

effects using a QST - FST comparison across 16622 annotated transcripts revealed that gene expression 

followed neutral expectations within modules and at the global level. Furthermore, two modules 

showed enrichment for genes coding for early developmental traits that have been previously 

identified as important phenotypic traits in thermal responses in the same model system indicating that 

co-expression analysis can capture expression patterns underlying ecologically important traits. We 

suggest that module-specific responses may facilitate the flexible tuning of expression levels to local 

thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main 

drivers of gene expression variance in the early stages of thermal adaptation in this system. 

 

 

1. Introduction 

 

The relative roles of plasticity and evolutionary adaptation have gained considerable interest in recent 

evolutionary genetics research (Gienapp et al. 2008; Chevin et al. 2010; Merilä 2012; Crozier and 

Hutchings 2014; Merilä and Hendry 2014; Reusch 2014; DeBiasse and Kelly 2016). This is also 

tightly associated with a fundamental understanding of how populations adapt to rapid environmental 

changes (Franks and Hoffmann 2012). Rapid thermal adaptation may play a crucial role in future 
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population persistence, particularly for ectotherms living in isolated habitats and thus unable to 

migrate to suitable thermal conditions (Franks and Hoffmann 2012; Narum et al. 2013). Rapid 

ecological responses to rising temperatures have been documented for several species, but the genetic 

mechanisms underlying these responses remain relatively poorly understood (Gienapp et al. 2008; 

Shaw and Etterson 2012; Merilä and Hendry 2014). In particular, the relative roles of plastic and 

evolutionary components underlying rapid ecological responses have remained challenging to 

demonstrate (Gienapp et al. 2008; Merilä 2012; Merilä and Hendry 2014). Plasticity, commonly 

understood as a capacity of the same genotype to express alternative phenotypes within the same 

generation, is widely acknowledged to produce rapid responses to new environmental conditions 

(Price et al. 2003; Crispo 2007; Fusco and Minelli 2010; Forsman 2015). Rapid genetic evolution in 

few generations has been demonstrated in a variety of model systems, challenging the traditional view 

of evolution as a slow process (Messer et al. 2016). Thus, there is potential for both processes to 

underlie rapid responses to abrupt environmental changes. According to current views, plasticity and 

evolution are not mutually exclusive, but they may interact during the adaptation to a new 

environment (Ghalambor et al. 2007; Ehrenreich & Pfennig 2015).  

 

Several scenarios have been proposed to explain how plasticity and evolutionary responses might 

evolve during the course of adaptation (Pigliucci 2006; Crispo 2007; Schlichting and Wund 2014; 

Ehrenreich and Pfennig 2015; Hendry 2016). The initial response under novel environmental 

conditions might involve only a plastic response. Modelling, empirical and conceptual studies suggest 

that phenotypic plasticity enhances fitness, thus providing the capacity for survival (DeWitt et al. 

1998; Price et al. 2003; Chevin et al. 2010; Fierst 2011; Draghi and Whitlock 2012; Lande 2015; 

Murren et al. 2015; Hendry 2016). Phenotypic plasticity may result in a nearly optimal phenotype, 

which is subsequently refined through natural selection when there is genetic variation in the same 

direction as the plastic response. As a result of this process, traits may become constitutively 
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expressed, a phenomenon commonly known as genetic assimilation, or the environmental sensitivity 

may be maintained or increased (Baldwin effect) (Pigliucci 2006; Crispo 2007; Schlichting and Wund 

2014; Ehrenreich and Pfennig 2015; Friedrich and Meyer 2016). Genetic assimilation may evolve 

when plasticity is, for example, costly and subsequent constitutive expression is favoured, whereas the 

Baldwin effect may be favoured under conditions in which maintaining plasticity is beneficial (Crispo 

2007; Schlichting and Wund 2014). For example, environmental heterogeneity favours plasticity 

when the environmental cue is predictable (DeWitt et al. 1998; Crispo 2007; Hendry 2016). 

Furthermore, if plasticity drives the population to a new optimum in the new environment, then 

genotypes may also be shielded from natural selection, thereby constraining or slowing genetic 

evolution (Price et al. 2003; Ghalambor et al. 2007; Friedrich and Meyer 2016; Hendry 2016). 

Plasticity may also promote genetic evolution when the plastic response is maladaptive for favouring 

genetic compensation, known as counter-gradient variation (Conover and Schultz 1995; Morris and 

Rogers 2013; Hendry 2016).  

 

Gene expression and its regulation is one of the key molecular mechanisms underlying plastic and 

evolutionary responses (Whitehead and Crawford 2006; López-Maury et al. 2008; Romero et al. 2012; 

Alvarez et al. 2014; DeBiasse and Kelly 2016). Epigenetic regulation via environmental stimuli may 

trigger plastic responses, whereas an evolutionary response may involve changes in regulatory 

elements (Hoekstra and Coyne 2007). Gene expression can show considerable flexibility when 

organisms are exposed to environmental gradients within the same generation, but it is also involved 

in long-term adaptation (López-Maury et al. 2008). Gene expression plasticity can be estimated using 

a genomic reaction norm approach by exposing populations to environmental variables in 

experimental settings. The slope of the genomic reaction norm can be informative about the 

magnitude of plasticity, and the genotype-environment interaction indicates genetic variation in 

plasticity (Aubin-Horth and Renn 2009). Estimating evolutionary responses in gene expression 
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remains a challenge, reflecting the lack of an appropriate null model for separating variance as a result 

of neutral divergence from natural selection (Fraser 2011; Harrison et al. 2012; DeBiasse and Kelly 

2016). Furthermore, methods using phylogenetic relationships to infer selection in expression data 

might not be applicable to closely related populations (Rohlfs et al. 2014). QST-FST (or PST for 

phenotypic data) comparisons are widely used to infer local adaptation in phenotypic traits but have 

also been applied relatively rarely to ‘omics’ data (Leinonen et al. 2013). In this approach, the 

inference of adaptive evolution is based on the presumably neutral distribution of the FST estimated 

from genetic markers to which the distribution of QST is contrasted. The QST estimates outside the FST 

distribution are putative candidates for natural selection (Leinonen et al. 2013). Modern sequencing 

technologies enable the simultaneous collection of gene expression and genetic variation data for a 

large number of molecular phenotypes, providing a meaningful starting point for estimating the 

evolutionary forces affecting expression divergence (De Wit et al. 2015). 

 

Similarly, large gene expression data sets coupled with in silico methods for identifying co-expressed 

gene networks or modules enable a systems genetics approach, even in non model species (Soyer and 

O’Malley 2013; Feltus 2014). Analyses of co-expressed gene networks have been widely used in 

medical genetics but are also gaining popularity in evolutionary genetics (Langfelder and Horvath 

2008; Feltus 2014; Ruprecht et al. 2017). The rationale behind in silico co-expression gene network 

analysis is that gene expression correlation may reveal functionally related genes belonging to the 

same biological pathway (Langfelder and Horvath 2007; Langfelder and Horvath 2008). Furthermore, 

the expression variance of genes belonging to a module can be summarized to eigengenes, and their 

expression can be further analysed in relation to external information. Thus, multiple testing problems 

can be reduced compared to testing each gene separately to detect differential expression (Langfelder 

and Horvath 2008). Genes and gene products interact in complex networks. The position of a gene in 

a network or the number of interactions to other genes can affect the evolutionary dynamics of gene 
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expression (Levy and Siegal 2008; Feltus 2014; Fischer et al. 2016; Laarits et al. 2016). For example, 

the number of protein-protein interactions and the location of the gene in a network may constrain or 

buffer against changes in gene expression (Han et al. 2004; Levy and Siegal 2008; Papakostas et al. 

