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Abstract 34 

Understanding the rate of evolutionary change and the genetic architecture that facilitates rapid 35 

adaptation is a current challenge in evolutionary biology. Comparative studies show that genes 36 

with immune function are among the most rapidly evolving genes in a range of taxa. Here, we 37 

use immune defense in natural populations of D. melanogaster to understand the rate of 38 

evolution in natural populations and the genetics underlying the rapid change. We probed the 39 

immune system using the natural pathogens Enterococcus faecalis and Providencia rettgeri to 40 

measure post-infection survival and bacterial load of wild D. melanogaster populations collected 41 

across seasonal time along a latitudinal transect on the eastern North America (Massachusetts, 42 

Pennsylvania, and Virginia). There are pronounced and repeatable changes in the immune 43 

response over approximately 10 generations between the spring and fall populations with a 44 

significant but less distinct difference among geographic locations. Genes with known immune 45 

function are not enriched among alleles that cycle with seasonal time, but the immune function 46 

of a subset of seasonally cycling alleles in immune genes was tested using reconstructed outbred 47 

populations. We find that flies containing seasonal alleles in Thioester-containing protein 3 48 

(Tep3) have different functional responses to infection and that epistatic interactions among 49 

seasonal Tep3 and Drosomycin-like 6 (Dro6) alleles produce the immune phenotypes observed in 50 

natural populations. This rapid, cyclic response to seasonal environmental pressure broadens our 51 

understanding of the complex ecological and genetic interactions determining the evolution of 52 

immune defense in natural populations.  53 
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Introduction 54 

 The rate at which populations respond to environmental change is a fundamental 55 

parameter in the process of adaption. Evolution is historically considered to be an innately slow 56 

process that occurs over very long timescales [1], but there are now examples that evolutionary 57 

change can occur much faster [2-5]. The limits of how fast populations evolve and the genetic 58 

architecture underlying rapid evolution remain unclear [6]. The classical approach to infer 59 

adaption through the association of traits and genotypes that co-vary along spatial environmental 60 

gradients (e.g., latitude, longitude, altitude) [7] can be expanded across temporal environmental 61 

gradients to provide insight to the rate of adaption in the wild.  62 

 The biotic environment may shape the rate of adaptation through the immune system, 63 

which sits at the crucial interface between an organism’s external and internal environment. 64 

Strong selection imposed by pathogens may result in rapid evolution of immune defense in 65 

nature because microbiotic infection directly affects host fitness with consequences ranging from 66 

resource reallocation away from other functions to host mortality [8-23]. Comparative studies 67 

across a broad range of taxa indicate that genes with immune function are among the most 68 

rapidly evolving genes in the genome [24-31]. Drosophila melanogaster immune genes show 69 

evidence of local adaptation across large spatial gradients with high levels of population 70 

differentiation and latitudinal enrichment across multiple continents [32-35]. There is less 71 

evidence for differentiation at smaller spatial scales [36,37], although some screens of infection 72 

response in D. melanogaster indicate continental differences in defense quality [36]. Thus, 73 

immune defense in natural populations of D. melanogaster is a good system to study the how 74 

fast natural populations can evolve and genetics underlying the rapid change. 75 
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We predict seasonal variation in D. melanogaster immune defense even in the absence of 76 

established clinal differences in performance. Seasonal climatic changes produce predictable 77 

environmental gradients over a temporal scale that select for different phenotypes [38,39] and 78 

allele frequencies [40,41]  in multivoltine organisms like D. melanogaster. Abiotic variables 79 

(e.g., temperature) that cycle across seasons can influence microbial growth, so it is possible that 80 

microbial communities and pathogen diversity that vary over spatial gradients [42-49] also 81 

change as a function of seasonal time [50-53]. Changes in pathogen diversity and frequency 82 

across seasons may select for immune resistance or tolerance in either or both of the primary 83 

humoral immune pathways: the Toll pathway that is preferentially activated by Gram-positive 84 

bacteria or the IMD pathway that is primarily activated by Gram-negative bacteria [54].  85 

 We tested whether innate immunity evolves seasonally in mid-Atlantic D. melanogaster 86 

populations in North America (Massachusetts, Pennsylvania, and Virginia). We found that 87 

immune defense changed rapidly and repeatedly from spring to fall, and that seasonally cycling 88 

alleles of immune genes determine seasonal variation in resistance to and tolerance of infection. 89 

