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Abstract34

Memory performance is highly variable between individuals. Most studies examining human memory, however,35

have largely focused on the neural correlates of successful memory formation within individuals, rather than the36

differences between them. As such, what gives rise to this variability is poorly understood. Here, we examined37

intracranial EEG (iEEG) recordings captured from 43 participants implanted with subdural electrodes for seizure38

monitoring as they performed a paired-associates verbal memory task. We identified three separate but related signa-39

tures of neural activity that tracked differences in successful memory formation across individuals. High performing40

individuals consistently exhibited less broadband power, flatter power spectral density (PSD) slopes, and greater41

complexity in their iEEG signals. Furthermore, within individuals across three separate time scales ranging from42

seconds to days, successful recall was positively associated with these same metrics. Our data therefore suggest that43

memory ability across individuals can be indexed by increased neural signal complexity.44
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Significance Statement45

We show that participants whose intracranial EEG exhibits less low frequency power, flatter power spectrums, and46

more sample entropy overall are better able to memorize associations, and that the same metrics track fluctuations in47

memory performance across time within individuals. These metrics together signify greater neural signal complexity48

which may index the brain’s ability to flexibly engage with information and generate separable memory representa-49

tions. Critically, the current set of results provide a unique window into the neural markers of individual differences50

in memory performance which have hitherto been underexplored.51
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Introduction52

Some people consistently have better memory than others. This variability in memory performance between indi-53

viduals, and even within individuals from moment to moment, is quite familiar in our daily lives. In the study of54

memory, however, this variability has largely been viewed as a problem that needs to be addressed through proper55

experimental design. As a result, the neural mechanisms that give rise to such variability have been relatively unex-56

plored. Understanding the source of such variability between individuals can provide valuable insights into how the57

brain is able to successfully form and retrieve memories.58

Studies of memory have typically attempted to eliminate the variability in neural activity and memory perfor-59

mance between individuals by regressing it out. In many paradigms evaluating memory-related changes in oscillatory60

activity, for example, data within each individual are normalized so as to only examine relative changes in activ-61

ity when events are either successfully remembered or forgotten, yielding what has been termed the subsequent62

memory effect (SME). Positive and negative SMEs have been reported in different frequency bands (Hanslmayr and63

Staudigl, 2014; Hanslmayr et al., 2012), yet how these effects should be properly interpreted has been problematic64

given conflicting reports of positive low frequency SMEs in some studies (Hanslmayr et al., 2011; Osipova et al.,65

2006; Sederberg et al., 2003) and negative low frequency SMEs in others (Fell et al., 2011; Guderian et al., 2009;66

Sederberg et al., 2006). Hence, normalized SMEs studied in isolated frequency bands may not provide a complete67

description of the neural correlates of memory. Moreover, these approaches have not addressed the larger question68

of how variability in neural activity may be related to variability in memory performance.69

An alternative and complementary approach that has emerged in response to the conflicting SME data is to70

describe the changes in low and high frequency activity as arising from the same phenomenon, one that produces71

an overall change in the structure of the entire power spectral density (PSD) (Voytek et al., 2015). Spectral power72

decreases linearly with frequency on a log-log scale over a broad range of frequencies (Dehghani et al., 2010; He et al.,73

2010; He, 2014; Miller et al., 2009; Milstein et al., 2009). Importantly, neuronal activation results in a flatter PSD74

slope (He, 2011), reflecting decreases in lower frequency and increases in higher frequency power (Podvalny et al.,75

2015). These findings have led to the suggestion that flattening of the PSD slope, and the associated changes in76

spectral power, may therefore be a signature of increased asynchronous neuronal activity (Burke et al., 2015; Ray77

and Maunsell, 2011; Voytek and Knight, 2015).78

Viewed from an information coding perspective, the PSD slope and oscillatory power of a neural signal, by79

indicating the extent of synchrony in the underlying neural activity, may be a proxy for neural signal complexity80

and underlying information content (Hanslmayr et al., 2012). Direct measures of complexity of neural signals such81

as sample entropy have supported this suggestion by demonstrating that more complex brain dynamics underlie82

enhanced cognitive performance (McIntosh et al., 2008), likely signifying a greater capacity to encode and process83

information. Indeed, several groups have advanced the notion that complexity in neural activity is functionally84

relevant and affords greater flexibility for cognitive processing (Deco et al., 2009,0; Faisal et al., 2008; Garrett et al.,85

2011,0; Grady and Garrett, 2014; MacDonald et al., 2006; Sleimen-Malkoun et al., 2015; Stein et al., 2005). Therefore,86

these metrics may together reflect a general capacity for processing information that may be particularly relevant87
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for memory formation.88

In this scenario, then, a possible explanation for the variability in memory performance between individuals is89

that different brains may exhibit differences in complexity, allowing a greater number of unique cognitive states that90

are relevant for encoding memories. We investigate this possibility here by examining changes in spectral power, PSD91

slope, and the sample entropy of neural signals captured from intracranial electrodes as participants perform a paired92

associates verbal episodic memory task. We were specifically interested in whether these metrics exhibit differences93

between individuals, and changes within individuals across time, that correlate with memory performance, and find94

that such measures of complexity and general information processing are indeed behaviorally relevant when forming95

and retrieving memories.96
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Materials and Methods97

Participants98

43 participants [23 male; age range 13-59; 32.1 ± 11.7 (mean ± SD) years old], with drug resistant epilepsy underwent99

a surgical procedure in which platinum recording contacts were implanted subdurally on the cortical surface as well as100

deep within the brain parenchyma. For each participant, the clinical team determined the placement of the contacts101

so as to best localize epileptogenic regions (see Figure 1C for electrode coverage). Preoperative clinical fMRI testing102

results were available for 37 participants, and 36 of these participants exhibited fMRI activity consistent with left103

language dominance. The Institutional Review Board (IRB) approved the research protocol, and informed consent104

was obtained from the participants or their guardians. Data from a subset of participants were initially collected and105

analyzed for previous publications (Yaffe et al., 2014, 2017; Greenberg et al., 2015; Haque et al., 2015). Computational106

analyses were performed using custom written MatLab (The MathWorks, Inc., Natick, MA) scripts.107

