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Abstract 

Background: Mendelian randomization has developed into an established method for strengthening 
causal inference and estimating causal effects, largely as a consequence of the proliferation of 
genome-wide association studies. However, genetic instruments remain controversial as pleiotropic 
effects can introduce bias into causal estimates. Recent work has highlighted the potential of gene-
environment interactions in correcting for pleiotropic bias in Mendelian randomization analyses. 

Methods: We introduce linear Slichter regression (LSR) as a framework capable of identifying and 
correcting for pleiotropic bias, drawing upon developments in econometrics and epidemiology. If an 
instrument-covariate interaction induces variation in the association between a genetic instrument and 
exposure, it is possible to identify and correct for pleiotropic effects. The interpretation of LSR is 
similar to conventional summary Mendelian randomization approaches. A particular advantage of 
LSR is the ability to assess pleiotropic effects using individual genetic variants. 

Results: We investigate the effect of BMI upon systolic blood pressure (SBP) using data from the UK 
Biobank and the GIANT consortium using a single instrument (a weighted allelic score), finding 
evidence of a positive association between BMI and SBP in agreement with two sample summary 
Mendelian randomization approaches. We assess the performance of LSR with respect to identifying 
and correcting for horizontal pleiotropy in a simulation setting, highlighting the utility of the approach 
where the LSR assumptions are violated. 

Conclusions: By utilising instrument-covariate interactions within a linear regression framework, it is 
possible to identify and correct for pleiotropic bias, provided the average magnitude of pleiotropy is 
constant across interaction covariate subgroups. 

Key words: Mendelian randomization, invalid instruments, pleiotropy, Slichter regression, gene-environment interaction. 

Key Messages 
• Instrument-covariate interactions can be used to identify pleiotropic bias in Mendelian randomization analyses, 

provided they induce sufficient variation in the association between the genetic instrument and exposure. 
 

• The interpretation of LSR is similar to that of summary MR methods such as MR-Egger regression. 
 

• By regressing the gene-outcome association upon the gene-exposure association across interaction covariate 
subgroups, it is possible to obtain an estimate of the average pleiotropic effect and a causal effect estimate. 
 

• The approach serves as a valuable test for directional pleiotropy, and can be used to inform instrument 
selection. 
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Introduction 

Mendelian randomization (MR) has developed into a popular multifaceted approach to 

assessing causal relationships in epidemiology1, 2. In many cases, MR analyses involve 

employing genetic variants as instrumental variables (IVs) allowing for causal effect 

estimates to be consistently estimated the presence of unmeasured confounding. This requires 

candidate variants to be associated with the exposure of interest (IV1), not be associated with 

confounders of the exposure and outcome (IV2), and not be associated with the outcome 

through pathways outside of the exposure (IV3)3. The extent to which specific genetic 

variants satisfy these assumptions is often controversial, however, due to uncertainties around 

the true mechanisms responsible for observed gene-phenotype relationships4.   

One issue of particular concern is potential violation of IV3 through horizontal pleiotropy- 

occurring when a genetic instrument is associated with a study outcome through biological 

pathways outside the exposure of interest5. This introduces bias into causal effect estimates in 

the direction of pleiotropic association, and can inflate type I error rates when testing causal 

null hypotheses5, 6. When multiple instruments are available, one potential solution is to adopt 

a meta-analytic approach7. If the set of genetic variants does not exhibit an average non-zero 

(or ‘directional’) pleiotropic effect, an inverse variance weighted (IVW) estimate can be used 

to obtain an effect estimate equivalent to that of two-stage least squares (TSLS) regression5, 7. 

In cases where directional pleiotropy is suspected, MR-Egger, median, and mode-based 

methods can be used to estimate the magnitude of pleiotropic effects, and provide a corrected 

causal effect estimate5, 8, 9. Such methods are most applicable in two-sample summary MR, 

particularly MR-Egger regression10, 11. In an individual level data setting it is common 

practice to combine genetic variants into allelic scores to create a powerful instrument, 

mitigating the effects of both weak instrument and directional pleiotropic bias12, 13. 
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In the econometrics literature, Slichter regression has been proposed as a method for 

evaluating instrument validity within a potential outcomes framework14, 15. This involves 

finding population subgroups where the instrument and exposure are independent, and 

identifying the association between the instrument and outcome which would arise for such 

subgroups. For these subgroups, an observed instrument-outcome association serves as 

evidence of a violation of IV3. Slichter regression builds upon a number of key developments 

in econometrics, in particular the identification and estimation of local average treatment 

effects put forward by Imbens and Angrist15. The use of baseline covariate interactions in IV 

analyses has also received some attention, such as in the work of Card16 estimating returns to 

schooling utilising an observed interaction between college proximity and IQ. Conley et al17 

emphasise the potential trade-off between instrument strength and degree of IV3 violation in 

putting forward the notion of plausibly endogeneity, whilst further works underlining the 

utility of using instrument-covariate interactions have also emerged, such as those of 

Gennetian et al and Small18, 19.  

In this paper, we introduce Slichter regression within the context of epidemiology, and 

present linear Slichter regression (LSR) as a statistical framework to identify and correct for 

pleiotropic bias in MR studies using gene-covariate interactions. The structure of LSR is 

similar to LD score regression20, conducted within a linear regression framework, and can be 

viewed as an analogous approach to MR-Egger regression using only a single genetic 

instrument. It can be applied in both individual or summary data settings and builds upon 

previous work utilising instrument-covariate interactions in assessments of pleiotropy and in 

testing MR assumptions more generally21-27. 

We begin by outlining the LSR framework, highlighting the assumptions and implementation 

of the approach. With this complete, an applied example is considered examining the effect 

of body mass index (BMI) upon systolic blood pressure (SBP) using the most recent release 
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of data from UK Biobank (July 2017) and the GIANT consortium28. Initially, a two-sample 

summary MR analysis is conducted as a frame of reference using derived summary statistics 

from each sample, after which LSR is implemented using a single allelic score. Using LSR 

we find evidence suggesting a positive association between BMI and SBP in agreement with 

two-sample summary MR approaches. The similarity between LSR and MR-Egger pleiotropy 

estimates is of particular importance, as it highlights the extent to which pleiotropic effect 

estimates comparable to MR-Egger regression can be estimated using a single instrument. 