We used reconstructed outbred populations to show that epistatic interactions among seasonally 90 

cycling SNPs produced the immune phenotypes observed in natural populations. This rapid, 91 

cyclic response to seasonal environmental pressure broadens our understanding of the complex 92 

ecological and genetic interactions determining the evolution of immune defense in natural 93 

populations. 94 

 95 

 96 

 97 

 98 
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Methods 99 

Experimental Model Details 100 

Wild Drosophila Samples 101 

 Wild D. melanogaster were collected by direct aspiration both in early July (Spring 102 

population) and late October (Fall population) at three locations spaced evenly along a 4º 103 

latitudinal gradient: George Hill Orchard in Lancaster, MA (42.500493ºN, -71.563580ºE), 104 

Linvilla Orchards in Media, PA (39.884179ºN, -75.411227ºE) and Carter Mountain Orchard in 105 

Charlottesville, VA (37.991851ºN, -78.471630ºE). Collections were repeated across two years. 106 

Isofemale lines were established from wild-caught inseminated females and were maintained on 107 

standard cornmeal molasses food under controlled laboratory conditions (25ºC, 12L:12D) on a 108 

three-week transfer cycle for 6-8 generations before immune assessment. 109 

 110 

Recombinant outbred population cages 111 

 Recombinant outbred populations [55]fixed for specific seasonal allele combinations in a 112 

randomized genetic background were constructed using lines from the Drosophila Genetics 113 

Reference Panel (DGRP) [56]. Ten gravid females from 15 lines were pooled to lay eggs for 48 114 

hours for each combination of seasonal alleles. The offspring were permitted to mate freely for at 115 

least 10 subsequent non-overlapping generations before immune assessment. This produced 116 

populations fixed for the alleles of interest in a heterogeneous unlinked background. The immune 117 

function of the two SNPs in Thioester-containing protein 3 (Tep3) was tested using three 118 

genotypes that combined 2L:7703202 and 2L:7705370 (D. melanogaster reference genome 119 

v.5.39) spring and fall alleles: (1) Tep3TG contained spring alleles for both 2L:7703202 and 120 

2L:7705370, (2) Tep3TT contained the spring 2L:7703202 and the fall 2L:7705370 modifier allele 121 

and (3) Tep3CT contained fall alleles for both SNPs. The final combination of the fall 2L:7703202 122 
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coding allele and the spring 2L:7705370 modifier allele was too rare in the DGRP to create the 123 

recombinant populations. Two independent biological replicate populations were created for 124 

each of the three Tep3 genotypes. Epistatic interactions between Tep3 and either Fas-associated 125 

death domain (Fadd) or Drosomycin-like-6 (Dro6) were assessed in the same way with 126 

recombinant outbred populations fixed for either both spring or both fall Tep3 alleles and either 127 

Fadd or Dro6 alleles. 128 

 129 

Fly husbandry 130 

 Flies were reared in standard laboratory conditions (25ºC, 12:12 L:D) at controlled 131 

density in vials. Male flies were collected for infection at 3-5d using light CO2 anesthesia. Flies 132 

were stored in groups of 10 after infection. 133 

 134 

Method Details 135 

Immune survival  136 

 Quality of immune defense was probed using systemic bacterial infection [57] with 137 

Gram-negative Providencia rettgeri [58] and Gram-positive Enterococcus faecalis [59] strains 138 

that were originally isolated from infected wild-caught D. melanogaster. Post-infection survival 139 

was measured in males over two repeated blocks of five consecutive days after infection. 140 

Mortality was highest in the first 24h and plateaued (Figure S2) so the final mortality 5d post 141 

infection was analyzed in the model. Flies were infected with cultures started with a single 142 

colony grown to saturation in LB media at 37ºC with shaking overnight and diluted to A600nm of 143 

1.0. Infections were delivered at a dose of 103 to 104 bacteria to each CO2-anesthetized fly by 144 

inoculating the lateral thorax with a 0.15 mm minute pin (Fine Scientific Tools) dipped into 145 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186882doi: bioRxiv preprint 

https://doi.org/10.1101/186882


Page 7 

bacterial culture [57]. Two controls were used: a sterile wound by a needle disinfected in 95% 146 

ethanol and unwounded flies anesthetized on CO2 for the duration of the infection. 147 

 148 

Bacterial load 149 

 The systemic bacterial load of infected flies was quantified using the same infection 150 

method as was described above for survival of infection. When evaluating the natural 151 

populations, 20 lines from each of the 3 collection locations were infected during a 9a-12p daily 152 

infection window. All infections were repeated over two consecutive days by two infectors and 153 

the infector and infection order was randomized daily using a random number system. Twelve 154 

males from each line were infected each day and maintained in vials with food at 25ºC, 155 

