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Abstract 

The ballistocardiographic (BCG) artifact is linked to cardiac activity and occurs in 

electroencephalographic (EEG) recordings acquired inside the magnetic resonance (MR) 
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environment. Its variability in terms of amplitude, waveform shape and spatial distribution 

over subject’s scalp makes its attenuation a challenging task. In this study, we aimed to 

provide a detailed characterization of the BCG properties, including its temporal 

dependency on cardiac events and its spatio-temporal dynamics. To this end, we used high-

density EEG data acquired during simultaneous functional MR imaging in six healthy 

volunteers. First, we investigated the relationship between cardiac activity and BCG 

occurrences in the EEG recordings. We observed large variability in the delay between ECG 

and subsequent BCG events (ECG-BCG delay) across subjects and non-negligible epoch-by-

epoch variations at the single subject level. Also, we found positive correlations between 

heart rate variability and ECG-BCG delay. The inspection of spatial-temporal variations 

revealed a prominent non-stationarity of the BCG signal. We identified five main BCG 

waves, which were common across subjects. Principal component analysis revealed two 

spatially distinct patterns to explain most of the variance (85% in total). These components 

are possibly related to head rotation and pulse-driven scalp expansion, respectively. Our 

results may inspire the development of novel, more effective methods for the removal of 

the BCG, capable of isolating and attenuating artifact occurrences while preserving true 

neuronal activity. 
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1. Introduction 

The simultaneous acquisition of electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI) data enables the investigation of human brain function with high 

spatio-temporal resolution (Mantini et al., 2010). Simultaneous EEG-fMRI is nowadays 

widely used, particularly for the non-invasive identification of epileptic foci (Grouiller et al., 

2016) and for the mapping of neuronal oscillations during sleep (McAvoy et al., 2017), rest 

(Mantini et al., 2007) or active task performance (Debener et al., 2005). However, the use of 

simultaneous EEG-fMRI remains technically challenging, especially due to the presence of 

fMRI-related artifacts in the EEG data (Neuner et al., 2014). These artifacts originate from 

the interactions between the subject, the EEG system and the magnetic MR environment. 

The two major artifacts that corrupt the EEG recordings are: the imaging artifact, which is 

caused by the time-varying magnetic field gradients applied during the fMRI acquisition 

(Debener et al., 2008); and the ballistocardiographic (BCG) artifact, which is associated with 

the cardiac activity of the subject (Allen et al., 1998). 

Whereas the imaging artifact can be easily removed due to its periodicity and stability 

across time, the BCG artifact does not show such consistency. This poses important 

challenges for its attenuation from EEG data collected during fMRI scanning (Debener et al., 

2007; Mullinger et al., 2013). Several studies were conducted to clarify the physical 

mechanisms at the basis of the BCG (Yan et al., 2010; Mullinger et al., 2013). They revealed 

that the BCG mainly arises from slight movements of the EEG electrodes and the wires in 

the static magnetic field, following each heartbeat, that produce an electromotive force 

that adds up to the EEG signals. In particular, voltage variations on the scalp are generated 

by the contribution of three main effects: 1) pulse-driven expansion of the scalp, i.e. the 

local motion associated with the pulsatile expansion of scalp vessels on adjacent electrodes 

(Bonmassar et al. 2002; Yan et al., 2010; Mullinger et al., 2013); 2) pulse-driven rotation of 

the head, i.e. and the motion derived from quick arrival and shunting of the blood into the 

head arteries (Yan et al., 2010); and 3) the pulsatile flow of blood that, as an electrically 

conducting fluid, in a magnetic environment, produces a separation of charges via Hall 

effect that induces the potential variations at the scalp surface (Müri et al., 1998). It is not 

clear, however, the relative contribution of these three components to the measured BCG, 

neither their spatial distribution across EEG sensors.  

