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ABSTRACT 

Sensory stimuli evoke spiking activities patterned across neurons and time that are 

hypothesized to encode information about their identity. Since the same stimulus can be 

encountered in a multitude of ways, how stable or flexible are these stimulus-evoked 

responses? Here, we examined this issue in the locust olfactory system. In the antennal 

lobe, we found that both spatial and temporal features of odor-evoked responses varied 

in a stimulus-history dependent manner. The response variations were not random, but 

allowed the antennal lobe circuit to enhance the uniqueness of the current stimulus. 

Nevertheless, information about the odorant identity became confounded due to this 

contrast-enhancement computation. Notably, a linear logical classifier (OR-of-ANDs) that 

can decode information distributed in flexible subsets of neurons generated predictions 

that matched results from our behavioral experiments.  In sum, our results reveal a 

simple computational logic for achieving the stability vs. flexibility tradeoff in sensory 

coding. 

 

INTRODUCTION 

The key task of a sensory system is to transduce and represent information about 

environmental cues as electrical neural activities so that the organism may generate an 

appropriate behavioral response. The precise format in which neural activities represents 

stimulus specific information i.e. ‘the neural code’ has been a topic of great debate in 

neuroscience1-6. Both patterns of spiking activities distributed across an ensemble of neurons7-14 

(i.e. ‘the spatial code’), and the temporal features of these neural spike trains such as their 

synchronicity15,16, relative response latencies17-19,  dynamics4,20-26 (i.e. ‘the temporal code’) have 

been shown to be important for sensory coding. While stimulus-specific information exists in 

both spatial and temporal dimensions, what is not understood is the stability or constancy with 

which these neural coding schemes allow recognition of the same stimulus encountered in a 

variety of different ways. We examined this issue in this study. 

 Alternately, flexibility in sensory representation will be necessary for carrying out certain 

computations. Often, sensory cues encountered by an organism change dynamically, and the 

same sensory cue can be encountered in a variety of different contexts (for example, coffee 

beans in a coffee shop or in a perfume shop). Therefore, emphasizing novelty/uniqueness or 

suppressing/masking redundancies becomes necessary for detecting changes in the 

environment. Previous electrophysiological24,27-30, imaging31, and psychophysical32 studies do 

indeed reveal such interactions exists particularly when sensory cues are dynamically 

encountered. Can certain aspects of the neural responses be adapted to allow the flexibility 

needed for adaptive computations, while at the same time maintaining stable recognition of 

stimulus identity?  

We examined this issue in the locust olfactory system. The insect olfactory system has 

been widely used for studying odor coding9,14-16,22-25,33-36. In this system, an odor stimulus is 

detected by olfactory receptor neurons (ORNs) in the antenna and the transduced electrical 

signals get relayed downstream to the antennal lobe (analogous to the olfactory bulb in the 
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vertebrates). In the antennal lobe, cholinergic projection neurons (PNs) and GABAergic local 

neurons (LNs) interact to reformat the sensory input received from the ORNs. The 

spatiotemporal activity patterns of the PNs are thought to represent odor identity and 

intensity14,23,24,35,37,38. In this work, we examined how the spatial and temporal aspects of neural 

responses are altered when a target stimulus is delivered in several non-overlapping 

distractors–target odor sequences. Our results suggest a surprisingly simple neural encoding 

solution that provides an adequate tradeoff between the representational stability needed for 

robust recognition and flexibility needed for adaptive sensory computations. 

 

RESULTS 

PN responses vary depending on stimulus history 
We began by examining how stable or variable were odor-evoked individual PN responses 
when the same stimulus was delivered with different stimulus histories.  Variations in stimulus 
histories were introduced by delivering the same odorant (‘target stimulus’) in various distractor–
target odor sequences. A 500 ms inter-stimulus interval was used to separate the two stimuli 
delivered. Five different odorants were used as distractor cues and two target stimuli were used 
in all our experiments (Fig. 1a,b). It is worth noting that the distractor odorants comprised of four 
odorants belonging to different functional groups (2octanol (2oct) – an alcohol, isoamyl acetate 
(iaa) – an ester, benzaldehyde (bzald) – an aldehyde, citral – a terpene), and a complex blend 
(apple). The target odorant comprised of an odorant that has been shown previously as suitable 
for associative conditioning (hexanol), and an innately attractive odorant (geraniol)24.  

We found that although responses of individual PNs during solitary introductions of the 
target stimulus were reliable across trials, they became variable when the same stimulus was 
delivered with different stimulus histories (Fig. 1c,d). When compared to the solitary target odor 
responses, the number of spikes increased for some stimulus histories (e.g. PN2 2oct-hex vs. 
PN2 hex) but reduced for others (PN2 bzald-hex vs PN2 hex). Further, note that 
increase/decrease in target stimulus response was not based on the chemical similarity 
between the two cues delivered in the sequence. Our results indicate a simple rule for cross-
talk: if a PN responded strongly to the first cue in the sequence (i.e. the distractor) then its 
response to the second stimulus (i.e. the target) was likely to be reduced. Alternately, if the 
spiking activity reduced below baseline levels during exposure to the distractor cue, then its 
response to the following target increased in most cases (all comparison made with respect to 
the response evoked by the solitary target stimulus; Supplementary Fig. 1a–d).  

Next, we examined how the variations observed at the individual PN level affected the 
ensemble neural representation of the target stimuli. To visualize odor-evoked population PN 
responses, we used a dimensionality reduction analysis. Individual PN responses were aligned 
with the odor onset and binned in 50 ms time windows. The spike count per time bin of each PN 
became a vector component, and the spike counts of all recorded PNs in that same time bin 
were regarded as the high-dimensional neural response. The time series of high-dimensional 
PN responses during the entire target stimulus presentation (4 s duration) was then projected 
along three principal component axes (see Methods). We found that introduction of the same 
stimulus generated not one ensemble neural response trajectory but a family of trajectories, one 
for each stimulus history. Further, consistent with the earlier studies24,34,36,38, we found that all 
introductions of the target stimuli generated ensemble neural trajectories that included a fast-
transient response component (~1 – 1.5 s from odor onset) that subsequently stabilized into 
steady state responses. Notably, the direction of the high-dimensional vectors (indicates 
variation in the set of PNs activated), and the direction of their evolution (variation in 
spatiotemporal patterning) during the target stimulus presentation varied in a history dependent 
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manner. This can be clearly noted from the misalignment between the family of neural response 
trajectories generated during the exposure to the same target stimulus (Fig. 1e,f).   