Finally, we conduct a simulation study highlighting the effectiveness of the approach under 

varying conditions. 

Methods 

Non-technical intuition 

Consider a situation in which the instrument-exposure association is found to vary between 

subgroups of the target population. We follow Slichter14 in defining an observed subgroup for 

which the instrument does not predict the exposure of interest as a no relevance point. As a 

valid genetic instrument can only be associated with the outcome of interest through the 

exposure, it follows that a valid instrument would also not be associated with the outcome at 

an observed no relevance point. Any non-zero instrument-outcome association at the no 

relevance point can therefore be interpreted as evidence of horizontal pleiotropy. 

This intuitive approach to pleiotropy assessment has been considered in a number of 

epidemiological studies, and in particular the approaches of Chen et al26 and Cho et al21. In 

the work of Chen et al26, differences in drinking behaviour by gender in East Asian 

populations were explored through a fixed effects meta-analysis of the ALDH2 genetic 

variant and blood pressure. Observing that males are much more likely to consume alcohol 

than females, gender-stratified drinking behaviour was used to identify female participants as 
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a no relevance point. This interaction has received further attention in papers such as Cho et 

al21 and Taylor et al29. Emdin et al22 used differences in instrument-exposure association by 

gender to identify males as a no relevance point in examining the relationship between 

genetically predicted waist-to-hip ratio (WHR), type 2 diabetes, and coronary heart disease 

(CHD). An association between genetically elevated WHR and CHD for women, and not 

men, served as evidence against horizontal pleiotropy22. 

Examples of variation in instrument-exposure association across populations extends beyond 

simple gender differences. Another important example is Tyrrell et al23, investigating the 

extent to which genetically predicted BMI is associated with environmental factors through 

gene-covariate interactions. They identified genetically predicted BMI as a weaker 

instrument for participants experiencing lower levels of socio-economic deprivation (as 

quantified by the Townsend deprivation index), and utilised negative controls to examine 

residual confounding23. A further interesting example is stratifying by smoking status, as 

considered in Freathy et al30 in their examination of the relationship between genetic 

instruments used to predict smoking status and adiposity. In their recent work, Robinson et 

al31 identify genotype-covariate interactions with respect to the heritability of adult BMI, 

finding evidence of genotype-age and genotype-smoking interactions. Gene-environment 

interactions with covariates such as socio-economic status were not identified as having a 

substantial impact on the distribution of phenotypic effects, though this may be the result of a 

lack of statistical power or measurement error in self-reported covariates. 

A closely related approach to detecting and correcting for pleiotropy has recently been 

proposed by van Kippersluis and Rietveld32 on pleiotropy-robust Mendelian randomization 

(PRMR). Under this framework, in cases where a no relevance point is observed, the degree 

of association between the instrument and the outcome is equated with the exact pleiotropic 

effect across the whole population. In this respect the approach is similar to that of Chen et 
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al26. This term is then incorporated as an offset within a standard analysis. Whilst their 

approach is useful in highlighting the potential of no relevance points in assessing pleiotropy, 

it can be criticised for ignoring true uncertainty in the pleiotropic effect estimate. Its practical 

application is also limited by the fact that strict instrument-exposure independence is rare. For 

example, the authors cite Cho et al’s21 MR analysis using gender specific alcohol 

consumption as a canonical example32, but in fact 25% of female participants in this study did 

consume alcohol21. Such a violation would obviously undermine an approach that assumed a 

strict no relevance point. This serves as motivation for the development of a formal statistical 

model (LSR) to use variation in gene-exposure associations across a covariate to infer the 

likely location of a no relevance point whilst properly accounting for its uncertainty, and use 

this as a basis for detecting and adjusting for pleiotropy.  

In presenting LSR we draw attention to similarities with a previous analysis conducted by 

Cho et al21. In this case, a statistical model incorporating a gender-ALDH2 interaction term 

was fitted to the data assessing the association between alcohol consumption and cardio-

vascular risk factors accounting for pleiotropy21. The LSR framework shares many common 

elements with the approach of Cho et al21, and serves to clarify how it works when individual 

level data are available. Crucially, however, LSR extends this method so that it can be 

additionally applied to summary data, thus extending its reach to two sample summary data 

MR, and also general meta-analysis contexts. 

The LSR Framework 

Consider an MR study consisting of � participants (indexed by � � 1, … , �). For each 

participant, we record observations of a genetic instrument ��, an exposure 	�, an outcome 
�, 

and a further covariate ��  which induces variation the association between �� and 	�  through 

an interaction. This interaction is labelled ���. The relationship between each variable is 
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illustrated in Figure 1, with 
 representing a set of all unmeasured variables confounding 	 

and 
. 

(Figure 1 here) 

The exposure 	 is considered a linear function of �, �, ��� , 
 and an independent error ��, 

whilst the outcome 
 is a linear function of �, �, 	, 
 and an independent error ��. Using � 

and � to denote regression coefficients for the first and second stage models respectively, a 

two-stage model can be defined as: 

	� � �� � ���� � ���� � �	���� � 
� � ���                                    (1) 


� � �� � ��	� � ���� � �	�� � 
� � ���                                     (2) 

The causal effect of 	 on 
 is denoted �� and is the parameter we wish to estimate. The 

pleiotropic effect of the instrument across the sample is ��. Note that performing an ordinary 

least squares (OLS) regression of 
 upon 	 would yield a biased estimate of �� due to 

confounding, and two-stage least squares (TSLS) regression of 
 on the genetically predicted 

exposure 	� � ��	|�� would result in biased estimates in cases where �� � 0. This can be 

shown by simulating a two stage IV model with a set of confounding variables 
, such that 

the errors from the first and second stage models are correlated (e.g. with correlation 

coefficient � � 0.5), and varying the degree of horizontal pleiotropy via ��. In this example, 

the true effect of 	 upon 
 is defined as 1 with results from each method presented in Table 

1. 

(Table 1 here) 

From Table 1 we can see that TSLS provides a more accurate estimate in cases where there is 

no observed directional pleiotropic effect ��� � 0�, but can be substantially biased 
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when �� � 0. Any remaining bias when �� � 0 can be attributed to weak instrument bias or 

sampling error. 

