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Abstract	
Plants	respond	to	seasonal	cues,	such	as	the	photoperiod,	to	adapt	to	current	conditions	and	to	prepare	for	
environmental	changes	in	the	season	to	come.	To	assess	photoperiodic	responses	at	the	protein	level,	we	
quantified	the	proteome	of	the	model	plant	Arabidopsis	thaliana	by	mass	spectrometry	across	four	35	
photoperiods.	This	revealed	coordinated	changes	of	abundance	in	proteins	of	photosynthesis,	primary	and	
secondary	metabolism,	including	pigment	biosynthesis,	consistent	with	higher	metabolic	activity	in	long	
photoperiods.	Higher	translation	rates	in	the	daytime	than	the	night	likely	contribute	to	these	changes	via	
rhythmic	changes	in	RNA	abundance.	Photoperiodic	control	of	protein	levels	might	be	greatest	only	if	high	
translation	rates	coincide	with	high	transcript	levels	in	some	photoperiods.	We	term	this	proposed	40	
mechanism	‘translational	coincidence’,	mathematically	model	its	components,	and	demonstrate	its	effect	
on	the	Arabidopsis	proteome.	Datasets	from	a	green	alga	and	a	cyanobacterium	suggest	that	translational	
coincidence	contributes	to	seasonal	control	of	the	proteome	in	many	phototrophic	organisms.	This	may	
explain	why	many	transcripts	but	not	their	cognate	proteins	exhibit	diurnal	rhythms.	
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Introduction	
Changes	in	photoperiod	have	wide-ranging	effects	on	the	physiology,	metabolism,	and	development	of	50	
many	species,	from	migration	and	hibernation	in	birds	and	mammals	to	diapause	in	insects	(Dardente	et	al.,	
2014;	Saunders,	2013).	In	Arabidopsis,	these	responses	include	changes	in	flowering	time	(Salazar	et	al.,	
2009;	Yanovsky	and	Kay,	2002),	hypocotyl	elongation	(Nozue	et	al.,	2007),	freezing	tolerance	(Lee	and	
Thomashow,	2012)	stomatal	opening	(Kinoshita	et	al.,	2011),	C-allocation	and	growth	(Sulpice	et	al.,	2014;	
Mengin	et	al.,	2017).	These	diverse	responses	to	photoperiod	allow	plants	to	adjust	to	the	predictable	55	
environmental	changes	that	accompany	the	changing	seasons.	Here,	we	investigate	photoperiod	responses	
at	the	proteome	level,	and	ask	two	related	questions:	How	does	the	proteome	change	with	photoperiod,	
and	which	regulatory	mechanisms	contribute	to	changes	in	protein	abundance	across	photoperiods?	

Plants	use	daytime	sunlight	as	a	source	of	energy	to	drive	photosynthesis.	As	a	result,	day	length	has	strong	
effects	on	metabolism	and	growth,	with	increasing	photoperiod	length	leading	to	a	progressive	increase	in	60	
the	rate	of	growth,	which	is	often	accompanied	by	increased	levels	of	many	metabolites	(Gibon	et	al.,	2004;	
Sulpice	et	al.,	2014).	Furthermore,	growth	under	different	photoperiods	places	different	demands	on	plant	
physiology	and	metabolism.	In	Arabidopsis,	for	example,	the	major	carbon	source	at	night	comes	from	the	
mobilisation	of	transient	starch	that	is	accumulated	in	leaf	cell	chloroplasts	during	the	light	period	(Graf	and	
Smith,	2011;	Smith	and	Stitt,	2007;	Stitt	and	Zeeman,	2012).	Rates	of	starch	mobilisation	to	sucrose	are	65	
higher	during	short	nights	relative	to	long	nights,	whereas	daytime	partitioning	of	photosynthate	into	
starch	is	higher	during	short	compared	to	long	days,	and	these	rates	change	progressively	with	photoperiod	
duration	(Sulpice	et	al.,	2014;	Mengin	et	al.,	2017).	Pathways	of	primary	carbon	metabolism	might	be	
expected	to	change	in	concert	with	the	availability	of	carbon	and	its	partitioning.	Secondary	metabolism	
will	be	affected	not	only	by	changing	availability	of	primary	carbon	substrates,	but	the	accumulation	of	70	
certain	secondary	metabolites	will	also	be	affected	by	seasonal	selective	pressures,	for	example	for	
compounds	that	defend	against	seasonal	pests	and	pathogens	(Textor	and	Gershenzon,	2009).	In	general,	it	
is	not	well	understood	how	investment	in	protein	synthesis	balances	these	different	demands.	

In	previous	studies	we	analysed	starch	turnover,	metabolite	levels	and	the	rates	and	diurnal	distribution	of	
growth	(Sulpice	et	al.,	2014),	the	transcriptional	response	of	central	clock	genes,	and	the	dawn	75	
transcriptome	(Flis	et	al.,	2016)	in	Arabidopsis	Col-0	growing	in	a	6,	8,	12	or	18	h	photoperiod.	Quantitative	
proteomics	can	characterise	changes	in	protein	abundance	with	photoperiod,	as	was	recently	reported	for	
a	small	number	of	Arabidopsis	proteins	(Baerenfaller	et	al.,	2015).	Here	we	measured	the	regulation	of	the	
Arabidopsis	proteome	using	quantitative	mass	spectrometry	and	identified	>1700	proteins	that	change	in	
abundance	across	four	photoperiods.	The	changes	revealed	adjustments	to	growth	in	different	80	
photoperiods,	with	coordinated	changes	of	protein	investment	in	photosynthesis	and	primary	carbon	
metabolism,	consistent	with	the	higher	demand	placed	on	these	pathways	under	long	photoperiods.	

The	mechanisms	underlying	photoperiod-responsive,	physiological	changes	involve	the	integration	of	diel	
(daily)	signals	from	the	environment	with	timing	information	from	the	circadian	clock.	Several	response	
mechanisms,	including	flowering	time	and	elongation	growth,	share	a	common	form	known	as	the	‘external	85	
coincidence’	mechanism,	and	have	been	sufficiently	characterised	to	inform	quantitative,	mathematical	
models	(Keily	et	al.,	2013;	Seaton	et	al.,	2015).	Briefly,	they	involve	intermediate	transcriptional	regulators,	
such	as	CONSTANS,	FKF1	and	CBF1,	which	are	among	the	>30%	of	clock-controlled	transcripts	in	
Arabidopsis	(Covington	et	al.,	2008;	Edwards,	2006;	Michael	et	al.,	2008b).	Environmental	signals	such	as	
light	or	darkness	alter	the	stability	or	activity	of	their	cognate	proteins	and,	if	the	timing	of	these	changes	90	
coincides	with	the	phase	of	rhythmic	expression,	(Salazar	et	al.,	2009;	Yanovsky	and	Kay,	2002).	These	
transcriptional	cascades	are	known	from	specialised	examples,	however,	and	it	is	unclear	whether	these	or	
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equivalent	coincidence	mechanisms	act	in	a	general	way	to	mediate	the	many	photoperiodic	responses	
observed	in	plant	physiology.	Their	canonical	phenotypes,	especially	seasonal	reproduction,	are	the	most	
important,	known	effects	of	plant	circadian	regulation.	But	it	seems	unlikely	that	these	few	traits	account	95	
for	the	evolution	of	pervasive,	circadian	regulation	across	the	genome	(Millar,	2016).	

Photoperiodic	regulation	of	the	proteome	could	be	driven	by	changes	in	RNA	levels,	translation,	and/or	
protein	turnover.	We	recently	showed	that	there	are	major	photoperiod-dependent	changes	in	global	
transcript	abundance	that	affect	large	sets	of	genes	involved	in	metabolism	and	growth	(Flis	et	al.,	2016),	
and	that	transcripts	with	different	levels	in	long	and	short	photoperiods	are	over-represented	in	categories	100	
such	as	flavonoid	biosynthesis	and	sugar	transport	(Baerenfaller	et	al.,	2015).	In	the	absence	of	
compensating	regulation,	these	changes	in	RNA	abundance	are	expected	to	result	in	changes	in	protein	
level.	At	the	post-transcriptional	level,	multiple	lines	of	evidence	have	demonstrated	changes	in	the	rate	of	
plant	protein	synthesis	in	response	to	light,	with	translation	proceeding	more	rapidly	during	the	day	than	
during	the	night	(Ishihara	et	al.,	2015;	Juntawong	and	Bailey-Serres,	2012;	Liu	et	al.,	2012;	Missra	et	al.,	105	
2015;	Pal	et	al.,	2013;	Piques	et	al.,	2009).	This	translational	regulation	suggests	that	the	profile	of	protein	
synthesis	across	the	diel	cycle	will	depend	on	the	duration	of	the	light	period,	even	without	circadian	
regulation.	However,	higher	rates	of	translation	in	the	light	on	their	own	would	tend	to	lead	to	a	general	
increase	in	the	abundance	of	proteins.	The	question	arises	whether	the	light-dependent	increase	in	
translation	might	interact	with	the	widespread	rhythmicity	in	RNA	levels,	which	affects	up	to	50%	of	genes	110	
in	Arabidopsis	(Baerenfaller	et	al.,	2012;	Michael	et	al.,	2008b,	Bläsing	et	al.,	2005).	These	known	diel	
changes	of	translation	and	transcript	levels	prompted	a	simple,	data-driven	model	that	predicts	how	these	
two	well-characterised	effects	might	systematically	alter	protein	levels.	Briefly,	our	model	suggests	that	
transcripts	that	peak	early	in	the	24	h	cycle	will	be	efficiently	translated	in	long	and	short	photoperiods,	
whereas	transcripts	that	peak	later	in	the	24	h	cycle	will	be	efficiently	translated	in	long	but	not	in	short	115	
photoperiods.	The	proposed	mechanism,	which	we	termed	‘translational	coincidence’,	was	tested	using	our	
quantitative	data	on	protein	abundance	across	a	range	of	photoperiods.	

Our	data	implicate	multiple	mechanisms	in	the	regulation	of	protein	abundance	with	photoperiod.	Changes	
in	RNA	abundance	contribute	to	some	changes	in	protein	abundance.	However,	our	data	are	also	
consistent	with	the	predicted	effects	of	translational	coincidence	affecting	hundreds	of	proteins	in	120	
Arabidopsis.	Analysis	of	existing	experimental	data	from	cyanobacteria	and	algae	indicate	that	translational	
coincidence	most	likely	applies	broadly,	across	many	phototrophic	organisms.	These	results	reveal	new	
insights	into	photoperiod	responses	in	plants,	and	the	mechanisms	that	drive	them.	

Results	

Photoperiod	lengths	affect	protein	abundance	125	

The	effect	of	changes	in	photoperiod	length	on	the	proteome	of	Arabidopsis	was	analyzed	in	wild-type	
plants	grown	for	nine	days	in	four	different	light/dark	cycles	equaling	6h,	8h,	12h	and	18h	photoperiods	
and	harvested	at	the	end	of	the	day	(ED)	(Fig	1A;	see	Materials	and	Methods).	Protein	abundance	at	ED	
most	directly	captures	the	impact	of	light	period	duration	on	the	proteome.	Previous	studies	found	only	
few	proteins	that	significantly	changed	in	abundance	between	end	of	night	(EN)	and	ED	in	a	16h	or	8h	130	
photoperiod	(Baerenfaller	et	al.,	2015,	2012),	as	expected	if	most	of	the	detected	proteins	have	long	half-
lives	(median	in	one	recent	study	was	>6	days	(Li	et	al.,	2017)).	It	is	therefore	likely	that	for	most	proteins,	
their	abundance	at	ED	reflects	their	abundance	over	the	entire	24	h	cycle.	
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Quantitative	data	was	obtained	for	4344	proteins	(Table	EV1),	which	increased	the	coverage	of	enzymes	in	
all	metabolic	pathways	(Table	EV2)	compared	to	previous	reports	of	Arabidopsis	leaf	6	proteins	quantified	135	
at	four	leaf	growth	stages	and	in	three	different	growth	conditions	(Baerenfaller	et	al.,	2015,	2012).	
Proteomic	studies,	especially	with	plants,	tend	to	show	overrepresentation	of	abundant	proteins	in	the	set	
of	quantified	proteins.	While	this	is	also	true	for	the	present	data	set,	low	abundant	proteins	annotated	in	
the	KEGG	pathways	of	Basal	Transcription	Factors	(5)	and	Hormone	Signaling	(13)	were	also	quantified	
(Table	EV2).	140	

The	variation	between	biological	samples	was	comparable	in	all	four	photoperiods.	Moreover,	the	average	
coefficient	of	variation	between	0.059	and	0.074	is	very	low	for	a	proteomics	data	set	(Fig	1B).	Principal	
component	analysis	completely	separated	the	samples	according	to	the	photoperiods	while	biological	
replicates	remained	grouped	together,	confirming	the	reproducibility	of	the	dataset	(Fig	1C).	The	first	and	
second	principal	components	together	accounted	for	95.7%	of	the	total	variation.	145	

We	found	1781	proteins	(41%)	that	changed	significantly	(p<0.05,	ANOVA)	in	abundance	between	the	four	
photoperiods	(Table	EV3).	Of	these,	389	proteins	had	a	maximum	fold	change	(FC)	greater	than	1.5	(Fig	1D).	
A	comparison	between	four	comparable	growth	stages	of	Arabidopsis	leaf	6	in	plants	grown	in	a	8h	or	16h	
photoperiod	also	showed	that	192	of	1200	quantified	proteins	had	significant	abundance	changes	(p<0.05),	
with	maximum	fold	changes	of	at	least	1.5	for	83	proteins	(Baerenfaller	et	al.,	2015).	The	larger	number	of	150	
changing	proteins	we	identified	could	be	explained	by	the	larger	span	of	photoperiods	as	well	as	
differences	in	growth	regimes	and	sampled	tissues.	However,	the	fold	changes	of	the	proteins	with	
significant	changes	at	a	p-value	threshold	of	0.05	in	both	datasets	were	positively	correlated	(rho	=	0.46),	
indicating	similar	trends.	Here,	757	proteins	had	higher	abundance	in	longer	photoperiods	while	1024	
proteins	showed	lower	abundance.	Boxplots	of	all	photoperiod-responsive	proteins	revealed	that	proteins	155	
were	up-regulated	mainly	between	the	three	longest	photoperiods	(8h	to	18h)	while	only	few	proteins	
increased	in	abundance	between	the	two	shortest	photoperiods	(6h	to	8h).	In	contrast,	the	decrease	in	
protein	abundance	was	more	evenly	distributed	across	all	photoperiods	(Fig	EV1).	The	progressive	change	
of	protein	abundance	is	also	reflected	by	a	pairwise	comparison	between	photoperiods.	Only	few	proteins	
change	significantly	when	comparing	8h	vs	6h	(12),	12h	vs	8h	(184)	or	18h	vs	12h	(177)	(Tables	EV3	and	160	
EV4).	However,	high	numbers	are	observed	when	comparing	18h	vs	8h	(1035)	or	18h	vs	6h	(1452).	This	
resembles	the	progressive	change	in	transcript	levels	between	a	6h,	8h,	12h	and	18	h	photoperiod	(Flis	et	
al.,	2016).		

