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ABSTRACT

Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology which offers faster
and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and
complex electrical signal is challenging. Here, we report the first deep learning model - Chiron - that can directly translate the
raw signal to DNA sequence, without the error-prone segmentation step. We show that our model provides state-of-the-art
basecalling accuracy when trained with only a small set of 4000 reads. Chiron achieves basecalling speeds of over 2000
bases per second using desktop computer graphics processing units, making it competitive with other deep-learning-based
basecalling algorithms.

Introduction

DNA sequencing via bioengineered nanopores, recently introduced to the market by Oxford Nanopore Technologies (ONT),
has profoundly changed the landscape of genomics. A key innovation of the ONT nanopore sequencing device, MinION, is
that it measures the changes in electrical current across the pore as a single-stranded molecule of DNA passes through it. The
device then uses the signal to determine the nucleotide sequence of the DNA strand1–3. Importantly, this signal can be obtained
and analysed by the user while the sequencing is still in progress. Because of the minuscule size of these pores, a large number
can be packed into an array, meaning the MinION device is the size of a stapler, making it extremely portable. The small size
and real-time nature of the sequencing opens up new opportunities in time-critical genomics applications4–6 and in remote
regions7–11.
While nanopore sequencing can be massively scaled up by designing large arrays of nanopores and allowing faster translocation
of DNA fragments, one of the bottle-necks in the pipeline is basecalling, which translates the electrical raw signals to a
nucleotide sequence.
DeepNano introduced the idea of basecalling using a bi-directional Recurrent Neural Network (RNN)12. DeepNano first uses a
segmentation algorithm to detect events in the raw signal, from which the mean, standard deviation and length are provided
as input to the DeepNano RNN. ONT have also developed a RNN basecaller - nanonet - which also relies on an initial event
segmentation. The nanonet RNN predicts the probability of each k-mer for the segment. As k-mers from successive segments
are expected to overlap by k-1 bases, a dynamic programming algorithm is applied to find the most probable path, which results
in the basecalled sequence data. Additionally, ONT provide Albacore, their proprietary basecaller. Albacore is considered the
’gold standard’ in terms of accuracy, but as it is not open source, we cannot comment on it’s implementation.
BasecRAWller13 defers the segmentation step until after an initial unidirectional RNN has been run to analyse sequence content.
After an intermediate segmentation step, a final unidirectional RNN is used to infer the base-called sequence data. By utilising
a pair of unidirectional RNNs, basecRAWller is able to process the raw signal data in a stream.
In this article we present a new deep neural network model. Chiron has a novel architecture which couples a convolutional
neural network (CNN) with an RNN and a Connectionist Temporal Classification (CTC) decoder14. This enables it to model
the raw signal data directly, without use of an event segmentation step. It is the first neural network which can translate raw
electrical signal directly to nucleotide sequence. Chiron is trained on only a small subset of data from a simple virus genome
and an E. coli sample and yet it is able to generalise to larger genomes such as other bacteria and human. Chiron is as accurate
as the ONT designed and trained Albacore in some settings, and outperforms all other existing methods.
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Figure 1. A) An unrolled sketch of the neural network architecture. The circles at the bottom represent the time series of raw signal input data. Local pattern
information is then discriminated from this input by a CNN. The output of the CNN is then fed into a RNN to discern the long-range interaction information. A
fully connected layer is used to get the base probability from the output of the RNN. These probabilities are then used by a CTC decoder to create the nucleotide
sequence. The repeated component is omitted. B) Final architecture of the Chiron model. We explored variants of this architecture by varying the number of
convolutional layers from 3 to 10 and recurrent layers from 3 to 5. We also explored networks with only convolutional layers or recurrent layers, 1×3 conv,
256, no bias means a convolution operation with a 1×3 filter and a 256 channels output with no bias added. Further definitions can be found in Methods.
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Figure 2. Visualization of the predicted probability of bases and the readout sequence. The upper pane is a normalised raw signal from the Minion Nanopore
sequencer, normalised by subtracting the mean of the whole signal and then dividing by the standard deviation. The bottom pane shows the predicted
probability of each base at each position from Chiron. The final output DNA sequence is annotated on the x-axis of the bottom plane.

