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Thermosensation provides crucial information but

it is poorly understood how temperature representa-

tion is transformed from sensation to behavior. Here,

we report a preparation that allows control of heat de-

livery to zebrafish larvae while monitoring motor out-

put and imaging whole-brain calcium signals, thereby

uncovering algorithmic and computational rules that

couple dynamics of heat modulation, neural activ-

ity and swimming behavior. This approach identifies

a critical step in the transformation of temperature

representation between the sensory trigeminal gan-

glia and the hindbrain: A simple sustained trigemi-

nal stimulus representation is transformed into a rep-

resentation of absolute temperature as well as tem-

perature changes in the hindbrain that explains the

observed motor output. An activity constrained dy-

namic circuit model captures the most prominent as-

pects of these sensori-motor transformations and pre-

dicts both behavior and neural activity in response to

novel heat stimuli. These findings provide the first al-

gorithmic description of heat processing from sensory

input to behavioral output.
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Introduction

Environmental temperature has a strong influence on

human behavior, such as seeking shelter or wearing

warm clothes in the cold. Similarly, most animal species

have a fairly narrow temperature range in which their

metabolism can function optimally and evolved behav-

ioral strategies to seek out these preferred tempera-

tures. Especially in cold blooded animals, which cannot

actively regulate their body temperature, navigational

strategies to avoid extreme heat or extreme cold are of

obvious importance. Navigational strategies that lead

animals to their preferred temperature within a heat

gradient have been studied in diverse species such as

E. coli (Maeda et al., 1976), C. elegans (Hedgecock and

Russell, 1975), zebrafish (Gau et al., 2013) and mouse

(Murakami and Kinoshita, 1977).

At the cellular and molecular level it is well under-

stood how animals sense temperature. A large group of

transient receptor potential (Trp) channels are gated by

temperature, and different Trp channels tile the temper-

ature space from noxious cold to noxious heat (Caterina

et al., 1997; Julius and Basbaum, 2001; Schepers and

Ringkamp, 2010). In vertebrates, neurons expressing

these channels are concentrated in the sensory trigem-

inal ganglia, where they innervate the face, as well as

in the dorsal root ganglia, from where they detect stim-
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uli across the trunk and tail (Erzurumlu et al., 2006;

Schepers and Ringkamp, 2010).

Like other sensory stimuli, temperature needs to be

encoded and represented by neural activity in primary

sensory neurons. This activity then needs to be fil-

tered and processed to extract the information relevant

for behavioral responses (Näätänen and Winkler, 1999).

Circuit studies have begun to elucidate how the ner-

vous system encodes temperature. Most progress has

been made at the periphery. For example, in C. elegans

the heat sensitive AFD neuron is specifically tuned to

changes in temperature via response adaptation (Clark

et al., 2006). This strategy is thought to provide infor-

mation about temperature gradient direction aiding in

navigation (Clark et al., 2007). In Drosophila, hot and

cold sensitive neurons in the antenna form topographic

projections in the brain (Gallio et al., 2011), and down-

stream thermosensory projection neurons which can be

subdivided into ON and OFF classes have been impli-

cated in heat avoidance behavior (Frank et al., 2015;

Liu et al., 2015). Functional imaging experiments in

the mouse have revealed principles of temperature cod-

ing in the trigeminal ganglion (Yarmolinsky et al., 2016)

as well as the spinal cord (Ran et al., 2016). In the

trigeminal ganglion thermosensory neurons tile temper-

ature space, with different neurons responding to dif-

ferent levels of cold or warmth (Yarmolinsky et al.,

2016). Overall, most thermosensory neurons represent

noxious temperatures while encoding of ambient tem-

perature is sparse (Yarmolinsky et al., 2016). Just like

the aforementioned second order projection neurons in

Drosophila, second order temperature modulated neu-

rons in the mouse spinal cord can be grouped into ON

and OFF types (Ran et al., 2016). While warm respon-

sive neurons exclusively show sustained responses, cold-

sensitive spinal cord neurons are generally fast adapting

(Ran et al., 2016). Despite these advances at the cellular

and molecular level, it remains unclear how a tempera-

ture percept arises in the brain and how thermosensory

activity ultimately leads to behavior. Thus, a descrip-

tion and analysis of the pathways that link temperature

sensing to computational processes and behavioral out-

puts is lacking.

We recently investigated how temperature influences

larval zebrafish swimming behavior and found that it is

sensitive to both absolute levels as well as changes in

temperature and that different behavioral outputs such

as turning versus straight swims are differentially influ-

enced by on- and off-responsive channels (Haesemeyer

et al., 2015). In the current study, we establish brain-

wide functional calcium imaging with heat stimulation

and behavioral recording to identify heat processing cen-

ters throughout the larval zebrafish brain. We find that

temperature information is represented in both ON and

OFF channels and identify different cell types that repre-

sent temperature on different timescales: some are slow-

modulated and others fast-adapting. In particular, cell

types differ between anatomical regions, with the hind-

brain favoring representation on faster timescales while

some forebrain regions, including the preoptic area, in-

clude cell types that represent temperature on longer

timescales. Importantly, we identify a critical step in the

sensori-motor transformations: trigeminal sensory neu-

rons represent temperature exclusively using sustained

ON and OFF cells, whereas activity diversifies in a

trigeminal target area in the hindbrain. There, cell types

with transient responses arise and form a more detailed

representation of temperature stimulus features. Strik-

ingly, this response type diversification is required to

explain the observed behavior. We used these data to

derive a realistic circuit model that captures the most

important computations underlying the sensori-motor

transformations. The circuit model not only captures

neural activity transformations but also predicts the be-

havior and neural activity in response to novel stimuli.

Results

A system for brain-wide identification of

temperature encoding cells

To observe neuronal activity concurrent with behavior

in response to temperature stimuli, we used a fiber-
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coupled infrared laser to deliver precise heat-stimuli to

a head embedded larval zebrafish under a custom-built

2-photon microscope (Figure 1A-B). By keeping the tail

of the larva free to move we could monitor behavior un-

der infrared illumination at 100 Hz while simultaneously

recording calcium activity at ∼2.5 Hz.