More	than	half	(50.3	%)	of	the	observed	changes	in	protein	abundance	was	below	a	FC	of	1.3,	with	a	mean	
FC	of	approximately	1.2	(Fig	1D,	Table	EV4).	While	these	changes	are	relatively	small,	their	potential	165	
biological	significance	is	illustrated	by	the	enrichment	of	gene	ontology	(GO)	terms	within	narrow	ranges	of	
FC.	This	was	assessed	by	binning	proteins	into	FC	windows	of	0.2.	Each	bin	was	analysed	for	
overrepresentation	of	GO	terms	compared	to	all	quantified	proteins.	The	overrepresentation	analysis	
revealed	that	enriched	GO	annotations	can	be	found	in	each	of	the	applied	FC	bins	(Fig	2A,	Table	EV5),	and	
in	most	cases	a	particular	GO	category	was	overrepresented	in	a	specific	FC	bin.	For	example,	338	proteins	170	
annotated	to	the	GO	category	translation	were	found	in	the	whole	data	set.	In	a	narrow	bin	ranging	from	
1.1	to	1.3	FC,	106	of	these	proteins	were	identified	as	down-regulated	in	longer	photoperiods.	This	results	
in	a	significant	overrepresentation	of	translation-related	proteins	in	this	FC	bin	(Fisher	Exact	test,	p<10-18).	
High	enrichments	in	specific	FC	bins	were	also	observed	for	other	GO	categories	including	the	tricarboxylic	
acid	(TCA)	cycle	(GO:0006099,	bin	Up	1.1	to	1.3),	translational	elongation	(GO:0006414,	bin	Down	1.1	to	175	
1.3),	ribosome	biogenesis	(GO:0042254,	bin	Down	1.0	to	1.2),	glucosinolate	biosynthesis	(GO:0019761,	bin	
Up	1.2	to	1.4)	and	indoleacetic	acid	biosynthesis	(GO:0009684,	bin	Up	1.3	to	1.5).	Heatmaps	of	the	
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overrepresented	GO	terms	in	the	different	FC	bins	further	illustrate	that	changes	in	abundance	of	
functionally	related	proteins	is	highly	orchestrated	in	a	narrow	FC	window	(Fig	2B,C).	

Photoperiod	length	affects	photosynthesis,	metabolism	and	growth	180	

As	photoperiods	become	longer,	plant	metabolism	and	energy	management	are	adjusted	to	the	increased	
availability	of	light	and	shorter	heterotrophic	intervals	during	the	night	(Baerenfaller	et	al.,	2015;	Sulpice	et	
al.,	2014).	Changes	in	the	plant	proteome	reflect	this	plasticity	at	multiple	levels,	from	primary	
photosynthesis	to	secondary	metabolism,	cellular	regulation	and	growth.	For	example,	we	quantified	57	of	
77	proteins	annotated	in	the	KEGG	pathway	(Kanehisa	et	al.,	2016)	of	photosynthesis	(ath00195)	and	22	of	185	
the	quantified	proteins	were	more	abundant	in	longer	photoperiods	(Table	EV5;	Appendix	Fig	S1).	These	
changes	affect	all	complexes	of	the	electron	transport	chain,	several	subunits	of	the	ATP	synthase	complex	
as	well	as	ferredoxin	1	(FD1)	and	ferredoxin-NADP-oxidoreductase	1	(FNR1)	(Fig	3A,B).	While	most	proteins	
in	our	dataset	showed	a	gradual	change	in	abundance	over	all	photoperiods	(Fig	EV1),	changes	in	
abundance	of	photosystem	I	and	II	related	proteins	occurred	predominantly	between	the	6h	and	12h	190	
photoperiods,	beyond	which	the	protein	levels	reached	a	plateau	(Fig	3A,B).	The	only	proteins	of	the	
photosynthetic	electron	transport	chain	with	lower	abundance	in	long	photoperiods	are	plastocyanin	1	and	
2	(PETE1	and	PETE2),	which	are	responsible	for	transporting	electrons	from	the	cytochrome-b6f-complex	to	
photosystem	(PS)	I.	Similar	concerted	changes	in	protein	abundance	were	also	observed	in	the	light	
harvesting	and	chlorophyll	binding	complexes	(LHCII)	surrounding	PSII	(Fig	3C;	Table	EV3,	Table	EV5),	which	195	
are	correlated	with	changes	in	their	transcript	levels	(Baerenfaller	et	al.,	2015;	Flis	et	al.,	2016).	

Differential	changes	in	enzyme	abundance	were	found	for	isoprenoid	metabolic	pathways,	including	
biosynthesis	of	chlorophyll.	For	example,	13	enzymes	involved	in	chlorophyll	biosynthesis	were	down-
regulated	in	longer	photoperiods	(Table	EV5,	Appendix	Fig	S2).	These	included	enzymes	in	heme	
biosynthesis	(HEMA1,	HEMB1,	HEME2	and	HEMG2)	as	well	as	the	magnesium	chelatase	GUN5	and	the	200	
NADPH:protochlorophyllide	oxidoreductases	PORB	and	PORC	(Fig	3D).	In	contrast,	increased	enzyme	
abundance	was	observed	for	the	red	chlorophyll	catabolite	reductase	ACD2,	which	catalyzes	a	key	reaction	
of	chlorophyll	catabolism.	

Enzymes	in	primary	carbon	metabolism	were	broadly	up-regulated	in	longer	photoperiods.	Proteins	with	
higher	abundance	in	longer	photoperiods	are	enriched	for	the	KEGG	pathways	of	carbon	fixation	205	
(ath00710),	the	TCA	cycle	(ath00020)	and	starch	and	sucrose	metabolism	(ath00500)	(Table	EV5;	Appendix	
Figs	S3,	S4,	S5).	Their	abundance	changes	are	highly	orchestrated,	and	this	was	especially	pronounced	for	
the	TCA	and	Calvin-Benson	cycles	(Table	EV5).	Similarly,	proteins	in	sucrose	metabolism	including	sucrose	
synthesis,	transport	and	degradation	accumulated	to	higher	levels	in	longer	photoperiods	(Fig	4A;	Appendix	
Fig	S5).		Protein	abundance	in	the	metabolic	pathways	of	starch	synthesis	and	degradation	was	also	210	
strongly	affected	by	photoperiod	length.	For	example,	proteins	such	as	APL3,	one	of	the	two	regulatory	
subunits	of	plastid	ADP-glucose	pyrophosphorylase	(AGPase)	that	catalyses	the	first	committed	step	in	
starch	synthesis,	and	plastid	phosphoglucomutase	(PGM1)	that	regulates	the	partitioning	of	carbon	into	
starch	(Fernie	et	al.,	2001),	are	strongly	increased	while	APL1	is	decreased	in	the	longest	photoperiod	(Fig	
4A).		Several	key	enzymes	for	starch	degradation	also	accumulated	to	higher	levels	with	increasing	215	
photoperiod	length	(Fig	4B),	consistent	with	faster	rate	of	starch	degradation	during	the	night	in	long	
photoperiods	(Baerenfaller	et	al.,	2015;	Sulpice	et	al.,	2014;	Smith	and	Stitt,	2007).	

Our	data	show	that	Arabidopsis	can	also	reprogram	sulfur	metabolism	(Fig	4C)	and	adjust	the	abundance	of	
enzymes	for	lipid	metabolism	to	the	prevailing	photoperiod	length	(Table	EV5,	Appendix	Fig	6,	7).	The	
changes	in	abundance	of	sulfate	assimilating	enzymes	indicate	a	shift	from	the	synthesis	of	primary	to	220	
secondary	sulfur-containing	metabolites	in	longer	photoperiods,	including	a	concerted	increase	in	
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abundance	of	enzymes	involved	in	glucosinolate	biosynthesis	(Fig	4C,	Table	EV5;	Appendix	Fig	S8).	This	is	
consistent	with	increased	availability	of	resources	for	the	production	of	defense-related	metabolites	in	
plants	growing	in	long	photoperiods	(Baerenfaller	et	al.,	2015;	del	Carmen	Martínez-Ballesta	et	al.,	2013).		
Several	Arabidopsis	enzymes	in	fatty	acid	degradation	are	more	abundant	in	long	photoperiods	(Table	EV5,	225	
Appendix	Fig	6)	while	levels	of	several	enzymes	for	fatty	acid	synthesis	are	reduced	(Table	EV5,	Appendix	
Fig	7).	This	indicates	that	in	longer	photoperiods	Arabidopsis	has	a	higher	capacity	for	beta-oxidation	of	
fatty	acids,	consistent	with	the	turnover	of	approximately	4%	of	the	total	fatty	acids	in	one	diel	cycle	(Bao	
et	al.,	2000).	

Increased	photoperiod	length	results	in	a	highly	active	metabolic	state	of	the	Arabidopsis	rosette	leaves	230	
(Sulpice	et	al.,	2014).	Our	results	show	that	this	was	correlated	with	the	down-regulation	of	pathways	
related	to	cell	cycle	and	protein	biosynthesis.	A	GO	term	overrepresentation	analysis	using	photoperiod-
responsive	proteins	with	lower	abundance	in	long	photoperiods	revealed	that	most	of	the	39	significantly	
enriched	GO	categories	are	related	to	transcription,	translation	and	cell	cycle	(Table	EV2).	The	concerted	
changes	in	protein	abundance	of	the	translation	machinery	were	particularly	striking.	Among	the	33	235	
quantified	proteins	annotated	for	ribosome	biogenesis,	19	were	less	abundant	in	longer	photoperiod	(Table	
EV5	and	Fig	EV2A)	and	no	proteins	in	this	category	had	increased	levels.	We	also	quantified	151	proteins	
annotated	in	the	KEGG	pathway	for	ribosomes,	of	which	85	were	less	abundant	in	longer	photoperiods	
(Table	EV5	and	Fig	EV2B).	Only	two	ribosomal	proteins,	RPS6A	and	RPS6B	that	are	functionally	redundant	
and	essential	for	the	40S	ribosomal	subunit	(Creff	et	al.,	2010),	are	more	abundant	in	longer	photoperiods.	240	

Together,	these	results	are	consistent	with	the	reduced	vegetative	growth	period	and	early	flowering	of	
Arabidopsis	plants	in	long	photoperiods,	which	is	compensated	by	high	metabolic	activity	of	the	smaller	
rosette	(see	Supplemental	Text	for	an	extended	description	of	additional	functional	categories	displaying	
significant	changes).	

Correlated	changes	in	transcript	and	protein	abundance	245	

Transcriptional	regulation	is	one	potential	mechanism	for	explaining	changes	in	protein	levels	across	
photoperiods.	The	Arabidopsis	transcriptome	at	EN	and	ED	shows	large	photoperiod-dependent	changes	
(Flis	et	al.,	2016).	We	compared	photoperiod-dependent	changes	in	protein	abundance	at	ED	to	
photoperiod-dependent	transcriptome	changes	at	ED	and	EN.	Only	transcript-protein	pairs	were	
considered	that	showed	significant	changes	in	both	transcript	(p<0.05,	FC	>1.5)	and	protein	level	(p<0.05).	250	
The	protein	abundance	changes	at	ED	were	positively	correlated	both	with	transcript	changes	at	ED	(rho	=	
0.63)	and	EN	(rho	=	0.47)	(Fig	EV3A).		An	overrepresentation	analysis	of	GO	terms	showed	that	distinct	
cellular	functions	are	enriched	in	transcript-protein	pairs	that	have	the	same	or	opposite	accumulation	
pattern,	indicating	that	changes	in	transcript	and	protein	abundance	between	photoperiods	are	highly	
orchestrated	(Table	EV7).	Next,	we	identified	a	subset	of	transcripts	that	has	no	discernible	diurnal	rhythm	255	
in	expression	(see	materials	and	methods	for	details).	We	expect	the	estimates	of	changes	in	abundance	
across	photoperiods	to	be	especially	accurate	for	these	arrhythmic	transcripts	because	these	estimates	are	
not	affected	by	the	sparse	(two	time-points)	sampling	of	expression	in	each	photoperiod.	As	expected,	the	
correlation	of	transcript	and	protein	abundance	was	much	stronger	for	these	arrhythmic	transcripts	both	at	
ED	(rho	=	0.86)	and	EN	(rho	=	0.85)	(Fig	EV3B).	Together,	these	results	demonstrate	the	expected	260	
relationship	between	abundance	changes	at	transcript	and	protein	levels,	although	this	relationship	is	not	
strictly	followed	in	all	cases,	similar	to	other	species	and	different	experimental	conditions	(reviewed	in	Liu	
et	al.,	2016;	Vogel	and	Marcotte,	2012).	
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Light-induced	translation	provides	a	mechanism	for	photoperiodic	control	of	protein	
expression	265	

Post-transcriptional	mechanisms,	such	as	regulation	of	translation	rate,	can	also	play	a	role	in	determining	
protein	abundance.	In	Arabidopsis,	light	induces	proteome-wide	changes	in	protein	synthesis,	as	measured	
by	13CO2	labelling	(Ishihara	et	al.,	2015)	or	polysome	loading	(Juntawong	and	Bailey-Serres,	2012;	Liu	et	al.,	
2012;	Missra	et	al.,	2015;	Pal	et	al.,	2013;	Piques	et	al.,	2009).	We	considered	the	effects	of	this	light-
dependent	translational	regulation	on	the	relationship	between	the	transcriptome	and	proteome	in	270	
different	photoperiods.	

