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Abstract

Motivation: Tumor genome sequencing offers
great promise for guiding research and therapy, but
spurious variant calls can arise from multiple sources.
Mouse contamination can generate many spurious
calls when sequencing patient-derived xenografts
(PDXs). Paralogous genome sequences can also
generate spurious calls when sequencing any tumor.
We developed a BLAST-based algorithm, MAPEX,
to identify and filter out spurious calls from both
these sources.
Results: When calling variants from xenografts,
MAPEX has similar sensitivity and specificity to
more complex algorithms. When applied to any
tumor, MAPEX also automatically flags calls that
potentially arise from paralogous sequences. Our
implementation, mapexr, runs quickly and easily
on a desktop computer. MAPEX is thus a useful
addition to almost any pipeline for calling genetic
variants in tumors.
Availability: The mapexr package for R is available
at https://bitbucket.org/bmannakee/mapexr

under the MIT license.
Contact: mannakee@email.arizona.edu,
rgutenk@email.arizona.edu, eknud-
sen@email.arizona.edu

1 Introduction

Molecular characterization of tumors is an impor-
tant tool in cancer research, and the large-scale se-
quencing of cancer genomes has led to a deeper un-
derstanding of many aspects of the biology of can-
cer [Stratton MR, 2011]. It is now common to se-
quence tumors from large cohorts of patients, as well
as patient-derived xenograft (PDX) models from in-
dividual patients. Such sequencing enables identifi-
cation of mutational signatures [Alexandrov et al.,
2013], functionally important variants [Ding et al.,
2012] and evolutionary history of the tumor [Carter
et al., 2012, Nik-Zainal et al., 2012]. These ge-
netic features are relevant in evaluating etiological
mechanisms [Yachida et al., 2010], prognostic sub-
types [Park et al., 2010, Shah et al., 2009], and
acquired therapeutic resistance [Witkiewicz et al.,
2015]. All these applications of tumor sequencing
depend on sensitive and specific characterization of
low-frequency mutations, and as a result may be bi-
ased by spurious variant calls. Here we focus on two
specific sources of spurious calls, mouse cell contam-
ination in PDX tumors and mis-alignment of paralo-
gous sequences.

PDX models serve as avatars for individual pa-
tient tumors when studying intra-tumor heterogene-
ity and metastasis and when screening anti-cancer
compounds [Allaway et al., 2016, Bruna et al., 2016,
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Dawson et al., 2012, Day et al., 2015, Knudsen et al.,
2017]. The primary difficulty in sequencing these
models is that mouse stroma is present in all PDX
tumors. The high genetic similarity between mouse
and human then causes bias when variants are called
using bioinformatic pipelines originally developed for
primary tumors [Rossello et al., 2013, Tso et al.,
2014]. Several methods have been developed to fa-
cilitate the accurate calling of variants in PDX mod-
els. Experimentally, human-specific fluorescence tags
can be used to label and isolate human cells prior to
DNA extraction [Schneeberger et al., 2016]. Bioin-
formatically, sequence reads can be aligned to both
human and mouse reference genomes, either sepa-
rately [Conway et al., 2012, Khandelwal et al., 2017]
or simultaneously [Bruna et al., 2016], to filter out
mouse reads prior to variant calling. Although these
approaches greatly improve the reliability of variant
calls from PDX models, they entail substantial exper-
imental or bioinformatic burdens. Here we describe
a lightweight filtering algorithm that achieves equiv-
alent reliability and can be easily added to standard
bioinformatic pipelines.