Since changes in temperature lead to expansion move-

ments in our preparation, we developed an online z-

stabilization technique that allowed imaging calcium re-

sponses without stimulus induced artefacts (Figure S1A-

C). We performed functional imaging experiments in lar-

val zebrafish pan-neuronally expressing the nuclear cal-

cium indicator H2B-GCaMP-6s (Freeman et al., 2014).

To study behavioral and neuronal heat responses a sim-

ple heat stimulus consisting of both a sinusoidal temper-

ature modulation and discrete temperature steps was

presented to the larvae. This stimulus was chosen to

probe both sustained and transient heat responses (Fig-

ure 1B). With a range of 24 ◦C to 29 ◦C our heat stim-

ulus stayed below the noxious temperature threshold of

∼34 ◦C. We probed each imaging plane with three tri-

als of the stimulus and imaged 30 planes separated by

2.5µm in each fish. In total we achieved three-fold cov-

erage of the whole brain across 40 animals.

Across repetitions, the stimulus reliably induced be-

havior in all tested fish (Figure 1C). As seen in Figure

1B, larval zebrafish do not swim continuously but in-

stead perform swim bouts at discrete intervals (Budick

and O’Malley, 2000), and they can elicit bouts of differ-

ent speeds and turn magnitudes. In our head-embedded

larvae data we noticed a prominent class of bouts which

were characterized by unilateral flicks of the tail. There-

fore using tail dynamics during individual bouts, we sub-

divided the behavior into undulating “swims” and uni-

lateral “flicks” which likely correspond to near station-

ary turns in freely swimming behavior (Figure 1D). Im-

portantly, larval zebrafish performed these two behaviors

with different dynamics in relation to the temperature

stimulus. While both flick- and swim-rates rose similarly

as temperature increases, swim-rates stayed elevated for

a longer time period after the temperature decreased

(Figure 1F).

To analyze calcium activity, we anatomically seg-

mented individual cell nuclei. We subsequently used

spectral clustering (see Materials and Methods) to ex-

tract stimulus evoked activity in an unbiased manner

across the whole brain. Imaging a total of 40 fish iden-

tified 24,947 responsive cells comprising around 4 % of

all imaged neurons. The neuronal responses broadly

fell into two classes: ON responsive cells, which are ex-

cited by increases in temperature and OFF type cells,

which are either inhibited by temperature or show re-

bound excitation when temperature decreases (Figure

1E). Notably, shuffling data with respect to the stimulus

reduced the number of identified cells to fewer than 5 %

of the original set (Figure S1D). In control fish, which

expressed an anatomical indicator (red fluorescent pro-

tein, see methods), our clustering approach did not re-

veal any fluorescence changes resembling our stimulus

(Figure S1E-F).

To compare heat induced activity and behavior across

stimulus modalities, we imaged a second set of fish pre-

senting a modified heat stimulus followed by an acoustic

tap (Figure S1G). These taps elicited escape swims that

were in most cases distinct from heat induced unilateral

flicks and generally classified as swims, consistent with

their bilateral tail dynamics (Lacoste et al., 2015; Figure

S1H). In summary, the head embedded preparation en-

abled characterization of behavioral and neural dynam-

ics across the whole brain while the animal is exposed

to temperature and acoustic stimuli.

Heat related activity is widespread but

anatomically clustered throughout the brain

Having established a preparation that allows to monitor

temperature modulated neuronal activity, we set out to

map heat processing centers throughout the larval ze-

brafish brain. To this end we registered all acquired

imaging data onto a common reference brain (see Meth-

ods; Portugues et al., 2014; Rohlfing and Maurer, 2003).

Neurons with heat modulated activity could be identi-

fied throughout most of the brain and prominently clus-
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tered in specific regions (Figure 2A-D). In the sensory

trigeminal ganglia heat sensing neurons occupied a spe-

cific caudal subdomain (Figure 2C, right insets). In the

hindbrain heat modulated cells formed a cluster in the

dorsal cerebellum and another prominent cluster could

be identified in rhombomere 5/6 (Rh 5/6) which is a tar-

get area for trigeminal fibers carrying information about

aversive stimuli (Pan et al., 2012). The forebrain dis-

played widespread heat related activity with especially

large fractions of heat-responsive cells in the sub-pallium

as well as the right habenula (Figure 2A-B and E). Fur-

thermore, clusters of heat responsive cells were identified

in the pre-optic area which has been implicated in tem-

perature sensation and thermoregulation in mammals

(Dean and Boulant, 1989) and reptiles (Cabanac et al.,

1967). Brain regions with heat modulated activity gen-

erally contained both ON and OFF type cells (Figure

2 C-D), however with varying proportions (Figure 2 E)

and with the exception of the cerebellum most regions

harbored more ON than OFF type cells.

After the identification of heat processing centers, we

tested whether heat-modulated cells and their ON and

OFF subtypes cluster in the brain or if they are rather

distributed in a random manner. Comparing nearest

neighbor distances within and across types revealed that

heat modulated cells indeed clustered together and this

was maintained across specific subtypes such as ON and

OFF cells as well (Figure S2A). This clustering indicates

that functional subdivisions are reflected in the anatomi-

cal location of cell types. Notably, shuffling cell identities

removed all region-specific cell and type clustering (Fig-

ure S2B-D) and abolished differences in nearest neigh-

bor distance metrics (Figure S2E). This confirms that

the observed structure in the data is indeed a feature of

the brain and does not simply arise by chance.