How distinct or separable are these responses generated by the same stimulus? To 
examine this, we used a supervised dimensionality reduction technique (linear discriminant 
analysis or LDA) that seeks to capture the differences between the ensemble neural responses 
evoked by the target odorant. Projecting the data along the LDA axes, we found that the target 
stimulus evoked PN responses created multiple, separable clusters, one for each stimulus 
history with which it was presented (Fig. 1g,h). This qualitative observation was further 
quantified using a classification analysis (Supplementary Fig. 1e,f; see Methods). Therefore, 
we conclude that both at the individual and population levels, PN responses that are thought to 
mediate identification of an olfactory stimulus in the insect olfactory system can vary significantly 
when the same stimulus is encountered with different histories.   

Stimulus-history dependent contrast enhancement 
Are these variations in odor-evoked ensemble neural responses random? To examine this 
issue, we compared the neural responses evoked by solitary and sequential presentations of 
the target stimulus with the distractor cue (Fig. 2a,b). Our results indicate each olfactory 
stimulus evoked a closed-loop trajectory that evolved in a unique direction. As can be expected 
from our earlier analysis, the solitary and the sequential introductions of the same target 
stimulus generated two different neural response trajectories. As a rule, compared to the solitary 
target stimulus response, when presented following the distractor cue, the ensemble response 
trajectory shifted further away from the responses evoked by the distractor cue. This is 
consistent with individual and ensemble PN response analyses (Fig. 1c,d and Supplementary 
Fig. 2) where we found that during sequential presentations of the target stimulus, common 
neurons were suppressed (i.e. responds to both target and the preceding distractor stimulus), 
whereas those that responded uniquely to the target odorant tended to increase.  

As a direct consequence, the angular separation between neural response trajectories 
between the target and distractor cues increased, which can be expected to enhance 
discriminability between these two odorants. To quantify this, we used a correlation analysis 
where we compared the similarity between ensemble PN activities evoked by the target 
stimulus and the distractor cue. We made this comparison for both the solitary exposure of the 
target stimulus and the sequential presentations (Fig. 2c,d). As can be noted, the correlation 
between the distractor cue and the target stimulus significantly reduced during sequential 
presentation of the target stimulus. Hence, our results indicate that alterations in the ensemble 
neural responses allow the antennal lobe circuit to enhance the uniqueness of the target 
stimulus with respect to the preceding cue i.e. dynamic, history-dependent contrast 
enhancement. 
 
Same stimulus can activate varying combinations of neurons  
To enhance contrast with different distractor odorants, the same target stimulus must activate a 
different subset of the PNs. So, we wondered if there exists a unique set of neurons that is 
activated during all the target stimulus presentations to allow stable recognition.  To understand 
this, we classified the PN responses into ‘responsive’ or ‘non-responsive’ categories (see 
Methods). We found that the percentage of neurons activated and the composition of the set of 
responding neurons varied when the same target stimulus was presented with different histories 
(Fig. 3a,b). Further, the percentage of PNs that consistently responded to all introductions of 
hexanol and geraniol (the two target stimuli) was a smaller fraction of the set that responded to 
the solitary introductions of these two target stimuli.  
 To represent the identity of the target stimulus, the set of neurons must be consistent as 
well as unique. So, we examined how many of these consistent neurons were also unique 
responders i.e. respond to target stimuli alone (Fig. 3c,d). Surprisingly, we found that there was 
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not a single PN that responded uniquely and consistently to hexanol in all the conditions. Only 
2% neurons responded uniquely and consistently to geraniol presented with different stimulus 
histories. Therefore, our results indicate that combinatorial code involving a consistent and 
unique set of neurons may not be a suitable approach for achieving stable recognition of a 
sensory stimulus encountered with varying stimulus histories.  
 
Temporal response features also vary with stimulus history 
How robust are temporal features such as response latency and pattern of stimulus-evoked 
spike trains in allowing stable odor recognition? To examine this, we defined the response 
latency as the first time bin when a neuron’s response exceeded a certain threshold value (see 
Methods; Supplementary Fig. 3a,b). We then classified neurons as early responders (latency < 
600 ms) or late/non-responders (latency > 600 ms). Note that the early responders were PNs 
that responded before behavioral response onset (median ~600 ms24,35).  For visualization, we 
represented this classification of the response latency across the ensemble of PNs as a color 
bar (Fig. 4a,b). The response latency vector was generated for different introductions of the 
target stimulus and shown as a color bar to allow comparisons. Our results indicate that 
depending on the stimulus history, some of the early responding projection neurons to the 
solitary presentations of the target stimulus became late/non-responsive in the sequential 
presentations, while some of the late/non-responders became early-responders. Furthermore, 
only a small subset of neurons consistently responded early to the target stimuli. Similar to the 
combinations of PNs activated (Fig. 3), the sets of consistent early responders that were also 
unique responders to the target stimuli were empty or near empty sets (Fig. 4c,d).  

How robust are other features of PN responses such as the pattern of their stimulus-
evoked spike trains? To examine this, we considered the evolution of trial-averaged PN spike 
counts over time (during the four second of target stimulus presentation) as the temporal 
response vector. We computed the correlation between the PN temporal response vectors 
generated by the same target stimulus presented with different stimulus histories 
(Supplementary Fig. 3c,d). The distribution of this temporal pattern similarity metric for each 
target-history combination revealed that more correlation values were closer to a value of ‘zero’ 
rather than ‘one’ (Fig. 4e,f). This indicated that the temporal patterns of PN spiking activities 
also change considerably with stimulus history.  

Taken together, these results indicate that temporal features of PN responses are also 
highly variable and may not allow robust recognition of a stimulus when it is encountered with 
different stimulus histories.  
 
Robust behavioral recognition  
Our electrophysiological results indicated that combinations of neurons and their temporal 
response features changed when the same stimulus was presented with different histories. 
Therefore, we wondered if locusts can behaviorally recognize a conditioned stimulus if it is 
presented in a similar fashion. To determine this, we trained locusts using an appetitive-
conditioning paradigm. Briefly, during the training phase, starved locusts were presented a 
conditioned stimulus (hexanol; also target stimulus in electrophysiology experiments) followed 
by a food reward (wheat grass) with significant stimulus-reward overlap (see Methods). Six such 
training trials were sufficient for the locusts to learn the association between the olfactory cue 
and the reward. In an unrewarded test phase, locusts that learned this association between the 
stimulus and reward opened their sensory appendages close to their mouths called maxillary 
palps in anticipation of the reward. The distance between the palps was tracked using a custom-
written software and used as a metric for successful recognition (see Methods). Notably, 
responses of the trained locusts to the conditioned stimulus were consistent even when the 
same stimulus was presented multiple times without reward during the test phase. Therefore, 
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we assayed the palp-opening responses of the trained locusts to the conditioned stimulus 
presented with varying stimulus histories (Fig. 5a–f).  