For	a	gene	that	is	transcriptionally	regulated	by	the	circadian	clock,	the	timing	of	protein	synthesis	depends	
on	the	circadian	phase	of	RNA	expression	and	the	light:dark	regulation	of	RNA	translation.	Coincidence	of	
high	RNA	transcript	levels	with	a	high	rate	of	translation	per	transcript	(as	occurs	during	the	light	period)	is	
expected	to	increase	protein	synthesis.	For	a	dawn-phased	transcript	with	peak	abundance	at	2h	after	275	
lights-on,	for	example,	high	transcript	levels	coincide	with	the	light	interval	regardless	of	photoperiod	(Fig	
5).	We	consider	the	simple	case	where	the	phase	of	the	clock	is	set	by	dawn	alone,	as	this	is	close	to	the	
behaviour	of	the	Arabidopsis	clock	(see	Discussion,	and	Edwards	et	al.,	2010).	An	evening-phased	
transcript,	for	example	peaking	12h	after	dawn,	has	high	transcript	levels	coinciding	with	the	light	interval	
only	under	long	photoperiods	(Fig	5)	280	

This	model	predicts	that	differences	in	the	rates	of	protein	synthesis	across	photoperiods	are	at	least	in	
part	due	to	changes	in	the	coincidence	of	rhythmic	RNA	expression	with	light	and	the	resultant	higher	rates	
of	translation.	We	term	this	mechanism	‘translational	coincidence’.	Such	an	interaction	between	internal	
(circadian)	and	external	(light:dark)	rhythms	defines	the	general	‘external	coincidence’	mechanism	of	
photoperiod	sensitivity,	equivalent	to	the	mechanism	proposed	to	control	flowering	time	(Song	et	al.,	285	
2015).	

Modulation	of	photoperiod-dependent	protein	expression	is	explained	by	translational	
coincidence	

If	circadian-controlled	gene	expression	contributes	to	changes	in	protein	levels	across	photoperiods,	we	
expect	an	over-representation	of	circadian-controlled	genes	in	the	set	of	differentially	regulated	proteins.	290	
Comparing	the	consensus	set	of	circadian-controlled	transcripts	reported	in	Covington	et	al.	(2008)	to	the	
photoperiod-regulated	proteins	in	our	present	data	set,	this	is	indeed	the	case	(p<0.001;	hypergeometric	
test).	We	therefore	tested	the	more	specific	predictions	of	the	translational	coincidence	hypothesis,	
relating	late-peaking	transcripts	to	protein	accumulation	in	long	photoperiods,	before	including	the	
predicted	effects	of	translational	regulation	(Fig	6A).	295	

Starting	first	from	the	transcript	regulation,	we	examined	the	timing	of	transcript	expression	for	proteins	
identified	as	upregulated	and	downregulated	in	long	photoperiods.	Full	diel	time	series	data	were	
previously	acquired	(Bläsing	et	al.,	2005).	This	dataset	is	particularly	suitable	in	this	context	because	it	
reveals	transcript	dynamics	in	a	12h	photoperiod	in	soil-grown	adult	rosettes	of	a	similar	age	(35	days)	to	
those	used	in	our	experiments	(30	days).	We	augmented	the	dataset	with	the	peak-phase	annotation	300	
calculated	in	the	DIURNAL	database	by	waveform	interpolation	(Michael	et	al.,	2008a;	Mockler	et	al.,	2007),	
binned	into	2h	windows.	Among	the	sets	of	evening-phased	transcripts,	proteins	that	accumulated	to	
higher	levels	in	long	photoperiods	were	over-represented.	Such	proteins	were	under-represented	among	
sets	of	dawn-phased	transcripts	(Fig	6B).	The	converse	was	true	for	proteins	that	had	lower	abundances	in	
long	photoperiods	(Fig	6B).	These	observations	are	consistent	with	the	translational	coincidence	305	
hypothesis.	
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Starting	next	from	the	protein	changes,	we	calculated	changes	in	protein	level	between	short	(6h)	and	long	
(18h)	photoperiods	for	all	proteins	(i.e.	not	only	those	identified	as	changing	significantly	in	protein	level).	
These	were	binned	by	the	phase	of	transcript	expression,	for	the	subset	of	547	proteins	with	transcripts	
displaying	rhythms	with	peak/mean	amplitude	>1.5	(Fig	6C).	This	showed	a	clear	pattern	of	responses	310	
across	the	diurnal	cycle,	with	dawn-phased	transcripts	tending	to	have	proteins	with	lower	abundance	and	
evening-phased	transcripts	tending	to	have	higher	abundance	proteins,	with	a	progressive	response	across	
all	four	photoperiods	(Fig	EV4).	This	association	was	also	observed	in	the	dataset	of	(Baerenfaller	et	al.,	
2015)	of	Arabidopsis	leaf	6	protein	levels	in	8h	and	16h	photoperiods	(Fig	EV5).	Importantly,	similar	
patterns	of	photoperiod	sensitivity	were	observed	in	the	protein	abundances	measured	at	either	EN	or	ED	315	
time	point,	and	across	different	leaf	developmental	stages	(Baerenfaller	et	al.,	2015).	This	consistency	
between	datasets	confirms	that	the	observed	phase	relationship	does	not	result	from	the	sampling	times	in	
our	dataset,	either	during	development	or	at	the	time	of	day.	

We	next	simulated	translational	coincidence	in	a	quantitative	model,	using	both	transcript	dynamics	
(Bläsing	et	al.,	2005)	and	changes	in	bulk	protein	synthesis	rates	measured	by	13CO2	labelling	(Pal	et	al.,	320	
2013)	to	predict	changes	in	protein	synthesis	across	photoperiods	(Fig	6D).	This	model	accounts	for	changes	
in	protein	synthesis	depending	on	light	and	mRNA	abundance,	normalised	to	the	changes	in	the	rate	of	bulk	
protein	synthesis	with	photoperiod	(i.e.	accounting	for	changes	in	growth	with	photoperiod),	and	is	given	
by:	

𝑃"#$%&'()*+ =
𝑅 𝑚/0123

/45 𝑡 + 𝑚89
/4/0123

𝑡

𝑅 − 1 𝑡+<)= + 24
	325	

Where	Pnormalised	is	the	predicted,	normalised	protein	abundance,	R	is	the	ratio	of	translation	in	the	light	
compared	to	the	dark,	m(t)	is	the	mRNA	abundance	as	a	function	of	time,	and	tdusk	is	the	time	of	dusk	(see	
Materials	and	methods:	Translational	coincidence	for	detailed	model	description).	We	predicted	changes	in	
protein	levels	between	6h	and	18h	photoperiods	for	251	proteins	with	a	high-amplitude	rhythm	in	their	
transcript	(>1.7-fold	difference	between	peak	level	and	mean).	Our	measured	protein	levels	for	these	330	
photoperiods,	which	were	not	used	to	build	the	model,	can	now	test	its	predictions.	There	was	a	highly	
significant	agreement	(Pearson’s	rho	=	0.41,	p<10-10)	between	the	model	prediction	and	the	measured	
changes	in	protein	levels,	with	the	model	also	quantitatively	matching	the	proportional	relationship	
(gradient	of	slope	=	0.75).	This	result	demonstrates	that	the	effect	of	photoperiod	on	protein	accumulation	
quantitatively	matched	what	we	expect	from	the	translational	coincidence	mechanism,	which	follows	from	335	
the	rhythmic	transcript	dynamics	and	protein	synthesis	rates.	

While	the	translational	coincidence	model	captured	this	important	trend	in	the	whole	dataset,	individual	
proteins	varied	widely,	as	quantified	by	the	correlation	between	model	predictions	and	measurements	
(Pearson’s	rho	=	0.41).	Several	factors	are	likely	to	contribute	to	this	variation,	including	transcript-specific	
differences	in	the	sensitivity	of	translation	to	light,	protein-specific	changes	in	turnover	with	photoperiod,	340	
photoperiod-specific	transcriptional	regulation	in	response,	for	example,	to	changes	in	sugar-	or	light-
signalling	(Flis	et	al.,	2016),	and	experimental	error	in	measurements	of	transcript	and	protein	abundances.	

In	order	to	adjust	for	potentially	confounding	effects	of	transcriptional	regulation,	we	removed	proteins	
from	consideration	according	to	two	complementary	criteria	aimed	at	identifying	transcripts	under	
consistent	regulation	by	the	circadian	clock.	First,	we	compared	the	transcriptome	time	series	dataset	from	345	
Bläsing	et	al.	(2005)	to	a	pseudo-time	series	dataset	based	on	EN	and	ED	samples	in	4,	6,	8,	12,	and	18h	
photoperiods	from	Flis	et	al.	(2016).	This	pseudo-time	series	dataset	is	formed	by	averaging	the	EN	samples	
to	represent	ZT0,	and	taking	successive	ED	time	points	to	represent	ZT4,	6,	8,	12,	and	18.	A	high	degree	of	
correlation	between	these	datasets	then	indicates	an	underlying	(putatively	circadian)	rhythm	that	is	robust	
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to	changes	in	photoperiod.	As	a	validation	of	this	criterion,	we	note	that	core	circadian	clock	genes	such	as	350	
CCA1,	PRR7,	ELF3,	and	TOC1	all	pass	this	test	(Fig	EV6).	Taking	a	threshold	of	Pearson’s	correlation	of	0.75	
reduced	the	set	of	proteins	considered	from	547	to	341.	The	pattern	of	photoperiod	response	remained	
the	same	after	this	filtering	(compare	Fig	EV7A,B).	

Second,	we	compared	expression	dynamics	in	continuous	light	to	dynamics	in	light:dark	cycles.	Genes	that	
are	predominantly	regulated	by	the	circadian	clock	are	expected	to	have	similar	rhythms	of	transcript	355	
accumulation	in	both	conditions.	We	therefore	identified	transcripts	with	circadian-dominant	accumulation	
dynamics	by	calculating	the	Pearson's	correlation	coefficient	between	the	(Bläsing	et	al.,	2005)	diel	and	a	
circadian	transcriptome	time	series	(Covington	and	Harmer,	2007),	again	filtering	out	transcripts	with	
correlation	coefficients	less	than	0.75.	As	above,	we	note	that	core	clock	genes	pass	this	test	(Fig	EV6).	This	
filter	reduced	the	number	of	proteins	considered	from	547	to	142.	Figure	EV7C	shows	that	the	qualitative	360	
distribution	of	protein	level	changes	remains	similar	after	this	filtering.	Furthermore,	this	pattern	remained	
after	combining	both	the	circadian	and	photoperiod	filters,	reducing	the	number	of	proteins	considered	
further	to	125	(Fig	EV7D).	

The	reduced	set	of	transcripts	remaining	after	filtering	is	too	small	to	draw	conclusions	using	enrichment	
analyses.	However,	specific	examples	illustrate	the	potential	effects	of	a	translational	coincidence	365	
mechanism	on	plant	physiology	in	changing	photoperiods.	Two	examples	of	dawn-phased	transcripts	with	
decreases	in	protein	levels	in	longer	photoperiods	are	GENOMES	UNCOUPLED	4	(GUN4)	and	GUN5	(Fig	
EV8A).	These	proteins	are	involved	in	chlorophyll	biosynthesis,	and	their	transcripts	are	robustly	phased	to	
dawn	by	the	circadian	clock.	Two	examples	of	evening-phased	transcripts	that	increase	in	protein	level	with	
photoperiod	are	ALPHA-GLUCAN	PHOSPHORYLASE	2	(PHS2)	and	ISO-AMYLASE	3	(ISA3),	which	are	involved	370	
in	starch	turnover	(Fig	EV8B).	

In	summary,	our	results	are	consistent	with	the	translational	coincidence	hypothesis,	whereby	protein	
levels	are	influenced	by	the	coordinated	timing	of	transcript	expression	and	light-regulated	protein	
synthesis.	Translational	coincidence	may	be	an	important	regulatory	mechanism	for	slowly	turning	over	
proteins	with	transcripts	that	are	regulated	by	the	circadian	clock.	The	mechanism	changes	protein	375	
abundance	in	response	to	photoperiod,	without	photoperiodic	regulation	of	transcript	abundance.	In	
coupling	daily	RNA	rhythms	to	seasonal	physiology,	it	supports	broadly	the	same	operating	principle	that	
has	been	highly	adapted	in	the	specialised,	photoperiodic	flowering	mechanism	(see	Discussion).		