2014). Thus, analysing gene expression changes within and among networks can provide further 

insights into how populations have adapted to local conditions (Ruprecht et al. 2017).  

 

Understanding the roles of plastic and evolutionary responses in gene expression may benefit from 

integrating methods commonly used for evolutionary and systems biology (Soyer and O’Malley 2013; 

Feltus 2014). Co-expression analysis might reveal complex interaction networks but are not 

informative of the evolutionary forces shaping the network evolution (Soyer and O’Malley 2013). 

Traditional QST-FST comparisons might help separate neutral and adaptive processes in network 

evolution and provide a global view of transcriptome divergence. Comparisons of recently diverged 

populations may provide further insights into the molecular mechanisms underlying rapid thermal 

adaptation in a time scale comparable to anthropogenic environmental change. Furthermore, direct 

comparisons of ancestral-derived populations are informative of the evolution of plasticity 

(Schlichting and Wund 2014). Here, we used European grayling (Thymallus thymallus) populations 

inhabiting small mountain lakes in Norway to investigate early-stage divergence in gene expression. 

This model system is suitable for investigating the early stages of divergence because colonization 

dates back 25-30 generations (Haugen and Vøllestad 2000; Haugen and Vøllestad 2001). In addition, 

knowledge concerning the ancestral population facilitates comparisons to the derived populations, 

enabling the tracking of evolutionary sequences and plastic events (Schlichting and Wund 2014).  

 

Here, we investigate the relative roles and the interactions of plastic and evolutionary responses in 

gene co-expression networks during rapid thermal adaptation. We focus on two working hypothesis. 

First, under the genetic assimilation scenario, the plastic response to thermal treatment is lost during 
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the course of divergence, and the populations show divergent expression profiles, reflecting adaptive 

evolution. Second, under the Baldwin effect scenario, plasticity is maintained or even elevated relative 

to the ancestral level, but populations may also show divergence in gene expression. To address the 

abovementioned questions, we raised developing embryos from four grayling populations originating 

from varying thermal environments and exposed them to two thermal treatments in a common garden 

environment. To evaluate the above scenarios, we first used a gene co-expression analysis to identify 

expression modules of potentially functionally similar transcripts. We then analysed module 

eigengene expression variation in an ANOVA framework to partition variance to treatment, 

population and their interaction effects. ANOVA analysis should reveal the relative contributions of 

plastic (treatment) and population (evolutionary) effects on module eigengene expression. Second, we 

further analysed the population effect in gene expression using a broad sense QST-FST comparison. 

This approach is used to estimate gene expression variation resulting from neutral and potentially 

adaptive processes within modules and at the global level.  

 

 

 

Results 

 

On average, 78.7 million paired-end reads were obtained per sequencing library. After quality filtering 

and removing PCR duplicates, 68.1 million reads remained (86.5%) (supplementary table 1). The 

average GC content of the quality-filtered libraries was 46%. De novo assembly with Trinity 

identified 142653 transcripts (including isoforms) and 109102 trinity ‘genes’. The total length of the 

de novo assembly was 143.923 Mb, and the mean and average contig lengths were 583 bp and 1009 

bp, respectively. In silico prediction of the putative coding sequence with TransDecoder identified 

136291 transcripts with open reading frames. Clustering of highly similar sequences with CD-hit 
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identified 61190 unique proteins. The annotation of the unique proteins with reciprocal blast search 

identified 19461 putative homologies to at least one of the species (zebrafish, stickleback, cod or 

Atlantic salmon). 131 putative paralogous genes i.e. the same transcript showed reciprocal blast hits to 

different gene models were removed from the down stream analyses. Specifically, 6069 (31.2%), 

3830 (19.7%), 4302 (22.1%) and 5260 (27.0%) transcripts had one, two, three or four BLASTP hits, 

respectively. Therefore, the majority of the transcripts (13392, 68.8%) had more than one reciprocal 

blast hit in reference species. Approximately 27.3 (40.1%) million reads were mapped back 

concordantly to the de novo assembly with Bowtie2 (supplementary table 1). Altogether count data 

were obtained from 19330 annotated transcripts. However, the final data set comprised 16622 

annotated transcripts after the removal of transcripts containing at least one individual with zero 

counts. This filtering step was applied to remove transcripts showing uninformative signals and to 

avoid frequent crashes in the WGCNA resampling analysis. 

 

Principal component analysis showed differentiation both between treatments and populations (figure 

3). PC1 explained 25.9% and PC2 explained 17.3% of the total variation in gene expression. There 

was clear differentiation between populations in cold and warm treatments for R. 

Gudbrandsdalslågen, L. Lesjaskogsvatnet and L. Aursjøen. However, L. Hårrtjønn in the cold 

treatment overlapped other populations in the warm treatment (figure 1). Analysis of variance using 

PC1 as a dependent variable revealed significant population [F(3, 27) = 26.82, P<0.001], treatment 

[F(1, 27)=208.12, P<0.001] and their interaction effects [F(3, 27) = 11.25, P<0.001]. Post hoc (Tukey 

HSD) tests indicated that three out of six pairwise population comparisons in the cold treatment were 

significant (adjusted p-value < 0.05), whereas in the warm treatment, two comparisons were 

significant (supplementary figure 3). When different populations were compared between the 

treatments only two out of sixteen comparisons were non-significant (supplementary figure 3). 
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The weighted gene co-expression analysis identified ten modules, and six modules (assigned to black, 

blue, brown, green, red and turquoise colours by the WGCNA analysis) were robust in the resampling 

analysis, i.e., showing significant overlap in 70% of the resampled data sets with the original data set 

(figure 4). The six statistically robust modules contained a total of 5999 (36.1%) transcripts. Black, 

blue, brown, green, red and turquoise modules contained 223, 1499, 1133, 740, 302 and 2102 

transcripts, respectively. The majority of the transcripts (9496, 57.1%) were not assigned to any 

particular module (grey module) and the remaining modules (magenta, pink and yellow) showed 

instability in the re-sampling analysis (figure 4). PC1 on the transcripts belonging to the statistically 

robust modules explained 96.5% of the total variation, whereas the PC2 explained 1.4% of the total 

variation (figure 5). Module eigengenes (PC1) showed variable responses to population, treatment and 

their interaction effects (table 1, figure 6). Blue and turquoise modules had significant (P < 0.001) 

population, treatment and their interaction effects, whereas black and green modules showed only 

significant treatment effects (table 1, figure 6). The other modules (red and brown) showed non-

significant population, treatment or their interaction effects (table 1, figure 6).  