Results
Deep neural network architecture
We have developed a deep neural network (NN) for end-to-end, segmentation-free basecalling (shown in Figure 1) which
consists of two sets of layers: a set of convolutional layers and a set of recurrent layers. The convolutional layers discriminate
local patterns in the raw input signal, whereas the recurrent layers integrate these patterns into basecall probabilities. At the top
of the neural network is a CTC decoder14 to provide the final DNA sequence according to the base probabilities. More details
pertaining to the NN are provided in Methods.

The NN we present is an end-to-end basecaller, in the sense that it predicts a complete DNA sequence from a raw
signal. However, this would become computationally infeasible for full-length nanopore reads. To make this model more
computationally efficient, we run it on overlapping windows consisting of 300 raw signals, roughly corresponding to around
10-20bp (which we call slices), which are processed in parallel. The output of these sliding windows are overlapped, and a
consensus call is used to generate the final reported base at each position.

Performance Comparison
CHIRON was trained on a subset of data from two samples: the Phage Lambda from ONT (Escherichia virus Lambda - NCBI
Reference Sequence: NC 001416.1) and an Escherichia coli (K12 MG1655) sample. The performance of the model was
assessed by the identity rate (see Table 1) on a set of testing datasets. All samples used for training and testing were sequenced
using the same 1D protocol on R9.4 flowcells (See Methods). For evaluation, we used the remaining reads from the samples
used in testing (Phage Lambda and E. coli), plus a Mycobacterium tuberculosis sample, and a small subset of human data from
chromosome 21 part 3 from the Nanopore WGS Consortium15 (see Table 3).
In order to establish the ground-truth of the data, we sequenced and assembled the E. coli and M. tuberculosis samples using
Illumina technology (see Methods) which provided high per base accuracy assembly. The reference sequence for the Phage
Lambda virus is NCBI Reference Sequence NC 001416.1 and for the human data the GRCh38 reference was used.
While we obtained 34,383 reads for Phage Lambda and 15,012 reads for E. coli from the MinION sequencing runs (see
Table 3), we used only 2,000 reads from each for training. We labelled the raw signals by identifying the raw signal segment
corresponding to the nucleotide assumed to be in the pore at a given time-point (see Methods). It took the model 10 hours to
train 3 epoch with 4,000 reads (∼ 4Mbp) on a Nvidia K80 GPU.
Table 1 presents the accuracy of the four basecalling methods on the data. Chiron has the highest identity rate on the E. coli
sample, and the equal highest on M. tuberculosis. In the cases where Chiron did not have the highest identity rate (Lambda
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Dataset Basecaller Deletion Rate Insertion Rate Mismatch Rate Identity Rate
Metrichor 0.0893 0.0238 0.0457 0.8650 (-0.0246)

Albacore 0.0635 0.0382 0.0469 0.8896
Lambda BasecRAWller 0.0789 0.1001 0.1056 0.8154 (-0.0742)

Chiron 0.0820 0.0213 0.0403 0.8776 (-0.012)

Metrichor 0.0752 0.0193 0.0384 0.8864 (-0.0193)

Albacore 0.0576 0.0327 0.0414 0.901 (-0.0047)

E. coli BasecRAWller 0.0716 0.1040 0.1030 0.8254 (-0.0803)

Chiron 0.0636 0.0181 0.0307 0.9057
Metrichor 0.0763 0.0240 0.0435 0.8802 (-0.0117)

Albacore 0.0612 0.0357 0.0468 0.8919
M. tuberculosis BasecRAWller 0.0717 0.1085 0.1042 0.8241 (-0.0678)

Chiron 0.0716 0.025 0.0433 0.8851 (-0.0068)

Metrichor 0.1295 0.0415 0.0765 0.794 (-0.0446)