Translational	coincidence	as	a	general	mechanism	of	photoperiod	sensitivity	in	
phototrophs	380	

Translational	coincidence	depends	on	only	two	key	parameters,	faster	protein	synthesis	in	the	light	and	
circadian	control	of	gene	expression,	which	might	operate	in	many	phototrophic	organisms.	We	therefore	
examined	existing	proteome	and	transcriptome	datasets	for	the	green	alga	Ostreococcus	tauri	and	the	
cyanobacteria	Cyanothece	ATCC51142	(proteome)	and	Synechococcus	elongatus	PCC7942	(transcriptome).	

Quantitative	proteome	time	courses	across	light:dark	cycles	using	stable	isotope	labelling	in	O.	tauri	385	
(Martin	et	al.,	2012)	and	Cyanothece	(Aryal	et	al.,	2011)	allow	inference	of	relative	rates	of	protein	
synthesis	in	the	light	and	dark	on	a	protein-by-protein	basis,	analogous	to	calculations	performed	for	
Arabidopsis	(Ishihara	et	al.,	2015;	Pal	et	al.,	2013).	The	median	relative	rates	of	isotope	incorporation	in	the	
light	compared	to	the	dark	were	4.7	for	O.	tauri	and	3.2	for	Cyanothece	(Fig	7A).	Protein	synthesis	and	
biomass	accumulation	measurements	show	similar	patterns	in	Synechococcus	spp.	(Glover	and	Smith,	390	
1988),	the	unicellular	red	alga	Cyanidioschyzon	merolae	(Miyagishima	et	al.,	2014),	the	cyanobacterium	
Arthrospira	plantensis	(Matallana-Surget	et	al.,	2014),	and	the	marine	diatom	Thalassiosira	pseudonana	
(Ashworth	et	al.,	2013).	Diel	and	circadian	regulation	of	the	transcriptome	has	also	been	tested.	In	O.	tauri,	
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about	80%	of	transcripts	change	across	a	diel	cycle	(Monnier	et	al.,	2010),	while	in	Synechococcus	about	
30%	of	transcripts	cycle	with	circadian	rhythms	(Ito	et	al.,	2009)	(Fig	7C).	Thus,	both	light-induced	protein	395	
synthesis	and	diel	regulation	of	gene	expression	are	observed	in	diverse	species.	

In	Arabidopsis,	many	proteins	have	a	half-life	of	several	days	(Li	et	al.,	2017)	and	the	half-life	of	total	
protein	was	estimated	as	3-4	days	(Ishihara	et	al.,	2015).	Because	of	these	low	relative	protein	turnover	
rates,	diel	transcript	cycling	does	not	generally	translate	to	diel	dynamics	at	the	protein	level	(Baerenfaller	
et	al.,	2012;	Stitt	and	Gibon,	2014:	Piques	et	al.,	2009).	We	examined	estimated	rates	of	protein	turnover	in	400	
Arabidopsis,	O.	tauri	and	Cyanothece	based	on	isotope	labelling	and	quantitative	proteome	data	(Aryal	et	
al.,	2011;	Li	et	al.,	2017;	Martin	et	al.,	2012;	see	Expanded	View	Information	for	details).	The	distributions	of	
calculated	rates	of	protein	turnover	in	Fig	7B	show	that	low	rates	of	degradation	are	found	in	all	three	
organisms.	Furthermore,	only	about	5%	of	measured	proteins	in	Synechococcus	have	diel	dynamics,	which	
is	also	consistent	with	a	slow	turnover	of	most	measured	proteins	(Guerreiro	et	al.,	2014).	Translational	405	
coincidence	would	therefore	cause	a	slow	response	of	protein	levels	to	changes	in	photoperiod	over	
several	days,	potentially	matching	the	gradual	change	of	photoperiod	in	natural	environments.	

The	change	in	the	phase	of	the	circadian	clock	in	response	to	changing	photoperiods	is	a	dynamic	property	
termed	‘dusk	sensitivity’	(Edwards	et	al.,	2010).	The	circadian	clock	in	Arabidopsis	primarily	tracks	dawn	
across	photoperiods	(it	has	low	dusk	sensitivity,	as	in	Fig.	4,	see	also	Flis	et	al.,	2016).	Thus	Arabidopsis	410	
rhythms	have	a	consistent	phase	of	entrainment,	relative	to	dawn,	across	a	wide	range	of	photoperiods	
(Edwards	et	al.,	2010;	Flis	et	al.,	2016).	However,	circadian	clocks	in	other	species	track	dusk	(e.g.	Ipomoea	
nil;	Heide	et	al.,	1988)	or	show	an	intermediate	behaviour	(e.g.	‘noon-tracking’	clocks,	as	in	Neurospora	
crassa;	Tan	et	al.,	2004).	These	distinct	circadian	behaviours	are	illustrated	in	Fig	EV9	for	a	transcript	that	
peaks	at	dusk	in	12/12	light/dark	conditions.	Clocks	with	these	properties	are	predicted	to	alter	the	protein	415	
response	to	photoperiod.	A	dawn-tracking	clock	allows	up-regulation	of	a	protein	with	a	dusk-peaking	
transcript	under	long	photoperiods,	as	in	Arabidopsis,	whereas	a	noon-tracking	clock	yields	photoperiod-
insensitivity,	and	a	dusk-tracking	clock	yields	down-regulation	of	protein	levels	with	increasing	photoperiod.	

The	pre-conditions	for	translational	coincidence	are	present	in	a	wide	variety	of	phototrophic	organisms,	
suggesting	that	this	mechanism	might	affect	protein	levels	very	broadly.	However,	the	translational	420	
coincidence	mechanism	is	flexible.	The	details	of	the	photoperiod	response	can	be	tuned	by	the	rhythmic	
expression	profile	of	individual	RNAs,	by	the	light-sensitivity	of	the	translation	rate,	and	globally	by	the	dusk	
sensitivity	of	the	circadian	clock.	

Discussion	
While	specific	aspects	of	plant	development,	physiology,	and	metabolism	have	been	demonstrated	to	425	
respond	to	changes	in	photoperiod,	a	broader	view	has	been	lacking.	Here,	we	quantified	the	response	of	
the	Arabidopsis	proteome	to	photoperiod.	This	revealed	several	processes	that	are	regulated	by	
photoperiod,	ranging	from	photosynthesis	and	primary	metabolism	to	secondary	metabolism	and	growth.	
Furthermore,	we	make	a	new,	mechanistic	link	from	the	light-dependence	of	protein	synthesis	and	
rhythmic	transcript	regulation	to	the	observed	responses	of	protein	abundance	to	photoperiod.	This	has	430	
implications	for	our	understanding	of	photoperiod	responses	in	plants	and	other	phototrophic	species.	
Translational	coincidence	can	explain	how	plants	adjust	their	proteome	to	prevailing	photoperiods,	
optimizing	their	metabolism	and	growth.	Widespread	circadian	regulation	of	RNAs	might	provide	a	
selective	advantage	by	this	mechanism,	even	if	their	cognate	proteins	are	too	stable	to	show	daily	rhythms.	
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Coordinated	changes	in	response	to	photoperiod	
Our	quantitative	analysis	of	4344	Arabidopsis	proteins	in	different	photoperiods	revealed	highly	
coordinated	changes	in	the	abundance	of	proteins	across	a	wide	range	of	metabolic	pathways.	Proteins	
with	related	functions	not	only	tend	to	change	in	abundance	in	the	same	direction	but	also	within	very	
narrow	FC	windows.	A	previous	study	using	the	same	plant	material	as	in	our	work	reported	here	showed	440	
that	plants	in	the	18-h	photoperiod	differ	strongly	in	their	phenotype	and	metabolic	state	compared	to	
shorter	photoperiods,	including	changes	in	leaf	morphology,	pattern	of	starch	accumulation	and	
degradation,	and	carbon-conversion	efficiency	(Sulpice	et	al.,	2014).	In	general,	plant	growth	in	long	
photoperiods	is	no	longer	carbon-limited	(Baerenfaller	et	al.,	2015).	Changes	in	protein	abundance	are	
mostly	gradual	between	photoperiods,	although	some	proteins	have	abrupt	increases	or	decreases	in	445	
abundance	between	neighbouring	photoperiods.	Together,	the	proteome	changes	not	only	across	the	
photoperiod	range	where	growth	is	increasing	in	response	to	an	increasing	fixed	carbon	supply	but	also	in	
the	range	where	the	fixed	carbon	supply	exceeds	the	requirement	for	growth.	Similarly,	the	end	of	night	
and	end	of	day	transcriptomes	show	progressive	changes	across	the	entire	range	from	a	4-h	to	an	18-h	
photoperiod	(Flis	et	al.,	2016).	450	

Several	metabolic	pathways	in	plants	are	preferentially	active	during	the	light	or	the	dark	period.	The	
proteome	in	different	photoperiods	reflects	the	adjustment	to	the	increasing	ratio	between	the	light	and	
dark	phase	of	the	diurnal	cycle	in	longer	photoperiods.	Longer	photoperiods	show	a	concerted	down-
regulation	of	metabolic	pathways	that	are	predominantly	active	in	the	light	including	fatty	acid	
biosynthesis,	the	MEP	pathway	and	chlorophyll	biosynthesis	(Bao	et	al.,	2000;	Eckhardt	et	al.,	2004;	455	
MongéLard	et	al.,	2011).	In	contrast,	enzymes	involved	in	fatty	acid	degradation	were	more	abundant	in	
longer	photoperiods.	Similar	to	other	oxidative	processes,	the	degradation	of	fatty	acids	requires	NAD+.	
Considering	the	rapid	formation	of	NADPH	in	photosynthesis	and	rapid	conversion	of	NAD+	to	NADH	during	
photorespiration,	it	is	plausible	that	fatty	acid	oxidation	occurs	preferentially	in	the	dark.	Plants	might	
therefore	up-regulate	fatty	acid	degrading	enzymes	in	longer	photoperiods	to	compensate	for	the	shorter	460	
dark	period	with	an	increased	flux	through	this	pathway.	

Ribosomes	are	among	the	most	abundant	protein	complexes	of	a	plant	cell.	In	Arabidopsis,	higher	protein	
synthesis	rates	were	observed	during	in	the	light	compared	to	the	dark	period	(Ishihara	et	al.,	2015;	
Juntawong	and	Bailey-Serres,	2012;	Liu	et	al.,	2012;	Missra	et	al.,	2015;	Pal	et	al.,	2013;	Piques	et	al.,	2009).	
This	might	reflect	a	strategy	for	optimal	use	of	fixed	carbon,	since	protein	synthesis	during	the	night	465	
requires	sequestration	of	fixed	carbon	during	the	day,	which	entails	additional	energetic	costs	(Pal	et	al.,	
2013).	More	fixed	carbon	is	available	for	metabolism	in	long	photoperiods	than	short	photoperiods.	In	
agreement,	polysome	loading	was	decreased	in	the	dark	compared	to	the	light	period	in	short	
photoperiods.	This	difference	became	progressively	smaller	as	the	photoperiod	was	lengthened	and	
polysome	loading	was	similar	in	the	day	and	the	night	in	long	photoperiods	(Sulpice	et	al.,	2014).	This	470	
reflects	the	higher	rates	of	starch	degradation	and	higher	levels	of	sugars	during	the	night	in	long	compared	
to	short	photoperiods.	Hence,	in	longer	photoperiods,	plants	can	use	their	translational	machinery	over	a	
longer	period	of	time	per	diurnal	cycle	and	a	lower	translation	capacity	might	be	sufficient	to	establish	and	
maintain	the	proteome	of	each	cell.	A	decrease	in	ribosomal	protein	abundance	was	also	observed	across	
leaf	development	(Baerenfaller	et	al.,	2012).	Mature	leaves	require	their	translational	machinery	mainly	for	475	
maintenance	while	young	leaves	have	to	fully	establish	their	proteome	and	might	therefore	need	a	higher	
capacity	for	protein	synthesis.	In	both	scenarios,	the	change	in	photoperiod	length	and	leaf	development,	
the	down	regulation	of	ribosome	abundance	may	reflect	an	optimised	use	of	energy,	nitrogen	and	carbon	
resources	required	to	establish	and	maintain	a	set	of	highly	abundant	proteins.	
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Interestingly,	both	RPS6	isoforms	that	are	essential	for	the	40S	ribosomal	subunit	(Creff	et	al.,	2010)	were	480	
up	regulated	in	longer	photoperiods.	These	proteins	integrate	the	recruitment	of	tRNA	and	translation	
initiation	factors	to	mRNA	and	thereby	regulate	translation.	Moreover,	RPS6	is	a	highly-conserved	target	of	
TOR	kinase	and	thus	may	integrate	signals	of	the	nutritional	and	light	energy	status	with	the	regulation	of	
growth	and	life	span	in	Arabidopsis	plants	(Ren	et	al.,	2012).	The	photoperiod-dependent	increase	in	RPS6	
abundance	in	the	context	of	general	down-regulation	of	the	translational	machinery	indicates	that	bulk	485	
translation	capacity	is	complemented	by	yet	unknown	processes	to	modulate	protein	synthesis	in	different	
photoperiods.		