 

The mean and range of QST across all transcripts were 0.024 (0-0.570), 0.044 (0-0.726) and 0.062 (0-

0.799) assuming 0.5, 1 and 1.5 for the c/h2 scalar variable, respectively (supplementary figure 4). A 

total of 13121 transcripts were significant, i.e., the confidence intervals excluded zero. The mean FST 

across 2458 SNP loci was 0.128 and the range of locus specific FST values was 0-0.531 

(supplementary figure 4). There were no differences in the mean FST in SNPs located in the flanking 

regions (FST=0.129, n=1955), and non-synonymous positions (FST=0.129, n=256) or synonymous 

positions (FST=0.116, n=247). SNP data separated populations in PC1 (16.4% variation) and PC2 

(11.8% variation), whereby the ancestral population was the most distant from the other populations 

(supplementary figure 5). The QST estimates of two transcripts [TR19626: 0.799 (95% C.I. 0712-

0.871) and TR47182: 0.709 (95% C.I. 0.576-0.813)] fell outside the upper range of the FST 
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distribution when c/h2=1.5, and one transcript [TR19626: 0.726 (95% C.I. 0.622-0.819)] fell outside 

the upper range of the FST distribution when c/h2=1.0 (supplementary figure 4). No QST estimates 

were detected outside the lower range of the FST distribution (supplementary figure 4). Thus, almost 

the entire range of QST estimates fell within the FST distribution, indicating that the transcriptome 

divergence can be explained by patterns consistent with neutral evolution. However, the mean QST 

differed between modules. Black (0.037), brown (0.020), green (0.041) and red (0.016) modules 

showed relatively small differentiation, whereas blue (0.123) and turquoise (0.137) modules showed a 

higher degree of differentiation on average assuming c/h2=1.5 (figure 7). 

 

Altogether 126 (56.5%), 1060 (70.7%), 665 (58.7%), 440 (59.5%), 165 (54.6%) and 1275 (60.7%) 

zebrafish annotations were recovered for the grayling transcripts belonging to the black, blue, brown, 

green, red and turquoise modules, respectively, which were used for enrichment analysis using the 

STRING database. Gene enrichment analysis revealed significant (FDR < 0.05) 33 (black module), 

134 (blue module), 112 (green module), and 18 (turquoise module) GO terms associated with 

biological processes. After merging semantically similar categories, 15, 55, 33, and 7 categories 

remained for black (supplementary figure 6), blue (supplementary figure 7), green (supplementary 

figure 8) and turquoise (supplementary figure 9) modules, respectively. No significant enrichments for 

the biological processes were observed for the red and brown modules. Most of the categories 

belonged to general terms, such as “biological regulation” and “cellular process”, both of which were 

identified in all modules, except the turquoise module. Other categories were involved in biological 

functions “response to stress”, “response to stimulus” (green module) and “methylation” (blue 

module). There were also several more specific terms associated with developmental processes. The 

black module contained “muscle fibre development”, the green module “nervous system 

development” and the turquoise module “embryonic organ development” terms. Altogether six (blue 
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module), two (brown module), two (green module), one (red module) and five (turquoise module) 

significant (FDR <0.05) Pfam protein domain enrichments were identified (supplementary table 2). 

 

Discussion 

 

The evolution plastic response during early divergence 

 

One of the major findings of the present study is that populations respond differently to the thermal 

treatment at both the whole transcriptome level and within the transcriptional modules. This finding 

opens up possibilities for disentangling the causes of variable responses in the context of how 

plasticity itself evolves and how it interacts with evolutionary responses. Studies have suggested that 

the initial response to new environmental conditions is produced through plasticity, but if there is 

genetic variation in the same direction, then the response can become genetically determined. During 

this process, the environmental sensitivity or plasticity can be lost or reduced, a phenomenon known 

as genetic assimilation or accommodation (Pigliucci 2006; Crispo 2007; Schlichting and Wund 2014; 

Ehrenreich and Pfennig 2015; Friedrich and Meyer 2016). However, plasticity can be maintained or 

increased relative to ancestral plasticity levels, a phenomenon known as the Baldwin effect (Crispo 

2007). It is expected that the Baldwin effect is favoured when plasticity is not costly and is beneficial. 

Genetic assimilation, however, is expected to evolve under conditions in which constitutive 

expression is favoured. The cost of plasticity and maladaptive response are expected to favour genetic 

assimilation (Crispo 2007). If the genetic assimilation scenario would hold in this study system, then 

we would expect a loss of plasticity and increased population effects during the colonization of 

different habitats. By contrast, we found that the levels of plasticity were not reduced but rather varied 

among populations and were not related to the level of ancestral plasticity. One point of speculation 

might be that genetic assimilation potentially takes longer than the divergence between the study 
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populations (25-30 generations). Experimental studies have shown that genetic assimilation in thermal 

stress can rapidly evolve (ten generations) in laboratory populations of nematodes (Sikkink et al. 

2014). In bacterial populations, genetic assimilation to high CO2 levels evolved after 4.5 years (570-

850 generations) of experimental evolution (Walworth et al. 2016). Although the results from 

experimental evolution studies in other species cannot be directly translated to natural populations, 

there are indications that genetic assimilation can rapidly evolve. Although there is potential for rapid 

evolution of genetic assimilation, the response at the gene expression level can be complicated. 

Sikkink et al. (2014) showed that there were no correlated responses in gene expression to the evolved 

changes in thermal stress at the phenotypic level. This finding may further complicate detecting 

genetic assimilation at the molecular level. 

 

Heterogeneous environments can favour plasticity because multiple optima are needed during the life-

time of an organism (Crispo 2007; Murren et al. 2015; Hendry 2016), potentially explaining the 

variable plastic response observed in the grayling populations. We observed the lowest plastic 

response in the smallest lake (L. Hårrtjønn) with few river outlets. By contrast, we observed the large 

plastic responses in larger lakes with many small tributaries. For example, in L. Lesjaskogsvatnet, the 

grayling spawns in numerous ‘large cold’ and ‘small warm’ rivers, which differ in their thermal 

profiles (Haugen 2000; Haugen and Vøllestad 2001; Gregersen et al. 2008; Kavanagh et al. 2010). 

The embryos hatch, and the larvae drift or migrate from the spawning tributary into the lake during 

summer and early autumn. Grayling in L. Lesjaskogsvatnet may thus experience a wide thermal range 

during its lifetime, favouring larger plasticity. Similar patterns may arise if plasticity is costly in one 

environment but not in the other. Costs may arise as a result of energetic costs of maintaining genetic 

machinery for producing a plastic response, developmental instability and genetic costs if the 

plasticity is associated with a disadvantageous gene (DeWitt et al. 1998; Crispo 2007). Studies 

investigating plasticity costs have reported variable outcomes, but overall the results suggest that the 
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costs are small or absent (Snell-Rood et al. 2010; Murren et al. 2015). Evaluating the costs of 

plasticity in grayling populations in the present study would be difficult, but the relation of 

enrichments to growth and developmental traits might indicate that plasticity costs could indeed exist. 

Kavanagh et al. (2010) demonstrated that cold populations had a faster developmental rate and higher 

muscle mass than warm populations but at the cost of decreased development of skeletal structures. 

This finding may suggest that there are energetic costs associated with expressing different 

developmental rates but further studies are needed to evaluate whether such costs exist at the 

transcriptome level. Finally, plasticity can also be maladaptive and thus select against or compensate 

for faster evolutionary rate, a phenomenon known as counter gradient variation (Conover and Schultz 

1995; Ghalambor et al. 2007). 

