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ABSTRACT 

Modeling discrete phenotypic traits for either ancestral character state reconstruction or 

morphology-based phylogenetic inference suffers from ambiguities of character coding, 

homology assessment, dependencies, and selection of adequate models. These drawbacks occur 

because trait evolution is driven by the two key processes – hierarchical and hidden – which are 

not accommodated simultaneously by the available phylogenetic methods. The hierarchical 

process refers to the dependencies between anatomical body parts, while the hidden process 

refers to the evolution of gene regulatory networks (GRNs) underlying trait development. Herein, 

I demonstrate that these processes can be efficiently modeled using structured Markov chains 

equipped with hidden states, which resolves the majority of the problems associated with discrete 

traits. Integration of structured Markov chains with anatomy ontologies adequately incorporates 

the hierarchical dependencies, while use of the hidden states accommodates hidden GRN 

evolution and mutation rate heterogeneity. This model is insensitive to alternative coding 

approaches which is shown by solving the Maddison’s tail color problem. Additionally, this 

model provides new insight into character concept and homology assessment. The practical 

considerations for implementing this model in phylogenetic inference and comparative methods 

are discussed. 
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Understanding the processes underlying changes in a phenotype during the course of 

evolution is one of the fundamental challenges in biology (Prud’homme et al. 2007; Dececchi et 

al. 2015). The study of these processes promises to advance our knowledge of the dynamics of 

evolutionary radiations (Price et al. 2010; Van Bocxlaer et al. 2010; Tobias et al. 2014), 

complexity, and novelties (Moczek 2008; Ramirez and Michalik 2014) , as well as to enhance 

our understanding of the relationships between genotype and phenotype (Houle et al. 2010; 

Hiller et al. 2012; McCune and Schimenti 2012; Manda et al. 2015). Despite the numerous 

methods available for analyzing discrete morphological characters [reviewed in O’Meara (2012)], 

the lack of repeatable and agreed approaches (similar to those existing in DNA alignment) for 

primary homology assessment and character coding generates ambiguity during the character 

construction phase of analysis. This process of encoding traits into characters (see the definitions 

in Box 1) consists of a two-step procedure: (1) delimitation of trait within phenotype and its 

primary homology assessment across species, as well as (2) trait encoding into character vector 

or matrix (Wiens 2001). As a result, for the same trait one may propose different hypotheses of 

primary homology (Ramirez 2007; Agnarsson and Coddington 2008) and different ways of 

coding the same hypothesis of homology into character [reviewed in Brazeau (2011)]. The 

analysis of competing characters formulated for the same trait will naturally produce different 

and largely incomparable results, which can mislead the understanding of trait evolution. 

All sources of ambiguity during character construction can be traced to a single root – the 

complex nature and organization of phenotypic traits (Wiens 2001; Houle et al. 2010; Burleigh et 

al. 2013). This complexity arises due to the two key processes – hidden and hierarchical – 

driving trait evolution. The hidden process refers to the evolution of gene regulatory networks 

(GRNs) which underlay trait development (Wagner 2007; Carroll 2008; Houle et al. 2010). It 
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implies that the actual trait evolution is hidden behind a “curtain” from the direct observation of 

morphology. In most cases, the observer (i.e. scientist) has no clue of how this process is 

operating, and only knows what is going on behind the “curtain” from the outcome of the 

process (i.e. morphological traits). The hierarchical process refers to the hierarchical 

relationships between traits that arise due to hierarchical dependencies between anatomical parts. 

For example, digits and characters associated with them are located on limbs; loss of limbs 

during evolution simultaneously causes the loss of digits. Additionally, hidden processes of GRN 

evolution – through interacting cascades of genes – can also result in hidden dependencies 

among observable morphological traits.  

The hidden and hierarchical processes are not accommodated by available phylogenetic 

methods simultaneously regardless the approach used for trait analyses, be it parsimony (Lee and 

Bryant 1999; Fitzhugh 2006; Brazeau 2011) or traditional Markov models. By proposing a new 

framework, I will demonstrate that the simultaneous inclusion of these processes, to a large 

extent, eliminates ambiguities associated with trait modeling. This framework is the extension of 

the traditional Markov model approach commonly used for modeling traits (Lewis 2001; 

O’Meara 2012). The most common version, hereafter referred as simple Markov chains (SMC), 

implies that a discrete character is a continuous-time Markov chain that moves sequentially from 

one character state to another over the course of evolution. Such a Markov chain is defined by 

the transition rate matrix containing infinitesimal rates of change between the states, and a base 

frequency vector specifying the initial probabilities of states at the root of a phylogenetic tree 

[see e.g., Huelsenbeck et al. (2003) for details]. 

The new framework extends SMC using the theory of structured Markov chains [StMC, 

(Nodelman et al. 2002)] and hidden Markov chains [HMC, (Beaulieu et al. 2013)] to 
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accommodate complex evolutionary space and anatomical dependencies among traits. To justify 

the proposed framework, I will show how the anatomical dependencies can be efficiently 

incorporated into model using structured Markov chains and anatomy ontologies. This 

integration provides the solution for the well-known Maddison’s tail color problem (Maddison 

1993; Hawkins et al. 1997). Next, I will discuss how the correspondence between traits and their 

GRNs can be modeled using HMC. Finally, the unified framework for character modeling will 

be proposed and practical considerations on trait modeling and phylogenetic inference will be 

given. The central focus of this paper is morphological traits; however, the presented results can 

be directly extended to other discrete traits of phenotype, such as behavior. 

MODELING HIERARCHICAL PROCESS USING STRUCTURED MARKOV CHAINS AND 

ANATOMY ONTOLOGIES 

Dependencies and coding schemes 

Encoding traits is a crucial step in constructing discrete morphological characters. 