Paired associates task108

Each participant performed a paired associates verbal memory task (Figure 1A). In the task, participants were109

sequentially shown a list of word pairs (encoding period) and then later cued with one word from each pair selected110

at random (retrieval period), and were instructed to say the associated word into a microphone. Each participant111

performed one of two versions of the task that had slight differences in the experimental details. As the tasks did not112

differ in the fundamental objectives and performance was indistinguishable between groups, we combined the data113

from both sets of tasks for subsequent analyses.114

A single experimental session for each participant consisted of 15 or 25 lists, where each list contained either115

four or six pairs of common nouns shown on the center of a laptop screen, depending on whether the participant116

completed the first or second version of the task respectively. Although different participants performed the task117

with different list lengths, the number of pairs in a list was kept constant for each participant. Words were chosen at118

random and without replacement from a pool of high-frequency nouns and were presented sequentially and appeared119

in capital letters at the center of the screen. Study word pairs were separated from their corresponding recall cue by120

a minimum lag of two study or test items. During the study period (encoding), each word pair was preceded by an121

orientation stimulus (either a ‘+’ or a row of capital X’s) that appeared on the screen for 250-300 ms followed by a122

blank interstimulus interval (ISI) between 500-750 ms. Word pairs were then presented stacked in the center of the123

screen for 2500 ms followed by a blank ISI of 1500 ms with a jitter of 75 ms in the first version of the task, or for124

4000 ms followed by a blank ISI of 1000 ms in the second version. Following the presentation of the list of words125

pairs in the second version of the task, participants completed an arithmetic distractor task of the form A + B + C126

= ? for 20 seconds.127

In both task versions, during the test period (retrieval), one word was randomly chosen from each of the presented128

pairs and presented in random order, and the participant was asked to recall the other word from the pair by vocalizing129
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a response. Each cue word was preceded by an orientation stimulus (a row of question marks) that appeared on130

the screen for 250-300 ms followed by a blank ISI of 500-750 ms. Cue words were then presented on the screen for131

3000 ms followed by a blank ISI of 4500 ms in the first version of the task, or for 4000 ms followed by a blank ISI132

of 1000 ms in the second version. Participants could vocalize their response any time during the recall period after133

cue presentation. We manually designated each recorded response as correct, intrusion, or pass. A response was134

designated as pass when no vocalization was made or when the participant vocalized the word ‘pass’. We defined all135

intrusion and pass trials as incorrect trials. A single experimental session therefore contained 60, 100, or 150 total136

word pairs, or trials, depending on the task version. We included only participants who engaged in at least two137

separate sessions of the paired associates task such that each participant completed between 2-5 sessions taking 31.1138

± 1.7 (mean ± SEM) minutes each with a median of 24.8 hours in between sessions.139

Intracranial EEG (iEEG) recordings140

Intracranial EEG (iEEG) signals were referenced to a common electrode and were resampled at 1000 Hz. We applied141

a fourth order 2 Hz stopband butterworth notch filter at 60 Hz to eliminate electrical line noise. The testing laptop142

sent synchronization pulses via an optical isolator into a pair of open lines on the clinical recording system to143

synchronize the iEEG recordings with behavioral events.144

We collected electrophysiological data from a total of 4623 subdural and depth recording contacts (PMT Corpora-145

tion, Chanhassen, MN; AdTech, Racine, WI). Subdural contacts were arranged in both grid and strip configurations146

with an inter-contact spacing of 5 or 10 mm. Contact localization was accomplished by co-registering the post-op CTs147

with the post-op MRIs using both FSL Brain Extraction Tool (BET) and FLIRT software packages and mapped to148

both MNI and Talairach space using an indirect stereotactic technique and OsiriX Imaging Software DICOM viewer149

package. The resulting contact locations were subsequently projected to the cortical surface of a population average150

brain. Pre-op MRI’s were used when post-op MRI images were were not available.151

We analyzed iEEG data using bipolar referencing in order to reduce volume conduction and confounding inter-152

actions between adjacent electrodes (Nunez and Srinivasan, 2006). We defined the bipolar montage in our dataset153

based on the geometry of iEEG electrode arrangements. For every grid, strip, and depth probe, we isolated all pairs154

of contacts that were positioned immediately adjacent to one another; bipolar signals were then found by differencing155

the signals between each pair of immediately adjacent contacts. The resulting bipolar signals were treated as new156

virtual electrodes (referred to as electrodes throughout the text), originating from the mid-point between each con-157

tact pair. All subsequent analyses were performed using these derived bipolar signals. In total, our dataset consisted158

of 3904 bipolar referenced electrodes.159

To minimize the effect of epileptic activity and physiology on our signals, we performed an electrode cleaning160

procedure to eliminate electrodes that demonstrated ictal or interictal activity at any time during clinical monitoring161

as reviewed by an epileptologist. We had access to this data for 27 individuals and it included 419 electrodes.162

After excluding these pairs from further analysis, we were left with 3485 bipolar pairs upon which we performed an163

additional variance based cleaning procedure. For each subject we looked at the spread of variance across electrodes164
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and iteratively removed electrodes that exceeded 1.3 standard deviations from the the average of the remaining165

electrodes until no additional electrodes exceeded this threshold. This procedure eliminated 758 electrodes leaving166

2727 bipolar pairs for our study.167

Data analyses and spectral power168

We computed the spectral power for each bipolar electrode at every time point during the experimental session by169

convolving the raw iEEG signal with complex valued Morlet wavelets (wavelet number 6) to obtain the magnitude of170

the signal at each of 30 logarithmically spaced frequencies ranging from 3 to 180 Hz. We squared and log-transformed171

the magnitude of the continuous-time wavelet transform to generate a continuous measure of instantaneous power.172

During every trial, we convolved each wavelet with two separate time windows - a baseline period extending from173

600 to 100 ms before word pair presentation, and an encoding period from 300 ms after word pair presentation until174

300 ms before the offset of the word pair from the display screen (Figure 1A). In addition, we computed power for175

ten 2000 ms windows from the beginning of the clinical recording segment before task specific activity began for each176

session and averaged those to get an extra-task window. We included an additional 1000 ms buffer on either side of177

each time window to minimize any edge effects and which was not subsequently analyzed.178

To examine the relation between overall raw power and performance across participants, we used the above179

measures of raw spectral power. To examine how changes in power on individual trials affected performance, we z-180

scored each sessions power values independently to remove the effects of across participant and session level variations.181

Calculating spectral slope182

To understand how spectral power changes as a function of frequency, we calculated spectral slope. For each183

participant, we computed an average power spectral density (PSD) across all trials and electrodes and computed184

slope in log-log space across the broadband range of 10-100 Hz (Podvalny et al. (2015)). To identify the general185

1
fα slope of the spectrum and avoid contamination of narrowband oscillations, we used a robust fitting algorithm186

with bisquare weighting (MATLAB robustfit.m function). Additionally, we computed slope over a range of frequency187

values and spectral widths as described in the Results. We defined spectral width using units of octaves such that188

the spectral width of a given slope was equal to the log2 of the ratio of the highest frequency to the lowest frequency.189