Other	changes	in	protein	abundance	between	photoperiods	cannot	be	attributed	to	a	longer	or	shorter	
window	of	activity	of	specific	pathways,	but	reflect	a	re-programming	of	plant	metabolism	to	optimize	the	
efficiency	of	carbon	use.	For	example,	orchestrated	up-regulation	of	sugar-	and	starch-related	enzymatic	490	
pathways	indicates	that	plants	in	longer	photoperiods	have	a	highly	active	primary	carbon	metabolism,	
including	a	higher	capacity	for	starch	degradation.	There	is	an	increase	in	abundance	for	many	proteins	in	
electron	transport,	the	Calvin-Benson	cycle,	sucrose	and	starch	synthesis,	and	the	TCA	cycle,	indicating	a	
higher	capacity	for	carbon	assimilation	and	use.	The	increase	in	starch	degradation	and	TCA	cycle	enzymes	
could	support	increased	fluxes	in	respiration	metabolism	to	provide	energy	and	reducing	equivalents	for	495	
biosynthetic	reactions	and	sugar	intermediates	for	rapid	growth.	Moreover,	the	strong	up-regulation	of	
sucrose	export	proteins	in	longer	photoperiods,	including	the	SWEET12	protein,	indicates	that	source	
leaves	might	have	an	increased	capacity	for	sucrose	export	to	support	growth	in	sink	organs.	Compared	to	
short	photoperiods,	in	long	photoperiods	plants	synthesize	less	starch	and	therefore	export	sucrose	more	
rapidly	in	the	light	period,	while	they	degrade	starch	and	export	sucrose	more	rapidly	during	the	night	500	
(Sulpice	et	al.,	2014).	This	is	consistent	with	the	increased	abundance	of	many	proteins	in	the	starch	
degradation	pathway	in	long	photoperiods.	The	low	abundance	of	these	proteins	in	short	photoperiods	
would	be	expected	to	restrict	the	rate	of	starch	degradation	when	starch	must	be	conserved	until	dawn	
(Baerenfaller	et	al.,	2015;	Sulpice	et	al.,	2014).	

Consistent	with	the	general	up-regulation	of	enzymes	in	primary	carbon	metabolism,	sucrose,	sucrose-6-505	
phosphate	and	glucose-6-phosphate	levels	increase	with	photoperiod	length	(Sulpice	et	al.,	2014).	This	links	
primary	carbon	metabolism	to	the	synthesis	of	sulphur-containing	and	defence-related	glucosinolates,	
which	is	positively	regulated	by	sugars	on	the	transcript	level	(Flis	et	al.,	2016;	Gigolashvili	et	al.,	2007;	Guo	
et	al.,	2013;	Miao	et	al.,	2013).	We	found	that	the	enzymes	in	the	glucosinolate	pathway	accumulated	to	
higher	levels	in	longer	photoperiods.	The	levels	of	these	enzymes	also	increase	during	leaf	development	510	
(Baerenfaller	et	al.,	2015,	2012).	In	both	scenarios	–	increased	photoperiod	length	and	later	stages	of	leaf	
development	–	plants	invest	more	resources	into	the	synthesis	of	defense-related	compounds	when	
available	energy	and	assimilated	carbon	are	less	restricted	(del	Carmen	Martínez-Ballesta	et	al.,	2013).	
Similarly,	the	increased	levels	of	isoprenoid	biosynthesis	enzymes	in	the	MVA	pathway	similarly	supports	
increased	synthesis	of	defense-related	terpenoids	in	longer	photoperiods	(Vranová	et	al.,	2013).	515	

Several	photoperiod-dependent	changes	in	protein	abundance	could	alter	protein	complex	composition	
rather	than	affecting	the	regulation	of	entire	enzymatic	pathways.	AGPase,	which	catalyzes	the	first	
committed	and	rate-limiting	step	of	starch	synthesis,	represents	such	an	example.	The	AGPase	complex	
integrates	signals	of	cellular	carbon	metabolism,	thereby	regulating	the	partitioning	between	carbon	
storage,	export	and	utilisation	(Orzechowski,	2008).	The	heterotetrameric	complex	of	two	large	APL1	and	520	
two	small	APS1	subunits	is	responsible	for	95%	of	the	AGPase	activity	in	the	Arabidopsis	rosette	(Wang	et	
al.,	1997).	APL1	abundance	is	decreased	and	APL3	increased	in	longer	photoperiods	while	APS1	subunits	
were	unchanged,	indicating	that	APL3	might	at	least	partially	substitute	APL1	in	the	AGPase	complex	in	
longer	photoperiods.	APL3	can	be	induced	by	exogenous	provision	of	sugars	and	functionally	complements	
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APL1-deficient	mutants,	suggesting	that	APL1	and	APL3	confer	different	regulatory	properties	to	the	525	
AGPase	complex	(Fritzius,	2001;	Wingler	et	al.,	2000).	

The	PSII	supercomplex	in	the	photosynthesis	electron	transport	chain	is	another	example	of	photoperiod-
dependent	changes	in	complex	composition.	We	observed	a	general	increase	in	abundance	for	components	
of	all	electron	transport	chain	complexes,	including	PSII,	in	longer	photoperiods.	In	line	with	reports	
showing	that	the	minor	light	harvesting	antenna	CP29	is	present	in	a	1:1	ration	to	the	PSII	core	complex	530	
independent	of	the	light	conditions	(Ballottari	et	al.,	2007;	Bielczynski	et	al.,	2016),	we	found	that	two	CP29	
isoforms	(LHCB4.1	and	LHCB4.3)	were	also	up	regulated.	However,	several	isoforms	of	the	major	PSII	LHCII	
antenna	complex	decreased	in	abundance.	This	could	indicate	a	shift	in	stoichiometry	between	core	
proteins	and	the	LHCII	antenna	in	the	PSII	supercomplex.	Such	shifts	in	stoichiometry	were	observed	in	
Arabidopsis	during	acclimation	to	different	light	intensities	(Bielczynski	et	al.,	2016).	Under	natural	light	535	
regimes,	a	longer	photoperiod	at	a	given	geographical	location	is	likely	to	be	associated	with	higher	peak	
light	intensities.	This	might	provide	an	explanation	for	the	trend	to	increased	electron	transport	capacity	
but	decreased	light	antennae	in	long	photoperiod-grown	plants,	as	well	as	the	trend	to	increased	
abundance	of	proteins	in	the	downstream	reactions	in	photosynthetic	carbon	metabolism.	However,	LHCII	
proteins	can	also	be	present	as	monomers	in	the	thylakoid	membrane	and	this	PSII-independent	fraction	540	
was	shown	to	change	during	light	acclimation	(Bielczynski	et	al.,	2016;	Wientjes	et	al.,	2013).	Thus,	a	
decrease	in	the	abundance	of	the	monomeric	LHCII	fraction	could	also	explain	the	diametrical	change	in	
abundance	we	observed	between	LCHII	and	PSII	core	proteins	in	longer	photoperiods.	

Translational	regulation	contributes	to	protein	responses	to	photoperiod	

Rates	of	protein	synthesis	are	typically	higher	in	the	light,	when	they	are	driven	by	the	energy	and	fixed	545	
carbon	generated	by	photosynthesis,	than	in	the	dark	when	they	rely	on	the	mobilisation	of	fixed	carbon	
reserves.	Transcripts	that	peak	early	during	the	clock	cycle	will	be	efficiently	translated	in	both	short	and	
long	photoperiods.	In	contrast,	transcripts	that	peak	in	the	middle	of	the	clock	cycle	will	be	efficiently	
translated	in	long	photoperiod	but	not	in	short	photoperiods.	We	term	this	mechanism	of	photoperiod	
response	‘translational	coincidence’,	and	analysis	of	our	proteomics	dataset	demonstrates	its	role	in	550	
mediating	photoperiod	responses	in	Arabidopsis.	

The	action	of	light	on	translation	is	probably	indirect.	In	the	plastid,	where	up	to	half	of	the	protein	
synthesis	occurs	in	a	leaf,	the	provision	of	energy	and	especially	ATP	by	photosynthesis	may	underlie	the	
strong	light	dependence	of	protein	synthesis	(Marín-Navarro	et	al.,	2007;	Pal	et	al.,	2013).	In	the	cytosol,	it	
is	less	clear	that	light	impacts	directly	on	the	energy	status,	which	in	the	dark	is	also	maintained	at	a	high	555	
level	by	oxidative	phosphorylation	(Gardeström	and	Wigge,	1988;	Stitt	et	al.,	1982;	see	Stitt	et	al.,	2010	for	
a	review).	Stimulation	of	cytosolic	protein	synthesis	in	the	light	may	be	due	to	the	rise	in	sugar	levels	(Pal	et	
al.,	2013).	Therefore,	it	can	be	questioned	if	translational	coincidence	will	be	robust	against	fluctuations	in	
light	intensity	that	affect	the	rate	of	photosynthesis	and	the	supply	of	energy	and	carbon	in	the	light.	While	
more	analyses	is	required	to	establish	this,	it	is	likely	to	be	robust	because	a	decreased	rate	of	560	
photosynthesis	in	low	light	affects	not	only	sucrose	synthesis	but	also	starch	accumulation	and	the	carbon	
status	in	the	following	night,	during	which	remobilisation	of	starch	is	required	for	maintenance	and	repair	
(Pilkington	et	al.,	2015).	Thus,	while	low	light	will	decrease	protein	synthesis	in	the	light,	it	is	likely	to	result	
in	an	even	greater	decrease	of	the	low	rate	in	the	following	night.	Further,	as	the	photoperiod	lengthens,	
the	increasing	rate	of	starch	degradation	allows	higher	levels	of	sugars	to	be	maintained	at	night,	which	565	
could	support	increased	polysome	loading	during	the	night	(Sulpice	et	al.,	2014).	This	trend	will	reinforce	
the	proposed	translational	coincidence	mechanism;	translation	of	transcripts	that	peak	in	the	middle	of	the	
circadian	cycle	it	will	be	strongly	restricted	in	short	photoperiods,	whereas	they	may	still	be	translated	at	
relatively	high	rates	even	after	dusk	in	long	photoperiods.	
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The	circadian	clock	tunes	protein	responses	to	photoperiod	
The	role	of	the	circadian	clock	in	mediating	photoperiodic	changes	in	protein	expression	suggests	an	
explanation	for	a	longstanding	paradox.	Diel	rhythms	in	transcript	level	often	do	not	lead	to	diel	rhythms	in	
protein	level	(Baerenfaller	et	al.,	2012;	Choudhary	et	al.,	2016;	Gibon	et	al.,	2004;	Lu,	2005).	Therefore,	
what	is	the	physiological	significance	of	the	pervasive,	rhythmic	transcript	regulation,	if	any?	For	unstable	575	
proteins,	diel	rhythms	in	transcript	level	might	indeed	increase	protein	levels	at	the	time	of	day	when	the	
protein	is	most	needed,	an	effect	that	might	be	amplified	by	temporal	coordination	of	an	entire	pathway	
(Harmer	et	al.,	2000).	Alternatively,	the	functional	properties	of	stable	proteins	that	are	newly-synthesised	
(when	RNA	levels	are	high)	might	differ	from	the	existing	bulk	pool	(Busheva	et	al.,	1991),	though	this	
seems	unlikely	to	be	a	general	case.	The	translational	coincidence	mechanism	suggests	that	diel	RNA	580	
rhythms	might	tune	the	levels	of	many	proteins	on	a	seasonal	timescale,	rather	than	within	a	single	day.	

It	is	an	open	question	whether	the	photoperiod	responses	we	observe	are	adaptive	for	these	different	
conditions,	or	are	merely	a	tolerated	consequence	of	growth	in	different	photoperiods.	However,	as	
indicated	above,	the	changes	in	abundance	of	proteins	involved	in	carbon	metabolism,	secondary	
metabolism	and	the	translational	machinery	certainly	have	the	potential	to	contribute	to	the	change	in	585	
metabolite	levels	and	fluxes	in	different	photoperiods.	A	similar	interplay	of	clock	and	translation	may	also	
be	relevant	in	other	systems	where	protein	levels	do	not	change	significantly	over	the	course	of	a	day.	For	
example,	macromolecule	biosynthesis	exhibits	a	strong	diel	rhythm	in	the	mouse	liver	(Atger	et	al.,	2015),	
though	the	proteome	shows	only	weak	diel	rhythms	(Mauvoisin	et	al.,	2014).	Similar	questions	have	arisen	
in	the	study	of	microbial	organisms,	in	which	changes	in	protein	synthesis	rates	also	have	widespread	590	
effects.	For	example,	changes	in	ribosome	loading	at	higher	growth	rates	are	known	to	affect	the	proteome	
composition	in	Bacillus	subtilis	(Borkowski	et	al.,	2016).	

	

Translational	coincidence	as	a	general	mechanism	of	photoperiodic	regulation	

Changes	in	photoperiod	place	significant	demands	on	plant	physiology	and	growth.	Given	that	the	demands	595	
of	growth	in	varying	photoperiods	are	likely	to	be	similar	for	plant	species,	we	might	expect	similar	changes	
in	proteome	expression	in	these	species,	especially	in	core	processes	such	as	primary	metabolism.	
However,	Arabidopsis	in	the	laboratory	can	grow	in	photoperiods	as	short	as	3	h	(Piques	et	al.,	2009)	and	in	
the	field	different	accessions	are	found	across	an	especially	large	range	of	latitudes,	ranging	from	the	north	
of	Scandinavia	to	the	Cape	Verde	Islands	(Koornneef	et	al.,	2004),	from	a	possible	origin	in	Africa	(Durvasula	600	
et	al.,	2017).	Thus,	Arabidopsis	may	be	especially	suited	to	respond	to	the	prevailing	photoperiod.	