We observed that trained locusts responded to the conditioned stimulus (hexanol) 
irrespective of whether it was presented solitarily or in a sequence following a distractor cue 
(Fig. 5g; see Methods). While three of the five distractor cues did not elicit a palp-opening 
response (POR), two odorants (2oct and iaa) evoked POR responses that were weaker than 
those observed during solitary presentations of the conditioned stimulus (Fig. 5h, Fig. 5b–f). In 
some cases, POR response to the distractor diminished the response magnitude to the 
conditioned stimulus (Fig. 5c; iaa-hex). Even when the distractor did not elicit a POR response, 
we found that the response magnitude to the conditioned stimulus can be reduced (Fig. 5f; app-
hex). Although the POR magnitude varied, the trained locusts responded with an above 
baseline-level response to almost all presentations of the conditioned stimulus. Based on these 
observations, we conclude that although there is some interference from the distractor cues, 
locusts can robustly recognize the conditioned stimulus presented with varying stimulus 
histories. 

Decoding with optimal linear classifiers  
Can the behavioral responses to distractor-conditioned stimulus sequences be predicted from 
the ensemble PN neural activities? To understand this, we first sought to determine whether the 
target can be robustly recognized in a distractor-target sequence (i.e. pairwise odor 
classification). For this approach, we constructed a linear contrast-enhancement kernel based 
on the solitary responses evoked by the distractor and target odorants (Supplementary Fig. 
4a–c). Ensemble PN activities in 50 ms time bins were convolved with this kernel and input to a 
perceptron-like classifier with fixed weights (see Methods) for classification into target odor  
‘present’ or ‘absent’ categories. The bin-by-bin, trial-by-trial classification results were then 
converted into probabilities of robust target odor recognition and plotted as a function of time 
(Supplementary Fig. 4d). This approach was largely successful in recognizing the target 
odorants in a given distractor-target odor sequence. However, there were two main drawbacks 
in this approach: (i) the response to each distractor and target stimulus need to be known to 
construct the contrast enhancement kernel and to set the classifier threshold, and (ii) the 
number of free parameters involved is extremely large (for a dataset with ‘n’ neurons: n x (n-1)/2 
kernel parameters + 1 classifier threshold parameter needed). Nevertheless, this result 
indicated that PN ensemble neural activities encoded the information needed to robustly 
recognize a target odorant in each of the five distract-target sequences.    

As a final approach, we used a linear optimal classifier (linear support vector 
machine11,39) to separate the target odorants from all five distractor stimuli (Fig. 6a). 
Surprisingly, we found that this was indeed feasible and the target stimuli can be robustly 
discriminated and recognized (Fig. 6b). While this approach used a lot fewer parameters (for ‘n’ 
neurons this approach would require ‘n+1’ free parameters; n for the weight vector vsvm and 1 
threshold parameter), it still requires that the PN responses to target odor and all the distractor 
odorants be known to determine the right set of parameters. Furthermore, even though the 
classification results show that robust recognition of the target stimulus is feasible from the 
ensemble PN activities, it still does not match well with the behavioral POR observed for these 
stimuli. Particularly, it is worth noting that none of the approaches generated false positives for 
2oct and iaa.  
 
Flexible neural decoder: OR–of–ANDs 
We sought to determine the simplest approach to transform ensemble PN responses into 
behavioral PORs. To design this decoder, we exploited the observation that for pairs of target 
stimulus presentations with varying histories there was a substantial overlap in the set of 
neurons activated (Fig. 3a). This was used to design a pairwise odor classifier that robustly 
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recognized the target stimulus in each distractor-target sequence (Supplementary Fig. 4d). 
However, when all stimulus histories were considered simultaneously, the set of consistent and 
unique PNs reduced significantly. Therefore, we reasoned that a decoder capable of exploiting 
information distributed in a flexible subset of neurons would allow robust recognition of the 
target stimulus.   

To design the flexible classifier, we summed the contributions of all neurons activated by 
solitary introductions of the target stimulus and disregarded the contributions of all other 
projection neurons (i.e. weight of ‘1’ for each neuron activated by solitary introductions of the 
target stimulus, and ‘0’ for all others). Next, the classification threshold (m) was set to a value 
less than the number of neurons (n) assigned a weight of ‘1’ (i.e. m < n). It is worth to note that 
the classifier becomes analogous to an OR-of-ANDs logical operation: m-1 ANDs and n choose 
m ORs (or combinations) can generate an output of ‘target present’ from the classifier (Fig. 6c). 
Any m-out-of-n neurons that respond to the solitary introductions of the target stimulus are 
sufficient for robust recognition of the target stimulus. Also, note that the composition of the m 
neurons is allowed to vary across stimulus histories under this scheme.  
 We examined performance of both analog (PN firing rates were retained) or digital 
(binarized into ‘responsive’ and ‘non-responsive’) versions of this linear classifier (Fig. 6d – 
analog classifier, Supplementary Fig. 5 – digital classifier). In both cases, the classification 
results from the OR-of-AND classifier revealed robust recognition of all presentations of the 
target stimulus. Interestingly, misclassifications were made for 2oct, iaa, and apple. It is worth 
noting that both 2oct and iaa evoked POR in locusts trained for recognizing hexanol. However, 
any further manipulation of classifier’s free parameter (i.e. threshold or value of m) to reduce 
misclassification for apple, resulted in overall recognition performance degradation.  
 An earlier work showed that following termination of an odor pulse, a nearly non-
overlapping set of neurons are activated(OFF ensemble neural response)25. These odor-evoked 
OFF responses are stimulus-specific. More importantly, a pattern-match with the ON neurons 
allowed prediction of palp-opening response and a pattern-match with the OFF neurons were 
better indicators of palp-closing. Therefore, we modified the decoding scheme to include two 
OR-of-AND classifiers, one for monitoring similarity with the set of hex-ON neurons, and the 
second to track the similarity with the set of hex-OFF neurons (Fig. 7a,b). Our results indicate 
that the performance of this ON-OFF flexible decoder (Fig. 7c–i) was comparable to the ON 
response model except for one important difference. We found that unlike 2oct and iaa, 
distractor cues that evoked POR, apple alone activated comparable pattern-matches with both 
hex-ON and hex-OFF neurons. When the classifier outputs were transformed into behavioral 
responses (Fig. 7i), these contributions cancelled each other out (palp-opening vs. palp-
closing). Therefore, the ON-OFF flexible decoder predicted mean POR trends that tightly 
matched with those observed in our behavioral experiments for all distractor-target odor 
sequences. 
In sum, we conclude that a decoding scheme based on flexible combinations of neurons would 
allow stable recognition of an odorant while allowing the antennal lobe circuits to adapt their 
ensemble responses in a stimulus-history dependent manner. 
 