Although for some traits this can be straightforward, many real-life situations lack an 

unambiguous coding approach. In practice, this means selecting between (1) ordered or 

unordered characters, (2) coding schemes (a set of binary characters, one multistate character or 

a mixture of both), and (3) a way to code inapplicable observations (using reductive coding “?” 

versus a separate state). Each of the alternatives have their own pros and cons but none of them, 

due to the lack of consensus in the published studies (Maddison 1993; Pleijel 1995; Hawkins et 

al. 1997; Strong and Lipscomb 1999; Forey and Kitching 2000; Brazeau 2011), can be regarded 

as the ideal one. Additionally, there is no general consensus on the distinction and validity 

between character and character state. Some studies insist that the distinction is important (Pinna 
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1991; Hawkins et al. 1997; Wagner 2015), some suggest that both concepts are the same 

(Patterson 1982), while the others (Sereno 2007) view character states as mutually exclusive 

observations that have to be combined to perform analysis. The use of different coding 

approaches drastically affects the interpretation of results (Brazeau 2011). 

The incorporation of anatomical dependencies between traits using structured Markov 

models resolves the conundrum associated with coding schemes and yields an invariance under 

alternative coding approaches. This invariance implies that any coding scheme produces the 

same result. I demonstrate the resiliency of my modeling framework by revisiting the exemplar 

Maddison’s tail color problem (Maddison 1993; Hawkins et al. 1997) that seeks the optimal 

scheme for scoring tail traits in species which can have a tail with either blue or red color, or 

have no tail at all (Figs. 1, 2). The Maddison’s problem exemplifies a common situation of 

scoring complex traits with dependencies between traits, and any solution to this problem can be 

extrapolated to the majority of ambiguous coding cases encountered in practice. The core 

ingredient of the proposed approach is the explicit incorporation of anatomical dependencies 

which can be inferred from ontological structure of anatomy (Fig. 1), therefore I refer to this 

approach as “structured Markov models informed by anatomy ontology”. In this chapter, I will 

begin with the reviewing the general properties of StMC, then I will demonstrate how various 

types of dependencies can be accommodated and how StMC can be used to solve the 

Maddison’s problem. Finally, I will give some consideration for retrieving dependency data from 

anatomy ontologies. 

Incorporating character dependencies using StMC 

Structured Markov Models. – This class of models (Nodelman et al. 2002), also known as 

continuous-time Bayesian Networks (Shelton and Ciardo 2014), arises from simple Markov 
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chains. The only difference between the two is that the structured Markov models are equipped 

with a specific parametrization of the rate matrix that accommodates conditional dependencies 

between characters. 

The structuring of Markov chains allows combining two or more initial characters into a 

single character. The initial characters can be combined either as independently or dependently 

evolving; the latter enables modeling correlated evolution across states between different initial 

characters. The states of the initial characters will be modified states in the combined character. 

The combination of characters does not affect their mathematical characteristics. This means that 

in a Markov chain model there is no distinction between character and character state as both are 

equipped with a scale-free property in respect to each other. This property provides a flexible 

way to deal with characters, as characters can be combined or decomposed into several smaller 

ones. Additionally, the scale-free property can be used to test the correlated evolution between 

characters (Pagel 1994). The approaches summarized below can be used to incorporate all types 

of dependencies that, to my knowledge, exist among morphological characters. 

Two characters: independent evolution. – This case occurs when independently evolving 

characters are combined. Suppose there are two initial two-state characters: X {with states: x1, x2} 

and Y {with states: y1, y2} which we wish to combine into one single character Z. The initial 

characters X and Y are defined by the transition rate matrices X and Y respectively: 

� � �� ������
��� �� ���;  	 � 
� 
�
�
�

��� �� ���. (1) 

The rate matrix of the combined character is constructed out of the matrices X and Y using the 

equation (2) by merging the two matrices in a mathematically valid way (Supplementary 

Material, section S1):  


 � ���� � ���	, (2) 
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where �� and �� are the identity matrices of the same dimension as the matrices Y and X 

respectively, and � denotes the Kronecker product. Given this, Z is: 


 �
��
�     ��
�          ��
�      ��
���
���
���
���
�

��� � � � � 0� �� � � 0 �� 0 �� � � �0 � � �� � ��. (3) 

The combined matrix Z defines the four-state combined character Z. The four states of the 

character Z correspond to all possible permutations of states in the initial characters X and Y, 

which are {x1y1, x2y1, x1y2, x2y2}. The right-diagonal cells of this matrix are populated with zeros 

indicating that only one state of the initial characters can change during the infinitesimal time 

interval. The independent evolution of the initial characters constrains this matrix to possess 

some rate symmetries that do not hold otherwise (see the next section). 

Two characters: general case of correlation. – The dependent evolution of the two 

characters X and Y implies that some states in one character are correlated with some states in the 

other. In this case, the combined character Z is characterized by the same states {x1y1, x2y1, x1y2, 

x2y2} as in the independent case but the rate symmetries in the combined matrix Z are different. 

In character Z, each state consists of the two elements: the first corresponding to a state of X, the 

second to a state of Y. Let us denote by * any element in a combined state. For example, notation 

x1* indicates either state x1y1 or x1y2 of Z. Independent evolution implies that the transition rates 

x1*→x2* in Z must be the same as the transition rate x1→x2 in the initial chain X (i.e., rate �); the 

same should apply for the rates x2*→x1* that must be equal to the rate x2→x1 in X (rate �); and 

analogous symmetries must hold for pairs *y1→*y2 and *y2 →*y1 whose rates have to be equal to 

y1→y2 and y2 →y1 in the initial chain Y respectively. If these equalities do not hold 

simultaneously, then the evolution of the two initial chains is correlated. So, in the most 
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sophisticated case of the correlated evolution, the rate matrix Z has all rates different except for 

the right-diagonal ones that are set to zeros as in the independent case: 


 � ��� � �� �� � 0�� ��� � �� 0 ��� 0 �� � � �0 �� � �� � ��

�. (4) 

The analytical derivation of these matrix is given in the Supplementary Material (section S2).  

Two characters: “switch-off” case of correlation. – Beside the general case of correlated 

evolution, the StMC can be used to incorporate “switch-off” dependencies between states which 

arise when hierarchically upstream state switches-off the downstream one. Suppose that during 

the course of evolution both states of character Y can appear only if the character X is in the state 

x2; if X is in the state x1 then the character Y is “switched-off” (in practice this often means using 

inapplicable coding for Y). The modified version of the equation (2) can be used to construct the 

transition matrix Z of such correlated character (Supplementary Material, section S3) which 

gives: 


 � ��� 0 � 00 �� 0 �� 0 �� � � �0 � � �� � ��. (5) 

In this matrix, the transitions x1y1 → x1y2 and x1y2 → x1y1 are prohibited and equal to zero due to 

this particular type of dependency. 