Many human genes have highly similar paralogous
sequences in the genome. Spurious variant calls aris-
ing from such paralogs have been recognized as an
important source of false positives in the study of
rare disease-associated germline variants [Jia et al.,
2012, Mandelker et al., 2016, Ng et al., 2010, Zhou
et al., 2015]. Similarly, paralogs have led to false
positives in the study of cancer, including TUBB
in non-small cell lung cancer [Kelley et al., 2001],
PIK3CA in hepatocellular carcinoma [Müller et al.,
2007, Tanaka et al., 2006], and MLL3 in myelodys-
plastic syndrome [Bowler et al., 2014]. To address the
paralog problem, some variant callers, such as Mu-
Tect2 (currently in beta but included in the Genome
Analysis Toolkit (GATK; McKenna et al. [2010])),
filter clustered variants, which often result from mis-
alignment of paralogous sequences. Many labs also
keep lists of suspect genes that tend to suffer from
paralog problems and simply ignore any variants
called in these genes. These approaches introduce
their own biases. Our approach automatically identi-
fies potential spurious calls from paralogs and enables
flexible evidence-based filtering.

Here we fully describe and characterize MAPEX
(the Mouse And Paralog EXterminator), a BLASTN-
based algorithm for filtering variants that was previ-
ously introduced by Knudsen et al. [2017]. We also
present mapexr, a fast and lightweight implementa-
tion in R. We show that, when applied to PDX sam-
ples, MAPEX generates calls that are highly similar
to other methods, but with less bioinformatic and

computational overhead. We also show that, when
applied to primary samples, MAPEX effectively fil-
ters paralogs while avoiding biases of existing heuris-
tics. MAPEX is thus a useful addition to different
tumor variant calling pipelines.

2 Approach

2.1 Workflow

The MAPEX algorithm is a post-variant-calling fil-
ter designed to fit into a standard tumor variant call-
ing pipeline and flag variants which may arise from
mis-alignment of mouse reads or from paralogous se-
quences. The input for MAPEX is a BAM file con-
taining tumor reads aligned to the human reference
genome and a variant callset generated from that
alignment. MAPEX scores variants by the fraction
of variant-supporting reads that align best to the site
of the variant when BLASTed against a combined
human/mouse reference genome (Figure 1).

2.2 Algorithm

Each read supporting a variant is BLASTed against
the appropriate reference genome for the applica-
tion. For PDX applications, this is the combined
human/mouse reference, and for primary tumor ap-
plications, this is just the human reference. The best
hit for each read is determined by bit score. Reads for
which the best hit overlaps the called variant location
are classified as “on target” and assigned a score of
1. Reads for which the best hit is a different region of
the human genome or a region of the mouse genome
are classified as “off target” or “mouse”, respectively,
and assigned a score of 0. Reads from genes with
close paralogs in the human genome may generate
multiple best hits (ties). In this case, the read score
is averaged over all best hits, and the read is classi-
fied based on the most common result from the best
hits. Each variant is then assigned a score that is the
average score of all reads supporting that variant and
is classified based on the most common classification
of the supporting reads.

2.3 Implementation

We have implemented the MAPEX algorithm
as an R package (mapexr). The package
leverages the Bioconductor packages Rsamtools,
GenomicAlignments, and GenomicRanges for fast
and memory-efficient BAM file handling and read
sequence extraction [Lawrence et al., 2013, Morgan
et al., 2017]. The package requires a local BLASTN
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Figure 1: Illustration of MAPEX applied to a
PDX sample. MAPEX begins with variants called
from tumor reads aligned to the human genome. For
each variant (red, blue, and green lines), the sup-
porting reads are BLASTed against the combined hu-
man and mouse reference genomes. Variants are then
scored by the fraction of supporting reads that align
to the called site of the variant in the human genome.

installation and a BLAST database constructed from
either a combined human/mouse reference genome or
a human reference genome, depending on the appli-
cation.

3 Methods

3.1 Samples

To characterize the performance of MAPEX, we
used Whole Exome Sequence trimmed fastq reads
obtained from pancreatic ductal adenocarcinoma
(PDAC) samples described previously by Knudsen
et al. [2017] (PDX) and Witkiewicz et al. [2015] (pri-
mary). For the PDX analysis, we analyzed a total of
34 PDXs derived from 9 primary tumors, sequenced
to mean coverage depth of 124x. For the paralog
analysis, we analyzed 93 primary tumors sequenced
to a mean coverage depth of 40x.