Calculating sample entropy190

We used a metric of sample entropy to measure the complexity of the iEEG signal. Sample entropy, by construction,191

is a measure of predictability. Specifically the sample entropy (SampEn) of a time series is the negative natural192

logarithm of the conditional probability that any two sub-sequences of length m within the series, that are similar193

within a tolerance r, remain similar at length m+1 (Richman and Moorman, 2000). Two patterns that are close194

together inm-dimensional space and that remain close together inm+1-dimensional space indicate fewer irregularities195

or less complexity in the signal. Similarity is measured using the Chebychev distance between the two sub-sequences.196
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A smaller value of SampEn denotes greater repetitiveness and less complexity in a given signal.197

For an embedding dimension m, a tolerance r, and a time-step τ , the formal equations for the calculation of198

sample entropy for a given time series y(t) are as follows (Sokunbi et al., 2013; Vakorin and McIntosh, 2012):199

SampEn(m, r,N) = −lnU
m+1(r)

Um(r)
(1)

Um(r) = [N −mτ ]−1
N−mτ∑
i=1

Bi
N − (m+ 1)τ

(2)

Bi =
N−m∑
j 6=i

H[r − ||xm(i)− xm(j)||] (3)

where xm(i) refers to the ith possible template vector of length m, such that x3(2) = (y2, y3, y4). || · || refers to200

the maximum norm and H is the Heaviside step function.201

An embedding dimension m of 2, a tolerance r of 0.2 ∗ std(x(t)), and a constant time-step τ of 1 ms were used202

in all analyses. Of note, the number of 3 element matching template sequences is necessarily less than or equal to203

the number of 2 element matching template sequences, implying that the ratio Um+1(r)
Um(r) in Equation 1 is bounded204

between 0 and 1. Therefore, the range of SampEn is [0,∞]. For computational considerations, we down-sampled all205

iEEG signals to 250 Hz for this analysis. We excluded the few trials with zero matching samples of length 3 to avoid206

infinite values.207

Commonality Analysis208

In order to understand whether the metrics of power, spectral slope, and sample entropy uniquely account for variance209

in memory performance across participants or if they are redundant, we performed a commonality analysis (Nimon210

et al., 2008) which partitions variance (R2) into parts that are unique to each predictor variable and those that211

are shared between all possible combinations of the predictors. The unique contribution of a predictor is calculated212

as the proportion of variance attributed to it when it is entered last in a regression analysis. For example, in a213

hypothetical case where dependent variable y is explained by two predictors i and j, the total variance explained by214

both variables is R2 and the unique contributions from i and j respectively are215

U(i) = R2
y.ij −R2

y.j (4)

and

U(j) = R2
y.ij −R2

y.i. (5)

(6)

The common contribution is216
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C(i,j) = R2
y.i +R2

y.j −R2
y.ij . (7)

Commonality analysis decomposes explained variance into 2k − 1 independent effects for k predictor variables.217

Therefore the number of effects increases exponentially with the number of predictors. We used the R package yhat218

(Nimon et al., 2013) to perform commonality analysis.219

Anatomic visualization220

To visualize how the relation between spectral power and task performance is spatially distributed, we created 1441221

regions of interest (ROI) evenly spaced across a 1 cm x 1 cm grid covering the pial surface of a population average222

brain. In each participant, we identified all electrodes located within 12.5 mm of each ROI. We designated the raw223

power for each ROI in each participant as the average raw power across all electrodes assigned to that ROI. For each224

ROI that included electrodes from at least six participants, we determined the Spearman’s correlation between raw225

power and task performance across the participants with electrodes contributing to that ROI. We therefore generated226

a value for the correlation between raw power and task performance for each ROI. Any ROI that contained electrodes227

from fewer than six participants was excluded from statistical analyses.228

We generated cortical topographic plots of the anatomic distribution of these correlations by assigning each vertex229

in the 3D rendered image of the standard brain a weighted average of the mean value of each ROI that includes that230

vertex. Weighted values for each vertex were assigned by convolving a three dimensional Gaussian kernel (radius =231

12.5 mm; σ =4.17 mm) with center weight 1 with the values of surrounding ROIs. We projected these vertex values232

onto the standard brain. Intensity varied as a function of the statistic metric in question, either Fisher-transformed233

correlation or t-score, in each ROI and with the standard deviation of the Gaussian kernel, which was used purely234

as a visualization technique.235

Statistical analysis236

All statistical tests were assessed for significance using two-tailed distributions. As most of our distributions, including237

accuracy and raw power were not normally distributed, we utilized Spearman’s rank correlation when evaluating238

the monotonic relationship between two variables. Spearman’s correlation utilizes only the order of data points239

and is thus not biased by outliers as with Pearson’s correlation. We made an exception, however, when examining240

the relation between sessions within individual participants. Because we analyzed session counts as low as three,241

Spearman’s correlation is prone to produce extreme values of ±1 which cannot be analyzed with cohort level statistics,242

necessitating the use of Pearson’s correlation in this instance.243

To compare correlations across participants, we used a Fisher z-transformation on the correlation coefficients244

calculated for each participant. The transformation stabilizes the variance of these correlations, reduces bias towards245

lower correlations, and results in a normalized distribution of coefficients. For each correlation, we therefore calculated246
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the Fisher z-transform: z = 1
2 ln

(
1+r
1−r

)
where r is the correlation coefficient. We utilized the mathematically247

equivalent formula, z = arctanh(r) in our calculations.248

To determine whether any anatomic region exhibited a significant correlation across participants, we used a249

nonparametric spatial clustering procedure (Maris and Oostenveld, 2007). This procedure identifies contiguous ROIs250

where the distribution of correlation coefficients across participants significantly deviates from chance correlation251

while controlling for the family-wise error rate. Briefly, for each ROI, we calculated the true Fisher-transformed252

correlation coefficient between memory performance and raw spectral power across participants. We then generated253

1000 permuted values for each ROI. In each permutation, we randomly assigned each participant a level of task254

performance drawn from the original distribution of task performance across participants without replacement. In255

this manner, each permutation involves a random pairing between task performance and raw spectral power. We256

then determined a z-score for each true value and each permuted value in each ROI by comparing that value to the257

distribution of permuted values. For the true data and for each permutation, we identified contiguous spatial clusters258

of ROIs, exhibiting z-scores with a magnitude greater than 1.96 (corresponding to a two-tailed p-value less than259