12:12(L:D). The infected flies were measured for bacterial load at 24h after infection. Up to 3 156 

replicate groups of 3 flies were homogenized in 500 mL of LB for the 2012 natural populations 157 

and up to three single flies were homogenized in 500 mL of PBS for the 2014 natural and 158 

recombinant populations. The samples were then plated on LB agar plates at a dilution of 1:100 159 

for P. rettgeri, 1:10 for E. faecalis natural populations and 1:1 for the recombinant populations 160 

using a Whitley Automatic Spiral Plater (Don Whitley Scientific, Shipley, UK). The plates were 161 

incubated overnight at 37ºC and the number of colony forming units on each plate was counted 162 

using the ProtoCOL3 automated plate counter (Synbiosis, Cambridge, UK). The number of 163 

colonies was used to calculate the concentration of bacteria in each homogenate. 164 
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 165 

Expression data 166 

 Expression differences were determined using a published dataset of RNA-seq on 192 167 

inbred sequenced lines from the DGRP [60]. We extracted the expression levels for Tep3, Dro6 168 

and Fadd and used the sequence data from [56] to identify the Tep3, Dro6 and Fadd haplotypes.   169 

 170 

Quantification and Statistical Analysis 171 

Phenotypic statistical analyses 172 

 All statistical analyses were performed using the R software (v 3.2.2; The R core team 173 

2012). Post-infection survival was measured daily and the survival 5 days post infection was 174 

analyzed using a binomial linear regression. The mean proportion of surviving infected flies was 175 

standardized by the survival under sterile wound control treatment and then was evaluated using 176 

the following model: 177 

 178 

Survival / Control survival = Year*Population*Season + Line + Replicate 179 

 180 

Population, year and season were considered as fixed effects and the random effects of replicate 181 

and line were nested within season within population within year.   182 

 183 

The number of colonies is used to calculate the concentration of bacteria in each 184 

homogenate. The concentrations were log transformed and then analyzed using mixed-model 185 

ANOVAs as follows: 186 

 187 

log10(count/mL) = Year*Population*Season + Line + Replicate 188 
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 189 

Population, year and season was fixed effects and the random effects were replicate and line 190 

nested within season within population within year.  Infector and infection order were initially 191 

included in the model but had no significant effect and were removed. 192 

 193 

Seasonal SNPs 194 

 Seasonal immune SNPs were identified by screening for alleles that fluctuate in 195 

frequency as a function of seasonal time [61] in 88 genes known to have immune function [62]. 196 

The seasonal SNPs were cross-referenced with a group of paired spring and fall samples 197 

collected from 10 populations along the North American cline by the Drosophila Real Time 198 

Evolution Consortium (Dros-RTEC 12 unpublished samples; https://sites.sas.upenn.edu/paul-199 

schmidt-lab/pages/opportunities). Additional information was collected on each SNPs including 200 

a clinal q-value [61] and a p-value in a genome wide association study to identify SNPs involved 201 

with P. rettgeri pathogenic infection [63]. Enrichment for immune genes was calculated using 202 

customized python scripts that compared proportion of seasonal and non-seasonal immune genes 203 

to control genes that were matched for size and position using χ2 with 10,000 bootstrap 204 

iterations.  205 

 Linkage disequilibrium (LD) among the candidate seasonal immune SNPs was calculated 206 

in the DGRP using allelic correlation of physical distances using the LDheatmap package [64] in 207 

R. The 205 sequenced inbred lines of the DGRP were used to examine LD among all of the 208 

candidate SNPs by chromosome [56]. 209 

 210 

Seasonal genotypes 211 
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 The genotypes from wild populations were determined using a panel of inbred lines 212 

originally collected in Pennsylvania in the spring and autumn of 2012. The lines were inbred by 213 

full-sib mating for 20 generations and subsequently sequenced. Genotype deviation was 214 

calculated as the difference between observed frequency and a predicted frequency based on the 215 

individual alleles. The haplotype distribution of Tep3 was calculated for SNPs with a minor 216 

allele frequency greater than 0.1 using integer joining networks[65] in PopArt vs. 1.7 [66].  217 

 218 

Expression data 219 

The expression data for Tep3, Dro6 and Fadd was extracted from an RNAseq dataset of 220 

the DGRP [60]. The lines were sorted by genotype based on the published DGRP data [56] 221 

and differences among haplotypes was analyzed using a Welsh t-test in R. 222 

 223 

Results  224 

Geographic differences in immunity 225 

 The geographic origin of the D. melanogaster population across the latitudinal transect 226 

determined survival post infection but did not predict systemic bacterial load sustained by flies 227 

infected with either pathogen. While survival after P. rettergi infection directly depended on the 228 

latitude at which the population was collected (χ2
(2)=12.805, p=5.87-4), geographic origin and 229 

season of collection had a combined effect on survival after E. faecalis infection (χ2
(2)=10.035, 230 