Several methods have been developed in the last years for BCG artifact removal, such as 

the adaptive average subtraction (AAS) (Allen et al., 1998), optimal basis set (OBS) (Niazy 

et al., 2005) and independent component analysis (ICA) (Mantini et al., 2007; Srivastavna et 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185181doi: bioRxiv preprint 

https://doi.org/10.1101/185181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4

al., 2007). Each of these methods relies on specific hypotheses about BCG features, which 

need to be fulfilled for an effective artifact removal. Specifically, both AAS and OBS assume 

a fixed delay between the BCG and the associated cardiac events (Allen et al., 1998; Niazy 

et al., 2005). Also, ICA assumes the spatial stationarity of the sources (Krishnaswamy et al., 

2016), such that the EEG recordings can be expressed by an instantaneous linear mixture of 

independent components. To the best of our knowledge, no study has so far been 

conducted to test whether such hypotheses for the BCG artifact effectively hold. On the 

other hand, considering that the BCG residuals left by any the aforementioned methods in 

the EEG data is not negligible (LeVan et al., 2014), we argue that the hypotheses may not 

be fully met. 

In this study, we conducted a detailed characterization of the BCG ballistocardiogram in 

EEG signals collected during simultaneous fMRI. First of all, we investigated whether the 

delay between BCG and cardiac events is fixed, or is alternatively variable and dependent 

on the cardiac frequency. We then examined the spatio-temporal variations of this artifact 

both at the subject level and at the group level, to test whether the BCG sources can be 

considered spatially stationary. The findings of this study revealed novel insights into the 

BCG artifact properties. This was particularly important for identifying possible limitations 

of currently used BCG artifact removal methods and for inspiring the development of novel 

methods that overcome such limitations.  

  
 

2. Materials and Methods 

2.1.1. Data acquisition 

Six right-handed healthy subjects (age 26.7±6.2 years, 4 males and 2 females) participated 

in the experiment. All participants reported normal or corrected-to-normal vision, and had 

no psychiatric or neurological history. Before undergoing the examination, they gave their 

written informed consent to the experimental procedures, which were approved by the 

local Institutional Ethics Committee of UZ Leuven.  

Each subject underwent a 10-minutes resting-state session, during which EEG and fMRI 

data were concurrently recorded. fMRI imaging was performed for 10 minutes in a 3T 

Philips Achieva MR scanner (Philips Medical Systems, Best, the Netherlands) using a T2*-

weighted SENSE sequence. The scanning parameters were TR = 2000 ms, TE = 30 ms, 36 

slices, 80 × 80 matrix, voxel size 2.75 × 2.75 × 3.75 mm3, flip angle = 90 degrees.  EEG data 

were acquired with a MR-compatible 256-channel HydroCel Geodesic Sensor Net (EGI, 
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Eugene, Oregon, USA), that includes a large number of Ag/AgCl electrodes on lower 

temporal areas and cheeks. Electrodes impedance were kept below 50 kΩ across the full 

recording. An elastic bandage was also placed above the EEG net to maintain the contact of 

electrodes on the scalp. EEG signals were acquired at 1 kHz sampling frequency using the 

vertex (Cz) electrode as physical reference. Using the EEG amplifier, we also acquired the 

electrocardiogram (ECG) signal with two MR-compatible electrodes positioned on the 

chest, in correspondence to the apical part and to left side of the heart. 

 

2.1.2. EEG data preprocessing 

EEG data were processed by using built-in MATLAB (MathWorks, Natick, US) functions and 

the EEGLAB toolbox (https://sccn.ucsd.edu/eeglab/) (Delorme and Makeig, 2004). First of 

all, the imaging artifact in the EEG and ECG data was attenuated by using the fMRI artifact 

template removal (FASTR) method implemented in EEGLAB (Niazy et al., 2005). The EEG 

signals were then digitally filtered in the frequency band [1-70 Hz]. They were re-referenced 

in average reference (Liu et al., 2015), which allowed the reconstruction of the EEG signal at 

the Cz location. The re-referenced EEG data were finally processed for characterizing the 

BCG artifact and identifying its relation with the subject’s cardiac activity, as detected from 

the ECG signal. 