 

Modular gene expression response 

 

The basic assumption underlying gene co-expression analyses is that functionally similar genes are 

likely co-expressed or their expression is correlated (Langfelder and Horvath 2008). We found 

evidence for the above assumption in the grayling transcriptome response to thermal treatments. We 

observed several enrichments for developmental traits among the modules, indicating that this 

approach can capture gene expression patterns underlying ecologically important traits. Previous 

studies have shown that graylings from cold-origin populations grow faster and have higher muscle 

mass than the warm origin populations (Kavanagh et al. 2010). We found muscle development related 

enrichments in the black module, which could be linked to the observed differentiation in the muscle 

growth patterns between cold and warm environments. In addition, we found several embryonic organ 

development enrichments in the turquoise module and they could be associated with several other 

early developmental traits that have differentiated in grayling populations (Haugen 2000; Haugen and 

Vøllestad 2000; Haugen and Vøllestad 2001; Koskinen et al. 2002). Similar results have been 
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observed in lake whitefish (Coregonus clupeaformis), for which key phenotypic traits of adaptive 

significance were associated with co-expression modules (Filteau et al. 2013). Filteau et al. (2013) 

correlated phenotypic measurements to module eigengene expression, facilitating the direct 

association of ecologically important traits with gene expression patterns. We used a “top-down” 

approach, which can also enable the association of gene expression modules with previously 

identified adaptive traits in the grayling populations. In addition to enrichments associated with 

biological processes, we observed Pfam protein domain enrichment for Homeobox domain in the red 

module. The Hox gene cluster is a known transcription factor regulating embryonic development in 

the anterior posterior axis (e.g., Cheatle Jarvela & Hinman 2015). Originally discovered in 

Drosophila, Hox genes have been observed to control developmental processes in a wide variety of 

organisms (Pearson et al. 2005; Cheatle Jarvela and Hinman 2015). Recently, the Hox gene cluster 

was identified as a potential driver of diversification in coral reef fishes (Puebla et al. 2014). Hox 

genes control downstream genes through the up-regulation or down-regulation of gene expression and 

thus play an important role in regulating gene regulatory networks. However, additional studies are 

needed to elucidate the molecular mechanisms of how Hox genes control plastic or evolutionary 

responses in gene expression. 

 

The modular pattern of gene expression suggests a flexible model of plastic and evolutionary 

responses during the early stages of thermal adaptation. Thus, the gene co-expression modules had 

variable responses to thermal treatment, population effect or their interaction or no effect at all. In 

general, plastic effects explained larger proportion of the eigengene expression than population 

effects. Overall, these results suggest that transcriptome is divided into subunits with separate 

biological functions and different evolutionary properties or gene expression responses. Although 

modularity is a characteristic of most living organisms at both the phenotypic and molecular levels, 

there is no consensus on the origin and maintenance of modularity (Espinosa-Soto and Wagner 2010). 
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Several scenarios have been proposed based on computer simulations and empirical findings to 

explain how modularity evolves (Wagner 1996; Wagner et al. 2007; Espinosa-Soto and Wagner 

2010). In general, modularity is expected to decrease pleiotropic interactions among the modules, 

thereby enabling more independent evolution of separate traits (Wagner et al. 2007; Snell-Rood et al. 

2010). During adaptive evolution, most of the traits are under stabilizing selection, whereas a few 

traits are under directional selection (Wagner and Altenberg 1996; Espinosa-Soto and Wagner 2010). 

There is little evidence for the selection scenario in the present study. For example, the black module 

was enriched for muscle development genes, whereas the blue module was enriched for nervous 

system development genes, but both modules evolved under neutrality. Kavanagh et al. (2010) 

observed that the development of the musculoskeletal traits in grayling involved trade-offs. Faster 

muscle growth in the cold treatment likely constrains development of other traits, suggesting that 

genetic correlations might constrain the independent evolution of developmental modules. According 

to modularly varying evolutionary goals scenario, the modularly variable environment may trigger 

modular evolution. This idea has been demonstrated with computer simulations and in experimental 

studies (Parter et al. 2007; Espinosa-Soto and Wagner 2010). Parter et al. (2007) showed that bacterial 

populations living in variable environments showed more modular organization of metabolic networks 

than populations in stable environments. This scenario is appealing for examination in the grayling 

system to reveal habitat-specific modular patterns, but our attempts to construct robust population-

specific gene co-expression modules resulted in low reproducibility of the modules. Espinosa-Soto & 

Wagner (2010) used computer simulations to show that modularity could arise as a by-product of 

selection favouring new gene activity patterns in certain organismal structures or under novel 

environmental conditions. Empirical findings support this scenario because most of the new 

evolutionary innovations are built on previously evolved modules (Espinosa-Soto and Wagner 2010). 

Demonstrating whether new gene activity patterns are underlying modular transcriptome evolution 

would require comparative data from several species (Espinosa-Soto and Wagner 2010). Finally, 
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computer simulations indicate that maximizing network performance and minimizing connections 

costs can facilitate network modularity (Clune et al. 2013). In conclusion, the mechanism driving the 

origin and maintenance of the modularity in the present study cannot be inferred with certainty. 

However, we suggest that modularity may facilitate the flexible adjustment of gene expression levels 

to local thermal conditions as indicated module-specific plastic and evolutionary responses. 

 

No evidence for adaptive evolution in gene expression? 

 

We detected no clear signals of adaptive evolution, suggesting that neutral patterns can explain gene 

expression variance after a recent colonization of varying thermal environments. We found only two 

transcripts outside the FST distribution (assuming c/h2=1.5 or 1), and remaining QST estimates fell 

within the FST distribution. These two transcripts were annotated to genes SSUH2 and tctex1d1. 

SSHU2 is involved in human dental malformations (Xiong et al. 2017), and tctex1d1 is associated 

with relative testis weight and is located in a genomic region of high sequence differentiation between 

house mouse (Mus musculus) subspecies (Phifer-Rixey et al. 2014). The overall pattern of gene 

expression divergence is consistent with neutral theory of evolution, predicting that genetic drift is 

expected to overdrive natural selection in small populations (Nei et al. 2010). Previous gene 

expression evolution studies have suggested that stabilizing selection and neutral evolution explains 

gene expression divergence between closely related species (Rifkin et al. 2003). For example, using a 

quantitative genetic model, Lemos et al. (2005) showed that 61-100% of the expressed genes in 

Drosophila species and mouse strains were under stabilizing selection, but little expression variance 

was explained by genetic drift or directional selection. Khaitovich (et al. 2004) examined primate 

gene expression, showing that expression differences accumulated linearly with time, consistent with 

neutral expectations. Previous studies using QST-FST comparisons have provided evidence for natural 

selection in gene expression data, but the majority of the gene expression divergence is consistent 
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with neutral evolution (Roberge et al. 2007; Kohn et al. 2008; Aykanat et al. 2011; Papakostas et al. 