Albacore 0.0862 0.0651 0.0752 0.8386
Human BasecRAWller 0.0841 0.1028 0.101 0.8149 (-0.0237)

Chiron 0.0913 0.0514 0.0933 0.8154 (-0.0232)

Table 1. Results from the experimental validation and benchmarking of Chiron against three other Nanopore basecallers. Identity rate is defined as the number
of matched bases divided by the number of bases in the reference genome for that sample (the higher the better), while Deletion/Insertion/Mismatch rate are
defined as the number of deleted/inserted/mismatched bases divided by the number of bases in the reference genome (the lower the better). This statistic
effectively summarises the basecalling accuracy of the associated model.

CPU rate (GPU rate)
bp/s

Albacore 2975
BasecRAWller 81

Chiron 21 (1652)

Table 2. Speed benchmarking for basecalling with Chiron and two other local basecallers. Rate is calculated by dividing the number of nucleotides basecalled
by the total CPU time for the basecalling analysis. Chiron is also capable of running on a GPU and its rate in this mode is included in parentheses. The reported
rate is the average for that basecaller across all samples analysed. A Nvidia K80 GPU is used for the GPU testing of Chiron. Albacore is not capable of running
in GPU mode, while BasecRAWller was no faster when running with GPU (data not shown).

and Human) is was no more than 0.0232 from the best. Additionally, it had the lowest mismatch rate on Lambda and E. coli
(0.0403 and 0.0307).
In terms of speed on a CPU processor, Chiron is slower (21bp/s) than Albacore (2975bp/s) and - to a lesser extent - BasecRAWller
(81bp/s). However, when run on a Nvidia K80 GPU, we achieved a basecalling rate of 1652bp/s. (We also tested Chiron on
a Nvidia GTX 1080 Ti GPU and obtained a rate of 2657bp/s). As Albacore does not have the ability to be run on GPU and
basecRAWller, in our hands, gained no speed improvement with GPU we could not compare them to Chiron in this mode.
Metrichor was not included in the speed benchmarking as it is not possible to gather information about CPU/GPU speed. We
also found that Chiron was faster than Nanonet on GPU (data not shown).

Discussion
Segmenting the raw nanopore electrical signal into piece-wise constant regions corresponding to the presence of different
k-mers in the pore is an appealing but error-prone approach. Segmentation algorithms determine a boundary between two
segments based on a sharp change of signal values within a window. The window size is determined by the expected speed
of the translocation of the DNA fragment in the pore. We noticed that the speed of DNA translocation is variable during a
sequencing run, which coupled with the high level of signal-to-noise in the raw data, can result in low segmentation accuracy.
As a result, the segmentation algorithm often makes conservative estimates of the window size, resulting in segments smaller
than the actual signal group for k-mers While dynamic programming can correct this by joining several segments together for a
k-mer, this effects the prediction model.

All existing nanopore base callers prior to Chiron employ a segmentation step. The first nanopore basecalling algorithms16, 17

employed a Hidden Markov Model, which maintains a table of event models for all possible k-mers. These event models were
learned from a large set training data. More recent methods (DeepNano12, nanonet) train a deep neural network for inferring
k-mers from segmented raw signal data.
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A recent basecaller named BasecRAWller13 used an initial neural network (called a raw network) to output probabilities of
boundaries between segments. A segmentation algorithm is then applied to segment these probabilities into discrete events.
BasecRAWller then uses a second neural network (called the fine-tune network) to translate the segmented data into the base
sequence.

Our proposed model is a departure from the above approaches in that it performs base prediction directly from raw data
without segmentation. More-over the core-model is an end-to-end basecaller in the sense that it predicts the complete base
sequence from raw signal. This is made possible by combining a multi-layer convolutional neural network to extract the
local features of the signal, with a recurrent neural network to predict the probability of nucleotides in the current position.
Finally, the complete sequence is called by a simple greedy algorithm, based on a typical CTC-style decoder14, reading out the
nucleotide in each position with the highest probability. Thus, the model need not make any assumption of the speed of DNA
fragment translocation and can avoid the errors introduced during segmentation.