p=6.62-3). Survival after E. faecalis infection was higher in the lower-latitude Virginia 231 

population in the spring but the clinal difference disappeared in the fall (Figure 1 A-B). The 232 

high-latitude Massachusetts and Pennsylvania populations had similar load and survival after P. 233 
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rettgeri infection and exhibited a greater seasonal change in both survival and bacterial load 234 

compared to the lower-latitude Virginia population (Figure 1 C-D). 235 

 236 

Immunity changes rapidly within a population over seasonal time 237 

 Immune defense changed rapidly across approximately 10 generations in the wild from 238 

spring to fall. The relationship between bacterial load and survival varied between source 239 

population and seasonal collection in a pathogen-specific way (Figure 1). Spring populations 240 

were more resistant to E. faecalis bacterial growth (F(1, 219)=87.758, p<0.0001) and maintained 241 

low load with marginally higher survival rates (χ2
(1)=3.201, p=07.36-2), while the fall populations 242 

infected with the same bacteria did not restrict bacterial growth as effectively, resulting in high 243 

load and high mortality (Figure 1 A-B). However, the converse relationship occurred when flies 244 

were infected with P. rettgeri: higher survival in the spring (χ2
(1)=16.145, p=5.87-4) despite 245 

higher bacterial load (F(1, 215)=4.3404, p<0.0001) and high mortality in the fall even though the 246 

bacterial growth was restricted to low levels (Figure 1 C-D). 247 

 248 

SNPs in immune genes oscillate across seasonal time 249 

 Immune genes as a functional category were not enriched among genes carrying 250 

polymorphisms that oscillate in frequency over seasonal time in these populations [61] when 251 

compared to controls matched for size and position. We identified 24 candidate SNPs (Table 1) 252 

that oscillate in frequency across seasonal time in these populations [61] located within or in 253 

proximity to 13 genes that are known to be involved in immune function [67]. Candidate 254 

immune genes containing seasonal SNPs were distributed across all levels of the humoral innate 255 

immune pathway: two genes in recognition receptors involved with the detection of pathogens, 256 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186882doi: bioRxiv preprint 

https://doi.org/10.1101/186882


Page 12 

six genes in the signaling cascades and five effector proteins that contribute directly to bacterial 257 

killing (Table 1). 258 

 259 

Seasonally oscillating Tep3 SNPs have functional differences in immunity 260 

 Over 1/3 of the seasonally variable SNPs near immune genes were near Tep family 261 

genes, with Tep homologs comprising 1/4 of all of the seasonally variable immune genes. Tep3 262 

contained numerous seasonally oscillating loci with high LD across the 2.5 kb region in which 263 

the seasonal alleles are located in the DGRP (Figure 2B). There were two primary sequence 264 

haplotypes carrying spring Tep3TG variants and two sequence haplotypes carrying the fall Tep3CT 265 

variants in the Pennsylvania orchard (Figure 3F, Table S2). We tested the function of these SNPs 266 

using recombinant outbred populations with two loci as markers: the non-synonymous coding 267 

change at 2L:7703202 that is surrounded by five intronic seasonal SNPs and the intronic SNP 268 

2L:7705370 that is 2 kb downstream from the cluster (D. melanogaster reference genome 269 

v.5.39). Alleles of the intronic SNP at 2L: 7703202 were non-randomly distributed with respect 270 

to karyotype: in both of the independent DGRP and Pennsylvania populations, we observed that 271 

the fall allele (C) was strongly associated with In(2L)t. In contrast, the spring allele (T) occurred 272 

mostly in a standard arrangement genetic background (Fisher’s exact test; p<0.0001). 273 

2L:7705730 had no significant association with either arrangement of In(2L)t (Fisher’s exact test; 274 

p=0.161). 275 

 There was no difference among the Tep3 recombinant outbred populations in bacterial 276 

load, but there was differential survivorship after infection with both Gram-positive and Gram-277 

negative pathogens. Flies containing the spring Tep3TG haplotype had higher survival than those 278 

containing the fall Tep3CT or mixed Tep3CG haplotypes when infected with Gram-positive E. 279 
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faecalis (χ2
(2)=6.73, p=0.0346; Figure 3A). The Tep3 SNPs are associated with an additive effect 280 

on survival of Gram-negative P. rettgeri infection with higher survival in flies containing the fall 281 

haplotype than those containing the spring haplotype and intermediate survival in flies 282 

containing the mixed haplotype (χ2
(2)=3.651, p=0.161, Figure 3B). Flies containing the seasonal 283 

Tep3 haplotypes have no difference in Tep3 expression in the absence of infection (F(3, 360)= 284 