No relevance points can be estimated using model (1) by estimating a value of the 

covariate � � �� at which � and 	 are independent. This is achieved by calculating the 

partial effect of � upon 	 and rearranging such that: 


�


�
� �� � �	�� � 0                                                       (3) 

In our model, this yields the trivial solution 

�� � �  ��
��

!                                                            (4) 

In cases where the covariate value �� is actually observed in the population, regressing 
 

upon � for the subset of participants with � � �� will provide an estimate of horizontal 

pleiotropy (that is for ��� as the coefficient of �. Unfortunately, this approach is difficult to 

implement in practice, either because the value ��  is not observed in the population or the 

subset of participants is simply too small to provide sufficient power. This provides the 

motivation for use of LSR in estimating the degree of pleiotropy at a theoretical (or 

extrapolated) no-relevance point, using differences in instrument-exposure associations 

across values of �. 

Linear Slichter regression 

We begin by constructing the reduced form instrumental variable model, that is, models for 	 

given �, and 
 given � by re-writing model (1) as 

	� � �� � ��� � �	����� � ���� � 
� � ���                                       (5) 

and model (2) as 

    
� � �� � ������ � �	��� � �� � ���� � 
� � ������ � �	�� � 
� � ���             (6) 
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Note that we have now also included a possible interaction between the genetic instrument 

and covariate �, ����� , in model (6), which allows the pleiotropic effect to vary across 

values of �. To help explain the assumptions that LSR relies upon, we will initially set �� to 

zero so that no such variation can occur. The change in � � 	 and � � 
 associations for a 

given change in � can be identified as the coefficient of G in models (5) and (6) respectively 

(with �� set to 0) as 

� � 	 association: ��� � �	��� 

� � 
 association: ������ � �	��� � ��� 

The Wald ratio33 estimand for the causal effect of 	 on 
 (i.e. the true � � 
 association 

divided by the true � � 	 association) would then be equal to: 


�����������
�

�������
�  �� � 
�

�������
                                                (7) 

That is, the causal effect, ��, plus a non-zero bias term whenever �� is non-zero. In the Cho 

et al21 analysis, an estimate for �� was obtained by performing TSLS regression using the 

interaction as the instrument, by fitting models (8) and (9) below: 

 	� � ��� � �	����� � ���� � ���                                          (8) 


� � �� � ��	�
" � ���� � �	�� � ��� ,                                   (9) 

Where 	�
"  is the fitted value from model (8). In this case, the coefficient �� represents the 

degree of pleiotropy for the genetic instrument �. Cho et al also demonstrate the use of two-

stage predictor substitution (TSPS) models of the same structure when considering binary 

outcome variables21. It should be noted that the interaction is assumed to be a valid 

instrument, and therefore that there is no observed association between the interaction and the 

outcome in the second stage model� �� � 0�. 
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Whilst this approach is useful in not requiring an observed no relevance point, it has two 

limitations. First, as a consequence of utilising TSLS and TSPS, it is only applicable to cases 

in which individual level data is available. In utilising genetic data, it has become common to 

utilise summary data within a meta-analysis context, as individual studies often lack 

statistical power due to sample size restrictions. A second limitation is that TSLS assumes an 

underlying linear model, and this may not be the case. For example, in considering adiposity 

as an exposure, individuals at extreme values could be at greater risk, implying a curved 

relationship. Care is therefore needed in justifying the assumption of an underlying linear 

model. 

LSR attempts to overcome these limitations by reframing the model within a two-sample 

summary MR context, delivering a consistent estimate for �� by executing the following 

three step procedure: 

1. Estimate � � 	 and � � 
 associations at a range of values of �. 

2. Regress the � � 
 associations on the � � 	 associations within a linear regression. 

3. Estimate the causal effect �� as the slope of the regression. 

Let �� denote the #��  subgroup of � (# � 1, … , $�. For each group �� , we initially estimate the 

instrument-exposure association and standard error (step 1) by fitting the following 

regression model: 

	� � ��� � ����� � ����                                                  (10) 

Note that we include a subscript # to distinguish the regression parameters from the first stage 

model (1). The coefficient ��� is therefore interpreted as the � � 	 association for group ��. 

Next, we fit the corresponding instrument-outcome regression model (step 2): 


� � %�� � %���� � ����                                                  (11) 
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In this case, we use %�� to denote � � 
 association coefficient for group ��, distinguishing 

the model from (6). Thus, from models (10) and (11) we obtain sets of � � 	 

associations ����� and � � 
 associations �%��� respectively across �� subgroups. Finally, we 

regress the set of %��&  estimates upon the set of ���'  estimates (step 3): 

%��& � ����� � ��������' � �����                                          (12) 

In Model (12), ����� is an estimate of directional pleiotropy ����, whilst �����  is the causal 

effect of 	 upon 
 corrected for any directional pleiotropy (��). To understand how this is the 

case, recall that �� represents a constant pleiotropic effect across subgroups of �. Model (12) 

can be thought of as an average of the ratio estimates across �� , with the bias from �� 

estimated as the intercept. This is illustrated in Figure 2. 

(Figure 2 here) 

To show how the intercept estimates ��, consider the reduced form model (6) evaluated at the 

no relevance point ��. From equation (4), �� � �  ��
��

!. Then, by substitution: 

���� � ���	  ���
��

! � �� � ���� � ���� � �� �  ��                      (13) 

In cases where the intercept estimate passes exactly through the origin, the LSR causal effect 

estimate would be identical to the inverse-variance weighted (IVW) estimate. This mirrors 

the equivalence of IVW and MR-Egger regression in the multiple instrument setting when the 

estimated average pleiotropic effect across all variants is equal to 0. LSR can therefore be 

viewed as directly analogous to MR-Egger regression: in LSR we simply replace � � 	 

association estimates for multiple variants with subgroup-specific associations for a single 

variant. R code for implementing LSR is provided in the web appendix. 
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In implementing LSR, it is important to examine several important features of the analysis. 

Firstly, it is important to not transform effects to be positive using LSR as is the case for MR-

Egger regression, as this mischaracterises the interaction term, attenuating causal effect 

estimates. A simulated example illustrating this issue is presented in the web appendix. 