To improve the basecalling speed and to minimize its memory requirements, we run the neural network on a 300-signal
sliding window (equivalent to approximately 30bp), overlapping the sequences on these windows and generating a consensus
sequence. Chiron has the potential to stream these input raw signal ’slices’ into output sequence data, which will become
increasingly important aspect of basecalling very long reads (100kb+), particularly if used in conjunction with the read-until
capabilities of the MinION.

Our model was either the best or second-best in terms of accuracy on all of the datasets we tested. This includes the human
dataset, despite the fact that the model has not seen human DNA during training. Our model has only been trained on a mixture
of 2,000 bacterial and 2,000 viral reads. The most accurate basecaller is the proprietary ONT Albacore basecaller. Chiron is
within 1% accuracy on bacterial DNA, but only within 2% accuracy on human DNA. More extensive training on a broader
spectrum of species, including human can be expected to improve the performance of our model. There are also improvements
in accuracy to be gained from a better alignment of overlapping reads and consensus calling. Increasing the size of the sliding
window will also improve accuracy but at the cost of increased memory and running time.
Our model is substantially more computationally expensive than Albacore and somewhat more computationally expensive than
BasecRAWller when run in CPU mode. This is to be expected given the extra depth in the neural network. Nevertheless, our
model can be run in a GPU mode, which makes it competitive with Albacore (which does not have a GPU mode), and faster
than Nanonet in GPU mode. Our method can be further sped up by increasing the sliding window step size, although this may
impact accuracy.

Conclusion
We have presented a novel deep neural network approach for streaming segmentation free basecalling of raw Nanopore signal.
Our approach is the only method that can map the raw signal data directly to base sequence without segmentation. We trained
our method on 4000 reads sequenced from the simple genome lambda virus and E.coli, but the method is sufficiently generalised
to be able to base call data from other species. Our method has state-of-art accuracy - outperforming the ONT cloud basecaller
Metrichor as well as another 3rd-party basecaller, BasecRAWller. With GPU acceleration, our method is also faster than current
data collection speed, so that it can support real-time basecalling.

Methods
Deep neural network architecture
Our model combines a 5-layer CNN18 with a 3-layer RNN and a fully connected network (FNN) in the last layer that calculates
the probability for a CTC decoder to get the final output. This structure is similar to that used in speech recognition19. We
found that both the CNN and RNN layers are essential to the base calling as removing either will cause a dramatic drop in
prediction accuracy, which is described more in the Training section.

Preliminaries Let a raw signal input with T time-points s = [s1,s2, ...,sT ] and the corresponding DNA sequence label (with
K bases) y = [y1,y2, ...,yK ] with yi ∈ {A,G,C,T} be sampled from a training dataset χ = {(s(1),y(1)),(s(2),y(2)), ...}. Our
network directly translates the input signal time series s to the sequence y without any segmentation steps.

We normalise the input signal by subtracting the mean of the whole read and dividing by the standard deviation. s’ =
(s− s)/std(s).

Then we feed the normalised signal into a residual block20 combined with batch normalisation21 in the 5 convolution layers
to extract the local pattern from the signal. We set the stride as 1 to ensure the output of the CNN has the same length of the
input raw signal. The residual block is illustrated in Figure 1, a convolution operation with a l×m filter, n×p stride and s output
channels on a k channels input is defined as:

Out put(i, j,s) = ∑
di<l,d j<m,q<k

Input(i ·n+di, j · p+d j,q) ·Filter(di,d j,q,s)
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.
An activation operation is performed after the convolution operation. Various kinds of activation functions can be chosen,

however, in this model we use a Rectified Linear Unit (ReLU) function in the activation operation which has been reported to
have a good performance in CNN, defined as :

ReLU(x) = max(x,0)

Following the convolution layers are multiple bi-directional RNN layers22. We use a LSTM cell23 with a separate batch
normalisation on the inside cell state and input term24.