1.419 p= 0.239, Figure 3C) based on previously published RNAseq expression of the DGRP 285 

lines [60]. 286 

 287 

Epistasis among AMP genes involved in rapid seasonal adaptation 288 

 We tested whether additional seasonal SNPs in the immune pathways interact with Tep3 289 

to facilitate rapid immune evolution across seasons. We examined epistasic interactions in 290 

immune function between Tep3 and a seasonally cycling immune SNP (3L:3334769, an 291 

upstream modifier of Drosomycin-like 6 (Dro6)), that was shown to significantly affect 292 

resistance to P. rettgeri in a genome-wide association study [63]. We also tested epistasis among 293 

the Tep3 SNPs and 3R:17861050, a 3’ UTR modifier in the signaling gene Fas-associated death 294 

domain ortholog (Fadd, also known as BG4), which was the only SNP that demonstrated 295 

concordant patterns between seasonal change and latitudinal differentiation (Figure 2A, Table 1). 296 

There was no difference in immune defense among recombinant populations containing 297 

combinations of Tep3 and Fadd, but the non-additive interactions among recombinant 298 

populations containing Tep3 and Dro6 alleles begin to explain more of the complexity of 299 

immune defense of natural populations (Figure 4A-D).  300 

 301 

 302 
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Discussion 303 

Natural populations differ in immunity over geographic space and across seasonal time 304 

 We show that immune response differs among populations across space and time. Season 305 

of collection is a strong predictor of the immune response across the geographic locations that 306 

span 4º latitude with a seasonal decline in resistance to E. faecalis and a seasonal decline in 307 

tolerance of P. rettgeri infection. The change in immunity across seasonal time occurs rapidly 308 

within each geographic location with approximately 10 generations between the spring and fall 309 

collections. The repeated seasonal change in immune defense is consistent with previous 310 

findings for other measurements of stress resistance [38,39]. Together this suggests that the harsh 311 

winter selects for a suite of traits that produce a robust spring population and that selection on 312 

those traits is relaxed during the summer producing a less stress resistant population in the fall. 313 

Although the strongest differentiation of immunity occurred across seasonal time, there 314 

was also a signal of geography along the sampled spatial gradient. Our results contrast with 315 

previous studies that did not detect a robust association between latitude and survival [68] or 316 

load [36,62]. The difference may be attributed to the interaction between season and latitude. It is 317 

possible that geographical differences in immune response may be even greater across a longer 318 

distance that may capture a larger difference in pathogen diversity [42-49]. 319 

 The repeatability of the change in immune defense across replicate years and locations 320 

indicate deterministic evolutionary processes. Rearing the lines for multiple generations in a 321 

common laboratory environment that is distinct from the external sample sites removes 322 

environmental variation and ensures that differences among collections and populations can be 323 

attributed to genetic diversity among the source populations. It is possible that gene flow due to 324 

migration from other latitudes contributes to the differences between the spring and fall 325 
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populations. However, migration is unlikely to be the primary cause underlying seasonal immune 326 

differences because the latitudinal differentiation was weak compared to seasonal change. 327 

Furthermore, infection with different pathogens resulted in opposing clinal patterns but parallel 328 

change across seasons. Additionally, migration alone appears insufficient to explain genome-329 

wide differences in allele frequency profiles that characterize spring and fall populations in 330 

Pennsylvania orchard [61]; thus, migration is unlikely to explain the seasonal differences in 331 

immune response. Wild Drosophila populations live in a heterogeneous environment and evolve 332 

rapidly in response to environmental parameters that change with season [38,39], potentially 333 

including rapid turn-over in microbial and pathogen communities (Figure S2). 334 

   335 

SNPs in immune genes oscillate across seasonal time 336 

The changes in immune defense are due to differences in genes with immune function 337 

across space and time. Genomic screens show that immune genes are enriched across latitudinal 338 

gradients [32-35], but we did not find enrichment among immune genes in SNPs that cycle in 339 

frequency with season. Seasonal differences in immunity could arise from variation in genes that 340 

are not classically identified as part of the immune system and were not detected from our 341 

screen. However, the D. melanogaster immune system is well characterized and changes in even 342 

a single immune gene could affect the phenotypic response to infection even without enrichment 343 

for all immune genes. Alternatively, the immune changes may be controlled by non-additive 344 

genetic interactions that would not be identified in the enrichment analysis.  345 

 346 

Immune survival of flies containing seasonally oscillatingTep3 haplotypes 347 
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 The patterns in the recombinant outbred populations were consistent with the seasonal 348 

patterns in natural populations: spring populations and flies containing the spring Tep3 haplotype 349 

both had a higher defense against Gram-positive E. faecalis whereas fall populations and flies 350 

containing the fall Tep3 haplotype had higher defense against Gram-negative P. rettgeri. 351 