A second consideration is that in cases where instrument-exposure associations are present 

for all groups in the same direction, the accuracy in extrapolating the regression line towards 

a theoretical no-relevance point will be a function of the distance from the minimum �� 

instrument-exposure association, and variation in the set of �� instrument-exposure 

associations. This feature of LSR is examined further in the web appendix. 

Finally, one benefit of LSR is that the suitability of a linear model can to some extent be 

examined by visually inspecting the distribution of instrument-exposure and instrument-

outcome associations across covariate subgroups of �. In cases where groups are in ascending 

or descending order of instrument-exposure associations, and a constant change in the 

instrument-outcome is observed across the subgroups, a linear model can be argued to be 

appropriate. 

Assumptions of LSR 

As LSR relies upon fitting regression estimates within a simple regression model, an initial 

assumption is that the variance of the instrument-exposure association is negligible, which is 

referred to as NO Measurement Error (NOME)5, 34. In the standard two-sample summary data 

MR context (with multiple variants but no assumed variant-covariate interactions) violation 

of NOME, means that causal effect estimates will be attenuated towards zero as a 

consequence of regression dilution bias. Recent work has highlighted the role of the ����  

statistic as a means of assessing the degree of attenuation in MR-Egger estimates from 

NOME violation in this context34, though at present it is unclear how ����  relates to LSR. 
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As a constant, �� contributes to the intercept, and consistent estimates for both �� and �� are 

produced in cases where �� � 0. We refer to this as the CoPE (Constant Pleiotropic Effect) 

assumption. That is, pleiotropic effects must remain constant across all values of �. If �� � 0 

then CoPE is violated, which in our model would lead to the true pleiotropic effect �� being 

incorrectly equated to �� � 
���

��
 instead. This would, in turn, lead to bias in the causal 

estimate for �� such that: 

�(� � �� � 
�

��
                                                         (14) 

The derivation of this result is provided in the web appendix. From equation (14) it is clearly 

possible to mitigate the effect of bias due to CoPE violation when the variation in instrument-

exposure association across � ��	� is sufficiently large relative to the variation in pleiotropic 

effect ��, as the bias will tend towards zero as �	 increases. However, as it is not possible to 

directly estimate �� justifying the relative effect sizes of the first and second stage 

interactions would likely rely upon a priori knowledge. 

The CoPE assumption articulates a fundamental fact about LSR, that we now highlight: 

The validity of LSR hinges on treating the interaction as a valid IV. 

This places three restrictions on the interaction analogous to the conventional relevance 

restriction (IV1), exogeneity restriction (IV2) and exclusion restriction (IV3), as illustrated in 

Figure 3 below. 

(Figure 3 here) 

First, there must be a non-zero � � � interaction on 	 (i.e. �	 � 0) . Second, the strength of 

the interaction should not be associated with a confounder on the 	 � 
 pathway.  Third, 

there should not be a direct association between the interaction and the outcome within the 
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second stage model. A violation of either the second or third restrictions would result in a 

non-zero value of ��, violating the COPE assumptions and consequently introducing bias into 

causal effect estimates.  

The relationships between the interaction and confounders further underscores a key feature 

of the LSR framework: 

Associations between either ) or * and confounders on the + � , pathway, or direct 

effects of  ) or * on the outcome Y do not invalidate LSR. 

To illustrate this, consider equation (15) in which a confounder on the 	 � 
 pathway, 

denoted 
�, is a linear function of � and �. 


�� � -� � -��� � -��� � -	���� � ��                                 (15) 

In equation (15) - is used to denote regression coefficients. Non-zero values of -�, and -� 

would not induce bias in LSR estimates, although they would result in biased estimates using 

conventional approaches such as TSLS regression with the instrument �. In this example, the 

second restriction requires the association -	 to be zero. This holds for a set of confounding 

variables with differing configurations of -�and -� values, provided -	 � 0 across the set of 

confounders. Direct effects of either � or � with the outcome Y do not invalidate the LSR 

method, because they can be explicitly modelled in equation (2). 

With these considerations in mind, it is important to acknowledge that violations of these 

restrictions serve as the driving force behind changes in pleiotropic effects across interaction-

covariate subgroups, resulting in values of �� � 0. 

LSR as a sensitivity analysis 

In cases where the CoPE assumption is assumed to be violated, LSR can still be used in 

sensitivity analyses as a means to select a subset of valid instruments. To show how this is the 
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case, we begin by clarifying that an invalid instrument can be detected in principle whenever 

�� � 
���

��
 � 0, due to either �� � 0, �� � 0, or both. As a consequence, LSR can be used to 

assess the validity of individual instruments, informing instrument selection and components 

of allelic scores. There are, however, two important considerations when applying this 

approach. First, it is not possible to distinguish the average pleiotropic effect across 

interaction-covariate subgroups from the change in pleiotropic effect between instrument-

covariate subgroups. It is therefore a test of invalidity occurring either due to an average non-

zero pleiotropic effect across interaction-covariate subgroups, or due to changing pleiotropic 

effects between interaction-covariate subgroups, and cannot be used to correct LSR estimates 

directly. 

Second, LSR will incorrectly fail to detect invalid instruments in cases where: 

�� � 0, �� � 0, �� �  � 
���

��
!                                                (16) 

Causal effect of BMI upon SBP 

There exists an extensive literature on the relationship between adiposity and SBP, with both 

observational35 and MR36-38 studies finding evidence of positive association. However, the 

magnitude of this association has been found to differ markedly between such studies, with 

observational studies often recording greater effect sizes than those using MR. 

As an applied example, we perform two sample summary MR and LSR analyses examining 

the effect of adiposity (measured using BMI) upon SBP using data from the GIANT 

consortium28 and UK Biobank. The motivation in performing both forms of analysis is to 

highlight the extent to which pleiotropic effect estimates obtained using LSR and a single 

instrument agree with conventional MR approaches.  
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In conducting a two-sample summary analysis, effect estimates and standard errors for 95 

genetic variants associated with BMI �. � 5 / 10��� were obtained from Locke AE28 using 

the GIANT consortium sample (with a full list of variants presented in the web appendix). 

Corresponding estimates for each genetic variant with respect to SBP were obtained using 

UK Biobank. In contrast, LSR was implemented by constructing a weighted allelic score 

using estimates from the GIANT consortium. The LSR analysis can be viewed as analogous 

to two-sample summary data MR, using instrument-exposure estimates for BMI as external 

weights, and individual data from a separate sample to inform instrument-outcome 

association estimates. In each analysis BMI, SBP, and the weighted allelic score were 

standardised. 