 

DISCUSSION 

What is the neural code for a sensory stimulus is a fundamental question in sensory 
neuroscience. Several encoding schemes that depend on a unique set of neurons activated 
(‘the combinatorial or spatial code’), or the temporal features of neural electric discharges (‘the 
temporal code’), or their combination (‘spatiotemporal schemes’) have been proposed for 
representing stimulus-specific information in sensory circuits. While it is well established that 
stimulus-specific information can indeed exist in both spatial and temporal dimensions, how 
robust are these schemes to extrinsic (for example, stimulus history27,35 or ambient conditions40), 
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or intrinsic (for example, plasticity41 or internal-state such as hungry vs. satiated42) 
perturbations? This is what we sought to determine in this study.  
 We examined the stability of neural representations to odorants when only the stimulus 
history was systematically varied. Surprisingly, this manipulation was enough to induce 
variations in spatial, temporal and spatiotemporal features of neural responses elicited by an 
odorant. Nevertheless, locusts trained to recognize a conditioned stimulus could robustly 
recognize and respond to the same. This mismatch between the lack of stability in the neural 
representation and robustness in behavior necessitated a re-examination of potential mapping 
schemes between neural inputs and behavioral outputs. Notably, our results indicate that a 
linear scheme that decodes information from flexible subsets of neurons was sufficient to 
achieve this transformation. 
  The flexible decoding approach can be easily understood if the problem is recast as one 
of object recognition (Supplementary Fig. 6). A simple approach to recognize an object, say a 
‘chair’, is to first segment it into simple features (such as 4 legs, seat, back rest, and hand rest). 
While the presence of all relevant features (all four features in this example) allows robust 
recognition of the prototype chair, it may not allow generalization when other instantiations of 
this object are presented. Therefore, to allow generalization, it would be necessary to relax the 
constraint that all the relevant features need to be present. Instead, determining the presence or 
absence of a meaningful subset of these features, any m features out of the possible n features 
(m < n), can be used for achieving robustness. Higher values of m allow more specificity, 
whereas lower values allow generalization. Our results indicate that such a decoding approach 
can indeed allow robust recognition of odorants presented with different stimulus histories (note 
that odor identity is analogous to the object to be recognized, and activation of a projection 
neuron is analogous to the presence of a feature). While results presented used weight vectors 
with components that were either a 0 or 1, we found further improvements in classification 
results could be achieved by using negative weights for non-responsive neurons (not shown). 
 Could such a flexible decoding scheme be implemented by the insect olfactory system? 
To understand this issue, it would necessary to identify the basic components of the decoder: (i) 
convergence of input from multiple PNs onto downstream neurons, (ii) linear combination of the 
inputs, and (iii) a detection threshold that does not require all input neurons to be simultaneously 
co-active. Existing anatomical and functional studies have shown that downstream Kenyon cells 
in the mushroom body linearly combine inputs from multiple projection neurons43,44. Further 
photostimulation of Kenyon cell dendritic claws in fruit flies have revealed that activating more 
than half of these input regions is sufficient for driving these cells to spike45 (i.e. n/2 < m < n is 
sufficient). Therefore, anatomical and functional evidences suggest that the downstream centers 
in the mushroom body can indeed implement such a decoding approach.  
 Our results also indicate that variations in the neural responses with stimulus history 
were not random. Rather, the response evoked by the current stimulus was reshaped to 
suppress any overlap with the preceding cue and increase the responses of those PNs that 
responded uniquely to the current cue. This simple manipulation at the level of individual PNs 
resulted in contrast enhancement of population neural responses. Note that contrast 
enhancement in olfaction happens between stimuli over time, rather than in the spatial domain 
as in vision.  
 Can such dynamic contrast enhancement lead to other potential confounds? For 
example, how are PN responses altered when back-to-back pulses of the same odorant are 
presented? To determine this, we reanalyzed a recently published PN response dataset to two 
back-to- back pulses of hexanol (Supplementary Fig. 7). Our analysis revealed that in addition 
to reduction in responses to the subsequent pulses36, a few PNs that did not respond to the first 
pulse were activated in the second pulse, and some responding to the first pulse were 
inactivated. Note that the same OR-of-ANDs classifier can robustly recognize the stimulus after 
this subtle response perturbation. 
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While our results do not provide mechanistic insights on how this adaptive computing 
may arise, a few candidate mechanisms can easily be identified. Activity-dependent synaptic 
depression between the sensory neurons and projections neurons46,47, interference due to 
stimulus-evoked OFF responses25 or adaptation at the level of sensory neurons48,49 can all 
contribute to the results observed in this study. Lastly, while we perturbed odor-evoked neural 
responses using variations in stimulus histories, other factors such as ambient conditions 
(humidity, temperature, air flow), presence of competing odorants, plasticity in central circuits 
have all been shown to introduce variations different from those that were examined here. 
Whether the same flexible decoding scheme proposed here can provide a generic framework 
for achieving tradeoff between stability and flexibility remains to be determined.  
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FIGURE CAPTIONS: 

 
Figure 1: Projection neuron responses vary in a stimulus-history dependent manner 

(a, b) Distractor-target sequences used in this study are shown. A target stimulus (hexanol – 
hex or geraniol – ger) was presented solitarily or in a non-overlapping sequence with a 
distractor cue. All target and distractor stimuli were presented for 4 s. The time interval between 
the termination of the distractor stimuli and the onset of the target stimulus was 500 ms (Inter-
stimulus interval or ISI).  

(c) Spiking responses of two different projection neurons (PNs) in the locust antennal lobe are 
shown. Each tick mark represents an action potential or ‘spike’ fired by the PN. Each row 
corresponds to one trial and PN responses in ten consecutive trials are shown for assessing the 
repeatability of observed spiking response patterns. The duration when the distractor (blue) and 
target (red) stimuli were puffed onto the locust antenna are shown using colored boxes. As can 
be noted, the target stimulus (hex) can be presented solitarily (top panel) or following one of the 
five different distractor cues: history 1 – 2octanol (2oct), history 2 – isoamyl acetate (iaa), history 
3 – benzaldehyde (bzald), history 4 – citral (cit) and history 5 – apple (app). 

(d) Similar plots as in panel c but showing responses of two more PNs to presentations of 
geraniol (ger) with different stimulus histories.  

(e) Responses of eighty-five PNs projected onto the first three principal components are shown. 
Each spoke represents the ensemble neural activities in a 50 ms time bin after PCA 
dimensionality reduction. Arrows indicate direction of evolution of the stimulus-evoked 
responses over time. The six trajectories shown correspond to PN responses observed 
following the introductions of the target stimulus either solitarily or in one of five stimulus 
sequences.  