Opposite survival patterns for flies with spring and fall Tep3 haplotypes were consistent with 352 

antagonistic pleiotropy [69] within the branches of the immune system limiting the host such that 353 

improvements in response to one class of pathogens (e.g., Gram-negative bacteria) restrict the 354 

ability to respond to other pathogens (e.g., Gram-positive bacteria). Trade-offs within the 355 

immune system occur in several insect systems between humoral antimicrobial peptides that 356 

combat microbial infections and phenoloxidase that is deployed against eukaryotic parasites 357 

[14,70,71] as well as in the T helper cells of the vertebrate immune system (reviewed in [72]). 358 

We hypothesize that genetic variation for allocation of either immune activity may be maintained 359 

if the risk of pathogenesis changes over space or time. The genotypes have pathogenic-specific 360 

genetic effects. Additivity among the loci in response to P. rettgeri, but a non-additive response 361 

to E. faecalis, suggests that the fall allele at 2L:7705370, or genetic variants linked to it, has a 362 

dominant effect that decreases survival to E. faecalis infection. 363 

 Our data suggest that these Tep3 loci are natural variants in immune tolerance because 364 

flies containing the haplotypes with the same infection load had differential survivorship. The 365 

molecular function of the seasonal loci in Tep3 remains unclear. Tep proteins are ⍺-366 

macroglobulin protease traps that bind to pathogen surface and act as opsonins [73-75]. The 367 

polymorphism at 2L:7703202 produces a nonsynonymous Ala/Val polymorphism at residue 18, 368 

but both amino acids produced are hydrophobic. The intronic SNP at 2L:7705370 is directly 369 

upstream of the exon cassette region and may regulate expression, but Tep3 is constitutively 370 
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expressed and not strongly induced by E. faecalis or P. rettgeri infection [76]; B.P. Lazzaro 371 

unpublished data). Therefore, the SNPs we examined may most appropriately be considered as 372 

markers for a larger haplotype that contains the causal variants.  373 

 Pathogen-specific higher survival associated with the spring and fall Tep3 haplotypes 374 

may increase their frequency in the wild compared to flies containing a combination of spring 375 

and fall alleles. Inversions could theoretically maintain the LD that preserves the high-fitness 376 

spring and fall haplotypes [77,78], but this is unlikely because the In(2L)t inversion that contains 377 

Tep3 does not cycle with season [61,79]. Additionally, Tep3 is not located near a recombination-378 

limiting breakpoint of In(2L)t nor is it in LD with other seasonal immune SNPs within the 379 

inversion. However, we found that in two independent populations alleles of the intronic SNP at 380 

2L: 7703202 were non-randomly distributed with respect to karyotype while 2L:7705730 had no 381 

significant association with either arrangement of In(2L)t. LD might be created and maintained 382 

by selection against recombinant phenotypes either due to lower immunocompetence or another 383 

pleiotropic trait or because of intraspecific genetic incompatibilities. Deleterious 384 

incompatibilities maintain distinct haplotypes in Arabidopsis thaliana NLR immune receptors 385 

[80] and may also explain the near absence of the Tep3CG combination of spring and fall alleles 386 

in all populations examined. Flies containing the Tep3CG haplotype appear three times across the 387 

haplotype tree constructed from the seasonal Pennsylvania inbred lines, suggesting that the 388 

haplotype may form occasionally through recombination but does not proliferate in the 389 

population. Thus, it is likely that selection for the immune benefits of the spring and fall 390 

haplotypes and against the combination of spring and fall alleles maintains these distinct 391 

haplotypes in the wild. While these Tep3 haplotypes explained some of the seasonal differences 392 
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in immune tolerance of natural populations, other seasonally changing genes may also contribute 393 

to the observed differences in bacterial resistance in natural populations 394 

 395 

Epistasis among AMP genes involved in rapid seasonal adaptation  396 

 Intergenic epistatic interactions between Tep3 and Dro6 suggest that season-specific 397 

genotypes have highest fitness. In our experiment, flies having all spring or all fall alleles had 398 

higher survival after infection while flies that contained a combination of spring and fall had 399 

higher mortality. This suggests that complex genetic interactions shape winter and summer 400 

fitness with distinct haplotypes maintained by non-additive epistatic interactions [81-83]. 401 

 402 

Conclusions 403 

  With this work, we demonstrate that pathogen-specific innate immunity evolves rapidly 404 

in natural populations of D. melanogaster across replicate years and geographic locations. 405 