 

2.1.3. Identification of ECG and BCG peaks 

The ECG signal was band-pass filtered using a Finite Impulse Response (FIR) filter with a low 

and high cut-off frequencies of 5 and 20 Hz, respectively. The ECG peaks were detected 

identifying local maxima spaced in time by at least 600 ms. Following this automated 

detection, we manually corrected for false positives (less than 1.5% of the total) and 

negatives (less than 1% of the total). The detection of BCG peaks was performed using the 

EEG signal at the Cz location, which was standardized across subject during data 

acquisition. The EEG signal was filtered in the band [5-20 Hz], as for the ECG signal. BCG 

peaks were defined as the points with maximum cross-correlation with the average ECG 

signal. Since the BCG peaks were expected to follow the ECG peaks by around 200 ms, the 

selection of the points with maximum cross-correlation was restricted to the time window 

from 100 to 300 ms after the ECG peaks. 

 

2.1.4. Characterization of BCG artifact 

We examined the variability of the delay between ECG and BCG peaks, and their relation 

with heart rate variability (HRV). In particular, we evaluated the linear relationship between 
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the duration of each cardiac period and the associated ECG-BCG delay, both at the single 

subject and group level. 

We then examined the spatial stationarity of the BCG artifact, by calculating average EEG 

signals at the individual level, and using the ECG events as triggers. We identified and 

isolated in each subject corresponding BCG waves based on the root mean square (RMS) 

across channels. The scalp maps corresponding to the selected BCG waves were compared 

within and across subjects by using the Pearson correlation, to test for spatial stationarity of 

the BCG sources. In the case of stationarity, the correlations between different time 

instants for the same subject were expected to be larger than those between corresponding 

time instants for different subjects.  

After identifying and isolating in each subject corresponding BCG waves, we also run PCA 

on concatenated data to examine the most prominent contributions to all BCG waves. Only 

principal components (PCs) with associated variance above 10 % were retained for analysis. 

For each selected PC, we plotted the associated topographic map to examine the spatial 

distribution across EEG channels.  

 

 

3. Results 

Imaging artifact removal was successfully performed in each EEG dataset (for an example, 

see Supplementary Figure 1). We identified ECG and BCG peaks, and extracted ECG-BCG 

delay and cardiac cycle duration accordingly (Figure 1). We could not obtain a reliable 

detection of the BCG events in one subject (S6), which was excluded from the current 

analysis. First, we analyzed HRV using the BCG peak information, and observed normal, 

physiological variability within and across subjects (Figure 2a,b and Table 1), with average 

values ranging between 843 and 1085 ms. Also the ECG-BCG delay showed a variability that 

was qualitatively similar to the HRV (Figure 2c,d). This figure was not only variable within 

each subject, but even more across subjects (Table 1). Specifically, average values ranged 

between 158 ms and 261 ms. The correlation between HRV and ECG-BCG peaks delay was 

positive but not always strong at the subject level (Table 1). Conversely, we obtained a 

robust positive correlation, which was equal to 0.47, when we used concatenated data 

across subjects (Figure 3).  

After studying the variability in the ECG-BCG delay, we focused on the spatio-temporal 

characteristics of the BCG. We calculated averaged BCG signal using ECG peaks as events, 

also to allow comparisons with previous studies. An analysis of the RMS across channels 
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confirmed the complex nature of the BCG artifact, revealing 5 major peaks that were 

present in all subjects at similar latencies (Figures 4 and Supplementary Figure 2). The non-

stationarity of the BCG sources was indicated by the fact that the scalp maps for different 

time instants in the same subject had lower correlation (��=0.202; range [0.053-0.510]) than 

those of corresponding time instants for different subjects (��=0.566; range [0.431-0.741]).  

By averaging the topographic maps of all the subjects, we retrieved characteristic scalp 

activity profiles at each major peak (Figure 5). In particular, we found that the BCG artifact 

was initially localized in the left side of the head at the first peak instant, and it 

progressively spreads out towards the right side. The application of the PCA enabled the 

identification of two main components, with associated variance equal to 76.69% and 

12.71%, respectively (Figure 6). The first component was stronger on the left side of the 

scalp, whereas the second component was more diffused and bilateral. These two 

components had a spatial pattern very similar to the ones at the first and second peak 

instants, respectively, suggesting that the major effects of the BCG artifact occurrences 

were largely independent and concentrated at earliest latencies. 