0.05). For each cluster, we computed the cluster statistic as the sum of all z-scores in that cluster. In this manner,260

large magnitude cluster statistics can arise from large deviations in the distributions of correlation coefficients across261

participants extending over a small spatial region, or moderate deviations that extend over larger regions. We262

then calculated the exact two-tailed p-value for each cluster observed in the true dataset by comparing its cluster263

statistic to the distribution of largest cluster statistics drawn from each permutation. Clusters were determined to264

be significant and corrected for multiple comparisons if their p value calculated in this manner was less than 0.05.265

To assess whether the relation between sample entropy and performance at different time scales was significantly266

from zero when summarizing across participants, we used a similar permutation procedure. In this case, for every267

ROI, we used a two-tailed t-test to compare the distribution of values to zero. This generates a t-statistic for the268

true data. Then, during every permutation, we randomly inverted the sign of the metric and produced a permuted269

distribution of t-statistics. We compared the true t-statistic to the permuted distribution to generate a p-value and270

z-score for every ROI. As above, we used a clustering procedure to identify contiguous ROIs with p < 0.05, assigned271

each contiguous cluster a cluster statistic based on the sum of the corresponding t-statistics, and then calculated272

the exact two-tailed p-value for each cluster observed in the true dataset by comparing its cluster statistic to the273

distribution of largest cluster statistics drawn from each permutation.274
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Results275

43 participants with drug resistant epilepsy who underwent surgery for placement of intracranial electrodes for seizure276

monitoring participated in a verbal paired associates task (Figure 1A). Participants studied 294.2 ± 20.0 (mean ±277

SEM) word pairs, split across multiple experimental sessions, and successfully recalled 40.1 ± 3.2% (mean ± SEM)278

words with a mean response time of 1837 ± 65 ms. Response accuracy across participants exhibited a bimodal279

distribution (Figure 1B). On 14.9 ± 1.7% of trials, participants responded with an incorrect word (intrusions) with a280

mean response time of 2687 ± 83 ms. For the remaining 44.9 ± 2.6% of trials, participants either made no response281

to the cue word, or vocalized the word ‘pass’ with a mean response time of 3494 ± 176 ms. We designated all trials282

in which a participant successfully vocalized the correct word as correct, and all other trials as incorrect. Recordings283

were included from all electrode contacts (number of participants with contacts in each cortical location shown in284

Figure 1C).285

We measured full scale IQ (FSIQ) in 36 participants before electrode implantation as part of the routine clinical286

pre-operative evaluation. Participants had an average pre-operative FSIQ of 98.5 ± 2.8 (mean ± SEM). Across all287

sessions for each participant, we found that preoperative FSIQ significantly correlated with accuracy during the task288

(rs = 0.55, p = .0005, N = 36; Figure 1D), suggesting that task performance is related to normal psychometric289

measurements.290

– INSERT FIGURE 1 –291

Raw power is negatively correlated with performance292

Raw intracranial EEG (iEEG) power can reflect the extent of overall neural activity in each participant’s brain293

and has occasionally been shown to relate to a participant’s abilities (Hanslmayr et al., 2007). We were therefore294

interested in examining whether the raw overall power in each participant as captured by iEEG was related to295

their task performance. As typical spectral analysis involves examining changes in z-scored power relative to an296

individual’s baseline activity, this relation between raw power and task performance would be unexplored in most297

planned analyses.298

In each participant, we extracted the raw spectral power contained in the signal during a baseline time window299

before word pair presentation and during the encoding period. To generate an overall level of broadband power for300

each participant, we averaged the extracted spectral power over all frequencies between 3 and 180 Hz (broadband301

power), over all trials, and over all electrodes for each time window in each participant. We found that the average302

raw broadband power during the encoding period demonstrated a significant negative correlation with accuracy303

during the task (rs = −0.42, p = .0051, N = 43; Figure 2A). As with task performance, broadband power was also304

negatively correlated with with FSIQ across participants (rs = −0.47, p = .0043, N = 36).305

We found that this relation between raw overall broadband power and task performance was robust and inde-306

pendent of the specific task periods. For example, raw broadband power during the baseline period before word307

presentation was also inversely correlated with task accuracy (rs = −0.42, p = .0052, N=43). Moreover, we also308
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found a significant relation between raw broadband power and task accuracy when we examined power separately309

during only correct or only incorrect trials ( rs = −0.42, p = .0055 and rs = −0.42, p = .0051, respectively), sug-310

gesting that this effect reflects each participant’s overall baseline neural activity rather than simply the proportion311

of trials that featured successful encoding in each participant. Finally, to determine if this relation reflects each312

participants underlying physiology or is dependent on a task evoked state, we also examined this relation during an313

epoch recorded prior to the beginning of the task when the participant was awake, at rest, and under no instruction.314

We found the negative correlation between overall broadband power and task performance was also preserved during315

this extra-task period, suggesting that this effect is not task dependent but is related to baseline cognitive behavior316

(rs = −0.40, p = .0090). This finding departs from most memory studies in that we claim that our result does317

not depend on the fact that the subject is undertaking a memory task at the time, allowing us to generalize our318

electrophysiological correlates to normal daily activities.319

We next examined whether the inverse correlation between raw power and task performance was specific to320

individual frequency bands by separately computing correlations between narrow band frequencies and task per-321

formance (Figure 2B). We found power at every frequency band between 3 and 180 Hz was negatively correlated322

with performance. All frequencies below 9 Hz had a significant negative correlation between overall raw power and323

accuracy when corrected for multiple comparisons across frequencies (Figure 2B, p < .05, Bonferroni corrected for324

30 frequency bands). This suggests that this effect is spectrally broad but driven by low frequency activity. We325

therefore restricted subsequent power analyses to power averaged across the theta band (3-7 Hz; Figure 2B, dashed326

box).327

We were also interested in whether the relation between raw power and task accuracy varied across brain regions328

(regions of interest, ROIs; see Materials and Methods). For every ROI, we determined the correlation between both329

average raw broadband and theta power in all electrodes within that ROI and task performance across participants.330