(f) Similar trajectory plots as in panel e but visualizing ensemble PN responses evoked by 
introductions of geraniol (ger) with different stimulus histories. 

(g) Population PN responses are shown after linear discriminant analysis dimensionality 
reduction (n = 85 PNs). Each 3D-sphere represents an eighty-five-dimensional PN activity 
vector in a 50 ms time bin. Eighty data points corresponding to ensemble neural activities 
evoked during 4 s of hexanol exposure with a particular stimulus history are assigned the same 
color.    

(h) Similar plot as in panel g but showing responses elicited during geraniol exposures. 
Different colors are used to differentiate responses evoked by geraniol presented solitarily or in 
one of the five odor sequences. 

 

Figure 2: Dynamic contrast enhancement of odor-evoked ensemble responses 

(a) Similar trajectory plots as shown in Fig. 1e but comparing the population PN responses 
generated during solitary presentations of the distractor odorant (blue trajectory) and target 
odorant (red trajectory) with responses elicited by the same target odorant presented after the 
termination of the distractor cue (orange trajectory). Five plots are shown corresponding to 
hexanol introductions in the same five stimulus sequences shown in Fig. 1a,c. Note that 
compared to the red trajectories, the orange trajectories are more distant from the blue 
trajectories in every panel. 
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(b) Similar plots as in panel a are shown for five sequential presentations of geraniol. It is worth 
noting again that compared to the solitary geraniol responses (purple trajectories), the 
responses observed during sequential presentations (pink trajectories) are more distant from 
the distractor cue evoked responses (blue trajectories) in every panel. 

(c) The mean of correlation values between the ensemble PN responses (n = 85 PNs) evoked 

by hexanol and the five distractor cues are shown as bar plots. Error bars indicate ± s.d across 
ten trials. The mean odor-evoked responses during the initial 1 s after stimulus introduction was 
used for computing these correlations. Red bars quantify similarities between solitary distractor 
cue and solitary hexanol presentations. Orange bars indicate similarities between the solitary 
distractor cue and sequential hexanol presentations. Asterisks indicate a significant decrease in 
the correlation (*P < 0.05, NS: P > 0.05, paired t-tests, n = 10 trials).  

(d) Similar plots as in panel c but geraniol is used as the target odorant. 

 

Figure 3: Evaluating the stability of the combinatorial code  

(a) Each projection neuron was classified as being ‘responsive’ or ‘non-responsive’ to the target 
stimulus (see Methods) and the classification of all eighty-five neurons are shown as a barcode. 
This binary classification was done for solitary and sequential introductions of hexanol. Note that 
all barcoded PNs are identically sorted and displayed to facilitate comparison. The percentage 
of PNs classified as being responsive during each hexanol presentation is shown above the 
barcode. The set of PNs classified as being responsive for all hexanol introductions is identified 
as the ‘consistent set’ and is also shown as rightmost barcode.  

(b) Similar plot as in panel a but comparing geraniol responsive and non-responsive set of PNs 
is shown. 

(c) Barcodes identifying responsive and non-responsive PNs for the five different distractor 
stimuli are shown. These PNs were removed from the set of neurons activated during all 
introductions of hexanol i.e. ‘the consistent set’, to identify those PNs that were both consistent 
and unique responders to hexanol (the rightmost barcode). As can be noted, this is an empty 
set for hexanol.  

(d) Similar plot as in panel c but identifying the unique and consistent set of PNs that 
responded to geraniol. For geraniol, this set consisted of only 2% of the PNs. 

 

Figure 4: Temporal response features vary with stimulus histories 

(a) Firing rates of eighty-five neurons during the 2 s following hexanol introductions are shown. 
A log scale was used to allow comparison between different PNs. Firing rates in 50 ms time bins 
were averaged across trials and are shown as a function of time. Note that the PNs were sorted 
based on their response latency to solitary hexanol introductions with early responders at the 
top and late/non-responders at the bottom. The color bars next to the firing rate plots reveal the 
response latency category of each PN: early responders in white and late/non-responders in 
black. Firing rates of the PN ensemble and the response latency vector are shown for solitary 
and sequential introductions of hexanol.  

(b) Similar plots as in panel a but now showing PN responses and their latencies to solitary and 
sequential introductions of geraniol. 
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(c) Same analysis as in Fig. 3c,d. Barcodes identifying the set of PNs that responded 
consistently early during solitary and sequential hexanol introductions is identified. The early 
responsive and late/non-responsive PNs for the five different distractor stimuli are also shown. 
The set of PNs that were both consistent and unique early responders to hexanol is identified 
(the rightmost barcode). As can be noted, this is an empty set for hexanol.  

(d) Similar plot as in panel c but identifying the unique and consistent set of PNs that 
responded early to geraniol. For geraniol, this set consisted of only 1.2% of the PNs. 

(e) Distributions of correlation values between PN spike trains for each sequential introduction 
of hexanol with solitary hexanol responses are shown. 

(f) Similar plots as in panel e but analyzing PN responses to solitary and sequential 
introductions of geraniol. 

 

Figure 5: Robust behavioral response to a conditioned stimulus 

(a) Locusts were trained to associate an odorant with a food reward.  Trained locusts 
subsequently responded the conditioned stimulus presentations by opening their sensory 
appendages close to their mouths called maxillary palps. The distance between the palps was 
tracked and plotted as a function of time. Mean palp-opening response of locusts trained to 
recognize hexanol (conditioned stimulus) is shown. Error bar represents standard error across 
locusts (n = 27).  

(b–f) Palp opening responses to five different sequential presentations of hexanol (i.e. the 
conditioned stimulus) are shown. Note that these stimulus sequences are identical to the ones 
used in our physiology experiments.  

(g) PORs of each locust to hexanol were classified as responsive and non-responsive and 
shown for solitarily and each sequential presentations of the conditioned stimulus.  

(h) PORs of each locust to the five distractor odorants: 2oct, iaa, bzald, cit, and app are shown. 