2014; Leder et al. 2015). However, direct comparisons of QST-FST studies are not without problems 

(Leinonen et al. 2008; Leinonen et al. 2013). Previous studies have compared the mean and 95% 

confidence intervals of FST estimated from a few microsatellite markers to the QST distribution, but this 

approach might be biased because the genome wide variance of FST could be underestimated 

(Whitlock 2008; Leinonen et al. 2013). Whitlock (2008) simulated FST and QST distributions and 

observed that QST and single locus FST distributions behave similarly under the Lewontin-Kraukauer 

model, suggesting that the entire distribution range of locus-specific FST estimates more realistically 

describes the neutral distribution. We used more than two thousand SNP markers, resulting in a more 

genome-wide perspective on variance of FST. However, in our study, both estimators may suffer from 

sampling bias, reflecting small sample size and a low number of populations (O’Hara and Merilä 

2005; Whitlock 2008), potentially resulting in a large sampling variance of both estimators. 

Theoretical studies have shown that a large number of samples and populations are needed to 

accurately estimate QST and FST (O’Hara and Merilä 2005; Whitlock 2008). Furthermore, the 

heritability of gene expression considerably varies from gene to gene (Leder et al. 2015). The 

common garden design did not allow the estimation heritability, but the assumed ratios of additive 

variance and heritability indicated that QST-FST overlapped in a wide parameter range. 

 

Similarly, direct comparisons of transcriptome divergence to previous studies demonstrating adaptive 

evolution in early-life history traits at the phenotypic level in grayling populations are slightly 

challenging. Koskinen (et al. 2002) and Kavanagh (et al. 2010) reported higher divergence than would 

be expected under neutrality in early life history traits, such as muscle growth, although in a different 

set of populations from the same region. Neutral divergence in gene expression was evident when the 

divergence in transcripts with homology to zebrafish muscle proteins and embryonic organ 

development were considered. The mean QST was 0.041 for eleven muscle growth-related transcripts 
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and 0.146 for embryonic organ development-related transcripts, indicating divergence consistent with 

neutrality. In addition to the statistical difficulties in estimating adaptive evolution in gene expression, 

further complications estimating and interpreting gene expression divergence compared to the 

phenotypic level might arise from the complexity of the molecular mechanisms underlying genotype-

phenotype maps (Diz et al. 2012; Harrison et al. 2012; Alvarez et al. 2014). First, gene expression 

variability is inherently noisy because of environmental effects or effects arising from the maternal or 

paternal environment. Common garden experiments should in theory remove environmental effects, 

but trans generational plasticity (TGP) may bias estimating evolutionary responses in gene expression, 

even in the common environment (Salinas and Munch 2012; Shama et al. 2016). For example, Shama 

et al. (2016) showed that gene expression patterns in sticklebacks (Gasterosteus aculeatus) follow the 

environment experienced by the maternal environment, and these effects can persist for several 

generations. Salinas & Munch (2012) demonstrated that the parental rearing temperature modified the 

growth reaction norms in sheep head minnow offspring (Cyprinodon variegatus). Therefore, TGP 

could bias heritability estimates and lead to false conclusions about the rate of rapid adaptive 

evolution (Salinas and Munch 2012). Second, there is uncertainty about the gene expression variance 

that is functionally important or having a phenotypic effect, particularly when only quantitative data 

are available, as in many RNA-seq studies (Harrison et al. 2012). In QST-FST comparisons, the extreme 

values in the tails of the distribution are most likely candidates affected by natural selection, but 

variation falling within the neutral distribution might also have adaptive significance. Documented 

gene expression changes underlying adaptive traits can be relatively small, as in human hair colour 

variation (Guenther et al. 2014), or can involve almost complete tissue-specific silencing of 

expression, as in the pelvic spine loss in sticklebacks (Chan et al. 2010). Therefore, the QST-FST 

approach to analysing gene expression data to identify extreme values might not always be completely 

warranted. Finally, gene expression patterns depend on the topological features of a given network 

and the position of a gene in the network (Siegal et al. 2007; Levy and Siegal 2008). The network can 
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buffer against the expression changes of individual genes to a certain degree, but highly connected 

genes or internal hub genes can be more vital to the entire network function and output (Han et al. 

2004; Levy and Siegal 2008; Garfield et al. 2013). For example, the knockout of hub genes can be 

almost lethal in yeast (Han et al. 2004), and the number of protein interactions can constrain 

expression patterns. Therefore, estimating gene expression divergence should also consider the 

position of a gene in a network and the number of interactions with neighbouring genes. 

 

Conclusions 

 

Our study revealed that each gene co-expression module varied in plastic and population responses. 

Overall, plastic responses explained a larger amount of the eigengene expression variance, suggesting 

that plasticity might be a key mechanism in adaptation to the local thermal conditions among these 

grayling populations. Plasticity showed population-specific responses, suggesting that plasticity might 

evolve according to patterns consistent with the Baldwin effect rather than genetic assimilation effect, 

where loss of plasticity is expected. Although populations showed signals of differentiation in 

expression profiles, no clear signals of adaptive evolution in gene expression were observed. The 

population differences were explained by patterns consistent with genetic drift, but sampling variance 

in both FST and QST estimators because of low sample sizes might lead to low power of detecting 

selection. The modular organization of the gene expression patterns might enable module-specific 

tuning of gene expression to local thermal conditions. Overall, we suggest that combining systems and 

quantitative genetics methods can help in understanding the evolution of complex gene expression 

networks. 

 

Material and Methods 
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Sample collection and common garden experiment 

 

The study system comprises the ancestral river population and three derived small mountain lake 

populations located in central Norway (figure 1). The colonization history of these populations was 

inferred from historical records (Haugen and Vøllestad 2000; Haugen and Vøllestad 2001). The initial 

colonization of the L. Lesjaskogsvatnet occurred in the 1880s, when a temporary channel from the R. 

Gudbrandsdalslågen was opened. Therefore, the R. Gudbrandsdalslågen represents the ancestral 

grayling population of the system. From L. Lesjaskogsvatnet, a few grayling individuals were 

transported to high-elevation mountain lakes (L. Hårrtjønn and L. Øvre Merrabotvatnet) in the 1910s. 

A natural colonization from L. Hårrtjønn to L. Aursjøen occurred during the 1920s (Haugen and 

Vøllestad 2001) (figure 1). Thus, the divergence in this system occurred in the past 25-30 generations, 

assuming that the generation time for grayling is approximately six years (Haugen and Vøllestad 

2001). The four study populations can be roughly classified as “warm” or “cold” origin populations 

according to the mean temperature during the grayling spawning season and early development period 

in June-August (Haugen 2000, supplementary figure 1, supplementary figure 2). In this respect, R. 

Gudbrandsdalslågen and L. Hårrtjønn can be described as “warm” origin populations, whereas L. 

Lesjaskogsvatnet and L. Aursjøen can be described as “cold” origin populations. The mean 

temperature differences translate to large temperature sums differences during the period of June-

August (supplementary figure 1, supplementary figure 2). 

 

The sample from R. Gudbrandsdalslågen was collected close to the town Otta, representing the 

ancestral population of the study system. The Otta location is below a present-day natural migration 

barrier to grayling, indicating that this population has probably been isolated from the other 

populations for hundreds of years (Junge et al. 2014). The L. Lesjaskogsvatnet sample was collected 

from R. Valåe, which is a small cold tributary in the eastern part of the lake. The sample from L. 
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Hårrtjønn was collected from a small river outlet, and the sample from L. Aursjøen was collected 

from the main tributary (R. Kvita). Mature male and female fish were collected from each location 

during the 2013-spawning season for a semi common garden experiment. Eggs and sperm were 

extracted from mature fish under anaesthesia and subsequently transported on ice to the University of 

Oslo experimental facility. The experimental crosses were performed according to Thomassen et al. 