The inverse correlation that we found between cortically distributed raw power and task performance localized to331

regions of the temporal and parietal lobes in both hemispheres (Figure 2C,D, top). Using a non-parametric clustering332

algorithm, we found that spatially contiguous regions exhibited a significant correlation across participants within333

the left temporal lobe for both broadband and theta band power (p < .05, permutation procedure; see Materials334

and Methods; Figure 2C,D, bottom). In addition theta band power showed a significant cluster in the right anterior335

temporal lobe suggesting that this effect is not confined to one hemisphere. These data suggest that individuals with336

less broadband and low frequency power in their temporal lobes in general have greater ability to encode associative337

memories.338

– INSERT FIGURE 2 –339

Assessing cortical activation through PSD slope340

The power spectral density (PSD) of iEEG signals falls off with frequency following a power law distribution. The341

slope of the PSD in log-log space has been shown to flatten in response to task activation (Podvalny et al., 2015),342

and the extent to which the slope flattens has been related to cognitive effort (Churchill et al., 2016). As such, we343
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examined the overall raw PSD in each participant to determine whether the observed changes in broadband power344

with task performance may be related to changes in the slope of the PSD.345

We first divided the participants into three terciles based on task performance (low, medium, or high accuracy) to346

visualize the average raw PSD in each cohort (Figure 3A). Below 30 Hz, the average PSDs of the three populations347

easily separate, with the lowest performing participants exhibiting the largest low frequency raw power. As suggested348

by our analysis examining the correlation between raw power and task performance, dividing participants into these349

terciles yielded a significant effect of performance tercile on low frequency power (ANOVA using average raw power350

< 30 Hz; F (2, 40) = 5.07, p = .011). At higher frequencies (> 30 Hz), however, the distinction between participant351

groups was negligible (F (2, 40) = 1.21, p = .308).352

We next calculated the spectral slope of the average raw PSD between 10-100 Hz for each participant (Figure353

3B, insert). We chose this frequency range to avoid the low frequency knee and the effects of action potential354

contamination at higher frequencies (Podvalny et al., 2015). Across participants, PSD slope [range -3.33 to -2.06;355

-2.68 ± .05 (mean ± SEM) Figure 3B)] are in the range of those reported by those using similar metrics (Podvalny356

et al., 2015). Across participants, we found that PSD slope was positively correlated with task performance, such357

that participants with flatter slopes performed better (rs = 0.49, p = .0011, N = 43; Figure 3C). We examined358

the anatomic regions that demonstrated a significant relation between PSD slope and task performance (p < .05,359

permutation procedure) and localized them to the left frontal and left temporal lobes (Figure 3D).360

As with raw broadband and theta power, this relation between PSD slope and task performance was robust and361

independent of when during the task the calculation of PSD was made. We found participants with greater task362

performance had flatter slopes when examining recordings from the baseline period (rs = 0.47, p = .0016), during363

correct trials only (rs = 0.47, p = .0016), or during incorrect trials only (rs = 0.48, p = .0011). We found that like364

broadband power, the significant relationship between slope and accuracy was preserved when examining extra-task365

epochs during which participants were awake and at rest (rs = 0.44, p = .0035), indicating that as with raw power,366

this relation is not task evoked. Of note, we found no flattening of slope with age as has been reported elsewhere367

(rs = −0.19, p = .24) (Voytek et al., 2015).368

Although several studies have identified measures of broadband power or spectral slope as a proxy for spike rate369

(Manning et al., 2009), cortical activation (Podvalny et al., 2015), or the balance between cortical excitation and370

inhibition (Gao et al., 2017), there still remains no consensus regarding the frequency range over which one should371

calculate the PSD slope in order to identify the non-oscillatory components of spectral power. In our initial analysis,372

we used a range of 10-100 Hz. However, other groups have used different frequency ranges and it is possible that our373

findings are sensitive to this parameter.374

To ensure that the observed relation between PSD slope and task performance was not specific to the range375

of frequencies we used to calculate PSD slope, we iterated through a library of different frequency windows, each376

comprised of a center frequency and a spectral width, to compute PSD slopes. We examined PSD slope using every377

possible frequency window between 3 and 180 Hz. We found that the slope was largely unaffected by spectral width,378

and that although the slope increased as a function of center frequency, beyond a center frequency of 20 Hz, average379
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slope stabilized to an overall mean across participants of approximately 2.7 (Figure 3E). Above 18 Hz, the PSD slopes380

ranged between -2 and -3 , while at lower center frequencies we observed PSD slopes as flat as -1. We examined how381

varying our measure of PSD slope affected the relation between PSD slope and task performance. We correlated each382

PSD slope calculated with different center frequencies and spectral widths with task performance and confirmed that383

PSD slopes were positively correlated with task accuracy for most center frequencies regardless of spectral width384

(Figure 3F). This suggests that when examining the role of spectral slope, most ranges centered above 20 Hz should385

give congruent results.386

– INSERT FIGURE 3 –387

Assessing information content through sample entropy388

The relation between spectral slope and accuracy may be partially explained by the complexity of the underlying389

iEEG signal which may in turn suggest a higher capacity for processing information. However, while spectral slope390

is related to signal complexity (Keshner, 1982), it is not a direct measure. We therefore calculated sample entropy391

to quantify signal complexity of the iEEG trace, a measure that has previously been successfully used for discerning392

differences between EEG signals (Figure 4A; see Materials and Methods) (Catarino et al., 2011; Mizuno et al., 2010;393

Vaz et al., 2017). Sample entropy measures the predictability of a signal, is robust to low level noise and artifacts,394

and has been found to be more robust for shorter data lengths than other measures of entropy such as approximate395

entropy (Sokunbi, 2014; Yentes et al., 2013). Indeed, the complexity of two example iEEG signals is visible in the396

raw recording and reflected in the measured sample entropy (Figure 4B).397

Based on the observed changes in raw power and spectral slope, and the theoretical suggestion that increased398

information content involves signal desynchronization (Hanslmayr et al., 2012), we hypothesized that participants399

with greater complexity in their iEEG signal, and therefore higher sample entropy, would exhibit better task perfor-400

mance. We calculated the average sample entropy during the encoding period across all trials and all electrodes and401

found that participants with greater sample entropy performed significantly better on the task (Figure 4C, rs = 0.57,402

p = .0001, N = 43), suggesting that the observed relation between task performance and PSD slope is related to403

the complexity of the underlying neural signal. The relation between sample entropy and accuracy was distributed404

across the cortex but was particularly localized to the left temporal lobe (Figure 4D).405

As with power and spectral slope, we found that this relation was preserved when looking at correct trials406

(rs = 0.52, p = .0004), incorrect trials (rs = 0.58, p = .000010), the baseline period (rs = 0.56, p = .0001), or an407

extra-task epoch (rs = 0.41, p = .0070). Moreover, participants with flatter PSD slopes and less theta power had408

greater sample entropy (rs = 0.66, p = 3.6 × 10−6 and rs = −0.45, p = .0030, respectively) demonstrating that409

spectral slope and low frequency power are strong indicators of signal complexity.410