3.2 Alignments and variant callers

All alignments were done using bwa-mem with de-
fault parameter settings [Li and Durbin, 2009].
For initial variant calling, we aligned all reads
in the samples to the human reference genome
GRCh37. We then called variants using MuTect ver-
sion 1.1.1 [Cibulskis et al., 2013], MuTect2 (as part
of the GATK version 3.6, McKenna et al. [2010]),
and Varscan 2 [Koboldt et al., 2012], all with de-
fault parameter settings. Variants were annotated
with Oncotator [Ramos et al., 2015] and the anno-
tation database oncotator v1 ds April052016. For
Varscan 2, two PDX samples that yielded millions of
variant calls were not processed by MAPEX, to con-
serve computational time. We considered only non-
synonymous single nucleotide variants when compar-
ing between methods. For paralog filtering, we used
a conservative variant score cutoff of 0.8.

For comparison with Bruna et al. [2016], we aligned
reads to a combined human/mouse reference genome
GRCh37/mm9 and called variants using MuTect 1.1.1.
We calculated the fraction of mouse contamination
using the method described in Bruna et al. [2016].
Briefly, they generated data comparing the fraction of
mouse cells in a sample with the fraction of total reads
aligned to the mouse portion of a combined reference
genome. We used this data to fit a LOESS regression
model for contamination fraction vs fraction aligned,
and used this to predict mouse contamination based
on the fraction of reads aligned to the mouse genome
in our samples.

For comparison with bamcmp [Khandelwal et al.,
2017], we aligned reads separately to the human and
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mouse reference genomes and ran bamcmp with de-
fault parameters. The output of bamcmp includes
alignment files for reads that aligned to only the hu-
man reference and that aligned to both references but
with a higher human alignment score. We merged
these two alignments, performed indel realignment
and base score recalibration using the GATK, and
used the merged alignment to call variants with Mu-
tect version 1.1.1.

4 Results & Discussion

4.1 Methodological

MAPEX is a lightweight filtering algorithm that adds
little overhead or complexity to existing variant-
calling pipelines. The runtime for MAPEX is linear
in the number of variants to be filtered. On a 4-
core machine, our implementation mapexr, processes
roughly 250 variants per minute (Figure S1).

MAPEX has only one tunable parameter, the min-
imum mapping quality score required for a variant
read. The default minimum score is 1, which in-
cludes all reads with an unambiguous best mapping.
In pipelines in which a minimum mapping quality
score is used for variant calling, that score should also
be supplied to mapexr, to prevent evaluating reads
that were not used by the variant caller. The output
from mapexr is an R data frame with four columns –
chromosome, start location, variant score, and vari-
ant classification – and one row for each variant evalu-
ated. Users may also optionally provide a file path to
mapexr which will generate a tab-delimited file with
blast results and scores at the read level. The user
can choose the variant score threshold used to classify
variants as human- or mouse-derived. Here we use a
threshold of 0.5, so that a variant is flagged as spuri-
ous if less than half of the supporting reads BLAST
as “on target”. In practice, the distribution of vari-
ant scores is bimodal and highly concentrated at 0
and 1, so results are insensitive to the exact thresh-
old (Figure S2).

4.2 Filtering mouse calls from PDX
samples

One important use case for MAPEX is as a post-
variant-calling filter for PDX samples that have been
aligned to a human reference genome. To test the
precision of MAPEX, we compared variant calls from
aligning reads to the human reference and filtering
with MAPEX to calls from two other methods. The
first alternate method is to align reads to a com-
bined human and mouse reference and then call vari-
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Figure 2: Comparison of MuTect 1.1.1 variants calls
between MAPEX, combined reference, and bamcmp

methods. A: Detailed breakdown of variant call over-
lap between the unfiltered human alignment (white
square), MAPEX filtered human alignment (red cir-
cle), bamcmp filtered human alignment (purple cir-
cle) and unfiltered combined alignment (green circle)
for representative PDXs created from three different
primary tumors. B: Variant allele frequencies for
calls that are concordant (n=1663 variants) and dis-
cordant (n=552 variants) between the methods. C:
Comparison of total calls between the methods, n=34
PDX samples. Boxplots depict 25th and 75th per-
centile with 1.5×IQR whiskers. Notches are Median
± 1.58×IQR/sqrt(n), and represent rough estimates
of 95% confidence interval around the median.