After the anatomical characterization we wanted to

know whether heat modulated neurons likely encode

heat information specifically or if some neurons general-

ize across stimulus modalities. To distinguish between

these possibilities, we used the stimulus set combining

temperature changes and aversive acoustic taps (Fig-

ure S1G) and identified cells that only respond to ei-

ther the temperature or tap stimulus alone (unimodal

cells) as well as cells that respond to both (multimodal

cells) (Figure S2F). Importantly, the sensory trigemi-

nal ganglia contained only unimodal cells for tap or for

heat (Figure 2F blue and red) a property which was

also largely reflected by cells in the hindbrain (Figure

2F). While a much larger fraction of trigeminal cells re-

sponded to the strong tap stimulus rather than tempera-

ture this distribution reversed in the hindbrain. Indeed,

mechanosensory islet1 expressing cells in the trigeminal

do not form extensive arborizations in rhombomeres 5/6

of the hindbrain which could explain this observed dif-

ference (Pan et al., 2012). The forebrain on the other

hand contained a significant fraction of multimodal cells

and taps were largely represented by these. Especially

in the habenula, tap responsive cells were almost ex-

clusively multimodal, which suggests that taps are not

encoded there with independent negative valence (Fig-

ure 2F). In summary, the data demonstrate that heat

evoked activity is widespread throughout the brain but

heat responsive neurons nonetheless cluster into specific

regions such as the posterior trigeminal ganglion, rhom-

bomeres five and six of the hindbrain or the cerebellum.

Furthermore, while most neurons seem to be modality

specific, especially in the forebrain cell types arise that

have a mixed representation of aversive stimuli.

Motor cells encode swim types and are

stimulus dependent

After pinpointing neurons and brain regions processing

temperature stimuli we next sought to identify neurons

with motor-correlated activity. To this end we used the

bout starts in each imaging plane (Figure 1C) to de-

rive behavioral regressors by convolution with a calcium

response kernel (Miri et al., 2011). These regressors rep-

resent the expectation of calcium responses in a cell that

encodes the behavior and can therefore be used to probe

the brain for cells that show activity which is strongly

correlated (r ≤ 0.6) to motor output (Figure 3A).

We generated regressors encoding all motor events

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190447doi: bioRxiv preprint 

https://doi.org/10.1101/190447
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Figure 3A, “AM”) as well as regressors encoding the

two subsets of motor events, flicks (“FL”) or swims

(“S”). Correlating activity across the whole brain to

these regressors revealed a large representation of all

motor events as well as neurons significantly more cor-

related to regressors encoding behavioral submodules

such as flicks to the right and left or swims (Figure 3B,

p < 0.01 bootstrap hypothesis test).

Motor events could either be controlled by a single

set of pre-motor cells or different stimulus modalities

could influence different pre-motor pools. We therefore

probed the brain for cells that encoded motor events in a

stimulus dependent manner. Namely, we created regres-

sors that only reported motor output while the stimulus

is being delivered or conversely during rest, while the

stimulus is off. These regressors could indeed recover

cells that encode behavior contingent on the stimulus

presentation, “Evoked-” and “Spontaneous-motor” cells

(Figure 3B, “EVK” and “SPNT” respectively). Bout

triggered averages revealed the specific responses of mo-

tor cell types during bouts. As expected, while “All-

motor” cells were equally responsive during left and right

flicks, “Flick-left” and “Flick-right” cells responded al-

most exclusively during left and right flicks, respectively

(Figure S3A). The bout triggered averages also revealed

that “All- motor” cells respond with equal strength ir-

respective of the stimulus, while “Evoked- motor” and

“Spontaneous-motor” cells showed a much stronger re-

sponse in the presence or absence of the stimulus, respec-

tively (Figure S3B). Importantly, shuffling the activity

data with respect to the behavior reduced the number

of identified cells to less than 1.8 % (Figure S3C) and

removed all structure from the bout triggered averages

(Figure S3D).

The anterior hindbrain and cerebellum contained

prominent clusters of motor related cells (Figure 3C-D

and Figure S3E-F). We also identified a concentration of

motor encoding cells in the nucleus of the medial longi-

tudinal fascicle (ncMLF), which has been implicated in

controlling swim speed (Severi et al., 2014; Figure 3C-

D). While a sizeable fraction of hindbrain and ncMLF

neurons encoded motor behavior, there were only few

such neurons in the forebrain (Figure 3E). Cells encod-

ing flicks to the left versus right were notably absent

from the ncMLF and showed a lateralized distribution,

especially in the hindbrain, where more cells encoded be-

havior in an ipsilateral manner (Figure 3F). Evoked- and

Spontaneous-motor cells on the other hand were largely

dispersed throughout motor related brain regions but

did cluster spatially within those regions (Figure 3G).

In summary, behavioral subtypes and stimulus con-

tingencies are encoded by separate pools of motor cells

that are largely confined to regions previously described

as encoding motor activity (Dunn et al., 2016; Naumann

et al., 2016; Portugues et al., 2014).

Activity decorrelation in the hindbrain is

required to explain behavior

After the identification of heat processing centers and

motor related cells in the brain we wanted to know how

well temperature related activity in specific regions can

explain the observed swim and flick behaviors. To this

end we partially annotated our reference brain using Z-

Brain annotations (Randlett et al., 2015). This allowed

extracting sensory related activity using spectral clus-

tering for cells in specific regions, effectively capturing

more diversity than brain-wide clustering (see Materials

and Methods). This analysis revealed that stimulus rep-

resentation in the sensory trigeminal neurons is simple,

consisting of one ON and one OFF cell type tracking the

stimulus with slow dynamics (Figure 4A). Furthermore,

the activity of both cell types was highly anti-correlated

(Figure 4A’), indicating that they have very similar stim-

ulus encoding albeit with opposite sign.

We next asked whether a simple linear regression

model using the activity present in the trigeminal sen-

sory ganglion could explain the observed flick and swim

rates. Activity in the trigeminal was indeed sufficient to

explain flick type bout generation, capturing more than

90 % of the variance in this behavior (Figure 4A” left)

but was considerably worse in explaining swims, captur-

ing less than 70 % of the variance (Figure 4A” right).
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In the rhombomere five and six region of the hind-

brain, a trigeminal target area (Pan et al., 2012), activ-

ity profiles became considerably more diverse with the

presence of two distinct ON and three distinct OFF cell

types (Figure 4B). Importantly, both transient “Fast-

ON” and transient “Fast-OFF” activity arose in this re-

gion while another set of “Slow-ON” and “Slow-OFF”

neurons mostly reflected trigeminal activity (Figure 4B).

These new response types change the stimulus represen-

tation from exclusively encoding temperature levels to

also representing the direction of temperature change.