A typical batch normalisation procedure21 is

BN(x;γ,β ) = β + γ� x− Ê[x]√
ˆVar[x]+ ε

, (1)

where x be a inactivation term.
Let hl

t be the output of lth RNN layer at time t, the batch normalisation for a LSTM cell is

(ft , it ,ot ,gt) = BN(Whhl
t−1;γh,βh)+BN(Wxhl−1

t ;γx,βx)+b (2)

ct = σ(ft)� ct−1 +σ(it)� tanh(gt) (3)

ht = σ(ot)� tanh(BN(ct ;γc,βc)) (4)

The batch normalisation is calculated separately in the recurrent term Whhl
t−1 as well as the input term Wxhl−1

t . The
parameters βh and βx are set to zero to avoid the redundancy with b. The last forward layer~hL

i f and the backward layer~hL
ib are

concatenated together as an input to a fully connected layer

Hi = [hL
iw,h

L
ib]. (5)

The final output is transferred through a fully connected network followed by a softmax operation

p(oi = j) =
expW jHi

∑ j expW jHi
(6)

The output oi, i = 1,2, ...,T predict the symbol given the input vector x, P(oi = j|x). If the read is a DNA sequence then
j ∈ {A,G,C,T,b}, where b represents a blank symbol( Figure 1). We then calculate the CTC loss between the output sequence
o with label y14.

Convolutional network to extract local patterns: We use 256 channel filters for all five convolutional layers. In each layer
we use a residual block20 (Figure 1) composed of two branches. A 1x1 filter is used for reshaping in the first branch. In the
second branch, a 1x1 convolution filter is followed by a rectified linear unit (RELU)25 activation function and a 1x3 filter with a
RELU activation function as well as a 1x1 filter. All filters have the same channel number of 256. An element-wise addition is
performed on the two branches followed by a RELU activation function. A global batch normalisation operation is added after
every convolution operation. We tried a large kernel size (5,7,11) and different channel numbers (128,1024), and found the
above combination yielded the best performance.

Recurrent layers for unsegmented labelling: The local pattern extracted from the CNN described above is then fed to a
3-layer RNN (Figure 1). Under the current ONT sequencing settings, the DNA fragments translocate through the pore with a
speed of roughly 250 or 450 bases per second, depending on the sequencing chemistry used, while the sampling rate is 4000
samples per second. Because the sampling rate is higher than the translocation rate, each nucleotide usually stays in the current
position for about 5 to 15 samplings, on average. Furthermore, as a number of nearby nucleotides also influence the current, 40
to 100 samples (based on a 4- or 5-mer assumption) could contain information about a particular nucleotide. We used a 3-layer
bidirectional recurrent neural network for extracting this long range information. LSTM (Long Short Term Memory) cells26, 27

with 200 hidden units are used in every layer and a fully connected neural network (FNN) is used to translate the output from
the last RNN layer into a prediction. The output of the FNN is then fed into a CTC decoder to obtain the predicted nucleotide
sequence for the given raw signals. An Adam optimizer28 with an initial learning rate of 0.001 is used to minimize the CTC
loss.
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Sample No. reads Median read length (bp)
Phage Lambda 34,383 5720

E. coli 15,012 5,836
M. tuberculosis 147,594 3,423

Human 10,000 6,154

Table 3. Details about the number of reads and their median read length for data that was used in evaluation of the various basecallers.

Improving basecalling performance: To achieve a better accuracy and less memory allocation, we apply a sliding window
(default of 300 raw signals), with a pre-set sliding step size (default of 10% of window size), to the long raw signal. This gives
a group of short reads with uniform length (window length) that overlap the original long read. We then apply basecalling in
parallel on these short reads, and reassemble the whole DNA sequence by finding the maximum overlap between two adjacent
short reads, and read out the consensus sequence. Note here the reassembly is very easy because the order of the short reads is
known. This procedure improves the accuracy of the basecalling and also enables parallel processing on one read.