Two characters: synchronous changes. – This dependency refers to the case when some 

states belonging to two different characters always change simultaneously. It can be observed 

when two characters, produced by decomposing one single character, are combined. Suppose 

there is a two-state character X {x1, x2} specified by the transition rate matrix X as in (1); we can 

decompose the character X into two separate characters X1 and X2 which denote presence or 
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absence of the initial states of X. So, each separate character is interpreted as follows: X1 {x1 absent, 

x1 present}, and X2 {x2 absent, x2 present}. Since states x1 and x2 are mutually exclusive as they are the 

parts of the same initial character, the transitions in X1 and X2 occur synchronously: for example, 

the transition x1 absent →x1 present in X1 immediately causes the compliment transition x2 present → x2 

absent in X2. The scale-free property of character suggests that the reverse operation – combining 

X1 and X2 into one character – is possible. Let us denote this combination of X1 and X2 by Z. The 

character Z is supposed to have four states which are permutations of the original states: {x1 absent 

x2 absent, x1 present x2 absent, x1 absent x2 present, x1 present x2 present}. The synchronous transitions in X1 and 

X2 precludes using the previous approaches to combine X1 and X2. This happens because the 

structure of the previous rate matrices allows only one change over the infinitesimal time interval. 

In contrast, the synchronous evolution assumes the opposite – one change transitions have to be 

prohibited, while the two change transitions must be allowed. Additionally, any transitions 

associated with the states {x1 absent x2 absent} and {x1 present x2 present} must be also prohibited as 

these states cannot exists given the initial condition. This yields the following transition matrix 

of the character Z: 


 � �0 0 0 00 �� � 00 � �� 00 0 0 0�. (6) 

Further, without loose of generality this combined matrix can be reduced to that of the initial 

character X (1). This property of StMC provides an invariance for character decomposition and 

subsequent merge. 

Combining arbitrary number of characters. – The techniques shown above can be 

extrapolated to construct combined rate matrices for any arbitrary number of initial characters 

and character states. To combine n independently evolving characters one needs to successively 
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repeat the equation (2) n-1 times until all initial characters are combined. For example, in the 

case of the three initial characters A, B, C, the first step constructs combined matrix for 

characters A and B (i.e. AB) and the second steps uses matrices of AB and C to construct the final 

combined character. In equation form this can be expressed as: 

����� � �������	 � �����. (7) 

The order at which matrices are combined does not matter. In the case of the correlated character 

evolution, the final matrix can be constructed as that for the independent characters and then 

modified to accommodate the desired pattern of correlation. 

The combined matrices of coevolving characters have peculiar symmetries; although such 

matrices can be enormous, the vast majority of their cells are zeros, while the transition rates are 

located along the secondary diagonals (Fig. 3a-g). For a chain of n coevolving characters with 

the equal number of states ω the proportion of non-zero elements in the large matrix is: 

�
��
���


�
. (8) 

The number and pattern of secondary diagonals populated with transition rates increases as the 

total number of states grows (Fig. 3a-g). If all elementary characters share equal quantity of 

states, the total number of secondary diagonals is ��� � 1�, (Fig. 3a,b,f,g). Each secondary 

diagonal encompasses rates from a single elementary character; asymmetries in the rates within a 

character split diagonals into rate groups (Fig. 3c-d). If elementary characters are correlated, then 

the number of rate categories increases rapidly, culminating at the extreme case when all cells 

along secondary diagonals get populated with different rate values (Fig. 3d). 

The Maddison’s problem 

Maddison’s problem has been intensively discussed in the framework of parsimony but the 

coding consensus is still lacking (Brazeau 2011). I reduce this problem to assesses the alternative 
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schemes used for coding tail traits in the three species with: (1) absent tail, (2) blue tail, and (3) 

red tail (Fig. 1). Traditionally, there exist three main schemes (Hawkins et al. 1997) of scoring 

these tail traits (Fig. 2). 

The first scheme (Fig. 2a) uses two characters: (i) tail presence with two states, and (ii) tail 

color with three states, to encode the observations. In this scheme, the character (ii) can be 

reduced to only two states (blue and red) if its state “absent” is coded as inapplicable observation 

using “?”. In the current context, the distinction between these two flavors is irrelevant.  

The second scheme (Fig. 2b) employs three binary characters: (i) tail present, (ii) blue tail 

present, and (iii) red tail present. This scheme can also have an alternative version that uses only 

characters (ii) and (iii) to encode the observations (Hawkins et al. 1997). 

Finally, the third scheme (Fig. 2e) uses one multistate character with three states (absent, 

blue, red) to simultaneously summarize the observations. In phylogenetic inference, one of the 

prevailing ways to deal with this problem is to use the scheme #2 with inapplicable coding 

(Maddison 1993; Hawkins et al. 1997; Strong and Lipscomb 1999). However, this coding 

scheme was shown to be flawed (Maddison 1993; Strong and Lipscomb 1999). In comparative 

phylogenetics, the preferable coding scheme is selected to best fit the needs of an analysis. 