The distinct temporal dynamics furthermore resulted

in a decorrelation of activity at this first relay station

(Figure 4B’). Remarkably, combining the activity of just

two response types, the trigeminal-like Slow-ON and a

newly formed Fast-OFF type was sufficient to explain

both flicks and swim behavior, capturing 90 % of the

variance in both behaviors (Figure 4B”). This suggests

that the observed response diversification underlies the

generation of behavior.

Analyzing activity in other brain regions revealed dif-

ferences in stimulus representation throughout the brain

(Figure S4A-E). Temperature related activity in the

cerebellum followed different dynamics than activity in

Rh 5/6, and the representation of stimulus amplitude

was strongly reduced in this region (Figure S4A). The

forebrain, especially the pallium (Figure S4C) and pre-

optic area (Figure S4E), contained activity types that

evolve on considerably slower timescales than displayed

by neurons within the hindbrain (Figure 4B, Figure

S4A). This might indicate a role of forebrain areas in

longer timescale integration of stimuli potentially related

to the setting of behavioral states rather than generation

of short-timescale behavior.

To describe the amount of information region specific

activity carries about the observed behavior, we ana-

lyzed mutual information between activity in each re-

gion and the flick and swim behavior rates. Mutual

information between all activity in a given region and

the observed motor output reflected the results of the

linear model (Figure 4C). While there was a modest in-

crease in mutual information between considering only

the sensory stimulus or activity in the trigeminal gan-

glion, activity in rhombomeres 5/6 of the hindbrain con-

tained as much information about behavior as activity in

any other region, except for the motor cells themselves

(Figure 4C). Therefore our preferred model is that other

brain areas like the pallium and subpallium or cerebel-

lum are not directly involved in the described behavior

but rather monitor the information for higher order pur-

poses. Shuffling the activity data as a control reduces

the number of cells identified through clustering to less

than 3 % in each region (Figure S4F). This argues that

the recovered cell types are a true feature of stimulus

representation.

In summary, the data indicate that activity transfor-

mation in a trigeminal target area (Figure 4D) is an

important step in the observed sensori-motor transfor-

mations: this transformation is necessary to explain the

behavioral output while later stimulus transformations

do not seem to increase information about the motor

output (Figure 4C).

A dynamic circuit model captures activity

transformations and generation of behavior

To better understand and describe the sensori-motor

transformations underlying heat evoked swimming be-

havior we sought to build a dynamic circuit model that

is constrained by the behavior and the observed neuronal

activity. This model describes four independent, sequen-

tial transformations: First, sensory stimulus to activity

in the trigeminal; second, activity in the trigeminal to

activity in Rh 5/6; third the transformation from Rh

5/6 to Motor cells, and lastly the generation of behavior

given the activity in the Motor cells (Figure 5).

The transformation from sensory stimulus to trigemi-

nal activity is a dynamic process and relies on temporal

processing. We therefore fit a model that combines a lin-

ear multiplication of the sensory input with convolution

by a temporal filter (Figure 5A). Both the multiplicative

term and filter parameters were fit using Markov-chain-

Monte-Carlo sampling, obtaining confidence intervals on
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the parameters in the process (Hastings, 1970; see Ma-

terials and Methods for details). Since stimulus encod-

ing relied on a non- linear transformation, a cubic non-

linearity accounted for differences in mapping between

stimulus strength and neuronal activity (Figure S5 A-B).

This approach allowed explaining the observed ON and

OFF type activity in the trigeminal ganglion in terms of

the sensory stimulus as evidenced by the close juxtapo-

sition of the fits and true activity (Figure 5A1-A2). As

expected, the linear factors of the model demonstrate

an activation of the ON type and an inhibition of the

OFF type by the sensory stimulus. As expected at this

stage a linear filter resembling the kernel of a nuclear

calcium indicator (Kawashima et al., 2016) is sufficient

to capture the transformation from stimulus to activity

(Figure 5A1-A2).

Our previous analysis indicated that the most impor-

tant transformation occurs in the Rh 5/6 region of the

hindbrain. To explain the observed response types in

this region in terms of trigeminal neuron activity we

employed the same approach, a linear combination of

trigeminal activity followed by convolution with a fil-

ter and an output nonlinearity (Figure 5B; Figure S5

C-G). Two cell types in this hindbrain region, Slow-ON

and Slow-OFF, were similar to the trigeminal cell-types.

The Slow-ON type has slightly faster dynamics than the

trigeminal ON cells, as evidenced by the adaptive com-

ponent in its filter, and it is almost exclusively driven

by excitatory inputs from the trigeminal ON cells (Fig-

ure 5B1). We note that since adaptive filters compute

a derivative of their input they are prone to increase

noise present in their input. The long timescales ob-

served in the filters could therefore reflect a mixture of

suppressing noise in the best fit (see Figure S5H-I for a

simulation) as well as true neuronal processes underlying

adaptation and bursting (Bean, 2007; Vilin and Ruben,

2001). The Slow-OFF type is an almost direct copy of

trigeminal activity, evidenced by a filter that is essen-

tially a delta function (Figure 5B2). The three other

cell types in Rh5/6 critically relied on inhibitory inputs

(Figure 5B3-B5). While trigeminal neurons express a va-

riety of neurotransmitters, trigeminal fibers are largely

glutamatergic (Lazarov, 2002). Since rhombomeres 5

and 6 on the other hand contain both inhibitory and ex-

citatory neurons (Kinkhabwala et al., 2011) we used the

Slow-ON and Slow-OFF types in the model to provide

the required inhibition instead of relying on the trigem-

inal inputs directly. Both the newly arising Fast-ON

and Fast-OFF types required inhibition by Slow-OFF

cells, however to differing degrees. Furthermore, as sug-

gested from their activity profiles both their filters signal

strong adaptation (Figure 5B3 and 5B4). The last activ-

ity type, termed “Delayed-OFF” as it had fast kinetics

but started to respond after the Fast-OFF cells, relied on

inhibition by the Slow-ON type. The linear filter of this

type potentially hints at a mixture of integration and

differentiation, which would also be suggested by the ac-

tivity profile itself (Figure 5B5). To test the importance

of temporal filtering and hence the dynamic structure

of our model, we fit an alternative model in which no

linear filters were applied for cell types in rhombomeres

5/6. As expected such a model still explains the activ-

ity of Slow-ON and -OFF types well whereas the activity

of the Fast-ON and Fast-OFF types could not be recre-

ated from the trigeminal inputs without filtering (Figure

S5J). This indicates that temporal filtering of activity is

a critical step in creating important response types ob-

served in Rh 5/6.