Data preparation
Sequencing: The library preparations of the E. coli and M. tuberculosis samples were done using the 1D gDNA selecting for
long reads using SQK-LSK108 (March 2017 version) protocol with the following modifications. Increase the incubation time to
20 minutes in each end-repair and ligation step; use 0.7x AgencourtR AMPureR XP beads (Beckman Coulter) immediately
after the end-repair step and incubation of the eluted beads for 10 minutes; and use elution buffer (ELB) warmed up at 50oC
with the incubation of the eluted bead at the same temperature. For the Lambda sample, the 1D Lambda Control Experiment
for MinIONT M device using SQK-LSK108 (January 2017 version) protocol was followed with some changes: sheared the
sample at 4000rpm (2x1 minutes); 30 minutes of incubation in each end-repair step and 20 minutes for adaptor ligation and
elution of the library with 17µL of ELB. All samples were sequenced on new FLO-MIN106, version R9.4, flow cells with
over 1100 active single pores and the phage was sequenced in a MinION Mk1 (232ng in 6h run) while the bacteria samples
were sequenced in a MinION Mk1B (1µg E. coli and 595ng M. tuberculosis in 22h and 44h runs, respectively). The E. coli
sample was run on the MinKNOW version 1.4.3 and the other samples in earlier versions of the software.The E. coli sample
was also sequenced on Illumina MiSeq using paired-end 300x2 to 100-fold coverage. An assembly of the E. coli genome was
constructed by running Spades29 on the MiSeq sequencing data of the sample. The genome sequence of the Phage Lambda is
NCBI Reference Sequence: NC 001416.1.

Labelling of raw signal: We used Metrichor, the basecaller provided by ONT which runs as a cloud service, to basecall
the MinION sequencing data. We then utilised a modified version of nanoraw30 for labelling of the data. Briefly, we aligned
the basecalled sequence data to the genome of the sample. From the alignment, we could correct the errors introduced by
Metrichor, and map the corrected data back to the raw data. The resulting labelling consists of the raw signal data, as well as
the boundaries of raw signals when the DNA fragment translocates to a new base.

Training dataset We created a training set using 2,000 reads from E. coli and 2,000 reads from Phage Lambda. In every
start of the training epoch, the dataset is shuffled. Training on this mixture dataset gave the model better performance both on
generality and accuracy (see Table 1).

Training
We use the labelling from Metrichor to train, although our neural network architecture is translation invariant and not restricted
by the sequence length, a uniform length of sequences is suited for batch feeding, thus can accelerate the training process. We
cut the original reads into short segments with a uniform length of 200, 400 and 1000, and trained on these batches in alternation.
We tested several different architectures of the neural network, (see Table 4) with the CNN-RNN network architecture having
the best accuracy compared to a CNN- or RNN-only network. Also using more layers seems to increase the performance of the
model, however, the time consumed for training and basecalling is also increased. In the final structure we use 5 convolution
layers and 3 recurrent layers, as adding layers above this structure gave negligible performance improvement.

Parameters for basecalling
All basecallers were invoked on the same set of reads for each sample. When using our model to basecall, we first slice
the raw signal with a 300 length window, and sliding the window by 30, and then feed the base caller a batch of the 300
length segment signal with a batch size equal to 1100, and then we simply assemble the short reads by a pair-wise alignment
between neighbouring reads, and output the consensus sequence from the alignment. All basecalling with Albacore (version
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Architecture normalised edit distance
3 Convolutional Layers 0.4007 ± 0.0277
5 Convolutional Layers 0.3903 ± 0.0230
10 Convolutional Layers 0.3874 ± 0.0186
3 Bidirectional Recurrent Layers 0.2987 ± 0.0221
5 Bidirectional Recurrent Layers 0.2930 ± 0.0215
3 Convolutional Layers + 3 Bidirectional Recurrent Layers 0.2011 ± 0.0252
5 Convolutional Layers + 5 Bidirectional Recurrent Layers 0.2001 ± 0.0177

Table 4. Comparison of normalised edit distance with different neural network architectures. The normalised edit distance is the edit distance between
predicted reads and labelled reads and normalised by segments length.