Solution using StMC. – All schemes become invariant if anatomical dependencies between 

characters are incorporated using the StMC. These ontology-informed dependencies imply that 

tail color (either blue or red) depends on the tail presence; if tail is absent, then color trait is 

“switched-off”. Below, I successively incorporate these dependencies using the alternative 

coding schemes which, in all instances, produces the scheme #3 with the special parametrization 

of the rate matrix. 
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First, let us consider the scheme #1 that treats tail traits as two binary characters. Given the 

invariance under character decomposition, the synchronous dependency between tail {absent} 

and tail color {absent} (Fig. 2a) is a redundant observation that can be omitted without loose of 

generality. So, each character can be represented by a two-state rate matrix: 

�� �  ! ! ��� �� ���,  �" � # $#$ ��� �� ���, 

where TL is a matrix for tail presence {a – absent, p – present}, and CR is a matrix for tail color 

{r – red, b – blue}. The dependencies between these two characters (Fig. 2c) can be incorporated 

using the “switch-off” correlation, which results in the following combined rate matrix: 

 #   $     !#        !$     # $!#!$ ��� 0 � 00 �� 0 �� 0 �� � � �0 � � �� � ��. (9) 

This matrix contains redundancy: the states ar and ab correspond to the same observation 

specifying absence of tail since tail color cannot be observed when the tail is absent. Interestingly, 

this matrix can be reduced by aggregating states ar and ab using the rule of strong lumpability 

(see the “Cases of lumpable chains” section) that gives the three-state matrix: 

       !#        !$     !#!$ %�� �

�

�

�� �� � � �� � �� � �&. (10) 

This final matrix has specific symmetries between the rate parameters characterizing the 

dependencies between the states. So, when anatomical relationships are incorporated, the scheme 

#1 of the two characters, collapses to scheme #3 of one character, and the latter becomes 

equipped with the special parametrization of the matrix. In fact, the parametrization of such 

matrix should not be necessarily restricted to that in matrix (10). For example, equipping 
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transitions '( ) *, and '+ ) * with different rates allows modeling a more complex correlation 

pattern. 

The same collapse happens for the coding scheme #2 that uses three binary characters to 

encode tail traits. In respect to anatomy, two characters in this scheme (red tail presence and blue 

tail presence) are dependent on the presence of the tail. There are two synchronous changes in 

these characters: (i) the tail absence causes absence of the blue and red color, while (ii) the 

absence of the red color causes presence of the blue color (Fig. 2b). Based on the properties of 

the synchronous changes, these dependencies can be straightforwardly reduced to those of the 

scheme #1 without loose of generality. In turn, the scheme #1 can be further collapsed, as shown 

above, to the rate matrix (10). 

To sum up, the incorporation of ontological information from anatomy using StMC 

produces coding invariance regardless of the scheme used. This invariance eliminates ambiguity 

of character coding. If the given alternative schemes are modelled onto an existing phylogenetic 

tree, the result is expected to be the same. So, these alternatives are just different ways of 

representing the same morphological observations. Moreover, incorporation of dependencies 

does not require using inapplicable coding, thus avoiding uncertainty associated with it. At the 

same time, the incorporated dependencies have biologically meaningful interpretations as they 

are imposed by the structure of organismal anatomy. 

Anatomy ontology and dependencies 

As shown above, the ontological knowledge is important for constructing realistic models 

of trait evolution (Fig. 1). The importance of integrating anatomy ontologies for character 

analysis has been recently emphasized and discussed (Vogt 2016, 2017a, 2017b). At present, a 

computer-assisted way to formalize ontologies is turning them into a promising tool for 
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arranging and managing knowledge of organismal anatomies (Deans et al. 2015). The formalized 

ontologies are available for several taxa [e.g., Mungall et al. (2012) and Yoder et al. (2010)] 

providing an opportunity to directly link anatomy ontologies with character matrices. Presently, 

this linking can be performed using the specialized software (Balhoff et al. 2010), while the 

dependency data can be automatically extracted from semantic descriptions using anatomy 

ontologies (Dececchi et al. 2016). Also, the incorporation of the dependencies can be done by 

simply using a scientist’s own knowledge of organismal anatomy. Integration of StMC with 

anatomy ontologies enables reconstruction of the ancestral anatomy ontologies in a way similar 

to the parsimony-based method proposed by Ramirez and Michalik (2014). 

MODELING HIDDEN PROCESS: INTEGRATING HIDDEN MARKOV CHAINS AND GRN 

EVOLUTION 

GRNs and morphology  

Morphology is a realization of a complex GRN over spatiotemporal scales of embryo 

development. The consequence of this complex process is the discordance between homology of 

morphological traits and the homology of underlying GRNs (Abouheif 1999; Hall 2003; Moczek 

2008; McCune and Schimenti 2012; Wagner 2015). Therefore, it is essential to summarize the 

main mechanisms of GRN evolution and their effect on morphological traits before proceeding 

to modelling their correspondence. 

At global scale, GRN consists of modules; each module is a smaller GRN exhibiting a 

cluster of interacting components whose interactions are relatively autonomous in respect to 

other modules (Oakley; Babu et al. 2004; Longabaugh et al. 2005; Kuratani 2009; McDougall et 

al. 2011; Siegal 2013; Rebeiz et al. 2015; Voordeckers et al. 2015). Although the mechanisms of 
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GRN evolution are multifaceted, they can be summarized into three general principles. (1) First, 

it is a birth of new functional GRN that occurs by co-option of pre-existent module into a new 

body place (Babu et al. 2004; Wagner 2007; Erwin and Davidson 2009; Monteiro 2012; Siegal 

2013; Hinman and Cheatle Jarvela 2014; McKeown et al. 2014; Glassford et al. 2015; Rebeiz et 

al. 2015) or by integration of two or more pre-existent modules (Clark-Hachtel et al. 2013; 

Arendt et al. 2016). (2) Second, this is a transformation of pre-existent module from one state to 

another state mediated by reorganization of existing regulatory linkage among genes (Abouheif 

1999; Erkenbrack and Davidson 2015). (3) Third, it is an inactivation of GRN module by 

mutation(s) in upstream regulatory modules that disables its realization (Shapiro et al. 2006; 

Shbailat and Abouheif 2013; Held 2014). The limits between the aforementioned mechanisms 

are somewhat arbitrary and it is logical to believe that GRN evolution occurs under a mixture of 

the listed mechanisms especially at the global time scales. 

Markov chains is a convenient way to formalize GRN evolution mathematically. In this 

formalization each step in evolutionary path of GRN represents a state of a Markov chain. The 

complete evolutionary path of GRN evolution involves birth of GRN modules and transition 

between GRN states that culminates at the death of GRN. Morphological traits are realizations of 

some modules of global organismal GRN. In this respect, the construction of a discrete character 

can be viewed as a mapping of Markov chain state(s) characterizing GRN evolution to another 

set of states corresponding to the states of the discrete character. This mapping yields one of the 

three types of correspondence between GRN and trait primary homology (Fig. 4). 