ants [Bruna et al., 2016], which we refer to as the
“combined reference” method. The second method
is to align reads separately to human and mouse ref-
erences and call variants using only those reads that
align better to the human reference, which is the
method implemented in bamcmp [Khandelwal et al.,
2017]. For three representative PDX tumors, all three
methods yield similar callsets (Figure 2A). The dif-
ferences are primarily confined to low-frequency vari-
ants, and almost all high-frequency variants are called
by all three methods (Figure 2B). Across 34 PDX
tumors, all three methods yield a similar dramatic
reduction in called variants (Figure 2 C).

To further validate MAPEX, we compared PDX
variant calls before and after filtering to the primary
tumor from which the PDX was derived, where mouse
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contamination is not an issue. Across 34 PDX tumors
derived from 9 primaries, MAPEX dramatically en-
riches PDX calls for variants that were also found in
the primary tumor and removes few PDX calls that
were found in the primary tumor. Among variants in
the PDXs, only 0.3% to 10% called before MAPEX
filtering were also found in the primary tumor, but
23% to 90% of variants called after MAPEX filtering
were found in the primary tumor (Table S1). This
suggests that MAPEX enriches strongly for true vari-
ants. Among variants found both in the primary and
the PDX before MAPEX filtering, 92% to 100% were
retained after filtering (Table S1). This suggests that
MAPEX removes few true variants.

To validate the usefulness of MAPEX in practice,
we focused on calls within known cancer-associated
genes, using the COSMIC database. Among the pan-
creatic ductal adenocarcinoma (PDAC) samples in
COSMIC, 34 genes are mutated in more than 3% of
samples. Before filtering with MAPEX, 910 variants
were found in these genes among the 34 PDXs we
studied. After filtering with MAPEX, only 70 vari-
ants were retained. Together, these results suggest
that MAPEX removes many false positives, dramati-
cally simplifying variant interpretation. Of particular
interest are KRAS, TP53, and SMAD4, which are the
most commonly mutated genes in PDAC (Table 1).
All of the KRAS mutations filtered by MAPEX are
I187V mutants, which result from aligning wild-type
mouse KRAS reads to human KRAS, and all 34
PDXs retained the KRAS mutation found in their
primary tumor. All of the SMAD4 mutations that
were retained by MAPEX in the PDXs also appeared
in the corresponding primary tumors. Also of interest
is ARID1A, for which the single variant retained by
MAPEX was confirmed to appear in the correspond-
ing primary tumor, and none of the filtered variants
were present in a corresponding primary tumor.

4.3 Effects of variant call filters on
PDXs

We carried out our primary analyses with the variant
caller MuTect 1.1.1, but to test the performance of
MAPEX with other variants callers, we also consid-
ered MuTect2 and Varscan 2.

If mouse contamination were perfectly filtered, the
number of called variants should not depend on the
level of mouse contamination. For all three variant
callers the number of raw calls was strongly correlated
with estimated mouse contamination (Fig. 3A,B,C),
although MuTect2 did produce substantially fewer
calls overall. After filtering with MAPEX, the num-
bers of variants called with MuTect 1.1.1 and Mu-

Table 1: Variants detected in PDX samples for im-
portant PDAC genes.

before MAPEX after MAPEX
Total Samples with Total COSMIC

Gene variants a variant variants prevalence
KRAS 56 34 34 0.64
TP53 9 9 7 0.39
SMAD4 5 5 5 0.14
SYNE1 3 3 0 0.05
CSMD3 96 25 0 0.05
GNAS 6 6 6 0.05
HMCN1 10 5 0 0.04
APC 12 11 0 0.04
NEB 31 17 0 0.04
WDFY4 6 4 1 0.04
LRP1B 32 18 1 0.04
ARID1A 131 33 1 0.04

Tect2 were not significantly correlated with the level
of mouse contamination (Fig.. 3D&E). On the other
hand, the number of variants called with Varscan 2
was correlated with mouse contamination (Fig. 3F),
suggesting that MAPEX is not eliminating all spuri-
ous calls.