1.1.1) and BasecRAWller13 (version 0.1) was done with default parameters. For the configuration setting in Albacore,
r94 450bps linear.cfg was used for all samples, as this matches the flowcell and kit used for each sample.

Comparison
To assess the performance of each program, the resulting FASTA/FASTQ file from basecalling was aligned to the reference
genome using graphmap31 with the default parameters. The resulting BAM file is then assessed by the japsa error
analysis tool (jsa.hts.errorAnalysis) which looks at the deletion, insertion, and mismatch rates, the number of
unaligned and aligned reads, and the identification rate compared to the reference genome. The identity rate is calculated as

number of matched bases
number of bases in reference and is the marker used here for basecalling accuracy.

Data availability
Sequencing data in this study are in the process of being deposited to the European Nucleotide Archive (ENA). Program and
code are available at https://github.com/haotianteng/chiron pypi package index 0.1.2 at https://pypi.
python.org/pypi/chiron.
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24. Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç. & Courville, A. Recurrent batch normalization. arXiv preprint
arXiv:1603.09025 (2016).

25. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10), 807–814 (2010).

9/10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2017. ; https://doi.org/10.1101/179531doi: bioRxiv preprint 

http://www.pnas.org/content/106/19/7702.abstract
http://www.nature.com/doifinder/10.1038/nbt.3103
http://www.nature.com/doifinder/10.1038/nbt.3103
http://biorxiv.org/lookup/doi/10.1101/019356 http://gigascience.biomedcentral.com/articles/10.1186/s13742-016-0137-2
http://biorxiv.org/lookup/doi/10.1101/019356 http://gigascience.biomedcentral.com/articles/10.1186/s13742-016-0137-2
http://biorxiv.org/content/early/2016/05/22/054783.abstract http://biorxiv.org/lookup/doi/10.1101/054783 http://www.nature.com/doifinder/10.1038/ncomms14515
http://biorxiv.org/content/early/2016/05/22/054783.abstract http://biorxiv.org/lookup/doi/10.1101/054783 http://www.nature.com/doifinder/10.1038/ncomms14515
http://biorxiv.org/content/early/2016/05/22/054783.abstract http://biorxiv.org/lookup/doi/10.1101/054783 http://www.nature.com/doifinder/10.1038/ncomms14515
http://dx.doi.org/10.1038/nature16996 http://www.nature.com/doifinder/10.1038/nature16996
http://dx.doi.org/10.1038/nature16996 http://www.nature.com/doifinder/10.1038/nature16996
http://www.biorxiv.org/content/early/2017/04/20/128835
http://www.biorxiv.org/content/early/2017/04/20/128835.full.pdf
http://www.biorxiv.org/content/early/2017/04/20/128835.full.pdf
https://doi.org/10.1101/179531
http://creativecommons.org/licenses/by/4.0/


26. Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with lstm. Neural
Computation 12, 2451–2471 (2000). URL http://dx.doi.org/10.1162/089976600300015015. DOI
10.1162/089976600300015015. http://dx.doi.org/10.1162/089976600300015015.

27. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Computation 9, 1735–1780 (1997). URL http:
//dx.doi.org/10.1162/neco.1997.9.8.1735. DOI 10.1162/neco.1997.9.8.1735. http://dx.doi.org/
10.1162/neco.1997.9.8.1735.

28. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

29. Bankevich, A. et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing.
Journal of Computational Biology 19, 455–477 (2012). URL http://online.liebertpub.com/doi/abs/10.
1089/cmb.2012.0021. DOI 10.1089/cmb.2012.0021.

30. Stoiber, M. H. et al. De novo identification of dna modifications enabled by genome-guided nanopore signal processing.
bioRxiv 094672 (2017).
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