Type 1: one-to-one correspondence. – This is a case when there is one-to-one 

correspondence between GRN states and those of a discrete character (Fig. 4a) indicating that 

primary homology hypotheses correctly identify underlying GRN states. This case is ideal but it 
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is far from being realistic, as morphological states are likely to have a complex unobservable 

GRN space. Nevertheless, this case is possible when changes in morphology are controlled by a 

single gene. 

Type 2: many-to-one correspondence. – It is the case when GRN space is larger than 

morphological space meaning that one morphological state consists of many GRN states (Fig. 

4b). This case seems to be very likely as the majority of morphological traits are realizations of 

the complex mechanisms controlled by multiple genetic factors (Rebeiz et al. 2015) which are 

largely unknown to the researcher. Numerous Evo-Devo studies confirm this type of the 

correspondence. For instance, some males of Drosophila have a pigmented spot on the wing 

which they use in courtship display. Given that the spot shapes are similar across many species, 

it would be logical to encode this trait as a character containing two states: “spot present” and 

“spot absent”. The study of Prud’Homme et al. (2006) demonstrates that in the clade of 29 

Drosophila species this spot has been gained and lost multiple times. In all analyzed species, the 

pigmented spots were products of the expression of gene yellow. Interestingly, the loses of 

pigmentation were caused by parallel inactivation of the same cis-regulatory element controlling 

yellow expression. Contrary to that, the independent gains of spot were caused by co-option of 

different cis-regulatory elements associated with the yellow gene. This unequivocally suggests 

that evolution of such simple trait as wing spot is combinatorial at the underlying GRN level, and 

the GRN state space is larger than the observable one. 

The type #2 correspondence may also arise when the space of morphological observations 

is underestimated due to the precision of morphological examination. This may happen when 

external structures are examined without referencing to skeletal structures (in vertebrates), or 

when external skeletal structures are examined without referencing to the underlying architecture 
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of muscles (in invertebrates). For example, body elongation in salamanders is a result of 

convergent evolution that occurs by addition and elongation of vertebrae (Wake et al. 2011). 

This may lead to similarly elongated body shapes by modifying different individual vertebrae. If 

body shape is studied without referencing to skeletal structure, then similarly elongated bodies 

must be considered to be homologues and coded with the same state. However, a thorough 

examination of skeleton will eventually find this coding misleading as the real space of 

observable morphological evolution is undoubtedly larger. In the model formalism, the 

salamanders and Drosophila cases are the same as they both assume the underestimation of the 

underlying evolutionary space. 

Type 3: partial matching. – This type embraces cases when one complex trait governed 

by a single GRN is thought to represent two or more independent characters (Fig. 4c). So, 

different states of the same GRN are mapped onto states in different morphological characters 

which are separately analyzed suggesting that a focal discrete character does not necessarily 

exhibit an independent identity. In nature, this case seems to be common as it arises when 

evolution of states between separate characters is correlated. For instance, mouthpart traits in 

insects can undergo synchronous evolutionary changes when species get adapted to a new 

feeding substrate. Considering an anatomical element (e.g., mandibles) of the mouthparts as a 

separate character without reference to all traits of the mouthparts exhibits this type of 

correspondence since such character is correlated with other mouthpart traits. In some cases, the 

existence of correlation is obvious and can be retrieved from anatomy; however, cases with 

unobservable correlation, which cannot be inferred from the structure of anatomy or species 

biology, seem to be widespread.  
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Modeling correspondence between GRN and morphology 

All abovementioned cases except type #1 correspondence suggest that the original state 

space of GRN evolution is larger than the observable trait space and that such pattern is common 

in biology. This means that one inevitably aggregates different GRN states together when 

delimiting the observable character state; thus, making morphological state to be a mixture of the 

underlying GRN states. In Markov chain terms this means that the construction of a discrete 

morphological character is a substitution of the original GRN Markov chain with a large number 

of states (Fig. 5b) by an aggregated morphological chain with the reduced number of states (Fig. 

5c). A natural question which can be raised is when such aggregation is mathematically valid for 

modelling observable character if the underlying processes is unknown? If the aggregation is 

valid, then the original chain is called lumpable and its behavior can be modeled without errors 

by the aggregated morphological Markov chain. The study of Vera-Ruiz et al. (2014) confirms 

that chain aggregation under the lumpability condition is appropriate in phylogenetic inference 

with molecular data. This justifies, to certain a extent, the use of simple Markov chains to model 

traits without referencing to the underlying genetic processes. However, if the aggregation is 

invalid, then the original chain is not lumpable and its approximation using the aggregated chain 

is biased. The lumpability of chain depends on certain strict symmetries in the transition matrix 

and base frequency vector. These symmetries are unlikely to be observed in real-life examples 

suggesting that the majority of chains occurring in phylogenetics have to be non-lumpable (see 

the next section). In the cases, when the conditions of the lumpability are not fulfilled, the 

aggregated chain would erroneously approximate the original one, and the inferred parameters 

would be largely meaningless suggesting that the aggregated chain is a biased proxy of the 

original process. The range of error, in this case, depends on the rate values and rate ratios in the 

original transition matrix. Figure 6b exemplifies the error in rates estimate when the original 
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three-state chain is aggregated into the two-state chain under scenarios when the lumpability is 

fulfilled (rate.diff.=1) and not (rate.diff.≠1). The increase in rate values along with the 

differences between rates increases the error in estimating characteristics of the original chain. 

Thus, the use of simple Markov models, can be misleading. However, the problem of invalid 

aggregation can be overcome using Markov chains with hidden states (Beaulieu et al. 2013; 

Beaulieu and O’Meara 2014), thereby directly allowing modeling the hidden process of GRN 

evolution without aggregation of the original states (see the “Hidden Markov chains and traits” 

section). 