Since the identified motor cells in the brain did not

track the stimulus itself but much like the behavior had

a probabilistic chance of firing depending on stimulus

strength, we used a simple linear rate-coding model for

the transformation from heat-modulated hindbrain ac-

tivity to activity rates in the motor cells (Figure 5C).

Namely, linear combinations of activity in Rh 5/6 cell

types explained the activity of each identified motor cell

type (Figure 3). This revealed varying combinations of

activating and inhibiting influences consistent with the

mix of excitatory and inhibitory neurons in this region

(Kinkhabwala et al., 2011; Figure 5C1-5C5). Most mo-

tor cell types are activated by the Slow-ON type with the

expected exception of Spontaneous-motor cells which re-
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ceive strong excitation from Slow-OFF cells almost ex-

clusively (Figure 5C5). This paradoxical control of spon-

taneous behavior by a stimulus driven cell type is neces-

sary to explain their lack of activity during stimulation.

Interestingly, “Swim” cells receive their strongest exci-

tation from the Fast-OFF cell type (Figure 5C3), consis-

tent with the requirement of this cell type in explaining

swimming behavior via a simple linear model (Figure

4B”).

The last stage of the model linearly links motor cell

output to the observed swim and flick behavior (Figure

5D). Both of these behaviors are strongly activated by

the All- motor and Evoked-motor cells. Flick cells over-

all have a weak contribution to both behaviors but as

expected while they inhibit swims they activate flicks.

Swim cells on the other hand have a strong contribution

to swims but do not influence flicks (Figure 5D).

In summary, we could derive a realistic dynamic cir-

cuit model that can explain the observed transforma-

tions in activity from sensation to behavioral output

and which makes clear and testable predictions about

the underlying circuit.

The circuit model can predict behavior and

neuronal responses to novel stimuli

The dynamic circuit model of the sensori-motor transfor-

mations (Figure 6A) was created such that each stage of

the model was fit independently. This means that errors

could accumulate across the model preventing predic-

tion of behavioral output in response to sensory input.

Therefore, as a first test of the model, we tried to pre-

dict the behavioral output of the experiments that were

used to fit the model given the sensory input. Both the

rates of swims and flicks were very well predicted by the

circuit model (Figure 6B), indicating that errors do not

accumulate across the different stages.

To test the generality of the model, we wanted to test

its prediction in response to a sensory stimulus not used

for fitting. To this end we used a heat stimulus with dis-

tinctly different temporal dynamics consisting of three

temperature steps and a ramp followed by a faster os-

cillating sine wave (Figure 6A and Figure S6A). This

stimulus served as a test input to our circuit model to

compare the prediction of flick and swim behavior to the

actual behavioral rates produced by fish during those

experiments. The model did very well in predicting be-

havior to this novel stimulus, explaining close to 90 %

of the variance in both flick and swim behaviors (Fig-

ure 6C). This indicates that the model does generalize

across stimuli of different dynamics.

Encouraged by these results we were wondering

whether it might be possible to identify the different

heat response types present in Rh 5/6 in this experi-

mental set using model predictions as regressors. Prob-

ing activity using the model predictions indeed recovered

cells with correlated activity for each predictor (Figure

S6B). Clustering cells by correlation into types, recov-

ered type average activity that matched the individual

model predictions to a large extent as evidenced by the

close juxtaposition of the predicted activity and cluster

average activity (Figure 6D). Importantly the average

activity profiles of the types matched expectations. This

can be seen by comparing average activity of Fast-ON

with Slow-ON types, where, as in the other experiment,

Fast-ON cells showed quicker onset responses followed

by adaptation compared to a more sustained profile in

the slow type (Figure 6D). The test stimulus set also un-

covered that Fast-OFF cells do not only increase their

activity on temperature decline but seem to be especially

inhibited during temperature rises. This is revealed by

the fact that activity in this cell type started to increase

before offset of the sine stimulus but concomitant with

a decrease in Fast-ON activity (around 100 s into to the

trial instead of 115 s, Figure 6D).

Interestingly, the prediction of swims and flicks de-

pends to a different extent on accurate representation of

Rh 5/6 activity. Using the model without temporal fil-

tering (Figure S5J), prediction of flicks is nearly as good

as for the full model, while the prediction of swims is

considerably worse for both stimuli, as evidenced by a

clear drop in explained variance (Figure S6C-D). This

is in line with the ability to predict flicks purely based
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on trigeminal activity (Figure 4A”). As expected, this

comparison model performs much worse in identifying

Fast-ON and Fast-OFF cells in Rh 5/6 in response to

the test stimulus compared with the full model (Figure

S6E).

In summary, we could demonstrate that our activ-

ity constrained circuit model generalizes to novel stimuli

and is able to predict both behavioral output and inter-

mediate neuronal activity in this context. This argues

that the model accurately represents computations dur-

ing sensori-motor transformations in heat perception.

Discussion

The sense of temperature is conserved from mammals

(Murakami and Kinoshita, 1977) to bacteria (Maeda

et al., 1976) but how information about environmental

temperature is represented across the brain, especially in

vertebrates, is largely unknown. In this study, we com-

bined a novel experimental paradigm with theoretical

modeling approaches to delineate the circuits and com-

putations that underlie the transformation from tem-

perature sensation to behavior. Performing 2-photon

functional calcium imaging with subsequent volumetric

image registration allowed constructing a comprehen-

sive atlas of heat processing centers in the larval ze-

brafish brain. Furthermore, the combination of func-

tional recordings during heat stimulation and behavioral

readout revealed critical response transformations in the

hindbrain that are necessary to explain the observed be-

havior. These transformations change a sensory repre-

sentation that is largely confined to reporting heat lev-

els to a rich representation that extracts features such

as direction of temperature change. To formalize these

transformations, we built a dynamic circuit model con-

strained by anatomy and the observed activity. By con-

currently fitting connectivity strength and “filter ker-

nels” we created a framework that allows predicting be-

havior and neuronal activity in response to diverse heat

stimuli.