– INSERT FIGURE 4 –411
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Signal complexity across time scales412

Our data demonstrate that related measures of signal complexity — low frequency power, spectral slope, and sample413

entropy — show strong relations with overall performance during an associative memory task across participants.414

However, most studies of human memory have focused on subsequent memory effects in which differences between415

correct and incorrect trials are assessed within individuals. We were therefore interested in whether the observed416

changes in neural signal complexity across participants would also be observed across different time scales within417

participants. We specifically investigated changes in sample entropy during individual sessions and trials to index418

changes in brain state complexity at the time scales of hours and seconds, respectively.419

We first examined the relation between sample entropy and performance during individual sessions for each420

electrode in each participant who completed at least three sessions. In individual participants, we found that sample421

entropy correlated with performance on a session by session basis (Figure 5A). Across all participants, we found that422

this relation was consistent and significantly greater than zero (t-test of Fisher transformed correlation coefficients,423

t(21) = 3.55, p = .0019, N=22; Figure 5B). We found that the relation between session level sample entropy and424

task performance localized to the left anterior temporal lobe (Figure 5C).425

To ensure this effect was not driven by item level differences between sessions in entropy, we initially restricted426

this analysis to only correct trials. However, when we examined all trials together, or when we examined only427

incorrect trials, we found similar effects suggesting that the observed session level relations are independent of item428

level effects (t(21) = 2.71, p = .0130 and t(21) = 2.125, p = .0456, respectively). Moreover, the rest epochs prior429

to the task in each session also exhibited a significant positive relation between sample entropy and performance430

(t(21) = 2.15, p = .0431).431

Next, as is routine in most memory studies, we examined differences between correct and incorrect trials to432

understand the relation between sample entropy and memory encoding at the time scale of seconds. We first z-scored433

sample entropy within each session to eliminate any session level variance, and found that participants exhibited434

significantly higher sample entropy for correct compared to incorrect trials (Figure 5D,E, t(43) = 3.252, p = .0023).435

The item level changes in sample entropy localized to the left inferior prefrontal cortex and left posterior temporal436

lobe (5E). Both the session level and item level effects are calculated such that they are completely independent from437

one another and the previously explored participant level effects.438

From these tests alone, it is unclear over what time scale the changes in sample entropy are occurring. These439

changes may be related to word pair adaptation, or they may reflect a more slowly fluctuating dynamic. To explore440

this, we made three additional comparisons. We compared the sample entropy during the baseline period between441

correct and incorrect trials, we compared the sample entropy during correct trials between the encoding and baseline442

periods, and we compared the sample entropy during incorrect trials between the encoding and baseline periods.443

Interestingly, while we found no difference in sample entropy during the baseline periods between correct and incorrect444

trials (t(42) = −0.945, p = .3501), we did find that sample entropy significantly increased from baseline during445

correct trials, and significantly decreased from baseline on incorrect trials (t(42) = 2.89, p = .0060; t(42) = −2.68,446

p = .0105). These data suggest that relatively fast changes in the sample entropy, and therefore complexity, of the447
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signal contribute to subsequent remembering and subsequent forgetting along with changes over much longer longer448

time scales.449

– INSERT FIGURE 5 –450

Are theta power, spectral slope, and sample entropy redundant?451

We performed a commonality analysis (Nimon et al., 2008) to determine the proportions of variance in memory452

performance across participants that are uniquely attributed to the metrics of theta-band power, spectral slope,453

and sample entropy as well as those that are common between all possible combinations of these metrics, given454

that the three metrics are correlated with each other. Spectral slope and sample entropy are highly correlated455

(rs(41) = 0.66, p = 1.92 × 10−6) as they both index signal predictability. Both spectral slope and sample entropy456

are negatively and moderately correlated with theta power (rs(41)Pow,Slope = −0.42, p = 0.006; rs(41)Pow,SampEn =457

−0.45, (p = 0.003)). The commonality analysis (Table 1) showed that spectral power in the theta band uniquely458

accounted for 37.60% of the total variance explained by the predictors, followed by spectral slope (10.66%), and459

a much smaller unique contribution from sample entropy (1.25%). Spectral slope and sample entropy together460

account for 8.77% of the total variance explained. The total variance accounted for by power, PSD slope, and sample461

entropy though both unique and shared contributions are 0.3082, 0.2144, and 0.1620 respectively. Therefore, the462

commonality analysis suggests that theta-band spectral power uniquely contributes to a sizeable proportion of the463

variance explained (by a regression involving all three metrics) in memory performance across participants, whereas464

spectral slope and sample entropy provide redundant information (as suggested by the high correlation between465

them) and contribute to the total variance in combination with each other as well as with theta power. Taken466

together, this analysis suggests that while the three metrics capture properties of neural activity that are relevant for467

memory performance, theta power may capture somewhat distinct features than those that are captured together468

by spectral slope and sample entropy.469

– INSERT TABLE 1 –470
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Discussion471

Our analyses demonstrate that variability in memory performance between individuals can be partially explained472

by low frequency power and the slope of the PSD, with each measure providing unique contributions to the total473

variance explained. We directly link these metrics to sample entropy, a measure of the complexity of the neural signal474

(Hanslmayr et al., 2012; McIntosh et al., 2008; Sokunbi, 2014). Individuals with brains that exhibit greater complexity475

in their overall neural activity are able to perform better on this memory task. Moreover, within individuals, the476

extent to which performance changes from moment to moment is related to the entropy of their neural signals at477

that time. Hence, our data suggest that the complexity of brain activity may reflect an individual’s ability to occupy478

variable cognitive states and the extent to which information can be coded in their brain signals, which have a direct479

bearing on memory performance.480

The suggestion that cognitive flexibility may improve task performance appears intuitive. Indeed, the ability481

to explore the brain’s dynamic repertoire during rest is thought to be a marker of healthy brain function and may482

underlie introspection and rehearsal (Ghosh et al., 2008). Therefore, it seems likely that a high performing brain is483

one that engages with the world by assuming a variety of functional configurations. Whether such variability and484

flexibility may be relevant for associative memory performance has, until now, not been directly established. We485

establish this link here by demonstrating that memory performance is significantly correlated with signal complexity486

both across and within individuals. Cognitive flexibility lends neural systems the ability to explore their state space487

(Deco and Jirsa, 2012) which may lead to separable memory representations that are less susceptible to interference.488