Besides	identifying	photoperiod-sensitive	processes	that	may	be	general	to	plant	life,	we	have	also	
identified	a	general	mechanism	of	response	to	photoperiod,	termed	translational	coincidence.	The	
requirements	for	translational	coincidence	are	simple	–	light-stimulated	translation,	and	circadian	
regulation	of	transcription.	As	illustrated	by	several	examples,	these	are	general	properties	of	phototrophic	605	
life.	If	other	temporally-restricted	factors	regulate	translation,	rather	than	light,	then	translational	
coincidence	might	occur	in	further	taxa.	
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Materials	and	Methods		

Plant	Material	and	Growth	Conditions	610	

The	same	plant	material	used	for	transcriptome	analysis	in	(Flis	et	al.,	2016)	was	the	basis	of	our	proteome	
study.	Briefly,	Arabidopsis	thaliana	Col-0	plants	were	grown	on	GS	90	soil	mixed	in	a	ratio	2:1	(v/v)	with	
vermiculite.	Plants	were	grown	for	1 week	in	a	16 h	light	(250 μmol m−2 s−1,	20 °C)/8 h	dark	(6 °C)	regime	
followed	by	an	8 h	light	(160 μmol m−2 s−1,	20 °C)/16 h	dark	(16 °C)	regime	for	one	week.	Plants	were	then	
replanted	with	five	seedlings	per	pot,	transferred	for	1 week	to	growth	cabinets	with	an	8 h	photoperiod	615	
(160 μmol m−2s−1,	20 °C	throughout	the	day/night	cycle)	and	then	distributed	into	small	growth	cabinets	
with	an	18,	12,	8	or	6	h	photoperiod	(160 μmol m−2s−1	and	20/18 °C	in	the	day/night).	This	growth	protocol	
was	used	to	decrease	differences	in	size	between	plants	at	the	time	of	harvest,	and	to	prevent	an	early	
transition	to	flowering	that	would	otherwise	occur	if	plants	were	grown	from	germination	in	long	
photoperiods.	Plant	material	was	harvested	9 days	after	transfer,	at	the	end	of	the	day	(end-of-day	samples	620	
were	taken	prior	to	lights	switching	off).	Plant	material	was	homogenized	using	a	Ball-Mill	(Retch,	
Germany).	Approximately	50 mg	of	material	per	sample	was	aliquoted	into	2 mL	Eppendorf	tubes	while	
frozen	and	distributed	for	analysis	to	consortium	partners	in	three	biological	and	two	technical	replicates.		

Protein	Extraction	and	Digestion		
Frozen	plant	material	was	suspended	in	100	µL	SDS	extraction	medium	(4%	w/v	SDS,	40	mM	Tris,	60	μL	ml-1	625	
protease	inhibitor	cocktail	(Roche))	and	mixed	vigorously.	The	extract	was	cleared	by	centrifuged	for	10	min	
at	16,000	g	followed	by	ultracentrifugation	at	100,000	g	for	45	min.	The	resulting	supernatant	was	diluted	
4:1	(v/v)	in	Laemmli	sample	buffer	and	incubated	at	65°C	for	5	min.	For	each	sample,	400	μg	protein	was	
subjected	to	electrophoresis	overnight	on	a	10%	SDS-polyacrylamide	gel	at	60	V.	Samples	were	loaded	
randomized	on	the	gels	to	minimize	positional	effects.	Gels	were	stained	in	Coomassie	Blue	solution	(20%	630	
v/v	methanol,	10%	v/v	acetic	acid,	0.1%	m/v	Coomassie	Brilliant	Blue	R)	for	45	min	then	de-stained	twice	in	
10%	v/v	methanol,	5%	v/v	acetic	acid	for	1	h	at	room	temperature.	Each	lane	of	the	gel	was	cut	into	7	
fractions	and	transferred	to	a	96-deep	well	plate.	Gel	pieces	were	fully	de-stained	by	three	rounds	of	50%	
v/v	methanol,	100	mM	ammonium	bicarbonate,	incubating	each	time	for	1	h	at	37	°C.	In-gel	digestion	of	
proteins	using	trypsin	was	performed	as	previously	reported	(Shevchenko	et	al.,	1996).	Volumes	of	635	
solutions	were	adjusted	to	ensure	that	the	gel	pieces	were	fully	covered	during	the	reduction,	alkylation	
and	washing	steps.	Following	in-gel	tryptic	digestion	peptides	were	purified	by	reversed-phase	
chromatography	on	Finisterre	C18	SPE	columns	(Teknokroma,	Barcelona,	Spain)	and	dried	in	a	vacuum	
centrifuge	at	45°C.		

Mass	Spectrometry	Analysis	640	

Peptides	were	re-suspended	in	40	μL	3%	v/v	acetonitrile,	0.1%	v/v	formic	acid.	Measurements	were	
performed	on	a	LTQ-Orbitrap	Velos	(Thermo	Scientific)	coupled	with	a	NanoLC	1D	HPLC	(Eksigent).	Samples	
were	loaded	onto	a	laboratory-made	capillary	column	(9	cm	long,	75	μm	inner	diameter),	packed	with	
Magic	C18	AQ	beads	(3	μm,	100	Å,	Microm)	and	eluted	with	a	5%	to	40%	v/v	acetonitrile	concentration	
gradient	over	70	min,	followed	by	80%	v/v	acetonitrile	for	10	min,	at	a	flow	rate	of	0.25	μL	min-1.	Peptide	645	
ions	were	detected	in	a	full	MS1	scan	for	mass-to-charge	ratios	between	300	and	2000.	MS2	scans	were	
performed	for	the	ten	peptides	with	the	highest	MS	signal	(minimal	signal	strength	500	hits,	isolation	width	
mass-to-charge	ratio	3	m/z,	relative	collision	energy	35%).	Peptide	masses	for	which	MS/MS	spectra	had	
been	recorded	were	excluded	from	further	MS/MS	scans	for	30	seconds.		

	650	
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Peak	Area	Based	Protein	Quantification	and	Statistical	Analysis	
Quantitative	analysis	of	MS/MS	measurements	was	performed	with	Progenesis	LCMS	software	(Nonlinear	
Dynamics).	One	run	was	selected	as	a	reference	and	for	each	run	15	vectors	were	placed	manually	on	
prominent	peaks	before	applying	the	automatic	alignment	and	peak	picking	functions	of	Progenesis.	655	
Normalization	factors	across	all	samples	ranged	between	0.7	and	1.4.	The	best	eight	spectra	for	each	MS1	
signal	peak	were	exported	to	Mascot.	Mascot	search	parameters	were	set	as	follows:	Arabidopsis	TAIR10	
genome	annotation,	requirement	for	tryptic	ends,	one	missed	cleavage	allowed,	fixed	modification:	
carbamidomethylation	(cysteine),	variable	modification:	oxidation	(methionine),	peptide	mass	tolerance	=	±	
10	ppm,	MS/MS	tolerance	=	±	0.6	Da,	allowed	peptide	charges	of	+2	and	+3.	Spectra	were	also	searched	660	
against	a	decoy	database	of	the	Arabidopsis	proteome	and	results	were	filtered	to	ensure	a	FDR	below	1	%	
on	the	protein	level.	Additionally,	peptide	identifications	with	a	Mascot	score	below	25	were	excluded.	
Mascot	results	were	imported	into	Progenesis,	quantitative	peak	area	information	extracted	and	the	results	
exported	for	data	plotting	and	statistical	analysis.	Mass	spectrometry	data	used	for	quantification	can	be	
found	on	the	EMBL	proteomic	repository	PRoteomics	IDEntifications	(PRIDE;	accession:	PXD006848,	doi:	665	
10.6019/PXD006848).	This	analysis	was	performed	in	R	(version	3.2.3;	R	Core	Team,	2015).	

Statistical	analysis	to	identify	significantly	changing	proteins	was	performed	in	R	(version	3.2.3;	R	Core	
Team,	2015)	using	log2-transformed	relative	abundance	values.	First,	analysis	of	variance	(ANOVA)	was	
performed	across	photoperiods.	The	resulting	p-values	were	corrected	for	multiple	testing	with	the	
Benjamini–Hochberg	method	to	control	the	global	FDR.	Next,	significant	changes	between	photoperiods	670	
were	computed	by	pairwise-comparison	using	the	Tukey	Honest	Significant	Differences	(TukeyHSD)	post-
hoc	test	followed	by	correction	with	the	Benjamini–Hochberg	method.	The	results	of	this	analysis	for	all	
proteins	are	presented	in	Table	EV3.	

Overrepresentation	analysis	of	functional	categories	was	performed	using	KEGG	pathway	annotations	
(Kanehisa	et	al.,	2016)	and	gene	ontology	(GO)	terms	(Ashburner	et	al.,	2000).	Arabidopsis	GO	annotations	675	
were	obtained	from	the	Gene	Ontology	Consortium	database	(http://www.geneontology.org).	Over-
representation	of	GO	terms	and	KEGG	pathways	was	assessed	using	Fisher's	exact	test.	

Selection	of	arrhythmic	transcripts	
Reliably	arrhythmic	transcripts	(i.e.	transcripts	with	no	detectable	diurnal	rhythm	in	transcript	levels)	were	
identified	by	applying	a	set	of	criteria	based	on	available	transcriptomic	analysis	from	(Bläsing	et	al.,	2005)	680	
and	(Flis	et	al.,	2016).	Transcripts	were	identified	as	reliably	arrhythmic	if	they	were	not	in	the	set	of	
diurnally	rhythmic	transcripts	identified	by	ANOVA	in	(Bläsing	et	al.,	2005),	and	if	they	had	no	significant	
difference	between	end	of	day	and	end	of	night	expression	in	any	of	the	5	photoperiods	examined	by	(Flis	
et	al.,	2016),	as	assessed	by	a	two-tailed	t-test	at	a	p=0.05	threshold	(Bonferroni	corrected	for	multiple	
testing	across	5	photoperiods).	685	

Mathematical	model	of	translational	coincidence	

We	consider	a	simple	model	with	different	rates	of	translation	in	the	light	(TL)	and	in	the	dark	(TD).	For	
arbitrary	mRNA	dynamics	given	by	m(t),	the	daily	rate	of	protein	synthesis	is	then:	

𝑘) = 𝑇B 𝑚
/0123

/45
𝑡 + 𝑇C 𝑚

89

/4/0123
𝑡 	

For	slowly	turning-over	proteins,	protein	abundance	reaches	a	steady	state	where	synthesis	is	balanced	by	690	
turnover	(kd)	and	dilution	by	growth	(μ):	
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𝑃 =
𝑘)

𝑘+ + 𝜇
	

Quantitative	proteomics	measures	abundance	relative	to	an	internal	standard.	We	assume	that	this	
internal	standard	can	be	represented	by	the	abundance	of	an	‘average’	protein	with	no	transcript	rhythm	
and	a	turnover	rate	of	kd,reference,	with	its	rate	of	synthesis	given	by:	695	

𝑘),$*F*$*"G* = 𝑇B𝑡+<)= + 𝑇C 24 − 𝑡+<)= 	

Its	abundance	is	then	given	by:	

𝑃$*F*$*"G* =
𝑘),$*F*$*"G*

𝑘+,$*F*$*"G* + 𝜇
	

This	represents	the	background	changes	in	protein	levels,	against	which	changes	in	protein	levels	are	
normalised.	Assuming	that	any	given	protein	has	a	turnover	similar	to	the	background	(i.e.	kd	=	kd,reference),	700	
we	obtain	the	normalised	value	analogous	to	that	measured	by	quantitative	proteomics:	

𝑃"#$%&'()*+ =
𝑃

𝑃$*F*$*"G*
=
𝑇B 𝑚/0123

/45 𝑡 + 𝑇C 𝑚89
/4/0123

𝑡

𝑇B𝑡+<)= + 𝑇C 24 − 𝑡+<)=
	

For	a	relative	rate	of	protein	synthesis	in	the	light	compared	to	the	dark	of	R	(=	TL/TD),	this	becomes:	

𝑃"#$%&'()*+ =
𝑅 𝑚/0123

/45 𝑡 + 𝑚89
/4/0123

𝑡

𝑅 − 1 𝑡+<)= + 24
	

This	expresses	the	protein	level	at	a	given	photoperiod	(tdusk)	as	a	function	of	the	measured	transcript	705	
dynamics	(m(t))	and	the	measured	ratio	of	protein	synthesis	in	the	light	compared	to	the	dark	(R).	Based	on	
13CO2	labelling	data,	this	ratio	was	estimated	to	have	a	value	of	1.4	(Pal	et	al.,	2013).	

We	note	that	differences	in	the	rate	of	protein	turnover	(kd)	between	proteins	will	induce	systematic	
deviations	in	this	relationship.	However,	since	there	is	no	known	systematic	relationship	between	the	
timing	of	transcript	expression	and	the	rate	of	protein	turnover,	these	systematic	deviations	are	not	710	
expected	to	affect	the	relationship	observed	between	transcript	expression	and	photoperiod	response.	