Cases of lumpable chains 

The aggregation of the original state space can be viewed as partitioning of the original 

transition rate matrix into partition blocks which correspond to the transition rates in the 

aggregated chain. Here, in characterizing the conditions under which aggregation is possible, the 

term “Markov chain” corresponds to an irreducible continuous-time and time-homogeneous 

Markov chain unless otherwise specified. There are two main types of lumpability – strong and 

weak (Kemeny and Snell 1960; Rubino and Sericola 2014). Additionally, there is a case of 

nearly lumpable chains that occurs under certain conditions in large matrices describing 

correlated evolution of multiple characters thereby allowing to lump large matrices with 

insignificant error. 

Strong lumpability. – The strong lumpability implies that the original chain can be lumped 

with respect to some partitioning scheme, under any possible values of the base frequency vector.  

Suppose, there is a four state S ={s1, s2, s3, s4} Markov chain that is defined by the base 

frequency vector π and for-by-four matrix Q whose entities are rates ,�,� (Fig. 6a). Let us assume, 

the aggregated chain is constructed by partitioning the state space S into two groups denoted by 
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the partitioning scheme B ={{s1, s2}, {s3, s4}}, so the total number of states in the aggregated 

chain, defined by matrix -. , is two F ={f1, f2}. The analogous notification procedure can be 

extrapolated to any arbitrary Markov chain. 

The sufficient and necessary condition for Markov chain to be strongly lumpable in respect 

to the given partitioning scheme and any base vector is that the row-wise sum of rates within one 

partition block of rate matrix must be the same for all rows within given partition block, and this 

property must hold for all blocks in the rate matrix (Kemeny and Snell 1960; Rubino and 

Sericola 2014). This row-wise sum of rates constitutes the new transition ,/�,�  rates in the lumped 

chain. Specifically, for the matrix Q to be lumpable under the partitioning scheme B this implies 

that: 

,�� � ,�� � ,�� � ,�� � ,/�,� (11a) 

,�� � ,�� � ,�� � ,�� � ,/�,� (11b) 

where ,/�,� and ,/�,� are the transition rates in the aggregated matrix -. (Fig. 6a). 

Weak lumpability. – The weak lumpability allows lumping an original chain only under 

particular values of base vector (Kemeny and Snell 1960; Rubino and Sericola 2014). In other 

words, the weak lumpability imposes stricter dependencies between the base frequency vector 

and rate matrix. There is no straightforward way to find all possible dependencies between any 

arbitrary rate matrix and base vector that fulfill the conditions of the weak lumpability (Rubino 

and Sericola 2014); however, there exist a finite algorithm for elucidating the base frequency 

vector satisfying the conditions of weak lumpability given rate matrix and partitioning scheme 

(Rubino and Sericola 1993, 2014). Some sufficient conditions for weak lumpability are given in 

Kemeny and Snell (1960). An example of weakly lumpable chain is given in the Supplementary 

Material (section S4). 
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Interesting case of weak lumpability arises when the initial vector of Markov chain 

coincides with the stationary distribution of that chain (meaning that the process is stationary). 

Such chain is weakly lumpable in respect to any possible partitioning scheme (Supplementary 

Material, section S5). This special case of weak lumpability have theoretical implications for 

modelling character evolution (discussed below). 

Nearly lumpable Markov chains. – This type of lumpability occurs in large matrices 

describing correlated evolution of multiple characters thereby allowing lumping large matrices 

with insignificant error. Biologically such chains can be seen as many elementary characters 

coevolving together either dependently or independently (see the “Incorporating character 

dependencies using StMC” section). Aggregation in such matrices can be thought of as linking 

evolutionary processes occurring at the level of DNA sites or numerous GRNs with their 

realization at the phenotypic level.  

For example, consider some DNA locus of 1000 sites; each site is a four-state character 

(four nucleotides). Based on the scale-free property of character, all elementary characters (sites) 

can be combined into one large Markov chain, where the number of states is ∏ ��
�
��� , given that 

�� is a number of states in the ith character and n is the total number of characters. So, for the 

DNA locus example the number of states in the combined Markov chain is 4����. The properties 

for combining coevolving characters into one matrix suggest that this combined character has the 

peculiar symmetries of the rate matrix in which over 99% of cells are equal to zero (the equation 

[8]). The construction of a phenotypic character is the aggregation of the molecular state-space. 

Since the molecular states space is significantly larger, we can assume that the aggregated 

phenotypic chain is composed of a few states and each state comprises large number of the 

molecular states. 
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In the trivial case of equal evolutionary rates across all sites, the strong lumpability 

condition can be satisfied for numerous partitioning schemes that can be applied to the molecular 

rate matrix (Fig. 3b,g). Interestingly, if all elementary characters are correlated, and all transition 

rates as well as probabilities of the base frequency vector are different but are identically and 

independently distributed (i.i.d.) then the combined matrix can be nearly lumpable under any 

possible partitioning scheme. Obviously, such chains drastically violate the condition of strong 

lumpability. Nevertheless, aggregation of states would produce a nearly lumpable chain whose 

error, in approximating the original rates, is insignificant and decreasing as the number of 

original states increases (Supplementary Material, section S6). 

Lumpability and reality. – Apparently, the exact conditions for strong and weak 

lumpability are unlikely to be encountered in nature due to their symmetry constraints in the 

rates and base frequency vector. Moreover, the weak lumpability is generally not relevant for 

modelling characters on phylogenetic trees as character reconstruction is largely insensitive to 

the base frequency vector (Yang 2006). Nevertheless, the case of weak lumpability when the 

original chain is stationary may occur on large trees. The stationary distribution might be an 

approximation to the character distribution on branches located closer to tips if the process is 

time-homogeneous. Since, these branches predominate on large trees, the stationary state of 

Markov chain will occupy majority of branches on this tree. In this respect, the stationary state 

will be a good approximation of the global dynamics, thereby allowing lumping the chain under 

any possible partitioning scheme. There are also no evidence supporting frequent occurrence of 

nearly lumpable chains as violations of i.i.d. conditions can be widespread. Overall, this suggests 

that lumpable chains are very unlikely to be encountered in nature; nevertheless, as in the case of 
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nearly lumpable chains, the original process can be sometimes efficiently approximated by the 

aggregated simple Markov chains. 