A brain wide atlas of temperature

modulated activity

Previous work across animal species has provided impor-

tant insight into the cellular and molecular mechanisms

and circuit logic of temperature detection, however brain

wide analysis of temperature modulated activity is lack-

ing. Here, we mapped neurons with heat modulated

activity across a whole vertebrate brain and found that

the representation of temperature is widespread and es-

pecially prominent in the fore- and hindbrain. As ex-

pected the trigeminal ganglion, a somatosensory area,

contains heat sensitive neurons. However, only a small

fraction of cells in the trigeminal ganglion responded to

our heat stimuli (Figure 2E), which were well outside the

noxious range (Figure 1B). This is in line with previous

reports in mice where only few trigeminal neurons de-

tect innocuous warmth while many respond to noxious

heat (Yarmolinsky et al., 2016). The rhombomere 5/6

region, which is a target region of the trigeminal, con-

tained prominent clusters of heat modulated cells. Fur-

thermore, responsive cells were aggregated in the dorsal

cerebellum, in both habenulae as well as in pallium and

sub-pallium. This likely indicates that temperature not

only influences behavior directly but also provides mean-

ingful information for higher order processes controlled

by the brain. Heat modulated activity in the pre-optic

area hints at a potential functional conservation of this

structure which is involved in the regulation of body

temperature in mammals (Boulant, 2000) and involved

in behavioral fever in toads (Bicego and Branco, 2002).

Functional diversity of temperature encoding

Across the brain we find that temperature is encoded by

both ON and OFF type cells. A separation of temper-

ature coding into ON and OFF cells also emerged as a

common principle from previous studies in flies (Frank

et al., 2015; Liu et al., 2015) and mice (Ran et al.,

2016). Such a separation of sensory coding into ON

and OFF channels has been thought to aide in coding

efficiency (Gjorgjieva et al., 2014) and may serve to mit-

igate effects of correlated noise. Comparing heat respon-
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sive cell types across regions revealed clear differences in

response dynamics. Sensory neurons in the trigeminal

fall into two strongly anticorrelated ON and OFF types

with sustained responses. In the hindbrain on the other

hand more divergent response types could be identified

including cells that showed strong adaptation and that

are therefore most sensitive to changes in temperature.

While we observe a combination of sustained and tran-

sient ON and OFF cells in Rh 5/6 (Figure 4B), second

order neurons in the mouse spinal cord represent warm-

ing exclusively with sustained responses and cooling in a

transient manner (Ran et al., 2016). The forebrain, espe-

cially the pallium and pre-optic area, harbored cell types

that seem to represent temperature on slower timescales

(Figure S4 B-E). This could indicate that these cells set

long-term states rather than control behavior itself.

Stimulus and behavior separate motor

activity across the brain

Using correlational analysis, we mapped motor related

activity across the brain. Compared with the stimu-

lus representation, motor related cells are considerably

more localized. A large fraction of motor cells is local-

ized in the anterior hindbrain as well as in the cerebel-

lum, slightly ventral of the stimulus related cell clus-

ters. On the other hand, only a small fraction of cells

in the forebrain displayed motor-correlated activity. A

simple criterion based on tail dynamics allowed sub-

dividing the head-embedded behavior into two broad

classes, “swims” and “flicks”. Swims represent bouts

which likely correspond to straight swims and routine

turns in freely swimming behavior, while flicks are uni-

lateral tail deflections that likely correspond to strong,

in-place turns. Mirroring the difference in behavioral

output, we find separate pools of cells that are corre-

lated with swims and flicks indicating that at the level

of the hindbrain separate pools of cells are used to ini-

tiate these different behaviors. This is similar to the

subdivisions of reticulo-spinal neurons for straight swim

or turn initiation (Huang et al., 2013; Orger et al., 2008).

In line with ipsilateral cells controlling directional turns

(Orger et al., 2008), cells encoding left flicks are more

prominent in the left hemisphere of the hindbrain and

vice versa (70 % of cells are ipsilateral, Figure 3F).

We also identified stimulus specific motor cells.

“Evoked-motor” cells are activated almost exclusively

during bouts while the stimulus laser is on, while

“Spontaneous-motor” cells are mostly active during

spontaneous bouts in the absence of our heat stimulus

(Figure S3B). This separation might underlie tempera-

ture induced changes in bout structure such as observed

increases in average bout speed caused by temperature

increases in freely swimming larval zebrafish (Haese-

meyer et al., 2015). That spontaneous and evoked be-

haviors are controlled by separate pools of cells is in con-

trast to Aplysia, where changes in distributed activity in

the same pool of cells accounts for differences in sponta-

neous and evoked behaviors (Wu et al., 1994). Previous

studies in zebrafish however support a coding strategy

whereby different behavioral modules are controlled by

separate pools of cells (Orger et al., 2008; Thiele et al.,

2014).