Changes	in	protein	level	between	two	photoperiods	are	then	compared	relative	to	the	mean	abundance	
between	those	photoperiods:	

𝛥𝑃 =
𝑃"#$%&'()*+,8 − 𝑃"#$%&'()*+,I
𝑃"#$%&'()*+,I + 𝑃"#$%&'()*+,8 2

	

This	gives	the	model	predictions	used	in	Fig	6E.	715	

Inference	of	protein	synthesis	and	degradation	rates	in	Ostreococcus	and	Cyanothece	
Synthesis	and	degradation	rates	for	Ostreococcus	and	Cyanothece	proteins	were	calculated	from	the	
proteomics	time-series	datasets	of	(Martin	et	al.,	2012)	and	(Aryal	et	al.,	2011),	respectively.	These	datasets	
characterised	the	dynamics	of	partial	stable	isotope	incorporation	with	15N	(Ostreococcus)	and	heavy	
leucine	(Cyanothece)	during	several	days	of	growth	in	light/dark	cycles.	For	each	species,	we	inferred	a	720	
labelling	efficiency	from	the	maximum	labelled	fraction	achieved	of	any	protein,	which	was	equal	to	0.93	
for	Ostreococcus	and	to	0.8	for	Cyanothece.	To	infer	degradation	rates,	we	fitted	a	simple	kinetic	model	
assuming:	(1)	constant	labelling	efficiency	over	time;	(2)	different	proteins	are	labelled	at	the	same	
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efficiency;	(3)	heavy	and	light	fractions	are	turned	over	at	equal	rates.	To	infer	relative	rates	of	synthesis	in	
the	light	and	dark,	we	took	the	average	ratio	of	labelling	rates	between	time-points	spanning	the	light	and	725	
dark	periods.	
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Figure	legends	
Figure	1.	Overview	of	photoperiod	proteome	dataset.	
A		Summary	of	sampling	protocol.	Samples	were	taken	at	the	end	of	the	day	(arrows)	from	30-day	old	
plants	grown	for	9	days	in	photoperiods	of	6,	8,	12,	and	18h	duration.	740	
B		Boxplot	of	coefficient	of	variation	(CV)	across	three	biological	replicates	for	each	photoperiod.	
C		Principal	component	analysis	of	proteomics	dataset,	showing	%	variance	explained	by	each	component.	
The	three	biological	replicates	from	each	photoperiod	cluster	together.	
D		Histogram	of	maximal	fold	changes	(FC)	across	proteins	identified	as	significantly	changing	with	
photoperiod	(p<0.05).	745	
	
Figure	2.	Enrichment	of	GO	terms	in	fold	change	(FC)	windows	for	proteins	up-	and	down-regulated	with	
increasing	photoperiod.	
A		Five	high-scoring	GO	enrichments	of	proteins	are	listed	for	each	FC	window.	
B		Heatmap	of	GO	enrichments	for	each	FC	window	for	significantly	upregulated	proteins	(enrichment	750	
scored	by	-log10(p-value)	of	Fisher's	exact	test).	
C		As	in	B,	for	significantly	downregulated	proteins.	
	
Figure	3.	Photoperiod	modulates	protein	levels	in	processes	and	complexes	involved	in	photosynthesis.	
A		Significantly	up-regulated	proteins	in	photosystem	I	and	II:	photosystem	I	subunits	C,	L,	E,	N,	G,	H	(PSAC,	755	
PSAL,	PSAE-1,	PSAN,	PSAG,	PSAH-2),	photosystem	II	subunits	D,	C,	E,	L,	O1,	O2	(PSBD,	PSBC,	PSBE,	PSBL,	
PSBO1,	PSBO2).	
B		Significantly	up-regulated	proteins	in	the	electron	transport	chain:	ferredoxin	1	(FD1)	and	ferredoxin-
NADP-oxidoreductase	1	(FNR1).	
C		Significantly	down-regulated	proteins	in	the	light	harvesting	complex:	Chlorophyll	a-b	binding	proteins	1,	760	
2.1,	2.2,	and	2.3	(CAB1,	LHCB2.1,	LHCB2.2,	LHCB2.30).	
D		Significantly	down-regulated	proteins	in	chlorophyll	biosynthesis,	including	enzymes	involved	in	heme	
biosynthesis	(glutamyl-tRNA	reductase	1,	HEMA1;	delta-aminolevulinic	acid	dehydratase	1,	HEMB1;	
uroporphyrinogen	decarboxylase	2,	HEME2),	as	well	as	tetrapyrrole-binding	protein	(GUN4),	magnesium-
chelatase	(GUN5),	and	NADPH:protochlorophyllide	oxidoreductases	(PORB,	PORC).	765	
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Figure	4.	Photoperiod	modulates	protein	levels	of	enzymes	involved	in	primary	and	secondary	
metabolism.	
A		Significantly	changing	proteins	involved	in	the	partitioning	of	sugars	to	sucrose	and	starch	during	the	day,	
including	sucrose	metabolism	(sucrose-phosphate	synthase,	SPSA1,	SPSC;	bidirectional	sugar	transporter	770	
SWEET12;	sucrose	synthase,	SUS1),	ADP-Glc	synthesis	(glucose-1-phosphate	adenylyltransferase	small	
subunits,	APS1,	APS2),	and	starch	synthesis	(glucose-1-phosphate	adenylyltransferase	large	subunits,	APL1,	
APL3;	phosphoglucomutase,	PGM;	starch	synthase,	SS1;	1,4-alpha-glucan-branching	enzyme,	SBE2.2).	
B		Significantly	up-regulated	proteins	involved	in	metabolism	of	starch	during	the	night,	including	starch	
degradation	(phosphoglucan,	water	dikinase,	PWD;	phosphoglucan	phosphatase,	LSF1,	LSF2;	beta-amylase,	775	
BAM3;	isoamylase,	ISA3),	and	maltose	metabolism	(4-alpha-glucanotransferase,	DPE2;	alpha-glucan	
phosphorylase,	PHS2).	
C		Significantly	down-regulated	proteins	in	sulfate	metabolism.	Includes	5'-adenylylsulfate	reductases	
(APR2,	APR3),	cysteine	synthases	(ACS1,	DES1,	CS26,	CYSD2),	methionine	aminotransferase	(BCAT4),	
methylthioalkylmalate	synthase	(MAM1),	and	cytosolic	sulfotransferases	(SOT17,	SOT18).	780	
	
Figure	5.	Expected	effects	of	the	changing	coincidence	of	protein	synthesis	with	transcript.	
Light	maintains	high	rates	of	protein	synthesis	in	longer	photoperiods	(top	panels),	which	is	expected	to	be	
without	consequence	for	protein	synthesis	from	dawn-phased	transcripts	(center	panels)	but	results	in	a	
boost	of	protein	synthesis	from	transcripts	expressed	late	in	the	day	(bottom	panels).	785	
	
Figure	6.	Evaluating	circadian	control	of	protein	changes	with	photoperiod.	
A		Schematic	of	the	data	integration,	relating	quantitative	transcript	and	protein	synthesis	measurements	
to	quantitative	proteomics	measurements.	
B		Phase	enrichment	of	proteins	identified	as	significantly	up-	and	downregulated	in	long	photoperiods,	790	
evaluated	by	Fisher's	Exact	Test,	with	transcripts	grouped	by	phase	in	two-hour	intervals.	
C		Change	in	protein	level	between	short	(6h)	and	long	(18h)	photoperiods	(LPP-SPP),	grouped	according	to	
the	peak	phase	of	transcript	expression.	
D		Schematic	of	a	simple	model	of	protein	synthesis,	using	measured	mRNA	(m)	and	protein	(p)	input	data.	
E		Comparison	of	model	to	data,	for	changes	between	6h	and	18h	photoperiods	(LPP-SPP)	for	the	251	795	
proteins	with	rhythms	in	RNA	abundance	with	amplitude	>1.7.	Changes	are	plotted	as	differences	between	
photoperiods,	normalised	to	the	mean.	The	dashed	line	indicates	the	case	where	model	predictions	match	
measured	values.	The	solid	line	indicates	the	linear	fit	to	the	plotted	data.	
	
Figure	7.	Ingredients	of	translational	coincidence	in	diverse	photoautotrophic	organisms.		800	
A		Light-stimulated	protein	synthesis.	Relative	rates	of	protein	synthesis	in	the	light	compared	to	the	dark	
have	been	reported	in	Arabidopsis	(Pal	et	al.,	2013),	and	were	inferred	from	quantitative	proteomics	stable	
isotope	labelling	datasets	for	Ostreococcus	(Martin	et	al.,	2012)	and	Cyanothece	(Aryal	et	al.,	2011)	(see	
Materials	and	Methods	for	details).	
B		Slow	rates	of	protein	turnover.	The	dashed	line	represents	a	half-life	of	1	day.	Protein	degradation	rates	805	
have	been	reported	for	Arabidopsis	(Li	et	al.,	2017),	and	were	inferred	from	quantitative	proteomics	data	
for	Ostreococcus	and	Cyanothece,	as	in	(A)	(see	Materials	and	Methods	for	details).	
C		Diurnal	and	circadian	dynamics	in	gene	expression.	Shaded	areas	represent	the	fraction	of	the	
transcriptome	estimated	to	be	dynamic	in	circadian	(top	row)	and	diurnal	(bottom	row)	conditions.	
	810	
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Expanded	view	figures	and	tables	
Figure	EV1.	Progressive	changes	in	abundance	across	photoperiods	for	proteins	exhibiting	significant	
changes	with	photoperiod.	
A		Protein	abundance	across	photoperiods	for	proteins	which	decrease	in	abundance	in	longer	
photoperiods.	Protein	abundance	for	each	protein	was	mean-normalised.	815	
B		As	in	A,	for	proteins	which	increase	in	abundance	in	longer	photoperiods.	
	
Figure	EV2.	Coordinated	changes	in	ribosome	biogenesis	and	ribosomal	components.	
A		Changes	in	protein	levels	for	19	proteins	in	the	KEGG	pathway	for	ribosome	biogenesis	that	decrease	in	
abundance	with	increasing	photoperiod	length,	with	each	protein	normalised	to	its	own	mean	level	across	820	
all	four	photoperiods.	
B		As	in	A,	for	85	proteins	in	the	KEGG	pathway	for	ribosomes	that	decrease	in	abundance	with	increasing	
photoperiod	length.	
	
Figure	EV3.	Comparison	of	transcriptome	and	proteome	photoperiod	datasets.	825	
A		Correlations	between	the	photoperiod	proteome	data	and	transcripts	identified	as	exhibiting	significant	
changes	across	photoperiods.	Fold	changes	across	photoperiods	in	transcripts	and	proteins	are	compared.	
Changing	transcripts	were	identified	at	both	ED	and	EN	time	points	(left-	and	right-hand	panels,	
respectively),	as	described	in	Flis	et	al.	(2016).	Black	dots	indicate	the	direction	of	change	was	the	same	for	
both	transcripts	and	proteins;	red	dots	indicate	the	direction	of	change	was	different	for	transcripts	and	830	
proteins.	Transcript	data	are	from	samples	taken	from	the	same	plants	as	were	used	for	our	proteomic	
analysis,	and	were	described	in	Flis	et	al.	(2016).	
B		As	in	A,	for	a	subset	of	reliably	arrhythmic	transcripts	(see	Materials	and	methods	for	the	procedure	used	
to	identify	arrhythmic	transcripts).		
	835	
Figure	EV4.	Progressive	changes	in	abundance	across	photoperiods	for	proteins	with	dawn	and	evening-
phased	transcripts.	
A		Protein	abundance	across	photoperiods	for	proteins	whose	transcripts	peak	in	expression	between	ZT0	
and	ZT2	in	the	microarray	time	course	dataset	of	Bläsing	et	al.	(2005).	Protein	abundance	for	each	protein	
was	mean-normalised.	840	
B		As	in	A,	for	proteins	whose	transcripts	peak	between	ZT12	and	ZT14.	
	
Figure	EV5.	Protein	response	to	photoperiod	in	an	independent	dataset.	
A		Changes	in	protein	levels	between	8h	(SPP)	and	16h	(LPP)	photoperiods,	as	measured	in	Baerenfaller	et	
al.	(2015),	grouped	according	to	the	phase	of	peak	transcript	expression.	845	
B		p-values	of	differences	in	protein	levels	for	proteins	across	for	leaf	development	stages	(Baerenfaller	et	
al.,	2015)	with	evening-phased	(ZT10	to	ZT14,	inclusive)	and	dawn-phased	(ZT22	to	ZT2,	inclusive)	
transcripts	(Bläsing	et	al.,	2005),	as	calculated	by	Mann-Whitney	U	test	(note	that	in	all	cases	the	mean	of	
the	change	from	SPP	to	LPP	was	higher	for	the	evening-phased	group	than	the	dawn-phased	groups,	as	
expected).	850	
	
Figure	EV6.	Comparison	of	core	clock	transcript	expression	in	different	conditions.	
Timeseries	microarray	data	are	plotted	from	experiments	conducted	in	continuous	light	(Covington	and	
Harmer,	2007)	and	12L:12D	light:dark	cycles	(Bläsing	et	al.,	2005),	along	with	pseudo-time	series	data	from	
combined	EN	and	ED	samples	across	4,	6,	8,	12,	and	18h	photoperiods	(Flis	et	al.,	2016).	855	
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Figure	EV7.	Protein	regulation	with	photoperiod	after	filtering	for	transcriptional	regulation.		
A		Protein	changes	between	6h	(SPP)	and	18h	photoperiods	(LPP),	grouped	by	phase	of	peak	expression,	
are	shown	for	all	547	proteins	with	rhythmic	transcripts.	
B		As	in	A,	for	the	subset	of	341	transcripts	without	changing	levels	across	photoperiods,	as	judged	by	a	860	
comparison	with	the	photoperiod	microarray	dataset	of	Flis	et	al.	(2016)	(see	text	for	details).	
C		As	in	A,	for	the	subset	of	142	transcripts	predominantly	controlled	by	the	circadian	clock,	as	judged	by	a	
comparison	with	the	circadian	microarray	dataset	of	Covington	and	Harmer	(2007)	(see	text	for	details).	
D		As	in	A,	for	the	125	transcripts	in	the	intersection	of	the	subsets	shown	in	B	and	C.	
	865	
Figure	EV8.	Illustrative	examples	of	photoperiod	responses	by	translational	coincidence.	
A,	B		Gene	expression	for	dawn-phased	genes	(GUN4,	GUN5)	are	shown	in	A	and	evening-phased	genes	
(PHS2,	ISA3)	are	shown	in	B	in	multiple	conditions,	as	measured	by	microarray.	Time	series	data	from	
experiments	conducted	in	continuous	light	(Covington	and	Harmer,	2007)	and	12L:12D	light:dark	cycles	
(Bläsing	et	al.,	2005),	along	with	pseudo-time	series	data	from	combined	EN	and	ED	samples	across	4,	6,	8,	870	
12,	and	18h	photoperiods	(Flis	et	al.,	2016).	Data	was	mean-normalised.	
C,	D		Protein	abundance	across	photoperiods	for	transcripts	quantified	in	A	and	B,	as	quantified	by	mass	
spectrometry	(this	study).	Error	bars	denote	standard	error	of	the	mean.	
	