(2011). Briefly, for each population, eggs from 4-5 females were pooled and fertilized with sperm 

collected from 4-6 males. Individual fertilized eggs were subsequently transferred to standard 24-well 

culture plates with temperature-acclimated water added to the wells. The culture plates were incubated 

in climate-controlled rooms and at target temperatures of 6 °C and 10 °C. This design was thus a 

reciprocal thermal treatment, as these temperatures represent the average temperatures experienced by 

developing embryos in their natal environments (cold populations in 6 °C and warm populations in 10 

°C). The number of degree days was used as a proxy for developmental stage to sample embryos from 

a same developmental stage (Chezik et al. 2014). Embryos were collected at ~140 degree-days post 

fertilization, immediately individually frozen on dry ice in Eppendorf tubes, and subsequently stored 

at -80 °C until further analysis. Altogether 19 embryos from the cold treatment and 16 embryos from 

the warm treatment were sampled for the subsequent RNA-sequencing. The final sample set 

comprised five cold and four warm treatment embryos for Gudbrandsdalslågen, L. Hårrtjønn, and L. 

Aursjøen and four cold and four treatment embryos for L. Lesjagskogsvatnet. 

 

RNA extraction 

 

RNA was extracted from whole embryos using TRI reagent according to the manufacturer’s 

instructions (Sigma-Aldrich). Before extraction, the tissue was homogenized using TissueLyser 

(Qiagen) for 30 s with full speed. The quality and quantity of the RNA were determined using a 

BioAnalyzer instrument (Agilent Technologies), and only samples with RNA integrity number (RIN) 
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higher than eight were included in the sequencing. The sequencing libraries were prepared according 

to manufacturer’s instructions (Illumina). The sequencing was conducted at Beijing Genome Institute 

(BGI) using Illumina HiSeq 2000 equipment with 100-bp paired-end reads. To avoid lane effects, 

each sequencing library was distributed among five different lanes, and the reads were combined for 

subsequent analyses. 

 

Bioinformatic analyses 

 

The quality of each sequencing library was investigated using the FastQC (v. 0.11.2) quality control 

tool for sequencing data (Andrews 2010). Analysis of the raw reads indicated the presence of low-

quality bases in the 3’ end of the reads and an excess of PCR duplicates. ConDeTri read trimmer with 

default parameters was used to remove low-quality bases and PCR duplicates (Smeds and Künstner 

2011). A de novo transcriptome assembly was reconstructed using all nine sequencing libraries 

(altogether c. 610 million reads) from the ancestral population R. Gudbrandsdalslågen. Before 

assembly, in silico normalization was used to restrict the maximum kmer coverage to 50x to decrease 

computational demands by reducing redundancy in the high-coverage regions. After normalization, 

66.8 million reads remained for the de novo assembly. The de novo assembly was performed using the 

Trinity 2.0.4 assembler (Haas et al. 2013) with default parameters, except “minimum kmer coverage” 

was set to 10 and the “minimum glue” to 10. These parameters were adjusted to reduce the number of 

falsely identified transcripts as a result of low coverage, but the sensitivity for identifying lowly 

expressed transcripts can be lower compared to default parameters. The resulting transcripts were 

translated to proteins, and candidate-coding regions (or ORFs) were identified using TransDecoder 

software (http://transdecoder.github.io) with a minimum protein length of 100 amino acids. Similar 

protein sequences were merged using CD-HIT software (Li and Godzik 2006; Fu et al. 2012) with the 

sequence identity threshold set to one. The TransDecoder translated proteins (i.e., containing in silico 
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predicted ORFs) were annotated using reciprocal protein-protein blast search using P-value cut-off 10-

5 as implemented in BLAST+ software (Camacho et al. 2009). The blast searches were conducted 

against zebrafish (Danio rerio), stickleback (Gasterosteus aculeatus), cod (Gadus morhua) and 

Atlantic salmon (Salmo salar) protein databases. A local database for each species was constructed 

using protein annotations available in the Ensembl protein database (Cunningham et al. 2015) for 

zebrafish, stickleback and cod, and from GenBank (Benson et al. 2013) for Atlantic salmon. A 

transcript was considered reliably annotated when a significant reciprocal blast hit to one of the 

annotated proteins in any of the species was obtained. To compile a gene expression estimate or count 

table for each transcript, the quality filtered reads were mapped back to the de novo assembly. The 

mapping back was performed using Bowtie2 alignment software (Langmead and Salzberg 2012) with 

parameters -a -X 600 -rdg 6,5 -rfg 6,5 -score-min L, -0.6, -0.4 -no-discordant, -no-mixed. These 

parameters avoid mappings to splice variants and restrict the output to only read pairs mapped 

concordantly according to the eXpress software manual 

(http://bio.math.berkeley.edu/eXpress/faq.html). Transcript abundances, i.e., read counts per 

transcript, were estimated from the alignments using the default parameters in eXpress (Roberts and 

Pachter 2012). Rounded effective counts were used for the gene expression analyses as suggested in 

the eXpress manual. Effective counts are the expected number of reads generated from a given target 

(transcript), considering target length and the number of reads generated in the sequencing experiment 

(Roberts and Pachter 2012). 

 

The Bowtie2 alignments described above were used for the identification of single nucleotide 

polymorphisms (SNPs). The mpileup command in SAMtools 1.4 package (Li et al. 2009) was used 

with a minimum mapping quality of 20 to combine mapping positions into a single file. SNPs and 

genotypes were called from the resulting pile up file using BCFtools and options –bcvg. The SNPs 

within 20 bp of indels and exceeding 2000x coverage were removed. Genotypes were filtered using 
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minimum overall genotype quality 999, minimum overall genotype coverage 50, minimum individual 

genotype coverage 10, minimum number of samples of valid genotypes 35 (i.e. no missing data 

allowed) and overall minor allele frequency 5%. Loci deviating from Hardy-Weinberg equilibrium 

(both heterozygote excess and deficiency) at P-level 0.05 were removed. Finally, only one SNP per 

transcript was subjected to further analyses. Genetic differentiation was estimated using the Weir & 

Cockerham (1984) estimator of FST as implemented in the R package adegenet (Jombart and Ahmed 

2011). 

 

Gene expression analyses 

 

Potential unwanted variation in the count data arising from library preparation or other technical 

factors were investigated using principal component analysis. The R stats function prcomp in R 

statistical programming environment was used for PCA analysis. Three clusters were identified that 

explained 42.3% (PC1) and 14.1% (PC2) of the total variation and were not linked to the experimental 

setup, indicating the presence of possible unwanted variation (figure 2). To remove the unwanted 

variation in the data, residuals from a general linear model on non-normalized counts were used, and 

population and treatment were used as covariates (Risso et al. 2014). Briefly, this method should work 

for data without control genes, assuming that the covariates of interest are not correlated with 

unwanted variation (Risso et al. 2014). We used function RUVr, as implemented in the R package 

RUVSeq, to remove such effects (Risso et al. 2014). After removal of the unwanted variation, the 

samples were grouped according to population and treatment, and the PC1 and PC2 explained 25.9% 

and 17.3% of the total variation, respectively (figure 3). 