 

4. Discussion 

In this study, we have investigated the BCG artifact and provided new insights concerning 

its relationship with cardiac activity and its spatio-temporal properties. Our analysis showed 

that BCG artifact occurrences follow each cardiac event with a variable delay (Figure 2 and 

Table 1). Furthermore, the ECG-BCG delay variability has a moderate positive correlation 

with HRV, i.e. when the cardiac frequency decreased the BCG artifact appeared on the EEG 

recordings with a smaller delay with respect to the cardiac event (Figure 2-3 and Table 1). 

Secondly, our analyses provided corroborating evidence for the non-stationarity of the BCG 

artifact (Figure 5). Specifically, we found two main components to be present in the BCG, 

with a specific spatial distribution and varying intensity across time (Figures 6). 

 

Variable delay between ECG and BCG peaks 

Our study provided strong evidence for a variable delay between ECG and BCG peaks 

(Figure 2). This is in line with recent BCG artifact removal studies suggesting that 

accounting for a variable delay may enable a more effective artifact attenuation (Oh et al., 

2014; Iannotti et al., 2015). It should be considered that our investigation on the delays 

between ECG and BCG peaks was conducted using the ECG signal and just one 
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representative EEG signals, i.e. the one at Cz electrode. Indeed, some EEG channels do not 

show a clear BCG peak, which affects the reliability of peak detection. More importantly, we 

chose to use the EEG signal from the Cz electrode since the position of this channel 

corresponds to the head vertex, and is therefore standardized across subjects. This ensures 

that the differences observed across subjects are true differences, and do not depend on 

the different positioning of the EEG net. For the first time, our study showed a relationship 

between HRV and the ECG-BCG delay (Figures 2-3 and Table 1). This means that an 

increase in the duration of the cardiac cycle, i.e. decreased cardiac frequency, entails an 

increase in the ECG-BCG delay. A larger dataset would be desirable to provide stronger 

evidence for this heart-brain interaction effect. Also, further research into the underlying 

physiological mechanisms is warranted.  

Interestingly, our analyses revealed that the latency variability of the BCG artifact 

occurrences was largely inconsistent across subjects (Oh et al., 2014; Iannotti et al., 2015). 

Accordingly, the use of a fixed delay between ECG and BCG peaks in BCG removal 

algorithm such as AAS (Allen et al., 1998) and OBS (Niazy et al., 2005), which is typically set 

to 210 ms, can be hardly justified. Furthermore, the intra-subject variability of the delay is a 

consistent feature of the BCG, and it should be taken into account for optimizing the 

removal of this artifact from EEG data. An accurate alignment of BCG epochs may indeed 

lead to improved performance when using AAS and OBS.  

 

Spatio-temporal analysis of the BCG 

In order to study the spatio-temporal characteristics of the BCG, we calculated averaged 

EEG signals using ECG peaks as events. One may argue that this is not fully in line with the 

observation that the BCG peaks have variable delay with respect to ECG peaks. Our choice 

was primarily due to the fact that the same approach was used as in previous BCG studies 

(Debener et al. 2008; Mullinger et al., 2013). This would have enabled us to comparing our 

findings with those in the literature. Our analysis of the BCG showed a very heterogeneous 

spatial distribution over time, suggesting that the artifact is non-stationary (Figures 4-5). 

This means that the use of BCG artifact removal methods that assume the stationarity of 

the sources, such as ICA (Comon, 1994), may not lead to optimal results. 

Despite the complex spatio-temporal properties of the BCG, we were able to identify five 

main BCG waves, which were spatially consistent across subjects (Supplementary Figure 2). 