Analysis I: Two-Sample Summary Analysis 

We implement several two-sample summary MR methods utilising the mrrobust software 

package39 in Stata SE 14.040. Performing IVW provides an estimate comparable to TSLS, and 

produces estimates with greater precision than alternative summary approaches. However, as 

IVW estimates can exhibit bias in the presence of horizontal pleiotropy, MR-Egger 

regression, weighted median, and weighted modal approaches are also considered as 

sensitivity analyses. 

A range of methods are adopted in sensitivity analyses for two key reasons. First, each 

method relies upon differing assumptions with respect to the underlying distribution of 

pleiotropic effects in addition to the NOME assumption. MR-Egger regression requires the 

effect of genetic variants on the exposure to be independent of their pleiotropic effects on the 

outcome (InSIDE)5. The weighted median requires more than 50% of variants to not exhibit 

pleiotropic effects (with respect to their relative weighting)8, whilst the modal estimator 
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assumes that the most frequent value of the pleiotropic bias across the set of genetic variants 

is zero (ZEMPA)9. 

Estimates using each method are presented in Table 2, with an accompanying plot showing 

the IVW and MR-Egger estimates in Figure 4. 

(Table 2 here) 

(Figure 4 here) 

With the exception of MR-Egger regression, each of the methods performed above show 

evidence of a positive association between BMI and SBP. There does not appear to be 

substantial horizontal pleiotropic effect using either MR-Egger, weighted median, or 

weighted modal approaches, with the IVW estimate lying within the confidence intervals of 

both the weighted median and weighted modal estimates. Disagreement in effect estimation 

between MR-Egger regression and the other methods can in part be explained by regression 

dilution bias, as evidenced by an ����  value of 87.8 (indicative of a relative bias of 12.2% 

towards the null), as well as by identifying influential outliers. Such outliers can be identified 

by calculating the degree of heterogeneity utilising Rucker’s Q statistic, and estimating the 

relative contribution of each genetic variant to overall heterogeneity, as outlined in Bowden 

et al41. In doing so, the overall Rucker’s 0 statistic is 1069.42 (. �1 0.001), with 

rs11191560 contributing almost a quarter of the overall heterogeneity (0 � 274.4, . � 1

0.001). 

Analysis II: LSR using Townsend Deprivation Index  

In implementing LSR, Townsend Deprivation Index (TDI) was selected as a continuous 

covariate for which instrument strength was expected to vary, based on findings from 
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previous studies23, 42. TDI is a common derived measure of socio-economic deprivation, 

using many variables such as car ownership, occupation type and educational attainment43.  

In the UK Biobank, TDI scores were obtained from preceding national census data and 

calculated for electoral districts (“wards” comprised of approximately 5,500 individuals). 

Participants were assigned a score based upon the area in which they lived, determined using 

the postcode of their home dwelling. The selection of TDI was based upon previous evidence 

suggesting genetically determined BMI to be a weaker predictor of BMI for individuals 

experiencing lower levels of social deprivation23. Missing values were considered to be 

missing completely at random (MCAR), and were removed prior to performing the analysis. 

We present observational and TSLS estimates using the weighted allelic score as an 

instrument and controlling for TDI in Table 3. In both cases, we find evidence of a positive 

association between BMI and SBP, with a greater magnitude of effect for the observational 

estimate.  

(Table 3 here) 

In this case, the estimates agree with findings of the previous studies discussed above. The 

instrument was also considered to be sufficiently strong to overcome weak instrument bias, 

with an F statistic of 5112. To perform LSR, we divided the sample on the basis of TDI score 

into 2, 5, 10, 20, and 50 population subgroups. In each case, a ratio estimate was calculated 

for each group, after which IVW and LSR estimates were produced. The results of each 

analysis are presented in Table 4, with IVW referring to an inverse-variance weighted 

estimate using interaction covariate subgroups. 

(Table 4 here) 

From Table 4 we see that the IVW estimates are directionally consistent and of a similar 

magnitude to the TSLS estimates as expected. In each case, there again appears to be limited 
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evidence of pleiotropy, whilst there appears to be some indication of a positive effect of BMI 

upon SBP, particularly in the 5-group case. Figure 5 displays both the IVW and LSR 

estimates for the 5-group case, whilst corresponding plots for other groups are presented in 

the web appendix. 

(Figure 5 here) 

Considering Figure 5, a number of key features of the analysis can be identified. Initially, the 

ordering of the TDI groups supports the assumption that the instrument-exposure association 

varies across levels of TDI. In particular, the least deprived groups (group 1 and group 2) 

have the weakest association, suggesting that genetically predicted BMI is a weaker predictor 

of BMI for participants experiencing lower levels of deprivation. A further observation is that 

the positioning of each estimate provides some evidence of a linear relationship, suggesting 

that utilising a linear regression framework is appropriate. 

Comparing these estimates to those obtained using two-sample summary MR, there appears 

to be substantial agreement in the findings of the two approaches. LSR does not detect 

horizontal pleiotropy, and constraining the LSR model to the intercept yields an effect 

estimate similar to IVW, weighted median, and weighted modal approaches in the two-

sample summary MR analysis. The lack of agreement in detecting a positive effect of BMI 

upon SBP using conventional thresholds can be attributed to insufficient strength of TDI as in 

interacting covariate. The observed agreement in the findings between the single instrument 

and multiple instrument approaches is encouraging, and it would be valuable to repeat LSR 

using a range of interacting covariates. 

One important consideration in performing MR analyses is that causal effect estimates are 

often uncertain, due to either a lack of precision or doubts regarding the assumptions of the 

implemented approach. A response to this issue put forward by VanderWeele et al44, has been 
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to shift the emphasis from identifying the magnitude of causal effects to identifying the 

presence of causal effects. Under such a paradigm, estimation using instrument-covariate 

interactions, such as through LSR, can be particularly insightful in identifying broad effects 

or associations in epidemiological studies. 