Consistent with this idea, Heisz et al. (2012) showed that multiscale entropy (MSE) of brain signals (scalp EEG)489

correlated with participants’ ratings of famous face familiarity and that MSE increased with learning over multiple490

exposures to previously unfamiliar faces. Hence, the observed correlation between entropy and associative memory491

performance here suggests that neural signal complexity reflects the capacity to successfully encode associative492

memories by flexibly engaging with the presented material.493

The paired associates memory task used here requires participants to form associations between unrelated words494

that constitute individual episodes or experiences that are subsequently recalled. Encoding these associations draws495

upon the meanings of the words in order to form a conceptual and semantic link between them (Jang et al., 2017;496

Kahana et al., 2008; Madan et al., 2010). Therefore, forming these associations should engage cortical regions such497

as the anterior temporal lobe that are involved in semantic processing (Binder et al., 2009; Ralph et al., 2017). In498

our data, we observe strong correlations between memory performance and low frequency power, PSD slope, and499

entropy in these same left temporal lobe regions. The relationship between cognitive flexibility, as assessed by these500

metrics in the temporal lobe, and verbal associative memory performance across individuals may therefore emerge501

because of the involvement of the temporal lobe in helping encode verbal associations.502

Our approach here differs from earlier studies of human memory encoding and retrieval by specifically asking503

whether there are systematic differences in neural activity across participants that may predict individual memory504

performance. Most previous studies of human episodic memory have focused on relative changes in neural oscillatory505

activity between correctly and incorrectly encoded events (Burke et al., 2014; Greenberg et al., 2015; Long et al.,506

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/180240doi: bioRxiv preprint 

https://doi.org/10.1101/180240
http://creativecommons.org/licenses/by/4.0/


2014; Sederberg et al., 2003, 2007). While these studies have significantly advanced our understanding of the neural507

correlates of human memory, an unresolved question has been why different studies have demonstrated conflicting508

results, particularly with respect to low frequency oscillatory power (Hanslmayr and Staudigl, 2014). In our data, we509

tracked memory performance using low frequency power that was not normalized relative to any baseline and found510

that it was inversely correlated with overall memory performance. Moreover, within each individual, fluctuations in511

neural activity were predictive of how well they performed at any given moment. Our data therefore may provide512

some insight into the conflicting data observed in previous studies. These conflicts have been previously attributed513

to differences in task design and electrode coverage. However, because of the variability in baseline power between514

individuals, these conflicts may also be affected by where each cohort of participants sits in this range of baseline515

power and how that may impact the changes in power observed over shorter time scales.516

As examining the structure of the full PSD across all frequencies can often yield a more complete picture of517

neural activity (Podvalny et al., 2015), our analyses of PSD slope changes complement the observed changes in low518

frequency power. The PSD usually exhibits a power law distribution, with an exponent α of the 1
fα distribution519

ranging between -2 and -4 (Freeman and Zhai, 2009). Consistent with previous studies (He et al., 2010), we found520

that the slope of the PSD became flatter when successfully encoding individual memories. Notably, this relation521

between PSD slope and memory extended to the level of individual participants. Those participants with flatter522

PSD slopes in their overall brain activity were able to perform the task more successfully.523

The slope of the PSD has been hypothesized to reflect the balance between excitation and inhibition, and com-524

putational modeling of neural activity has demonstrated that reducing E:I ratio results in a steeper PSD slope (Gao525

et al., 2017). Both in vitro and in vivo cortical networks show maximal dynamic range under balanced E:I conditions526

(Shew et al., 2009,0). An increased dynamical range of neuronal responses may improve adaptability and efficiency527

of neural systems in service of memory. Another possibility is that a shallower PSD slope may emerge due to the528

infusion of noise into the neural signal via asynchronous firing activity (Podvalny et al., 2015; Pozzorini et al., 2013;529

Usher et al., 1995; Voytek et al., 2015; Voytek and Knight, 2015). Whether such noise is beneficial is unclear, as530

the effect of noise on information coding depends on whether or not noise is correlated between neurons (Averbeck531

et al., 2006). Nevertheless, our finding that flatter PSD slopes and increased sample entropy relate to better memory532

performance suggests that in our data, more complex brain signals reflect more informationally rich signals as posited533

by others (Hanslmayr et al., 2012, 2016; Mitchell et al., 2009; Schneidman et al., 2011).534

Ultimately, the slope of the PSD and the low frequency power contributing to that slope should be related to535

the underlying complexity of the neural signal, which can be directly assessed using measures of entropy as we do536

here. Although greater signal complexity does not always reflect greater information content, sample entropy of the537

EEG signal increases from childhood to adulthood (McIntosh et al., 2008), and higher entropy is also associated538

with greater task efficiency and greater network efficiency (Misić et al., 2010, 2011). Entropy of resting state brain539

signals can distinguish children at high risk for autism spectrum disorder from normal developing children (Bosl540

et al., 2011), and healthy from epileptogenic neural tissues (Protzner et al., 2010). Here, we directly show that541

the complexity of the neural signal captured using iEEG tracks associative memory performance across individuals,542
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providing further support to the proposition that brain signal variability is functionally relevant. Moreover, we show543

that within individuals, variability in neural signal complexity across time scales also tracks memory performance for544

the individual participant. The variability that we experience in our daily lives with memory performance is likely545

therefore influenced by these changing levels of neural signal complexity.546

Of note, participants in our study were also neurosurgical patients with drug resistant epilepsy. In the majority547

of cases, their seizure activity localized to the temporal lobes, raising the possibility that the observed effects in this548

brain region may also be related to the underlying pathology of the disorder itself. Greater disruptions of normal549

temporal lobe function could result in less signal complexity in this brain region, which could then lead to worse550

memory performance on this paired associates task. We took several precautions to mitigate the effects of epileptic551

activity on our study including removing electrodes identified as ictal or interictal and removing electrodes that552

showed higher variance activity relative to the rest of the population. Despite our best efforts, it is still possible553

that pathological activity may explain some of the observed relationships between complexity metrics and memory554

performance. In this scenario, however, the interpretation of our data does not change since decreased neural signal555

complexity, regardless of whether it can be attributed partly to epilepsy or to other factors, would still be related to556

decreased memory ability. Previous studies have indeed shown that interictal epileptiform discharges (IEDs) during557

encoding and retrieval can impair memory performance (Horak et al., 2017), and IED rates decrease from baseline558

during correct, but not incorrect, encoding trials (Matsumoto et al., 2013). Critically, however, increases in IEDs559

during rest or distractor periods in these studies do not appear to reduce memory performance, and the overall IED560

rates do not relate to recall performance across participants (Horak et al., 2017). This is in contrast to the effects561

we report here, which are observed during both rest and task periods. Moreover, controlling for the same level of562

overall pathology within individuals, we find the same metrics were related to memory performance across multiple563

timescales. It is difficult to explain how pathologic activity would consistently predict memory performance at every564

different timescale, or even why most effects in our data also extend to non-pathologic frontal lobe clusters. Hence,565

although the participants’ underlying disorder may certainly affect normal neural information processing, our data566

suggest that the individual differences in neural signal complexity that relate to differences in memory performance567

are unlikely to be driven by pathology alone.568

Finally, it is also possible that the changes in neural complexity that we interpret to denote cognitive flexibility569

in fact simply capture changing levels of attention. For example, patients may feel drowsier in some experimental570

sessions than others and these differences in levels of engagement may be captured by our complexity metrics.571