 

Figure 6: Linear neural decoding of ensemble neural activities 

(a) A schematic of the multi-class linear support vector machine (SVM) classifier is shown. Here 
again the input to the classifier was an eighty-five-dimensional ensemble PN activity vector in a 
50 ms time bin (x(t)). The optimal weight vector that separates hexanol responses for all other 
odor-evoked and baseline activities was determined and is shown as a color bar (vsvm). 
Contribution of each PN was weighted based on the corresponding weight-vector component 
(vsvm

T x(t)) and thresholded to produce a binary classification output: hexanol ‘present’ or 
‘absent’. Bin-by-bin classifier output and the probability of hexanol recognition was plotted as in 
Supplementary Fig. 4. Note that the number of of parameters here are 86 (number of neurons 
and threshold) 

(b) Left panel, bin-by-bin, trial-by-trial classification results are shown for the five sequential 
introductions of hexanol. As noted before, each red tick mark indicates that the hex was 
recognized as being present in that time bin. Right panel, the probabilities of hex classification 
using the linear SVM classifier, across trials are plotted as a function of time for different 
hexanol presentations. 
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(c) A schematic of the flexible set decoder is shown. Ensemble PN activity vector in a 50 ms 
time bin (x(t)) was the input to the classifier. The weight vector v had the same number of 
components as x(t). A vector component of ‘1’ was assigned corresponding to PNs that were 
responsive to the solitary hexanol introductions, and ‘0’ was assigned corresponding to non-
responsive PNs. A dot product of x(t) and v resulted in summation of all hexanol responsive 
PNs. This scalar value was subsequently thresholded to determine the classifier output. The 
threshold to be exceeded was set to allow flexible subsets of neurons to contribute towards 
reaching the cutoff value. A digital version of the classifier when input vector x(t) was also 
binarized and is shown in Supplementary Fig. 5. 

(d) Classification results for the flexible set decoder are shown as a bin-by-bin, trial-by-trial 
raster plot and as classification probabilities over time. Same convention as those in panel b. 

 

Figure 7: Predicting behavioral responses from neural activities using flexible decoding 

(a) Left panel, results from two flexible set decoders using weight vectors vON and vOFF  are 
shown. VON was a binary weight vector with a vector component ‘1’ corresponding to PNs 
responsive during hexanol presentation (i.e. stimulus ON epochs). VOFF was also a binary 
weight vector but with a vector component ‘1’ corresponding to those PNs that were activated 
after the termination of the hexanol presentation (i.e. stimulus OFF period – a 4s time window 
that began 500 ms after stimulus termination). Note that red ticks indicate the output of first 
flexible set classifier (using VON weight vector) indicating ‘hexanol ON’ during that time bin. A 
blue tick indicates the output of the second flexible set classifier (using VOFF weight vector) 
indicating ‘hexanol OFF’ during that time bin. Right panel, the probability of hexanol ON and 
hexanol OFF over time are shown for the odor sequences. 

(b) VON and VOFF weight vectors used for generating classification results in panel a are shown. 
Vector component with a value ‘1’ (i.e. responsive PN) are shown in white and the vector 
component corresponding to the non-responsive PNs is shown in black. Note that the set of 
PNs activated during and immediately after hexanol presentations are nearly non-overlapping. 

(c) A schematic of the ON-OFF model for translating the classification results from the flexible 
set decoder using VON and VOFF weight vectors into behavioral PORs. The classification 
probabilities (i.e. red and blue traces shown in panel a) were appropriately thresholded and 
scaled to generate the PORs. Note that pattern match with ON responses were used to 
generate palp-opening responses, whereas pattern match with OFF responses were used to 
generate palp-closing responses.  

(d–i) Observed PORs to various presentations of hex (same as in Fig. 5a–f) are shown in black. 

The predicted PORs generated from the ON-OFF model are shown in purple. The correlation 

coefficient between the actual (mean trend; i.e. the black trace) and predicted PORs are shown 

on each of the six panels. The model parameters were set based on PORs to solitary hexanol 

presentation.  
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METHODS: 

Odor stimulation: Odor stimuli were delivered using a standard procedure24,25,35,36. The 
following odor panel was used: hexanol, geraniol, 2-octanol, isoamyl acetate, benzaldehyde, 
citral, and apple. All odorants were diluted to their 1% concentration by volume (v/v) in mineral 
oil. A carrier stream of desiccated and filtered air stream (0.75 L min-1) was directed at the 
antenna to provide a constant flux. A constant volume (0.1 L min-1) from the odor bottle 
headspace (60 ml sealed bottles contained 20 ml diluted odor solutions) was injected into the 
carrier stream using a pneumatic pico-pump (WPI Inc., PV-820) during stimulus presentations. 
A vacuum funnel placed right behind the locust antenna ensured removal of odor vapors. Each 
solitary or sequential presentation of an odorant was delivered in a pseudorandomized manner 
(blocks of 10 trials) with 60 s inter-trial intervals.  

Olfactory electrophysiology: Young locusts (Schistocerca americana) of either sex with fully 
developed wings (post fifth instar) were selected from a crowded colony. After immobilizing 
locusts, the brain was exposed, desheathed, and continually perfused with locust saline as 
reported previously36,50. Extracellular recordings from the antennal lobe were made using a 16-
channel, 4×4 silicon probes (NeuroNexus). Each electrode contact pad was gold plated such 
that its impedance was in the 200 – 300 kΩ range. Raw extracellular signals were filtered 
between 0.3 to 6 kHz and amplified at 10 k gain using a custom made 16-channel amplifier 
(Biology Electronics Shop; Caltech, Pasadena, CA). Raw data were acquired at 15kHz sampling 
rate using a LabView data acquisition system.  

PN spike sorting: For spike sorting, we used a conservative approach that was described in 
earlier works51. We used the following criteria for the single-unit identification: cluster separation 
> 5 noise s.d., the number of spikes within 20 ms < 6.5%, and spike waveform variance < 6.5 
noise s.d. Using this approach, a total of 85 PNs were identified from 9 locusts (11 antennal 
lobes). 

Dimensionality reduction analyses: We used two dimensionality reduction techniques for 
visualizing ensemble PN responses: principal component analysis (PCA) and linear discriminant 
analysis (LDA). For both analyses, spiking activity of each PN was binned in 50 ms non-
overlapping time bins and averaged across trials. Spike counts of all recorded PNs were aligned 
with respect to the stimulus onset and concatenated to form an 85-dimensional PN response 
vector per 50 ms time window. Therefore, for each odorant, we obtained a response matrix of 
the following dimensions: 85 neurons (rows) x 80-time bins (columns; 4s of activity). 

To perform the PCA analysis shown in Fig. 1, we first concatenated the responses of the 
85 PNs to solitary and sequential presentations of hexanol or geraniol (85 PNs x 480 time bins 
[6 presentations x 80 time bins]). Response covariance matrices (85 x 85) were computed for 
these concatenated data matrices. Each 85-dimensional PN response vector was then 
projected onto the three principal eigenvectors (for visualization).  

PCA trajectories shown in Fig. 2 were computed using a different response covariance 
matrix. Here, the PN ensemble responses to three stimuli were concatenated to form the data 
matrix: solitary target stimulus (hex or ger; 4s), solitary distractor stimulus (4s), target stimulus 
after distractor stimulus (4s of hex or ger exposure). This resulted in 85 PNs x 240 time bins 
data matrices [3 stimuli x 80 time bins].  