Comparative studies across species and among populations have indicated that immune genes 406 

evolve faster than other genes in the genome, but the rapid phenotypic and genetic change we 407 

observed over approximately 10 generations is a substantially faster rate than previously 408 

considered. We tested a small subset of the immune SNPs that oscillate in allele frequency over 409 

seasonal time and observed intra- and inter-genic interactions consistent with changes in immune 410 

tolerance and resistance across seasons in natural populations, perhaps in response to seasonally 411 

changing bacterial communities. Epistatic interactions among seasonally oscillating immune 412 

alleles may help facilitate this rapid phenotypic change over a short seasonal timescale. This 413 

rapid, cyclic response to biotic variables broadens our understanding of the complex ecological 414 

and genetic interactions in the evolutionary dynamics of natural populations. 415 
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Figure Legends 675 
 676 
Figure 1. Immune defense relationship between bacterial load and survival in natural spring and 677 

fall populations. Isofemale lines (small, outline) were used to calculate population mean (large, 678 

filled) from natural orchard populations collected along a latitudinal gradient in Massachusetts 679 

(circle) Pennsylvania (triangle) and Virginia (square) in the spring (blue) and fall (red) for two 680 

replicate years: 2012 (A & C) and 2014 (B & D). Immune defense was probed with two natural 681 

pathogens: a gram-positive bacterium Enterococcus faecalis (A&B) and a gram-negative 682 

bacterium Providencia rettgeri (C&D).  Twenty isofemale lines from each collection were 683 

measured for 5-day survival after infection and bacterial load at 24 hours post-infection scaled by 684 

average load for the experiment.  685 

 686 

Figure 2. Seasonal changes in immune genes in natural populations. (A) Manhattan plot of SNPs 687 

in immune genes that change in frequency as a function of seasonal time with a zoom in on 688 

Tep3.  The red line indicates the seasonal q-value cutoff >0.3[61] and all immune genes that have 689 

significant SNPs are labeled by name on the x-axis. The SNPs on which functional analyses were 690 

performed are highlighted: Fadd (pink square), Dro6 (yellow circle), 2L:7703202 (upwards cyan 691 

triangle) and 2L:7705370 (downwards blue triangle). (B) Heat map showing linkage 692 

disequilibrium (LD) among SNPs in immune response genes across each chromosome. Linkage 693 

disequilibrium calculated as allelic correlation between the physical distances of 2L:7703202 and 694 

2L:7705370 in the DGRP is r2=0.8138. (C) Cycling of seasonal allele frequencies of candidate 695 

immune SNPs across three years. (D) Allele frequencies of candidate SNPs across the latitudinal 696 

gradient in the eastern United States. Only Fadd shows clinal variation with a clinal q-value of 697 

0.006. 698 
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 699 

Figure 3. Functional difference of seasonal Tep3 alleles as defined by the focal SNPs. Mean +/- 700 

SE for bacterial load 24 hours post infection and survival 5 days post infection for the Tep3 701 

genotypes. (A) Higher survival for the spring genotype than the fall or combination genotypes 702 

when infected with E. faecalis. (B) Additive effect of alleles when infected with P. rettgeri (C) 703 

Lower constitutive Tep3 mRNA expression in the rare Tep3CG haplotype in flies from the DGRP. 704 

(D-E) Frequency of Tep3 haplotypes in the Pennsylvania orchard across seasonal time. (F) 705 

Minimum spanning network illustrates that linkage disequilibrium among the SNPs is 706 

maintained in distinct haplotypes.  707 

 708 

Figure 4. Intergenic interactions among Tep3, Dro6, and Fadd. Non-additive interaction among 709 

Tep3 and Dro6 alleles. (A-B). No significant interaction among Tep3 and Fadd SNPs (D-E). 710 
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 711 
Tables and Figures 
 
Table 1. Seasonal immune SNPs identified using whole-genome resequencing of the Pennsylvania spring and autumn populations across three consecutive 
years. SNPs with a seasonal q-value (SQ) < 0.3 are classified as seasonal and the SNPs investigated here are in bold. Most of seasonal SNPs do not have 
significant clinal q-values (CQ) and were not significant in a genome wide association study (GWAS) for response to P. rettgeri pathogenic infection [52]. 
The frequency of the SNPs at each collection date is indicated. 
Gene Position Effect Molecular 

Function SQ CQ GWAS PA 
7.09 

PA 
11.09 

PA 
7. 10 

PA 
11.10 

PA 
7.1 

PA 
10.11 

PA 
11.11 

Tep2 2L:2834400 Upstream 
modifier effector 0.242 0.956 0.253 0.887 0.746 0.889 0.617 0.846 0.694 0.776 

Tep3 2L:7703202 NS coding effector 0.243 0.159 0.420 0.657 0.356 0.515 0.361 0.500 0.424 0.590 