Hidden Markov chains and traits 

Use of HMC for character modelling avoids errors associated with non-lumpable Markov 

chains and, at the same time, provides new insight into the process driving trait evolution. The 

HMC model consists of the two layers (Fig. 5a): the observable corresponding to trait states and 

the hidden one corresponding to the GRN states; the transitions between states are allowed only 

within the hidden layer. The observable layer represents a mapping of the GRN states onto the 

observable trait states, thus perfectly matching the concept of phenotypic character construction. 

The structure of HMC avoids aggregation of the GRN states and thereby does not suffer if 

lumpability conditions are not fulfilled. This allows the realistic modeling of the Type #2 and 

Type #3 correspondence between GRNs and traits. Additionally, the properties of hidden 

Markov chains offer a somewhat different interpretation for such focal concepts of phylogenetics 

as character, rate heterogeneity and homology. 

Rate heterogeneity and GRN states. – Initially, HMC were mainly proposed to 

accommodate the heterogeneity evolutionary rate across time (Tuffley and Steel 1998; Beaulieu 

et al. 2013). It is worth noting, however, that both time-heterogeneity and complexity of the 

underlying GRN space are confounded in HMC. The HMC does not separate switches between 

hidden rate categories and hidden GRN states: when a hidden transition happens it can be either 

of those or both simultaneously. So, HMC accommodates both the complexity of GRN space and 

rate variation at the same time. 

Trait homology and HMC. – In phylogenetics, every character statement is a hypothesis of 

primary homology (Hawkins et al. 1997). The “real” assessment of whether an observation in 
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one species is homologous or homoplasious in respect to the other species can be done only 

through phylogenetic inference or reconstruction of character evolution (secondary homology). It 

is considered that a thoughtful statement of primary homology is a prerequisite for the successful 

comparative analysis and phylogenetic inference. Obviously, in simple Markov models and 

parsimony, the secondary homology is dependent on primary homology statement (Agnarsson 

and Coddington 2008; Brazeau 2011) since the construction of a discrete character is a subjective 

procedure. The discordance between primary and secondary homology, to a large extent, occurs 

due to the discordance between the morphological traits and GRNs. The HMC can directly 

account for this discordance. Theoretically, this means that the quality of primary homology 

statement should not matter as the underlying hidden space of evolution can be automatically 

adjusted by the HMC. The practical aspects of this adjustment need further research. 

IMPLEMENTING STRUCTURED AND HIDDEN MARKOV MODELS 

Modelling character onto a known phylogenetic tree 

The HMC provides the ability to accommodate hidden evolutionary space and rate 

heterogeneity, whereas structured Markov chains can efficiently incorporate hierarchical 

dependencies. These two approaches can be integrated by equipping structured Markov chains 

with hidden states, thus allowing the model to account for all aspects of trait evolution 

simultaneously. The provided theoretical ground suggests that this eliminates subjectivity in 

character coding and homology assessment. Moreover, this integration makes morphological 

character scale-free. This means that a part of phenotype can be a character and the entire set of 

all phenotypic traits can be one complex character as well (see the “Combining arbitrary number 
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of characters” section). So, structured Markov chains equipped with hidden states offer a flexible 

approach for constructing discrete characters from morphological observations. 

If a trait is modeled onto a known phylogenetic tree to reconstruct ancestral states and 

evolutionary rates, then the incorporation of hierarchical and hidden processes is straightforward. 

The hierarchical processes can be incorporated by any software which allow specification of 

user-defined rate matrices. These rate matrices have to be parametrized using approaches 

summarized above to reflect the dependencies between anatomical parts. These dependencies 

can be retrieved from anatomy ontologies or prior knowledge of organismal anatomies. The 

flexible incorporation of hidden process, in the context of this study, is presently provided by 

only two software packages corHMM (Beaulieu et al. 2013; Beaulieu and O’Meara 2014) and 

RevBayes (Höhna et al. 2016). 

CorHMM. – This likelihood-based method assumes that every observable state consists of 

a specified number of hidden states. The hidden states were originally proposed to model rate 

heterogeneity among the observable states (Beaulieu et al. 2013); however the hidden states can 

be equally interpreted as different GRN states. This method offers full flexibility to 

accommodate all necessary correspondences (type #2 and #3) between morphology and GRNs. 

Although, it requires a priori specification of the number of hidden states and their mapping with 

the observable states, it allows testing different models by manually varying the number and 

mapping of the hidden states; so the best parametrization of the matrix can be selected using e.g., 

Akaike information criterion (Akaike 1974). Thus, the potential space of possible models can be 

explored. This flexibility is extremely important as the structure of transitions between hidden 

states as well as their number is unknown a priori, and therefore have to be tested during the 

analysis. 
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RevBayes. – This software provides a broad flexibility for developing new phylogenetic 

models using the graphical model concept and Rev language. The RevBayes supports 

implementation of hidden Markov models using expandCharacters(“number of hidden states”) 

method as well as specification of the user-defined rate matrices with fnFreeK() function. These 

two features are sufficient to incorporate the hierarchical and hidden process reviewed in this 

paper. Since the modelling capabilities of RevBayes are enormous and require programming in 

the Rev language, I direct interested reader to the original paper (Höhna et al. 2016) for the 

additional information. 

HMC and data. – Testing between simple Markov chains and HMC to select the best 

model must be a prerequisite of any comparative analysis. However, it is worth mentioning that 

the performance of HMC depends on the number of taxa and thereby small trees are not likely to 

favor HMC over SMC (Beaulieu et al. 2013). On small trees, SMC can be an efficient 

approximation of the underlying complex process. Even if data is sufficient and favor HMC, one 

should not expect that the selected HMC perfectly reconstructs the underlying GRN space as it 

merely performs the best approximation of the underlying hidden space. 