Importantly, as a post-variant-calling filter,
MAPEX can not evaluate variants that were not
initially called. Filters implemented with a variant
caller, generally designed to improve results from
primary tumors, can cause problems when using
MAPEX. For example, MuTect2 applies a clustered
event filter designed to reduce the number of false-
positive variant calls due to mis-alignment of highly
paralogous sequences. In regions of high similarity
between mouse and human, this filter can remove true
variants. For instance, Figure 4 shows the result of
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Figure 3: Effects of variant caller on analyzing
xenograft samples with MAPEX. A,B,C: For all
three calling algorithms and 34 xenograft samples
(black dots) the number of raw variants called was
strongly dependent on estimated mouse contamina-
tion. D,E,F: After filtering with MAPEX, the num-
ber of calls was independent of mouse contamination
for MuTect 1.1.1 and MuTect2, but not for Varscan
2. Blue lines show linear regressions and shading de-
notes 95% confidence intervals.
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Figure 4: This Integrative Genomics Viewer [Thor-
valdsdottir et al., 2013] window covers a portion of
the human KRAS gene. The C>T variant is the
classic KRAS G12D mutation that appears in many
PDAC tumors. The A>G and T>C variants both
result from aligning wild-type mouse reads to the
human sequence. When used with MuTect 1.1.1 or
Varscan 2, MAPEX correctly retains only the G12D
variant. MuTect2, however, filters all three variants,
so the G12D variant cannot be retained.

aligning a PDX with modest mouse contamination
to the human reference for a small portion of the
KRAS oncogene. MuTect 1.1.1 and Varscan 2 both
called three variants at this locus, and MAPEX cor-
rectly rejected the two spurious variants arising from
mouse contamination and retained the true G12D
variant. MuTect2 fails to call any of these variants,
because they are filtered as likely homologous map-
ping events, so MAPEX does not see and cannot re-
tain the true G12D variant. In our PDX samples, we
found instances of the clustered event filter removing
true variants from other PDAC oncogenes, including
SMAD4 and TP53.

Overall, the performance of MAPEX does not de-
pend sensitively on the variant caller used, but callers
can introduce specific biases. In particular, the de-
fault parameters for Varscan 2 yield high sensitivity
but low specificity. When Varscan 2 is applied to
PDX samples with mouse contamination, MAPEX
thus does not filter out all spurious calls. As such, we
recommend that users of Varscan 2 be cautious when
calling PDX samples and perhaps apply additional

post-calling filters. By contrast, the default param-
eters for MuTect2 yield much higher specificity, but
at the cost of sensitivity in the PDX context. Cur-
rently, the clustered event filter cannot be disabled in
MuTect2. We thus advise that users pairing MAPEX
with MuTect2 be cautious when interpreting callsets
from PDX samples in genes with high similarity be-
tween human and mouse.

4.4 Flagging potential false positives
resulting from paralogous se-
quences

In addition to removing mouse contamination from
PDX samples, MAPEX can also filter potential par-
alogs in primary samples. Across 93 PDAC pri-
mary tumors, a mean of 11% of total variant calls
were flagged by MAPEX as potential paralogs, with
a range of 2-33%. The genes in which variants
were most frequently flagged as potentially arising
from paralogous sequences include members of large
gene families, such as mucins, zinc-finger nucleases,
and the PRAME family (Table 2). Variants in cit-
rate synthase (CS) were also frequently flagged (Ta-
ble 2). Citrate synthase has a known pseudogene
NCBI: LOC440514, which was responsible for all of
the spurious calls. We called variants with MuTect
1.1.1 and filtered with MAPEX, but MuTect2 in-
cludes new clustered event and read-mapping quality
filters to prevent calling variants caused by paralogs.
Using MAPEX yielded call sets that were identical
with MuTect2 for all the genes in Table 2, with the
exception of MUC12 and MUC5B, which differed by
3 variants. MAPEX can thus be efficiently and confi-
dently used to remove variants that likely arise from
paralogous sequences.