 

A weighted gene co-expression analysis (WGCNA) was used to identify clusters of similarly 

expressed genes or modules using R package WGCNA (Langfelder and Horvath 2008). In this 
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approach, similar gene co-expression patterns are identified based on expression correlation, which 

can subsequently be used to group transcripts into modules using hierarchical clustering (Langfelder 

and Horvath 2008). Gene expression variation within a module can be summarized to eigengenes 

using PCA, and variation in eigengenes can be linked to external information of interest (Langfelder 

and Horvath 2007; Langfelder and Horvath 2008). First outliers potentially interfering with network 

construction were detected using hierarchical clustering analysis with Euclidean distance to describe 

sample relationships. A sample from R. Gudbrandsdalslågen warm treatment was excluded due to a 

large distance from the other samples. A co-expression similarity matrix was calculated using signed 

(i.e., keeping the sign of co-expression) expression measures. The similarity matrix was transformed 

to adjacency matrix by raising the similarity between genes by to soft thresholding power of 13. This 

soft thresholding power was determined from the data, using a cut-off value of 0.9. In other words, 

genes were considered co-expressed if the correlation co-efficient exceeded 0.9 within a module. The 

other parameters used for the network construction were minimum module size 50 transcripts, deep 

split 2, and merge cut height 0.3. The stability of the modules was examined with 100 bootstrap 

replicates to assess the overlap of the module labels between non-sampled and re-sampled data sets. 

The overlap was estimated using Fisher’s exact test based on the module assignments. If the 

proportion of re-sampled data sets had significant overlap (p<0.01) more than 70%, then the module 

was considered statistically robust. The expression profile in each module was summarized to 

eigengene expression using the first principal component (PC1). The variation in eigengenes was 

analysed using ANOVA with population and treatment and their interaction as explanatory variables. 

The rationale for the ANOVA analyses is to detect plastic (treatment) and (population) responses. The 

ANOVA analyses were performed using the R stats function aov.  

 

To estimate adaptive gene expression divergence, broad sense QST (i.e., the additive genetic variance 

component is unknown) was estimated across the four study populations for all transcripts. In 
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experimental settings where heritability or additive genetic variance cannot be estimated, QST can be 

approximated assuming ratios of c/h2, where c represents the assumed proportion of total variance due 

to additive genetic effects among populations, and h2 represents heritability (Brommer 2011). 

Transcriptome derived SNPs were used to estimate FST to obtain a neutral baseline to which QST can 

be compared. The rationale for the QST- FST comparisons is to identify candidate transcripts under 

stabilizing or divergent selection (Leinonen et al. 2013). If a given transcript shows lower or higher 

differentiation compared to the FST distribution, then stabilizing and divergent selection can be 

inferred, respectively (Leinonen et al. 2013). QST was calculated according to the formula 
!
!!!!

!
!
!!!!

!  ! !!!!
, 

where !!! is the assumed ratio of additive variance and heritability, !!! is the variance between 

populations in transcript expression and 2!!!  is the variance within population in transcript expression 

(Brommer 2011). The within and between population variance components in transcript expression 

were estimated fitting a mixed effect model using thermal treatment as a fixed effect and population 

as a random effect. The mixed effect model was fitted using lme function in R package lme4 (Bates et 

al. 2015). The confidence intervals of each QST estimate were estimated with 250 bootstrap replicates. 

Three c/h2 ratios were assumed: 0.5, 1 and 1.5. The null assumption c/h2=1 assumes that the additive 

phenotypic variance between and within populations is the same, but this ratio can be smaller (0.5) or 

larger (1.5), reflecting, for example, environmental effects (Brommer 2011). The QST estimates were 

compared to the entire distribution range of locus specific FST (proxy for the neutral distribution) 

according to Whitlock (2008). Transcripts showing a higher divergence (QST > FST) expected by 

genetic drift alone are potentially under directional selection whereas transcripts showing lower 

divergence (QST < FST) under balancing selection. Neutrally evolving transcripts are expected to fall 

within the FST distribution (Leinonen et al. 2013). The 95% confidence intervals of the QST estimates 

were considered in the above comparisons. If the upper or lower confidence interval did not overlap 
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with the lower or upper tail of FST distribution, then the given transcript was considered affected by 

stabilizing or divergent selection, respectively. 

 

Gene Ontology enrichment analyses 

 

Gene enrichment analyses were performed using zebrafish gene annotations for each statistically 

robust module identified in the WGCNA analysis. The STRING database was used to identify 

significant (FDR < 0.05) Gene Ontology (GO) categories for biological processes and PFAM protein 

domains and features (Szklarczyk et al. 2015). The GO categories were summarized using SimRel 

semantic similarity measure to avoid interpretation of redundant categories. The merging of 

semantically similar GO categories was based on hierarchical clustering with a user-specified cutoff 

value C. A cutoff value 0.5 was used to merge similar categories, corresponding to 1% chance of 

merging two randomly generated categories (Supek et al. 2011). The p-values of the initial enrichment 

analyses were used to select a representative GO term for each merged category. Thus, the lowest p-

value among the merged categories was selected as the representative GO term. The REVIGO web-

server tool was used for semantic similarity analyses (Supek et al. 2011). 
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Table 1. ANOVA results on the module eigengene expression variation as a result of population, 
treatment and their interaction effects.  
 
Module Population (13, 271) Treatment (1, 27) Interaction (3, 27) 
black  13.22 (2.0763)  27.7 (13.036)*** 1.6 (0.249) 
blue  21.0 (25.932)*** 57.4 (212.624)*** 14.4 (17.763)*** 
brown  1.8 (0.19)  0.3 (0.108)  14.5 (1.569) 
green  9.6 (1.615)  35.7 (18.097)*** 1.4 (0.228) 
red  0.1 (0.015)  1.2 (0.358)  11.6 (1.202) 
turquoise 23.6 (55.219)*** 54.6 (383.606)*** 18.0 (42.22)*** 
 
*** P < 0.001 
1Degrees of freedom 
2Percentage of variance explained 
3F ratio 
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Figure 1. A map of the Grayling study system showing the colonization routes (arrows) and timing 
(numbers along the arrows) as inferred from the historical records, lake size (km2), and elevation 
(MASL=meters above sea level). These lakes differ in their thermal profiles during the grayling 
development period and can be roughly classified as cold (C) and warm (W) populations. 
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Figure 2. Principal component analysis (PCA) of the un-normalized gene expression data. 
GDL=Gudbrandsdalslågen, HRT=L. Hårrtjønn, AUR=L. Aursjøen and LES=L. Lesjagskogsvatnet. C 
indicates cold treatment and W indicates warm treatment. 
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Figure 3. Principal component analysis (PCA) of the residual normalized gene expression data, 
showing the relationships among treatments and populations. GDL=Gudbrandsdalslågen, HRT=L. 
Hårrtjønn, AUR=L. Aursjøen and LES=L. Lesjagskogsvatnet. C indicates cold treatment and W 
indicates warm treatment. 
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Figure 4. Results of the weighted gene co-expression analysis showing the dendrogram of transcripts 
based on the co-expression similarity. Each transcript is assigned to a module described with different 
colours. The stability of the modules was examined using one hundred re-sampling replicates, but the 
first fifty re-sampled data sets are shown for clarity. 