To this end, we used the RMS plot (Figure 4), which was already employed in previous 

studies (Debener et al., 2008). The scalp regions mostly affected by the artifactual 
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contribution appeared to be the fronto-lateral and the occipital ones (Figure 5). A strong 

BCG in fronto-lateral part of the EEG montage is consistent with the presence of major 

blood vessels (Bonmassar et al., 2002; Masterton et al., 2007) and with the specific 

orientation of the electrodes with respect to the static magnetic field (Yan et al., 2010). A 

possible reason for a relatively strong BCG in the occipital part of the EEG montage is the 

adherence of the recording EEG electrodes on the subject’s head in the MR scanner. 

Previous studies suggested that the BCG may result from two distinct originating 

mechanisms, head rotation and pulse-driven expansion, respectively (Yan et al., 2010; 

Mullinger et al., 2013). In line with this literature, we experimentally found two main BCG 

components that are consistent across subjects (Figure 6). Based on the spatial distribution 

of these components, we argue that the first component (77% variance) may be associated 

with head rotation (Mullinger et al., 2013), whereas the spatial distribution of the second 

component (13% variance) may be compatible with pulse-driven scalp expansion. Future 

studies are warranted to verify the correctness of the suggested associations. 

 

5. Conclusions 

In this study we performed a detailed characterization of the BCG in EEG signals collected 

during simultaneous fMRI. This may contribute to a deeper understanding of the BCG 

spatial-temporal features. Specifically, we showed for the first time a relationship between 

HRV and variability in the delay between ECG and BCG events. We also identified two 

patterns that primarily contribute to the BCG, which have specific spatial and temporal 

features and can be therefore associated with different physiological sources. We hope that 

the findings presented in our study will inspire the development of more effective methods 

for the removal of the BCG, capable of isolating and attenuating artifact occurrences while 

preserving true neuronal activity. 
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Figure 1. Detection of ECG and BCG events. Representative traces displaying the timing 

relationship (ECG-BCG delay) between the R-peak from the ECG signal (ECG event) and the 

main peak of the BCG occurrence (BCG event) from the EEG recordings acquired inside the 

MR scanner. The interval between two consecutive cardiac occurrences is defined as RR.  

 

 
Figure 2. Heart Rate Variability (HRV) and ECG-BCG delay variability. a) The HRV is 

estimated by considering the sequence of RR intervals, i.e. time intervals between each 
ECG-peak and its consecutive, and b) the distribution of the RR intervals is calculated. c) 

The delays between each cardiac event and its corresponding BCG event are extracted and 

its distribution is calculated. d) The relationship between RR intervals and ECG-BCG delays 

are shown by means of a scatter plot. 
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Figure 3. Relationship between RR intervals and ECG-BCG delay. The scatter plot shows 

a dependency between HRV and the ECG-BCG delay variability across subjects.  

 

 

 
Figure 4. Selection of main BCG waves in individual datasets. a) EEG data were epoched 

by using the ECG events as triggers to produce a butterfly plot; b) RMS across channels was 

computed to identify five main peaks (marked in the figure). 
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Figure 5. Group-level spatial maps for each of the five main BCG peaks. Topographic 

maps were extracted for each subject in correspondence to five different major peaks 

identified from the RMS plot. They were then normalized to z-scores and averaged across 

subjects. 
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Figure 6. Spatial maps of the two main BCG components. The first (left) and second PCs 

(right) had 76.69% and 12.71 % explained variance, respectively. Their topographic maps 

are shown in z-scores for visualization purposes. 
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Table 1. Descriptive statistics for RR intervals and ECG-BCG delays in individual 

subjects. The relationship between the two parameters was assessed by means of 

Pearson’s correlation. 

 
 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185181doi: bioRxiv preprint 

https://doi.org/10.1101/185181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Figure 1. Representative EEG trace before and after the gradient 

artifact correction. The removal of the gradient artifact from the EEG signal permitted to 

identify BCG events. 
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Supplementary Figure 2. Subject-level spatial maps for each of the five main BCG 

peaks. Topographic maps were extracted for each subject in correspondence to five 

different major peaks identified from the RMS plot.  
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