For generating figures shown in Fig. 1 and Fig. 2, PN responses after PCA 
dimensionality reduction were linked in the temporal order of occurrence to create odor 
trajectories. The pre-stimulus baseline activity in the first time bin was subtracted before plotting 
each response trajectory. The odor trajectories shown were also smoothed using a three-point 
moving-average, low-pass filter. 
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 LDA dimensionality reduction39 analysis was also performed by first concatenating all 
high-dimensional PN response vectors that needed to be visualized.  The projection vectors 
were determined such that they maximized separation between responses of different stimuli 
while at the same time also reducing variance within responses generated by a single stimulus.  
 To quantify results, we performed a classification analysis. We performed a leave-one-
trial-out cross validation (i.e. PN response of one trial for one hex or ger introductions was left 
out). LDA projection vectors were computed using all other hex or ger introductions. The test 
trial to be classified was projected using the computed LDA eigenvectors and then assigned the 
same class label as the nearest cluster of data points (centroid of data points belonging to a 
particular class; class, in this case, is the hex or ger presentations with a particular stimulus 
history). This was repeated systematically leaving out each trial and computing its class label. 
The classification results are then shown as a confusion matrix in Supplementary Fig. 1e,f. 
  

PN response categorization: For analysis in this work we classified a projection neuron as 
‘responders’ if the spike counts in any time bin during the stimulus presentation exceeded mean 
+ 6.5 s.d. of pre-stimulus activity (2 s window just before onset of any stimulus). All PNs that did 
not meet this threshold were regarded as ‘non-responders.’ 
 

Response latency for PNs: We defined PN response latency as the first 50 ms time bin when 
the criterion for the responsive neuron was met (i.e. spike counts exceed mean + 6.5 s.d.  of 
pre-stimulus activity). For sequential presentations, the response latency was determined as the 
first time bin after the derivative of PSTH became positive (used in Fig. 4 and Supplementary 
Fig. 3).  

Contrast enhancement kernel for pairwise odor classification: For the calculation of 
contrast enhancement kernel, we followed a method that has been previously reported52. Let 

suppose that the mean PN response (averaged over 4 s of stimulus exposure) is  𝑝𝑖 (n-

dimensional vector). We rectified the values of this vector so that each element 𝑥𝑘
𝑖   0. If the 

response patterns of two different odorants were 𝑝1 and 𝑝2, then the weight vector W was 
calculated as follows: 

𝑝𝑖 = [𝑥1
𝑖 𝑥2

𝑖 … 𝑥𝑛
𝑖 ]

𝑇
 

𝑊 =  ∑ (𝑝𝑖 − 𝑝0
𝑖 ). (𝑝𝑖 − 𝑝0

𝑖 )𝑇2
𝑖=1 −  ∑ ∑ (𝑝𝑖 − 𝑝0

𝑖 ). (𝑝𝑗 − 𝑝0
𝑗
)𝑇2

𝑗=1
𝑗≠𝑖

2
𝑖=1    (1) 

where  𝑝0 is the mean pre-stimulus response averaged over a two second window. 

Support vector machine (SVM): The PN response patterns to solitary introductions of hexanol, 
2oct, iaa, bzald, cit, and app were used as training samples. We regarded this as a binary 
classification problem, where hex responses were considered as one class, and all other 
responses were regarded as the second class. We used a slack variable to avoid overfitting and 

the box constraint was taken to be 0.01 (fitcsvm in MATLAB). The optimal weight vector 𝑣𝑠𝑣𝑚
𝑇  

was determined using training samples and used to classify response patterns generated during 
sequential stimulus presentations as follows: 

ℎ(𝑥(𝑡)) =  𝑠𝑖𝑔𝑛(𝑣𝑠𝑣𝑚
𝑇 𝑥(𝑡) + 𝑏)    (2) 

where x(t) is the 85-dimensional PN spike counts in a 50 ms time bin, the sign function results in 
‘1’ when the input is classified as ‘hexanol present’ and ‘0’ corresponded to ‘hexanol absent.’  
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Behavior experiments: Behavioral experiments were performed using locusts of either sex. All 
locusts used were from a crowded colony that was kept on a 12 h day – 12 h night cycle (7 am 
– 7 pm day). All behavioral experiments were performed between 10 am – 3:30 pm.  

Locusts were starved for 24 hours prior to their use in the appetitive-conditioning assay. 
The protocols that we used in this study for training locusts and tracking their palp-movements 
were identical to an earlier study35. The odor delivery setup and the stimulus sequences used 
were identical to that described for the electrophysiology experiments.  
 Hexanol diluted in mineral oil (hex 1%) was used as the conditioned stimulus for all 
behavioral experiments in this study. Wheat grass was used as the unconditioned stimulus. 
During each training trial, the conditioned stimulus was presented for 6 s. Food reward was 
given 3 s after the onset of the conditioned stimulus. Food was given manually for the duration 
of approximately 10 seconds. The training phase included a total of six training trials with a ten-
minute interval between successive trials. Only locusts that accepted food reward in at least four 
out of the six training trials and had a palp-opening response (POR) in at least three training 
trials were regarded as ‘trained locusts’ and retained for the testing phase (75% of the locusts 
(30/40) fell into this category). The imaging software was not able to robustly track the palp 
movements of three of the trained locusts (3/30) and, therefore, these locusts were excluded 
from all analyses.  

In the unrewarded testing phase, locust PORs were evaluated using six test trials. The 
first trial in all tests was the solitary presentation of 4 s of hexanol. This was done to ensure that 
trained locusts were able to recognize the solitary presentations of the trained stimulus (26/27 
locusts had a strong POR to solitary hexanol). In the subsequent five trials, the conditioned 
stimulus was presented in non-overlapping two odor sequences used in electrophysiology 
experiments. The two odor stimulus sequences were presented in a pseudo-randomized 
manner. The inter-trial delay between test phase trials was set to 25 minutes.  
 
Locust response categorization: For analysis in Fig. 5g,h, we classified a locust to be 
‘responsive’ when the POR to an odor presentation was 6.5 s.d. above pre-stimulus baseline 
response. Further, the POR during odor presentation had to remain greater than 20% of its 
peak value for at least 1 s. All the other cases were marked as ‘non-responsive’. 
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SUPPLEMENTARY FIGURE CAPTIONS: 

 

Supplementary Figure 1 

(a) Comparisons between the mean spike count (across 4 s) during sequential presentations of 
hexanol (y axis) and solitary presentation of hexanol (x axis) are shown. Mean ± s.e.m over ten 
trials are shown for all the eighty-five PNs. Each PN is color coded based on whether the spike 
counts increased (in red), decreased (in blue), or no significant change (gray in spike count for 
two hexanol presentations compared (P < 0.05, one-way ANOVA; n = 85 PNs).  