Simulations 

To illustrate the effectiveness of LSR, and further consider the importance of the CoPE 

assumption with respect to causal effect estimation, we perform a simulation study within a 

two-sample MR framework. Considering a realistic case, two sets of simulations are 

performed, the first using a null causal effect ��� � 0), and the second a positive causal 

effect ��� � 0.05). Individual level data is generated, from which the necessary summary 

data estimates are extracted. In each case, a total of 5 population subgroups are considered, 

with further details provided in the web appendix.  

Four distinct cases are considered: 

• No pleiotropy and CoPE satisfied 

• Directional pleiotropy and CoPE satisfied 

• No pleiotropy and CoPE violated 

• Directional pleiotropy and CoPE violated 

The results for each case represent the mean values for 10 000 simulated datasets. 

Results 

Results of the simulation analysis are presented in Table 5 and Table 6 representing the null 

effect and 0.05 causal effect scenarios respectively. The mean F statistic remains the same for 

each case, with substantial variation in F statistic between interaction covariate groups. This 

is essential, as the variation in instrument strength can be viewed as variation in instrument 
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relevance for particular population subgroups. In this case, estimates using IVW and LSR, as 

well as significance values were taken directly from each regression output without using 

regression weights, as the variant-outcome associations were found to have the same standard 

errors. 

(Table 5 here) 

(Table 6 here) 

Initially, cases within the null causal effect scenario are considered. In the valid instrument 

case, both IVW and LSR provide unbiased causal effect estimates, though the IVW estimate 

is more accurate. This is similar to comparisons between IVW and MR-Egger regression, 

supporting use of IVW in cases where directional pleiotropy is absent. Type I error rates 

remained at approximately 5% for both IVW and LSR, and in testing for directional 

pleiotropy. In the second case, estimates using IVW are biased in the direction of pleiotropic 

association, whilst LSR continues to produce unbiased estimates. This bias appears to 

decrease marginally with sample size increases. As the sample size increases, power to detect 

directional pleiotropy using LSR increases from 21% to 70%, whilst Type I error rates 

remain at a nominal 5% level. 

The third case represents a situation in which the instrument is not valid, but the degree of 

pleiotropy changes between population subgroups. In this case, both IVW and LSR produce 

biased causal effect estimates, though the LSR causal effect estimates exhibit a greater degree 

of bias than the IVW estimates. This contributes to an increase in Type I error rate relative to 

IVW, which estimates the causal effect to be smaller in magnitude. In this situation, the LSR 

test for directional pleiotropy is particularly powerful, rising from 43% to 95% as the sample 

size increases. This seeming increase in power can be attributed CoPE violation ��� � 0� 

leading to biased pleiotropy estimates ����, in this case overestimating the magnitude of 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/187849doi: bioRxiv preprint 

https://doi.org/10.1101/187849
http://creativecommons.org/licenses/by/4.0/


 

22 

 

pleiotropic effects. In the final case, both IVW and LSR produce estimates with similar sizes 

of bias and precision. A particularly interesting feature of this case is that the LSR test for 

directional pleiotropy is suggestive of a null pleiotropic effect, remaining at 5%. This 

represents the circumstances which undermine LSR as a sensitivity analysis. In the positive 

causal effect scenario, both the LSR and IVW approaches produce estimates exhibiting 

similar patterns to those in the null causal effect case. 

Discussion 

In this paper, we have presented a method to identify and correct for pleiotropic bias in MR 

studies using instrument-covariate interactions. In cases where CoPE is satisfied, individual 

instruments can be assessed, providing less biased causal effect estimates compared to 

conventional estimates such as IVW in the presence of directional pleiotropy. Where 

individual level data are available, and where it is sensible to assume an underlying linear 

model, the Cho et al21 approach is appropriate and provides estimates in agreement with LSR. 

However, in cases where directional pleiotropy is not present, IVW is a more accurate 

method and should be preferred. In cases where CoPE is violated, a sensible approach would 

be to prune invalid variants using the pleiotropy estimates from LSR, and then implement 

IVW using the set of valid variants. In this sense, LSR can be viewed as a sensitivity analysis 

in a similar fashion to MR-Egger, which can be applied to a single genetic instrument within 

the individual level data setting5, 34. 

Comparison with existing methods 

LSR represents a synthesis of both Slichter regression14 and MR-Egger regression. As with 

Slichter regression, the method can be applied outside of an MR context, provided that an 

interaction can be identified which induces variation in instrument strength, and conforms 

with the interaction restrictions previously discussed. In Slichter 2014, an example of 
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assessing returns to schooling conditioning on IQ levels represents such an application14, 16. 

The similarities with MR-Egger regression are such that, rather than a competing 

methodology, it is more correctly viewed as a counterpart to the method. 

At present, median based approaches do not appear to translate to in the single instrument 

case. In the summary data setting, such methods rely upon at least 50% of the instruments 

being valid, or 50% of the instruments being valid with respect to their weighting when 

implementing weighted median regression. In adapting the approach to LSR, such a method 

would require at least 50% of the population subgroups to not exhibit pleiotropic bias, as 

these are analogous to individual instruments in the summary setting. This may prove 

unlikely using a single invalid instrument, but warrants further study. 

Two-Sample Summary LSR 

Whilst this paper has focused primarily on the application of LSR to individual level data 

(albeit by extracting and then meta-analysing summary statistics obtained from it), it clearly 

applies to cases where subgroup specific summary data on instrument-exposure and 

instrument-outcome associations are available. An alternative approach would be to meta-

analyse summary statistics obtained from many separate studies under the assumption that 

study-specific estimates relate to a study-specific characteristic. For example, the work of 

Robinson et al highlights the interaction between age and adult BMI heritability as one 

potential candidate, given that age is likely to vary naturally across contributing studies. 

Limitations of LSR 

There are a number of factors which must be considered before implementing LSR. Firstly, 

the CoPE assumption is essential for causal estimate correction. If there is reason to believe 

that pleiotropic effects differ between population subgroups, then using the approach will 

result in misleading causal effect estimates. One useful aspect to this problem, however, is 
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that provided the first stage interaction is sufficiently strong, bias from changes in pleiotropic 

effect may be sufficiently small as to be negligible in analyses. This may well be the case in 

situations such as the Cho et al21 study, where the difference in instrument effect between 

gender groups is very strong in comparison to potential variation in pleiotropic effect. As it is 

not possible to directly measure the change in pleiotropic effect across groups, decisions 

regarding appropriate instrument-covariate interaction selection require justification. 