Figure	EV9.	Simulation	of	how	clock	responses	affect	the	protein	response	to	photoperiod.		875	
A	-	C		Clock-regulated	transcript	dynamics	for	a	dawn-tracking	(A),	noon-tracking	(B),	and	dusk-tracking	(C)	
clock	across	three	photoperiods.	In	each	case,	the	transcript	is	expressed	at	ZT12	(i.e.	dusk)	in	a	12h	
photoperiod.	
D	-	F		Protein	responses	to	photoperiod	for	the	protein	encoded	by	the	transcript	shown	in	A	-	C.	
	880	
Table	EV1.	Quantitative	proteomics	dataset.	Mean	and	standard	deviation	of	all	measured	proteins	in	
each	photoperiod.	
	
Table	EV2.	KEGG	pathway	coverage.	Comparison	of	coverage	of	KEGG	pathways	in	this	dataset	(PP),	
compared	to	the	dataset	of	(Baerenfaller	et	al.,	2012).	885	
	
Table	EV3.	Statistical	analysis	of	protein	changes	across	photoperiods.	
	
Table	EV4.	Summary	of	the	number	of	significant	changes	at	different	FC	thresholds.	
	890	
Table	EV5.	KEGG	pathway	enrichment.	Overrepresentation	of	KEGG	terms	was	analysed	in	proteins	
showing	significant	up	or	down	regulation	over	photoperiods.	
	
Table	EV6.	GO	enrichment	by	FC	window.	Overrepresentation	of	GO	terms	was	analysed	in	proteins	
showing	significant	up	down	regulation	over	photoperiods,	stratified	by	FC	windows.	895	
	
Table	EV7.	GO	term	enrichment	of	transcript-protein	pairs.	
	

Data	citations	
Quantitative	proteomics	data:	PRIDE;	accession:	PXD006848,	doi:	10.6019/PXD006848	
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Figure 1. Overview of photoperiod proteome dataset.

A  Summary of sampling protocol. Samples were taken at the end of the day (arrows) from 30-day old 
plants grown for 9 days in photoperiods of 6, 8, 12, and 18h duration.

B  Boxplot of coefficient of variation (CV) across three biological replicates for each photoperiod.

C  Principal component analysis of proteomics dataset, showing % variance explained by each 
component. The three biological replicates from each photoperiod cluster together.

D  Histogram of maximal fold changes (FC) across proteins identified as significantly changing with 
photoperiod (P-value < 0.05).
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Figure 2. Enrichment of GO terms in fold change (FC) windows for proteins up- and 
down-regulated with increasing photoperiod.

A  Five high-scoring GO enrichments of proteins are listed for each FC window.

B  Heatmap of GO enrichments for each FC window for significantly upregulated proteins
(enrichment scored by -log10(p-value) of Fisher's exact test).

C  As in B, for significantly downregulated proteins.
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Photosystem I Photosystem II

Light harvesting Chlorophyll biosynthesis

Electron transport

Figure 3. Photoperiod modulates protein levels in processes and complexes involved in 
photosynthesis.

A  Significantly up-regulated proteins in photosystem I and II: photosystem I subunits C, L, E, N, G, H (PSAC, 
PSAL, PSAE-1, PSAN, PSAG, PSAH-2), photosystem II subunits D, C, E, L, O1, O2 (PSBD, PSBC, PSBE, PSBL, 
PSBO1, PSBO2).

B  Significantly up-regulated proteins in the electron transport chain: ferredoxin 1 (FD1) and ferredoxin-NADP-
oxidoreductase 1 (FNR1).

C Significantly down-regulated proteins in the light harvesting complex: Chlorophyll a-b binding proteins 1, 
2.1, 2.2, and 2.3 (CAB1, LHCB2.1, LHCB2.2, LHCB2.30).

D  Significantly down-regulated proteins in chlorophyll biosynthesis, including enzymes involved in heme 
biosynthesis (glutamyl-tRNA reductase 1 (HEMA1); delta-aminolevulinic acid dehydratase 1 (HEMB1); 
uroporphyrinogen decarboxylase 2 (HEME2)), as well as tetrapyrrole-binding protein (GUN4), magnesium-
chelatase (GUN5), and NADPH:protochlorophyllide oxidoreductases (PORB, PORC).
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A
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Figure 4. Photoperiod modulates protein levels of enzymes involved in primary and secondary 
metabolism.

A  Significantly changing proteins involved in the partitioning of sugars to sucrose and starch during the day. 
Includes sucrose metabolism (sucrose-phosphate synthase, SPSA1, SPSC; bidirectional sugar transporter, 
SWEET12; sucrose synthase, SUS1), ADP-Glc synthesis (glucose-1-phosphate adenylyltransferase small 
subunits, APS1, APS2), and starch synthesis (glucose-1-phosphate adenylyltransferase large subunits, APL1, 
APL3; phosphoglucomutase, PGM; starch synthase, SS1; 1,4-alpha-glucan-branching enzyme, SBE2.2).

B  Significantly up-regulated proteins involved in metabolism of starch during the night. Includes starch 
degradation (phosphoglucan, water dikinase, PWD; phosphoglucan phosphatase, LSF1, LSF2; beta-amylase, 
BAM3; isoamylase, ISA3), and maltose metabolism (4-alpha-glucanotransferase, DPE2; alpha-glucan 
phosphorylase, PHS2).

C  Significantly down-regulated proteins in sulfate metabolism. Includes 5'-adenylylsulfate reductases (APR2, 
APR3), cysteine synthases (ACS1, DES1, CS26, CYSD2), methionine aminotransferase (BCAT4), 
methylthioalkylmalate synthase (MAM1), and cytosolic sulfotransferases (SOT17, SOT18).

Maltose metabolismStarch degradation

Sulfate metabolism

B
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Figure 5. Expected effects of the changing coincidence of protein synthesis with transcript.

Light maintains high rates of protein synthesis for longer in longer photoperiods (top panels), which is 
expected to be without consequence for protein synthesis from dawn-phased transcripts (center 
panels), but results in a boost of protein synthesis from transcripts expressed late in the day (bottom 
panels).

Short photoperiod Long photoperiod
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Figure 6. Evaluating circadian control of protein changes with photoperiod.

A  Schematic of the data integration, relating quantitative transcript and protein synthesis measurements to 
quantitative proteomics measurements.

B  Phase enrichment of proteins identified as significantly up- and downregulated in long photoperiods, 
evaluated by Fisher's Exact Test, with transcripts grouped by phase in two-hour intervals.

C  Change in protein level between short (6h) and long (18h) photoperiods (LPP-SPP), grouped according to 
the peak phase of transcript expression.

D  Schematic of a simple model of protein synthesis, using measured mRNA (m) and protein (p) input data.

E  Comparison of model to data, for changes between 6h and 18h photoperiods (LPP-SPP) for the 251 proteins 
with rhythms in RNA abundance with amplitude >1.7. Changes are plotted as differences between 
photoperiods, normalised to the mean. The dashed line indicates the case where model predictions match 
measured values. The solid line indicates the linear fit to the plotted data.
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Figure 7. Ingredients of translational coincidence in diverse photoautotrophic organisms. 

A  Light-stimulated protein synthesis. Relative rates of protein synthesis in the light compared to the dark 
have been reported in Arabidopsis (Pal et al., 2013), and were inferred from quantitative proteomics stable 
isotope labelling datasets for Ostreococcus (Martin et al., 2012) and Cyanothece (Aryal et al., 2011) (see 
Materials and Methods for details).

B  Slow rates of protein turnover. The dashed line represents a half-life of 1 day. Protein degradation rates 
have been reported for Arabidopsis (Li et al., 2017), and were inferred from quantitative proteomics data for 
Ostreococcus and Cyanothece, as in A (see Materials and Methods for details).

C  Diurnal and circadian dynamics in gene expression. Shaded areas represent the fraction of the 
transcriptome estimated to be dynamic in circadian (top row) and diurnal (bottom row) conditions.
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A B

Figure EV1. Progressive changes in abundance across photoperiods for proteins exhibiting 
significant changes with photoperiod.

A  Protein abundance across photoperiods for proteins which decrease in abundance in longer photoperiods. 
Protein abundance for each protein was mean-normalised.

B  As in A, for proteins which increase in abundance in longer photoperiods.
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Figure EV2. Coordinated changes in ribosome biogenesis and ribosomal components.

A  Changes in protein levels for 19 proteins in the KEGG pathway for ribosome biogenesis that 
decrease in abundance with increasing photoperiod length, with each protein normalised to its own 
mean level across all four photoperiods.

B  As in A, for 85 proteins in the KEGG pathway for ribosomes that decrease in abundance with 
increasing photoperiod length.
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Figure EV3. Comparison of transcriptome and proteome photoperiod datasets.

A  Correlations between the photoperiod proteome data and transcripts identified as 
exhibiting significant changes across photoperiods. Fold changes across photoperiods in
transcripts and proteins are compared. Changing transcripts were identified at both ED and 
EN timepoints (left- and right-hand panels, respectively), as described in Flis et al, 2016. 
Black dots indicate the direction of change was the same for both transcripts and proteins; 
red dots indicate the direction of change was different for transcripts and proteins.
Transcript data are from samples taken from the same plants as were used for our proteomic 
analysis, and were described in Flis et al, 2016.

B As in A, for a subset of reliably arrhythmic transcripts (see Materials and methods for
procedure used to identify arrhythmic transcripts). 
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A B

Figure EV4. Progressive changes in abundance across photoperiods for proteins with dawn- and 
evening-phased transcripts.

A  Protein abundance across photoperiods for proteins whose transcripts peak in expression between ZT0 
and ZT2 in the microarray timecourse dataset of Blasing et al. (2005). Protein abundance for each protein 
was mean-normalised.

B  As in A, for proteins whose transcripts peak between ZT12 and ZT14.
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Figure EV5. Protein response to photoperiod in an independent dataset.

A  Changes in protein levels between 8h (SPP) and 16h (LPP) photoperiods, as measured 
in Baerenfaller et al. (2015), grouped according to the phase of peak transcript 
expression.

B  p-values of differences in protein levels for proteins across for leaf development 
stages (Baerenfaller et al., 2015) with evening-phased (ZT10 to ZT14, inclusive) and 
dawn-phased (ZT22 to ZT2, inclusive) transcripts (Bläsing et al., 2005), as calculated by 
Mann-Whitney U test (note that in all cases the mean of the change from SPP to LPP was 
higher for the evening-phased group than the dawn-phased groups, as expected).
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Figure EV6. Comparison of core clock transcript expression in different conditions.

Timeseries microarray data are plotted from experiments conducted in continuous light (Covington 
and Harmer, 2007) and 12L:12D light:dark cycles (Blasing et al, 2005), along with pseudo-timeseries 
data from combined EN and ED samples across 4, 6, 8, 12, and 18h photoperiods (Flis et al, 2016).
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Figure EV7. Protein regulation with photoperiod after filtering for transcriptional 
regulation. 

A  Protein changes between 6h (SPP) and 18h (LPP) photoperiods, grouped by phase of peak 
expression, are shown for all 547 proteins with rhythmic transcripts.

B  As in A, for the subset of 341 transcripts without changing levels across photoperiods, as judged 
by a comparison with the photoperiod microarray dataset of Flis et al, (2016) (see text for details).

C  As in A, for the subset of 142 transcripts predominantly controlled by the circadian clock, as 
judged by a comparison with the circadian microarray dataset of Covington and Harmer (2007) (see 
text for details).

D  As in A, for the 125 transcripts in the intersection of the subsets shown in B and C.
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Figure EV8. Illustrative examples of photoperiod responses by translational 
coincidence.

A, B  Gene expression for dawn-phased genes (GUN4, GUN5) are shown in A and 
evening-phased genes (PHS2, ISA3) are shown in B in multiple conditions, as measured 
by microarray. Time series data from experiments conducted in continuous light 
(Covington and Harmer, 2007) and 12L:12D light:dark cycles (Blasing et al, 2005), along 
with pseudo-timeseries data from combined EN and ED samples across 4, 6, 8, 12, and 
18h photoperiods (Flis et al, 2016). Data was mean-normalised.

C, D  Protein abundance across photoperiods for transcripts quantified in A and B, as 
quantified by mass spectrometry (this study). Error bars denote standard error of the 
mean.
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Figure EV9. Simulation of how clock responses affect the protein response to photoperiod. 

A - C  Clock-regulated transcript dynamics for a dawn-tracking (A), noon-tracking (B), and dusk-tracking 
(C) clock across three photoperiods. In each case, the transcript is expressed at ZT12 (i.e. dusk) in a 12h 
photoperiod.

D - F  Protein responses to photoperiod for the protein encoded by the transcripts shown in A-C.
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