5 Conclusion

Genome sequencing is an increasingly important tool
in cancer research, but spurious variant calls remain a
challenge. MAPEX is an algorithm designed to filter
spurious variants caused by mouse reads in patient-
derived xenografts (PDXs) and caused by paralo-
gous sequences in primary tumors. We showed that
MAPEX is as sensitive and specific as more compu-
tationally intensive methods for calling variants from
PDX tumors. We also showed that MAPEX suc-
cessfully flags variant calls in potentially problem-
atic gene families in primary tumors. Our imple-
mentation, mapexr, fits cleanly into standard tumor
variant-calling pipelines and runs quickly on modern
desktop computers. MAPEX is thus a potentially
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Table 2: Top genes for which MAPEX flagged vari-
ants as potentially arising from paralogs.

Variants Samples with
Gene flagged a flagged variant

ZNF814 15 15
CS 12 7
IGFN1 8 6
KMT2C 7 7
FRG1 6 6
LILRB3 6 6
MUC12 6 6
RGPD3 6 6
USP6 6 3
FCGBP 5 4
MUC5B 5 5
NBPF1 5 3
PRAMEF11 5 4
PRB4 5 3
RGPD8 5 4

useful new component for many tumor variant-calling
pipelines.
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Figure S1: mapexr timing for A: xenografts and B: primary tumors. Shown are results from running on
4 cores and filtering all MuTect 1.1.1 calls for each sample. Run time is linear in the number of input
variants, roughly one minute per 250 variants. One strategy for reducing run time is to first filter to keep
only variants of interest, such as non-synonymous coding variants.
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Figure S2: Distribution of variant scores from MuTect 1.1.1 over all A: PDX samples and B: Primary samples.
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Table S1: MAPEX removes many potentially spurious PDX variants and retains almost all likely real variants
that are also found in the primary.

Total variants in PDX Primary variants in PDX
PDX Before MAPEX After MAPEX Before MAPEX After MAPEX Fraction retained by MAPEX

EMC1229x1a1 2086 30 7 7 1.00
EMC828o3a5 1734 46 27 27 1.00
EMC828x2a3 1417 45 28 28 1.00
EMC828x2b2 1461 50 29 29 1.00
EMC828x3b1 228 37 29 29 1.00
EMC129x2b1 688 31 28 28 1.00
EMC1222o2a1 162 62 40 38 0.95
EMC1222o2a2 415 55 40 37 0.93
EMC1222o2a3 556 58 41 38 0.93
EMC1222o2a3duodenalMet 814 54 38 36 0.95
EMC1222o2a3omentalMet 390 50 39 37 0.95
EMC1222o2a3peritonealMet 379 57 39 37 0.95
EMC1222o2a3skinMet 951 59 39 37 0.95
EMC1222o2a3spleenMet 1508 62 40 37 0.93
EMC1222x1b1 639 52 41 39 0.95
EMC1222x3a1 545 69 40 37 0.93
EMC1222x3c2 157 64 39 38 0.98
EMC226o1a5 1495 78 64 64 1.00
EMC226o1a5met 2820 77 64 62 0.97
EMC226x1a1 1229 71 65 64 0.98
EMC226x1a2 1468 72 69 66 0.96
EMC26o1a2 1828 30 17 17 1.00
EMC29o1a1 6559 38 24 24 1.00
EMC29o1a1liverMet 4744 42 28 28 1.00
EMC29o1a1liverMet 1 2981 42 28 28 1.00
EMC29o1a1peritonealMet 1421 45 29 29 1.00
EMC29o1a1spleenMet 1154 43 28 28 1.00
EMC29o1a2 1983 41 27 27 1.00
EMC519x1a1 926 23 14 14 1.00
EMC93o2a3 1122 81 46 45 0.98
EMC93o2a3periMet 2074 65 46 45 0.98
EMC93o2a3spleenMet 2330 91 46 45 0.98
EMC93x1a1 988 92 47 45 0.98
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