 
Figure 5. PCA on transcripts across all treatments and populations belonging to six statistically robust 
modules showing divergence in gene expression. 
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Figure 6. Module eigengene variation among the populations and treatments.  
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Figure 7. Boxplots depicting the variance of QST for each of the transcripts in each module, assuming 
scaling factor 1.5 (i.e., c/h2). The distribution of FST for 2458 SNP loci is shown for comparison. 
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Supplementary figure 1. Temperature profiles of the four study populations during the grayling early 
developmental period during June-August. Generalized additive model predictions were used to 
estimate smoothed temperature changes in the study locations. Gam function in R package mgvc 
1.8.17 was used to fit the model temperature ~ location + s (day), where s is the covariate (the day 
rank since June 1st) used as a smoothing term. The data obtained from L. Hårrtjønn are from 1995 
because of logistic difficulties in recovering the temperature logger in autumn 2013. 
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Supplementary figure 2. Temperature sums for June-August for each year and each location. Each 
temperature sum was calculated by summing the mean daily temperatures with max temperature. 
Missing data for two days (of the total 92) were imputed using the mean temperature. L. Hårrtjonn 
only had three measurements from June; thus, the predicted values from the gam model were used to 
fill in the missing data. 
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Supplementary figure 3. Tukey HSD plots showing the confidence intervals of the estimated effects of 
population and treatment on PC1.  
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Supplementary figure 4. QST-FST comparisons showing overlap between the distributions across all 
transcripts. For QST, three scaling factors (c/h2), 0.5, 1 and 1.5, were assumed. Two transcripts outside 
the FST distribution are shown as red circles. 

 
Supplementary figure 5. Genetic relationships (PCA) among the four study populations estimated 
from 2458 transcriptome-derived SNP loci. The colours indicate the thermal origin (blue = cold, red = 
warm). 
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Supplementary figures 6-9. Gene enrichments after merging semantically similar GO categories. The 
number of transcripts assigned to each module and the number of annotated transcripts to zebrafish 
are shown in the headline. The size of the circle is proportional to the uniqueness of a given category 
in the Gene Ontology database. Smaller circles refer to more unique categories, whereas larger circles 
refer to broader categories.  
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Supplementary table 1. Summary statistics of the bioinformatic analyses and sampling origins and 
thermal treatments. QC filtered and QC% column indicate the number and percentage of remaining 
reads after removing low quality reads and PCR duplicates. Mapped reads and Mapping% columns 
show the number of reds mapped back to the de novo assembly. 
 
Library        Population Treatment Raw reads     QC filtered         QC%    Mapped reads    Mapping % 
HA10-2 HRT 10 °C 79769702 67636034 84.79 27252770 41.39 
HA10-3 HRT 10 °C 78608284 67076326 85.33 27994128 41.73 
HA10-4 HRT 10 °C 77698028 67902228 87.39 26655606 39.26 
HA10-5 HRT 10 °C 78015312 65836598 84.39 27075006 39.18 
HA6-1  HRT 6 °C 77596180 69104080 89.06 27337410 41.15 
HA6-2  HRT 6 °C  76897538 66440580 86.40 26847766 41.3 
HA6-3  HRT 6 °C 76939314 65004000 84.49 28999956 42.73 
HA6-4  HRT 6 °C 79151454 67868918 85.75 26315166 39.71 
HA6-5  HRT 6 °C 79677366 71323436 89.52 27541196 40.72 
KV10-2 AUR 10 °C 78433640 66272138 84.49 26914788 40.3 
KV10-3 AUR 10 °C 77515912 66789586 86.16 28347758 41.1 
KV10-4 AUR 10 °C 80626390 68970452 85.54 26766552 39.57 
KV10-5 AUR 10 °C 78081584 67646314 86.64 27434376 40.6 
KV6-1  AUR 6 °C 77812126 67570588 86.84 26391102 38.37 
KV6-2  AUR 6 °C 77392548 68775130 88.87 27287602 38.67 
KV6-3  AUR 6 °C 79672922 70563186 88.57 28290174 39.25 
KV6-4  AUR 6 °C 80833148 72085838 89.18 26770350 38.86 
KV6-5  AUR 6 °C 79112344 68885708 87.07 28029008 40.39 
OT10-2  GDL 10 °C 82035404 69389882 84.59 27177414 41.33 
OT10-3  GDL 10 °C 78494188 65755420 83.77 27454262 38.9 
OT10-4  GDL 10 °C 77541912 66327276 85.54 27194462 41.14 
OT10-5  GDL 10 °C 80122586 67856496 84.69 27035380 38.51 
OT6-1  GDL 6 °C 79588420 70584690 88.69 26633510 39.3 
OT6-2  GDL 6 °C 77426760 65417540 84.49 27227732 39.82 
OT6-3  GDL 6 °C 78405954 66097250 84.30 27131120 40.82 
OT6-4  GDL 6 °C 77313850 69259894 89.58 27173410 39.14 
OT6-5  GDL 6 °C 79481338 70203658 88.33 27498946 40.5 
VA10-1 LES 10 °C 77385160 65443516 84.57 27082290 38.2 
VA10-2 LES 10 °C 78840934 67906314 86.13 27539124 38.5 
VA10-3 LES 10 °C 77038638 66990920 86.96 26496838 39.95 
VA10-4 LES 10 °C 82600348 67622894 81.87 28567436 42.1 
VA6-1  LES 6 °C 79693866 70557214 88.54 27358746 41.82 
VA6-2  LES 6 °C 77579016 67143946 86.55 26575788 38.37 
VA6-3  LES 6 °C 79651594 70887420 89.00 26312936 40.21 
VA6-5  LES 6 °C 79935034 71525202 89.48 27619374 38.72 
   Mean 78770536 68134876 86.50 27307622 40.11 
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Supplementary table 2. Pfam protein domain enrichments observed in the gene expression modules. The observed gene count indicates the 
number of zebrafish annotations in the given enrichments. 
 
 
Pathway ID Pathway description       Observed gene count  FDR 
Blue Module 
PF00227 Proteasome subunit       12    1.71e-08 
PF01423 LSM domain         9    5.09e-07 
PF00118 TCP-1/cpn60 chaperonin family     6    0.00509 
PF01920 Prefoldin subunit       4    0.00686 
PF10584 Proteasome subunit A N-terminal signature    5    0.00833 
PF05047 Mitochondrial ribosomal protein L51 / S25 / CI-B8 domain  3    0.0278 
Brown Module 
PF08702 Fibrinogen alpha/beta chain family     3    0.0338 
Green Module  
PF00030 Beta/Gamma crystallin      8    0.00383 
PF00010 Helix-loop-helix DNA-binding domain    9    0.0354 
Red Module 
PF00046 Homeobox domain       9    0.0103 
Turquoise Module 
PF00856 SET domain        12    0.000544 
PF00628 PHD-finger        10    0.0375 
PF00632 HECT-domain (ubiquitin-transferase)    8    0.0404 
PF00443 Ubiquitin carboxyl-terminal hydrolase    9    0.0436 
PF02779 Transketolase, pyrimidine binding domain    4    0.047 
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