A dynamic circuit model of sensori-motor

transformations during heat perception

Models constrained by behavioral and physiological data

provide important insight for understanding the logic of

sensori-motor transformations (Clark et al., 2013). Re-

cently, modeling approaches have been used in the lar-

val zebrafish to understand processes underlying prey-

selection (Bianco and Engert, 2015) as well as the gen-

eration of the optomotor response (Naumann et al.,

2016). This approach resulted in a realistic multi-scale

circuit model of optomotor induced turning revealing

the circuit logic of binocular stimulus integration (Nau-

mann et al., 2016). We similarly used known anatomy

and observed neural activity to derive a realistic circuit

model of temperature perception. Correlational analy-

sis strongly suggested that a critical step in the sensori-

motor transformations is the observed change of tem-

perature representation between the trigeminal ganglia

neurons and their rhombomere 5/6 target region in the
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hindbrain. This transformation especially improves the

prediction of undulating swim behavior while flicks are

already fully predicted at the level of sensory activity in

the trigeminal ganglia. We therefore reasoned that the

simplest plausible circuit would consist of the trigeminal

neurons, the cells in their Rh 5/6 target area as well as

the identified motor cells. Since the stimulus space is

characterized by the dynamics of temperature change,

we had to extend the previous modeling approaches and

devise a circuit model that takes these dynamics into ac-

count. In fact, a comparison model using static rate cod-

ing alone fails to replicate activity and behavior (Figure

S5J and S6C-E). For stimulus encoding and the trans-

formation of temperature representation in the brain,

the model therefore consists not only of linear coeffi-

cients but also filter kernels that are fit for each cell

type separately. These filter kernels allow quantifying

the dynamical changes in heat representation (Figure 5

A-B). Using this approach, we find that while Slow-OFF

cells in Rh5/6 largely copy their trigeminal input, other

cell types such as the Fast-ON and -OFF cells rely on

adaptation to transform their inputs.

In the model, the filter kernels are a property of a

given cell type, effectively acting as input filters. This

is a plausible explanation as different cell intrinsic pro-

cesses can lead to the observed spiking adaptation in the

Fast-ON or -OFF cell type or more complex interactions

between adaptation and bursting behavior as suggested

in the filter of the Delayed-OFF type (Blair and Bean,

2003; Friedman et al., 1992; Kernell and Monster, 1982;

Pedarzani and Storm, 1993). Further experiments using

patch clamp recording in identified cells are needed to

decide whether these are indeed properties of the cells or

rather emerging features of local circuits. Furthermore,

the model suggests long timescales on the filter proper-

ties. These timescales are plausible for processes such as

late adaptation observed in motoneurons or hippocam-

pal neurons (Kernell and Monster, 1982; Pedarzani and

Storm, 1993) or slow afterpotentials involved in cortical

bursting (Bean, 2007; Friedman et al., 1992). On the

other hand, the nature of calcium imaging together with

the inherent noise precludes a full quantitative interpre-

tation of the filter kernel timescales (Figure S5H-I). They

do however, make clear qualitative statements about the

expected cellular properties which can be confirmed with

future experiments using electrophysiological recordings

or voltage imaging.

The circuit model as a framework for

hypothesis testing

Our circuit model makes clear and testable predictions

about the computations and architecture underlying

the sensori-motor transformations during heat percep-

tion. While trigeminal fibers are largely glutamatergic

(Lazarov, 2002), three of the five cell types identified in

rhombomeres 5 and 6 in the hindbrain rely on inhibitory

inputs. The model therefore posits that part of the Slow-

ON and Slow-OFF cell-types should be inhibitory in-

terneurons. At the same time, excitatory projections

from these neurons onto Motor cells are required to ex-

plain the activity rates of some Motor types. This pos-

sibility is well supported by previous anatomical studies

that identified both glutamatergic and glycinergic neu-

rons in this region (Kinkhabwala et al., 2011).

Our previous behavioral study predicted that straight

swims should be activated by a strong OFF signal which

is less influential for turning (Haesemeyer et al., 2015).

This study supports this conclusion: the circuit model

predicts that swim motor cells are most strongly driven

by the Fast-OFF cell type (Figure 5C3).

The core transformation from the trigeminal to the

hindbrain to the motor output is well captured by our

dynamic circuit model which is constrained by a vari-

ety of activity measurements and which we validated by

testing its predictive power against novel sensory stimuli.

Such a brain wide realistic model that captures the dy-

namic aspects of sensorimotor transformations is novel

in the context of temperature processing and provides

a computational and experimental framework for gener-

ating testable circuit models of temporal coding. Fur-

thermore, the general model architecture presented here

will allow to include modules responsible for higher order

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190447doi: bioRxiv preprint 

https://doi.org/10.1101/190447
http://creativecommons.org/licenses/by-nc-nd/4.0/


processing, such as observed activity in the cerebellum

and forebrain areas, in the future and can be easily ap-

plied to other stimuli and organisms to capture similar

transformations in representation.

Materials & Methods

All experiments were conducted on 6-7 days post fer-

tilization zebrafish of the strains indicated below. Fish

were fed paramecia from day 5 onwards. All experi-

ments followed the guidelines of the National Institutes

of Health and were approved by the Standing Committee

on the Use of Animals in Research of Harvard Univer-

sity. All analysis was performed using software custom

written in Python 3.5.

Imaging and behavior

All experiments used for mapping heat responsive neu-

rons and for model derivation used nuclear expressing

Huc-H2B-GCaMP6s fish (Freeman et al., 2014). Exper-

iments combining heat and taps were performed in cyto-

plasmic Huc-Gcamp6s fish (Wee et al., in preparation).

Larval zebrafish were embedded in 2.5 % medium melt

agarose (Fisher scientific, USA) and their tails were freed

the night before the experiment. Experiments were con-

ducted in a custom built 2-photon microscope and run

using custom written software in C# (Microsoft, USA).

Heat stimuli were delivered using a 1 W 980 nm fiber-

coupled diode laser (Roithner, Austria) coupled into a

collimator (Aistana Inc., USA) placed under the micro-

scope objective 4 mm in front of and 1.2 mm above the

head of the zebrafish larva pointing downwards at an an-

gle of 16.5 degrees. The laser power was controlled by the

computer via a laser diode driver (Thorlabs, USA). We

note that the 980 nm laser itself did not excite GCaMP

fluorescence due to the low photon density. The main

mapping experiments consisted of the imaging of 30 in-

dividual planes, spaced 2.5µm apart. In each plane 3

trials of the stimulus depicted in Figure 1B were pre-

sented.

The heat and tap experiments consisted of imaging

4 individual planes, spaced 5µm apart. In each plane

25 trials of the stimulus depicted in Figure S1G were

presented.

To avoid excessive heating of the preparation by scan-

ning over the eyes, custom exclusion masks were created

for each experiment in which the eyes were in the field

of view restricting the scan-lines such that the eyes were

excluded from the field of view.