(b) Similar plot as in panel a but comparing the spike counts during the five sequential 
presentations of geraniol with those observed during solitary geraniol introduction. 

(c) The percentages of PNs (n = 85 PNs) with a significant increase (red) or decrease (blue) in 
spike counts are shown for five sequential presentations of hexanol.  

(d) Similar plot as in panel c but summarizing increase and decrease in PN activity during the 
five sequential presentations of geraniol.  

(e) The separability of the six PN response clusters revealed in Fig. 1g,h is quantified and 
shown as a confusion matrix. Rows correspond to the actual stimulus identity and the columns 
indicate the predicted stimulus identity. The classification was done using the nearest centroid 
method with leave-one-out cross-validation (see Methods). Note that the confusion matrix is 
mostly diagonal indicating that the PN responses evoked by the same stimulus presented with 
different histories are distinct. 

(f) Similar plot as in panel e but the confusion matrix but analyzing the response separability of 
the solitary and sequential geraniol presentations. 

 

Supplementary Figure 2  

(a) Comparison between the mean firing rates averaged across two distinct sets of PNs is 
shown for the solitary (red trace) and sequential presentations (orange traces) of hex. 
Overlapping PNs correspond to the set of PNs that were responsive to both the target (hex) and 
distractor odorant. ‘Non-overlapping PNs’ correspond to the remaining set of PNs that were not 
‘overlapping PNs’. Left panel shows the firing rate of overlapping PNs averaged across trials (n 
= 10). Right panel shows the firing rate of non-overlapping PNs averaged across ten trials. The 
percentage of overlapping PNs (i.e. co-activation) for each distractor odorant is shown. 

(b) Similar plots as in panel a but comparing the mean firing rates of overlapping and non-
overlapping PNs during solitary and sequential geraniol presentations. 

 

Supplementary Figure 3  

(a) Left panel, raster plots showing spiking response of a PN to solitary and sequential 

introductions of hexanol. Same conventions as Fig. 1c. Right panel, mean spike counts in 50 

ms time bins across trials are plotted as a function of time. The first time bin when the firing rate 

exceeds a fixed threshold was defined as its response latency and is identified using a dotted 

vertical line in each panel. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2017. ; https://doi.org/10.1101/188011doi: bioRxiv preprint 

https://doi.org/10.1101/188011


27 
 

(b) Similar plots as in panel a but showing the response of a different PN to solitary and 

sequential introductions of geraniol. The evolution of firing rates over time and the response 

latency for each geraniol presentation are shown. 

(c) Left panel, raster plot showing a representative PNs spiking responses to different hexanol 
introductions. Right panel, mean spike counts plotted as a function of time. Correlations 
between firing rate patterns observed during different sequential hexanol introductions with 
solitary hexanol presentations are shown.  

(d) Similar plot as in panel c showing the spiking response variations for different geraniol 
introductions.  

 

Supplementary Figure 5  

(a) A schematic of a pairwise odor classifier is shown. The input to the classifier is an eighty-
five-dimensional ensemble PN activity vector in a 50 ms time bin (x(t)). This was subsequently 
multiplied by a contrast enhancement kernel (W) to generate a contrast-enhanced response 
vector (y(t)). A second eighty-five-dimensional binary vector (v) was constructed with a ‘1’ 
assigned for PNs responsive to hexanol after contrast enhancement and ‘0’ for non-responsive 
PNs. The contributions of all responsive PNs were summed (by taking dot product of y(t) and v) 
and thresholded to determine whether the target odorant was present or absent during that 50 
ms time bin. Classification was done on a bin-by-bin, trial-by-trial basis. Classification results are 
shown in a raster format with a red tick mark indicating target present. The probability of target 
stimulus recognition (number of correct recognition in a 50 ms time bin / number of trials) was 
determined and plotted as a function of time.  

(b) Contrast-enhancement of the mean firing rates across PNs (averaged across time; n = 80 
time bins) is shown. ‘p1’ and ‘p2’ correspond to the mean firing rates of responses to hexanol 
(red) and citral (blue) respectively. Left panel shows the raw firing rates, and the right panel 
reveals contrast enhancement response patterns after multiplication of p1 and p2 by the 
contrast enhancement kernel W (see Methods). As can be noted, the mean firing rates of 
commonly active neurons were suppressed and the mean firing rates of PNs that responded 
uniquely to hex and cit were enhanced. 

(c) A step-by-step illustration of how the contrast enhancement kernel was computed is shown.  

(d) Left panel, bin-by-bin, trial-by-trial classification results are shown for the five sequential 
introductions of hexanol. As noted before, each red tick mark indicates that the hex was 
recognized as being present in that time bin. Right panel, the probabilities of hex classification, 
across trials are plotted as a function of time for different hexanol presentations. 

 

Supplementary Figure 5  

Classification results for the digital flexible set decoder are shown as a bin-by-bin, trial-by-trial 
raster plot and as classification probabilities over time. Same convention as that in Fig. 7a. For 
any 50 ms time bin, the threshold for ON classification was set to be 3–of–36 PNs must be 
responding to the stimulus presentation (i.e. firing rate > 6.5 s.d. of pre-stimulus activity). The 
threshold for OFF classification was also set to be 3–of–33 PNs. The 36 hex-ON PNs and 33 
hex-OFF PNs were determined based on solitary hexanol presentations alone. Note that these 
classification results are very similar to the analog version that we presented in Fig. 7a.  
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Supplementary Figure 6  

(a, b) A schematic illustration of the flexible set decoder is shown. Here the problem is cast as 
one of object recognition (i.e. chair recognition). Images of different chairs (from a published 
dataset53) and their features are tabulated.  

(c) A schematic of an OR-of-ANDs or disjunction-of-conjunction classifier is shown. Input 
features are binary ‘feature present’ or ‘feature absent’. The weight vectors are constant and set 
based on an ideal object (Chair 2 in panel a): the weight vector component is a ‘1’ if the feature 
is present in the ideal chair, and ‘0’ if it not present. The only free parameter in the OR-of-ANDs 

classifier is the threshold of the output node (). If the value of the threshold is set below the 

total number of features present in the ideal object (for example  = 2), then the presence of any 
two of the four features will allow recognition of the object (i.e. flexible decoding). This can be 
written as a set of logical OR-of-ANDs operation.  

(d) The list of analogies between this object/chair recognition illustration and flexible odor 
decoding proposed in this manuscript are listed in a table. 

 

Supplemental Figure 7  

(a) Similar trajectory plot as shown in Fig. 2a but comparing the population PN responses 
generated during the presentation of two hexanol pulses. The second pulse of hexanol was 
presented 2 s after the termination of the first pulse. 

(b) Similar barcodes as in Fig. 3a but identifying the responsive PNs in the first and the second 
pulse.  
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