A second limitation of the approach is that, owing to the limited availability of summary data 

estimates for particular covariate groups, it may be difficult to implement in a summary data 

setting. At present researchers may be limited to common groupings such as gender, unless 

further information is made available upon request. A second complication using the 

summary LSR approach focuses upon the use of study heterogeneity. In many cases, the 

degree to which such heterogeneity is present with respect to the instrument-covariate 

interaction may be insufficient to perform a meaningful analysis. A related concern is that 

studies exhibiting such heterogeneity may undermine the extent to which homogeneity in 

remaining effects can be assumed. This can introduce confounding and undermine 

subsequent inference. 

A further consideration pertaining to the majority of methods, including LSR, is the extent to 

which the study sample is representative of the sample of interest. In cases where the sample 

is not representative, selection bias can have a substantial impact on resulting estimates. This 

is illustrated in the difference between the estimated effect of BMI upon SBP using the 

interim UK Biobank release, in which the inclusion of a disproportionate number of heavy 

smokers may have resulted in a 3-fold increase in the magnitude of the estimated effect (as 

given in the web appendix). As a number of previous studies have found evidence suggesting 

an interaction between genetically predicted BMI and smoking, this could highlight smoking 

as a confounder which violates the interaction-covariate restrictions outlined in this paper. It 
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may also be possible that composite phenotypes (such as scores derived from several 

measures) may have differing contributions to the outcome at differing interaction-covariate 

levels. 

This limitation can somewhat be mitigated by performing multiple iterations of LSR using a 

set of interaction covariates. Provided that the instrument-covariate interaction of sufficient 

strength, it would be expected that resulting estimates would be in agreement. In cases where 

substantial disagreement is observed, such disagreement could be indicative of violation of 

the CoPE assumption, or characteristics of the underlying confounding structure. The work of 

Emdin et al22 and Krishna et al45 follow this reasoning. Further work will consider the 

implications of interaction-covariate selection, and role of confounding within the context of 

LSR. 

Conclusion 

This paper formalises an intuitive method for assessing pleiotropic bias, which has gained 

increasing traction in recent years. At present, LSR serves as a valuable test for directional 

pleiotropy, and can provide causal effect estimates robust to directional pleiotropy in cases 

where CoPE is satisfied. It is therefore most appropriate for use in studies using individual 

level data, and in informing instrument selection and allelic score construction. 

Supplementary Material 

A web appendix containing supplementary materials can be found at: 
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Figures 

 

Figure 1: A directed acyclic graph (DAG) showing the assumed relationship between each variable in LSR. 

 

 

 

 

Figure 2: Hypothetical plot showing components of LSR. For a set of � groups represented as solid points, the 

x-axis represents the association between the genetic instrument and the exposure, whilst the y-axis shows the 

association between the genetic instrument and the outcome. The point at which � � 0 is an estimate of the 

theoretical no relevance point, with a remaining (pleiotropic) association between the instrument and the 

outcome given as the intercept (��). 
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Figure 3: A DAG illustrating the role of the instrument-covariate interaction  as an instrument within LSR. 

In this case, red arrows indicate associations which would invalidate the LSR method, whilst the black arrow 

from  to  is necessary to satisfy the relevance assumption analogue. 

 

 

Figure 4: Scatter plot showing IVW and MR-Egger estimates for the effect of BMI upon SBP 
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Figure 5: IV estimates using IVW (blue) and LSR (green), with points numbered in ascending order of social 

deprivation. 
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Tables 

Table 1: OLS and TSLS estimates under differing degrees of pleiotropy 

Induced Pleiotropy Model Exposure Estimate �� � � 95% CI 

�� � 	 OLS 

TSLS 

1.15 

1.02 

(1.14, 1.16) 

(0.98, 1.06) 

�� � � OLS 

TSLS 

1.22 

1.97 

(1.21, 1.23) 

(1.90, 2.04) 

 

 

Table 2: Two sample summary MR estimates for the effect of BMI upon SBP 

Method Estimate SE 95% CI p.value 
 

IVW 
 

 
0.103 

 

 
0.030 

 

 
(0.04, 0.16) 

 

 
<0.001 

 
 

MR-Egger (intercept) 
MR-Egger (effect) 1 

 

 
0.003 
0.014 

 

 
0.002 
0.077 

 

 
(-0.00, 0.01) 
(-0.14, 0.16) 

 

 
0.212 
0.851 

 
 

Weighted Median 
 

 
0.130 

 

 
0.020 

 

 
(0.09, 0.17) 

 

 
<0.001 

 
 

Modal Estimator 2 

 

 
0.133 

 

 
0.027 

 

 
(0.08, 0.19) 

 

 
<0.001 

 
1 
���
� � 87.8        

2 
Smoothing parameter � � 1 

 

Table 3: OLS and TSLS effect estimates 

 Estimate SE 95% CI p.value 
OLS     

Intercept <0.0001 0.002 (-0.004, 0.004) >0.999 
BMI 0.192 0.002 (0.19, 0.20) <0.001 
TDI -0.056 0.002 (-0.06, -0.05) <0.001 

TSLS     
Intercept <0.0001 0.002 (-0.004, 0.004) >0.999 

BMI 0.129 0.014 (0.10, 0.16) <0.001 
TDI -0.050 0.002 (-0.054, -0.047) <0.001 
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Table 4: IVW and LSR Estimates using different TDI grouping 

Number of 
groups 

Method Estimate SE 95% CI p.value 

 LSR (intercept) -0.009 - - - 
2* LSR (effect) 0.197 - - - 
 IVW 0.132 0.006 (0.05, 0.21) 0.031 
      
 LSR (intercept) 0.002 0.005 (-0.02, 0.02) 0.728 
5 LSR (effect) 0.114 0.040 (-0.02, 0.24) 0.065 
 IVW 0.129 0.004 (0.12, 0.14)  <0.001 
      