However, we note that changes in sample entropy from baseline to encoding states also occur over shorter timescales572

within an individual experimental session. These fine-grained temporal changes consistently capture differences573

between successful and unsuccessful associative memory encoding trials even though the baseline entropy levels are574

not different between the two conditions. Moreover, at the other extreme of time scales, participant-level complexity575

metrics correlate with memory performance as well as IQ. Therefore, it is unlikely that drowiness explains all of the576

observed relationships found here between neural complexity and memory performance at multiple scales. Attention577

may indeed play a direct role in determining the extent to which neural state space is explored during a task. However,578

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/180240doi: bioRxiv preprint 

https://doi.org/10.1101/180240
http://creativecommons.org/licenses/by/4.0/


the possibility that changing levels of attention may explain our results is still consistent with the interpretation that579

theta power, spectral slope, and sample entropy ultimately reflect cognitive flexibility and a capacity to encode580

information.581

Together, our data therefore provide insight into why memory performance may be variable both between and582

within individuals. Our data suggest that how well one can encode and retrieve memories is related to the flexibility583

in their cognitive processing. Such flexibility is captured directly by measuring the sample entropy of the neural584

signal, and corroborated by our measures of low frequency power and the PSD slope. People with better memory585

have neural signals that exhibit greater complexity, and therefore are capable of exhibiting more flexible behavior586

that is beneficial for memory formation.587
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Tables760

Table 1 Commonality analysis output describing unique and common contributions of the three predictor variables (theta-
band power, spectral slope, and sample entropy) to the regression effect explaining memory performance across participants.

power spectral
slope

sample entropy % Total

Unique to power 0.1461 37.60
Unique to spectral slope 0.0414 10.66
Unique to sample entropy 0.0049 1.25
Common to power and spectral slope 0.0390 0.0390 10.03
Common to power and sample entropy 0.0232 0.0232 5.97
Common to spectral slope and sample
entropy

0.0341 0.0341 8.77

Common to power, spectral slope, and
sample entropy

0.0999 0.0999 0.0999 25.72

Total R2 = 0.3885. Unique + Common = 100% of R2.
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Figure Legends761

Figure 1 Paired associates task and subject distribution (A) Paired associates memory task schematic. (B) Average762

performance distribution across subjects, distribution is bimodal ranging between 0.05 and 0.84 with a median ac-763

curacy of 0.36 (N=43). (C) Electrode coverage by spatial region of interest. Colormap reflects number of electrodes764

within 12.5 mm. (D) Correlation between full-scale IQ and accuracy across subjects rs = 0.55, p = .0005, N = 36.765

Line is standard least squares regression line.766

767

Figure 2 Baseline Power and Performance. (A) Average log10 broadband power across all trials and electrodes,768

range 5.21 to 7.46 (arbitrary units) is negatively correlated with performance rs = -.38, p = .012, N = 43. Line is769

standard least squares regression line. (B) Power ˜accuracy correlation by frequency band. The negative correlation770

between power and accuracy exists across all bands and is significantly negatively correlated at all frequency bands771

below 10 Hz (p < .05, Bonferroni correct for 30 frequency bands). The error bars indicate standard error of the mean772

for Spearman’s correlation (0.6325√
n−1 ). Theta power spectral region of interest is inside of dashed box. (C) Broadband773

(fisher transformed) correlation across spatial ROIs. Lower panel shows regions significant (p < .05) compared to a774

permuted distribution through a clustering procedure. (D) Same as C for theta band power.775

776

Figure 3 Spectral Slope and Performance. (A) Average power spectral density across tertials of subjects sorted by777

performance, shading shows standard error of the mean. (B) Distribution of average spectral slopes across subjects778

2.71 ± .05 (mean ± SEM). Insert shows example subject, red is range of frequencies slope is calculated over (10-100779

Hz) and dashed line shows robust fit line. (C) Spectral slope is positively correlated with accuracy across subjects780

rs = 0.49, p = .0011, N = 43. Line is standard least squares regression line. (D) Correlation of spectral slope and781

accuracy across spatial ROIs. Lower panel shows regions significant (p < .05) compared to a permuted distribution782

through a clustering procedure. ( E) Average spectral slope as a function of center frequency and spectral width.783

White star indicates parameters for previous slope values.( F) Average correlation as a function of center frequency784

and spectral width as in (E).785

786

Figure 4 Sample Entropy and Performance. (A) Sample entropy schematic for theoretical signals. Color of dots787

superimposed on signals indicate discretized voltage bin. Signal y2 is more complex than y1 making subsequent788

points relatively more difficult to predict. (B) Example epochs from two participants with low and high entropy.789

The upper signal is from participant with an average sampEn of 0.51, this epoch has a measured sampEn of 0.67. The790

lower signal is from participant with an average sample Entropy of 1.29, this epoch has a measured sample Entropy791

of 1.51. (C) Sample entropy is positively correlated with performance across participants rs = 0.51, p = .0005. Line792

is standard least squares regression line. (D) Sample entropy correlation across spatial ROIs. Lower panel shows793
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regions significant (p < .05) compared to a permuted distribution through a clustering procedure.794

795

Figure 5 Sample Entropy across Time Scales. (A) Example subject with positive session level correlation of sample796

entropy to accuracy (B) Distribution of fisher transformed ρ values across subjects is significantly greater than 0797

(t(22) = 3.35, p = .003)(C) Population average session correlation by ROI (t-score). Lower panel shows regions798

significant (p < .05) compared to a permuted distribution through a clustering procedure. (D) Example subject799

level distribution of sample entropy values for correct vs. incorrect trials (E) Distribution of correct - incorrect800

sample entropy across subjects is significantly greater than 0 (t(43) = 2.89, p = .006) (F) Population average change801

in sample entropy by item (t-score) across ROIs. Lower panel shows regions significant (p < .05) compared to a802

permuted distribution through a clustering procedure.803

804
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