Phylogenetic inference using morphology 

Unlike DNA data, where states are the same across different sites, morphological data 

are challenging to parametrize. This occurs because morphological states are not aligned across 

characters in a sense that “state 1” in one character is not the same as “state 1” in another. This 

issue poses a general barrier for modelling rate heterogeneity (Lewis 2001) as well as hidden 

processes in phylogenetic inference. Theoretically, HMC models can be used in phylogenetic 

inference with morphology but their implementation will be limited; it will likely require 

assignment of the same HMM with a priori specified hidden states to all characters of the same 
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partition. This approach substantially restricts the possibility for exploring hidden space of 

evolution. However, the ontology-informed characters using structured Markov models can be 

implemented in inference. Presently, this can be done using the RevBayes software that allows 

using user-defined rate matrices with fnFreeK() function. In this respect, characters which are 

known to be interdependent have to be merged in one character and assigned to a separate 

partition. This approach does not require using inapplicable coding. Next, a user-defined rate 

matrix characterizing dependencies within such characters can be applied to this partition. 

CONCLUSIONS 

This paper lays out the theoretical consideration for improving the modeling of discrete 

morphological characters in phylogenetic context. The main suggestion of the paper from the 

theoretical perspective is to use structured Markov models equipped with hidden states to 

accommodate the complexity of processes driving the evolution of traits. The approaches 

summarized here can be used for developing new methods aiming at reconstructing correlated 

trait evolution and ancestral ontologies. Since the considerations summarized here are mainly 

theoretical, further empirical research is needed to understand the behavior of the proposed 

models. 
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BOXES 

Trait An observation of some feature(s) of phenotype. 
 

Character A formalized coding of a trait (observation) into a string or matrix (i.e. character) that consists 
of two or more entities called “character states.” 
 

Phenotype A set of all traits of an organism 
 

Box 1. Definitions of the terms employed in this paper. Alternative definitions are reviewed by 

Sereno (2007). 

LEGENDS TO FIGURES 

Figure 1. Ontology-informed character. 

The exemplar case of dependence between two characters: (i) tail presence and (ii) tail color. The 

character (ii) is dependent on the state present of character (i). This dependence is imposed by 

the ontological relationships between body parts. The green links show various types of 

ontological relationships between characters and between entities of UBERON anatomy 

ontology (Mungall et al. 2012). 

Figure 2. Coding schemes. 

Three alternative schemes of coding tail traits (presence and color) from Fig. 1. Scheme #1 (a) 

uses two characters, scheme #2 (b) uses three binary characters, and scheme #3 (e) uses one 

multistate character to encode tail traits. The traits states are indicated by orange balls which are 

explained in (d); the latter also explains species used in coding traits. All three coding schemes 

(a, b and e) imply identical relationships between characters captured by the dependency graph 

(c). This graph is described by the structured Markov chain shown in (e). 
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Figure 3. Dependent and independent coevolution of several characters. 

This plot exemplifies combined matrices and their rate symmetries characterizing the 

coevolution of several characters. Different rates within matrix are differently colored. Grey lines 

dividing the combined matrices exemplify their partitioning. The matrices are composed of the 

following elementary characters: (a, b, d) ten two-state characters; (c) six two-state characters; (e) 

three three-state characters; (f) four five-state characters; (g) three ten-state characters. The rate 

symmetries and dependencies between elementary characters are: (a, b, f g) independently 

coevolving characters with equal rates across and within characters; (c) independently 

coevolving characters with different rates across characters; (e) independently coevolving 

characters with different rates across and within characters; (d) dependently coevolving 

characters with all rates different. (b) an (g) exemplify balanced portioning schemes preserving 

the strong lumpability. (a) and (f) exemplify partitioning scheme violating strong lumpability; P 

indicates the partitioning block that violates the row-wise sum rule of strong lumpability. 

Figure 4. Correspondence between morphological and GRN states.  

Trait of tail color is divided into two states (shown with rectangles): blue and red. Hypothetical 

GRN states producing the states of the trait are shown with balls. The correspondence between 

GRN states and trait states can be of three types. (a) Type #1, one-to-one correspondence: each 

GRN state corresponds to its own trait state. (b) Type #2, many-to-one correspondence: each 

trait state is composed of several GRN states. (c) Type #3, partial correspondence: only part of 

GRN states correspond to the trait states; the remaining GRN state may be involved in 

production of other traits. 
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Figure 5. Hidden Markov chains and lumpability. 

This figure exemplifies approaches by which the original three-state chain (b) can be substituted 

with a two-state chain. The reduction of state number is assumed to happen by aggregating the 

states B and C. One approach is to lump the original chain; this is only possible if transition rates 

between the states C)A and B)A are identical (=α) which results in the aggregated chain (c), 

where the transition rate between C+B and A is equal to α. If transition rates C)A and B)A are 

different, then the original chain is not lumpable. In this case the reduction of states can be only 

done by substituting the original chain with a hidden Markov chain (a); the latter consists of the 

hidden layer (three states) mapped onto the observable layer (two states); the hidden state space 

has the same topology as that of the original chain (b). 

Figure 6. Lumpable Markov chain and estimation error. 

(a) Rate symmetries of the transition matrix preserving the property of strong lumpability (see 

the “Cases of lumpable chains” section). Partitioning of the original transition matrix (shown in 

purple color) yields an aggregated matrix (shown in grey color). The original matrix consists of 

four states {s1, s2, s3, s4} and rate parameters qij. Its states are partitioned into groups {{s1, s2}, {s3, 

s4}} yielding the aggregated matrix with the two states {f1, f2} and rate parameters ,/�� . The 

original matrix is lumpable if the following equalities hold ,/�� � ,�� � ,�� � ,�� � ,��  and 

,/�� � ,�� � ,�� � ,�� � ,��. (b) Error in rate estimation when strong lumpability does not hold. 

The plot shows an error (y axis) for approximating an original three-state Markov chain with an 

aggregated two-state Markov chain. The rates in the original chain were identical except one 

aggregated rate that was divided by the scaling parameter (rate diff.) specifying the rate ratio (x 

axis) between this and the remaining rates. The scaling parameter was used to violate strong 

lumpability property; the value of rate diff. =1 (meaning that all rates were identical) corresponds 
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to the only instance of strong lumpability. The results are shown for a range of the transition 

rates q ={0.1, 0.5, 1, 2} in the original chain (Supplementary Material, section S7). 
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