 LSR (intercept) 0.006 0.013 (-0.02, 0.04) 0.670 

10 LSR (effect) 0.087 0.096 (-0.01, 0.31) 0.391 
 IVW 0.129 0.012 (0.10, 0.16) <0.001 
      
 LSR (intercept) 0.002 0.015 (-0.03, 0.03) 0.915 

20 LSR (effect) 0.117 0.110 (-0.11, 0.35) 0.300 
 IVW 0.129 0.015 (0.10, 0.16) <0.001 
      
 LSR (intercept) -0.008 0.013 (-0.03, 0.02) 0.514 

50 LSR (effect) 0.190 0.094 (0.00, 0.38) 0.050 
 IVW 0.129 0.012 (0.10, 0.16) <0.001 

*  Note that standard errors using LSR are not defined for the 2-group case. 
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Table 5: Performance of IVW and LSR methods in simulation setting with null causal effect �� � 0 

Case N N Per Decile Mean F Statistic IVW 
Mean Estimate 

(mean SE) 

IVW 
Type I Error 

Rate 

LSR 
Mean Estimate 

(mean SE) 

LSR 
Power of 

Pleiotropy Test 

LSR 
Effect 

Type I Error 
Rate 

Case 1: 10000 2000 80.1 0.003 (0.046) 0.049 0.004 (0.066) 0.047 0.050 
�� � 0 20000 4000 159.3 0.002 (0.033) 0.050 0.003 (0.047) 0.048 0.050 
�� � 0 30000 6000 238.3 0.001 (0.027) 0.052 0.001 (0.038) 0.050 0.050 
�� � 0 40000 8000 317.3 0.001 (0.023) 0.052 0.001 (0.033) 0.049 0.049 

 50000 10000 396.2 0.000 (0.021) 0.050 0.001 (0.030) 0.049 0.052 
         

Case 2: 10000 2000 80.1 0.091 (0.060) 0.153 0.004 (0.066) 0.209 0.050 
�� � 0 20000 4000 159.3 0.089 (0.051) 0.168 0.003 (0.047) 0.365 0.050 

�� � 0.05 30000 6000 238.3 0.089 (0.048) 0.157 0.001 (0.038) 0.504 0.050 
�� � 0 40000 8000 317.3 0.088 (0.047) 0.150 0.001 (0.033) 0.612 0.049 

 50000 10000 396.2 0.088 (0.046) 0.135 0.001 (0.030) 0.708 0.052 
         

Case 3: 10000 2000 80.1 0.082 (0.059) 0.130 0.169 (0.061) 0.262 0.429 
�� � 0 20000 4000 159.3 0.081 (0.051) 0.128 0.169 (0.043) 0.442 0.673 
�� � 0 30000 6000 238.3 0.080 (0.048) 0.121 0.167 (0.035) 0.579 0.816 

�� � 0.05 40000 8000 317.3 0.080 (0.047) 0.100 0.167 (0.031) 0.676 0.895 
 50000 10000 396.2 0.079 (0.046) 0.091 0.167 (0.027) 0.770 0.945 
         

Case 4: 10000 2000 80.1 0.169 (0.043) 0.783 0.169 (0.061) 0.048 0.429 
�� � 0 20000 4000 159.3 0.168 (0.030) 0.962 0.169 (0.043) 0.051 0.673 

�� � 0.05 30000 6000 238.3 0.167 (0.025) 0.994 0.167 (0.035) 0.051 0.816 
�� � 0.05 40000 8000 317.3 0.167 (0.022) 0.999 0.167 (0.031) 0.048 0.895 

 50000 10000 396.2 0.167 (0.019) 1.000 0.167 (0.027) 0.047 0.945 
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Table 6: Performance of IVW and LSR methods in simulation setting with positive causal effect �� � 0.05 

Case N N Per Decile Mean F Statistic IVW 
Mean Estimate 

(mean SE) 

IVW 
Power to detect 

causal effect 

LSR 
Mean Estimate 

(mean SE) 

LSR 
Power of 

pleiotropy Test 

LSR 
Power to detect 

causal effect 
Case 5: 10000 2000 80.1 0.053 (0.046) 0.145 0.054 (0.066) 0.047 0.093 
�� � 0.05 20000 4000 159.3 0.052 (0.033) 0.219 0.053 (0.047) 0.048 0.123 
�� � 0 30000 6000 238.3 0.051 (0.027) 0.288 0.051 (0.038) 0.050 0.148 
�� � 0 40000 8000 317.3 0.051 (0.023) 0.355 0.049 (0.033) 0.049 0.181 

 50000 10000 396.2 0.050 (0.021) 0.423 0.051 (0.030) 0.049 0.207 
         

Case 6: 10000 2000 80.1 0.141 (0.060) 0.381 0.054 (0.066) 0.209 0.093 
�� � 0.05 20000 4000 159.3 0.139 (0.051) 0.495 0.053 (0.047) 0.365 0.123 
�� � 0.05 30000 6000 238.3 0.139 (0.048) 0.553 0.051 (0.038) 0.504 0.146 
�� � 0 40000 8000 317.3 0.138 (0.047) 0.597 0.051 (0.033) 0.612 0.181 

 50000 10000 396.2 0.138 (0.046) 0.630 0.051 (0.030) 0.708 0.207 
         

Case 7: 10000 2000 80.1 0.132 (0.059) 0.341 0.219 (0.061) 0.262 0.615 
�� � 0.05 20000 4000 159.3 0.131 (0.051) 0.417 0.219 (0.043) 0.442 0.854 
�� � 0 30000 6000 238.3 0.130 (0.048) 0.474 0.217 (0.035) 0.579 0.945 

�� � 0.05 40000 8000 317.3 0.129 (0.047) 0.510 0.217 (0.031) 0.676 0.981 
 50000 10000 396.2 0.129 (0.046) 0.534 0.217 (0.027) 0.770 0.993 
         

Case 8: 10000 2000 80.1 0.219 (0.043) 0.933 0.219 (0.061) 0.048 0.615 
�� � 0.05 20000 4000 159.3 0.218 (0.030) 0.997 0.219 (0.043) 0.051 0.854 
�� � 0.05 30000 6000 238.3 0.217 (0.025) 1.000 0.217 (0.035) 0.051 0.945 
�� � 0.05 40000 8000 317.3 0.217 (0.022) 1.000 0.217 (0.031) 0.048 0.981 

 50000 10000 396.2 0.217 (0.019) 1.000 0.217 (0.027) 0.047 0.993 
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