Tep3 2L:7703509 Upstream 
modifier effector 0.151 0.529 0.084 0.840 0.567 0.813 0.667 0.838 0.677 0.694 

Tep3 2L:7703518 Upstream 
modifier effector 0.220 0.643 0.084 0.825 0.554 0.803 0.671 0.831 0.710 0.706 

Tep3 2L:7703748 Upstream 
modifier effector 0.271 0.819 0.114 0.827 0.524 0.700 0.661 0.750 0.569 0.818 

Tep3 2L:7703757 Upstream 
modifier effector 0.291 0.956 0.632 0.748 0.476 0.488 0.541 0.664 0.367 0.618 

Tep3 2L:7705370 Upstream 
modifier effector 0.219 0.163 0.385 0.479 0.158 0.255 0.240 0.457 0.273 0.444 

bsk 2L:10247834 Intron signaling 0.300 0.822 0.255 0.716 0.680 0.571 0.500 0.826 0.470 0.778 

bsk 2L:10252450 Intron signaling 0.257 0.749 0.962 0.145 0.369 0.261 0.358 0.355 0.497 0.308 

Tep1 2L:15887030 Downstream 
modifier effector 0.227 0.188 0.089 0.590 0.841 0.647 0.889 0.732 0.846 0.789 

Tep1 2L:15888031 Downstream 
modifier effector 0.221 0.520 NA 0.000 0.368 0.063 0.360 0.000 0.013 0.012 

cact 2L:16309682 Downstream 
modifier signaling 0.135 0.782 0.829 0.850 0.667 0.649 0.426 0.704 0.407 0.474 

cact 2L:16310896 Downstream 
modifier signaling 0.235 0.635 0.375 0.671 0.432 0.700 0.239 0.533 0.441 0.552 

cact 2L:16318067 Intron signaling 0.281 0.719 0.335 0.592 0.474 0.550 0.382 0.551 0.256 0.627 

sick 2L:19923496 Intron signaling 0.232 0.032 0.505 0.096 0.047 0.130 0.048 0.328 0.053 0.269 

IM1 2R:14270817 Upstream 
modifier effector 0.256 0.695 0.423 0.358 0.075 0.571 0.193 0.213 0.115 0.390 

Dro6 3L:3334769 Upstream 
modifier effector 0.201 0.427 0.000 0.770 0.613 0.814 0.612 0.798 0.489 0.625 

Drs-l 3L:3336529 Upstream 
modifier effector 0.251 0.975 0.028 0.778 0.483 0.893 0.768 0.783 0.682 0.813 

GNBP1 3L:18671289 Downstream 
modifier recognition 0.187 0.150 0.729 0.116 0.458 0.240 0.393 0.230 0.315 0.271 

GNBP2 3L:18671295 Downstream 
modifier recognition 0.218 0.167 0.666 0.144 0.472 0.255 0.407 0.257 0.344 0.294 

Fadd 3R:17861054 UTR 
3'modifier signaling 0.200 0.006 0.822 0.669 0.250 0.369 0.353 0.638 0.411 0.410 

Fadd 3R:17861073 UTR 
3'modifier signaling 0.287 0.425 0.712 0.734 0.351 0.407 0.407 0.613 0.467 0.459 

kay 3R:25600668 Intron signaling 0.200 0.588 0.743 0.686 0.453 0.607 0.464 0.636 0.383 0.475 

Tak1 X:20388404 Intron signaling 0.227 0.326 0.964 0.575 0.032 0.273 0.135 0.271 0.150 0.217 

 712 
 713 
  714 
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Supplemental Material 715 

 716 

Figure S1. Related to Figure 1 Post infection survivorship curves for 5 days post infection across 717 

seasonal time. Population mean +/- SE. 718 

 719 

Figure S2. Related to Figure 1 Microbial community associated with wild and F1 Drosophila 720 

melanogaster changes over space and time. D. melanogaster samples were collected as part of 721 

the Drosophila Real Time Evolution Consortium (Dros-RTEC 12 unpublished samples; 722 

https://sites.sas.upenn.edu/paul-schmidt-lab/pages/opportunities). DNA was extracted as 723 

described in [84]. Analysis was performed using a customized MOTHUR (v.1.36.0) [85] script 724 

that is available upon request. Wolbachia sequences were removed from the analysis. 725 

 726 

Table S1. Related to Figure 3. Tep3 haplotypes in the 2012 Pennsylvania population.  Focal 727 

SNPs are highlighted in black and the genotype combinations are highlighted: spring (blue), fall 728 

(red), high-frequency combination (purple), rare combination (grey). 729 
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