Image stabilization

To counter heat-induced deformations of the prepara-

tion, before each plane was scanned a +/- 5µm sized pre-

stack consisting of 21 slices spaced 0.4µm apart was ac-

quired. During scanning, each acquired plane was cross-

correlated with each plane in the pre-stack and using a

low-pass filter the position of the objective was adjusted

online so as to minimize z-drift. Since the heat induced

drift observed in RFP stacks followed very reproducible

kinetics these were used to predict the movement in-

duced by heating during our experiments to induce very

slight movements in the predicted direction. This served

to overcome the delay induced by our low-pass filter.

Segmentation

Activity traces were obtained from all experiments using

anatomical segmentation. Nuclear GCaMP stacks were

segmented anatomically using Cell Profiler (Carpenter

et al., 2006). To segment the cytoplasmic GCaMP stacks

we used the nuclear exclusion of the indicator to define

cell-centroids based on a minimum filter. This was fol-

lowed by growing a mask using temporal correlation of

individual pixel timeseries up to an anatomically defined

size.

Registration and annotation

3D image registration based on CMTK (Rohlfing and

Maurer, 2003) was used to create a nuclear GCaMP-

6s reference stack to which all experimental stacks were

registered as described elsewhere (Portugues et al., 2014;

Randlett et al., 2015). The reference brain was used
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to annotate anatomical regions of interest based on Z-

Brain annotations (Randlett et al., 2015).

Clustering of heat and motor related activity

To identify motor related activity, motor regressors were

created by convolving a bout start trace with an expo-

nential calcium kernel with a decay half time of 3 s. This

decay time was derived from motor triggered averages

across hindbrain neurons. Behavioral subtype regres-

sors were created by only considering bouts of a given

type. The behavioral regressors that differentiate stim-

ulus and rest periods were created by only considering

motor events during those respective phases. Every cell

with a correlation of at least 0.6 to at least one motor

regressor was considered a “motor cell”. Since not all

behaviors were observed in all imaging planes, cells were

only assigned to a more specific category (such as swims

versus all bouts) if the correlation to the more specific

regressor was significantly higher (p < 0.01, bootstrap

hypothesis test) than to any more general regressor.

To identify sensory response types, all motor corre-

lated cells were first removed from the data using a lower

correlation cutoff of r > 0.4. Subsequently, to identify

ON and OFF cells across the whole brain (Figures 1 and

2) filtering criteria based on stimulus modulation and

a requirement of correlated partners across cells were

used to remove around 90 % of cells from further consid-

eration for computational purposes (see Supplemental

Materials and Methods for details). For region-specific

clustering of activity (Figure 4) each nuclear centroid

was assigned to an annotated region. For this data the

filtering step was omitted as the datasets were of man-

ageable size already. For each whole-brain or region-

specific set cell-to-cell correlations were used to build a

similarity graph. Subsequently spectral embedding fol-

lowed by K-means clustering was used to calculate min-

imum cuts in this graph thereby naturally separating

the data into clusters of highly correlated activity. To

further prune the clusters, the cluster average activity

was used as sensory regressors and only those cells were

kept as cluster members that showed a correlation of at

least 0.6 to the cluster average. We defined the number

of clusters such that at least one empty cluster was ob-

tained (i.e. a cluster with average activity to which no

other cell was highly correlated).

To calculate ∆F/F0 values for reporting cell fluores-

cence we used the average across the first baseline period

as the resting fluorescence F0.

Modeling

The general structure of our feed-forward model relied

on two “dynamic” stages, the encoding of the sensory

stimulus in the trigeminal ganglion as well as the trans-

formation of trigeminal activity in Rh5/6. These were

followed by two rate-coding steps, the transformation of

firing rates in Rh5/6 into firing rates of the motor cells

as well as the transformation of motor cell rates into

behavioral rates (Figure 5). In each stage, linear coeffi-

cients were fit that represent the activations of cells (or

behavior) by the different cells (or the stimulus) in the

previous stage. To allow for changes in the dynamical

representation, in addition convolutional filter kernels

were fit in the first two stages of our model. Since we

expected stimulus encoding to be mostly governed by

the nuclear GCaMP6s calcium kernel the filter of the

trigeminal ganglion was parametrized with an on (τON )

and an off-rate (τOFF ) according to:

fTG = e−t/τOFF (1 − e−t/τON ) (1)

Since the differences in activity profiles between

trigeminal neurons and neurons in Rh 5/6 suggested that

some cells performed a differentiation of their input a

filter parametrization that allows for both positive and

negative (adapting) components was used. The filter

was parametrized by a scaling term s and two rates τ1

and τ2 according to:

fRh5/6 = stet/τ1 + (1 − t)e−t/τ2 (2)

The filter parameters were derived together with the

linear coefficients using Markov- chain Monte Carlo

(MCMC) sampling via PyMC3 (Salvatier et al., 2016).
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Since the relationship of predicted to actual values after

fitting suggested a nonlinear transformation, for the two

first stages of the model a cubic nonlinearity of the form

g(x) = ax3 + bx2 + cx+ d (3)

was fit as well using least squares optimization.

For the last two rate-coding steps the linear coeffi-

cients were fit using MCMC as well and no nonlinear-

ities were necessary. Reported confidence intervals in

all cases are 99 % confidence intervals based on draws

from the approximated posterior distribution. See sup-

plemental materials and methods for details of model

definitions and prior parameter distributions.
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Figure 1. A paradigm to probe heat perception in larval zebrafish
A) Schematic of the setup. Head-embedded tail-free larval zebrafish expressing H2B- GCaMP6s pan-neuronally are imaged at

950 nm under a custom built two-photon microscope. Heat stimuli are delivered using the collimated beam of a fiber-coupled

980 nm diode laser. During imaging, the tail is monitored at 100 Hz to extract behavior. Green plane depicts example imaging

plane and inset shows habenulae imaged in one experiment. The activity of the green nucleus is depicted in B.

B) Top panel shows the delivered laser power in each repeat (black line) as well as the repeat-average temperature experienced

by the fish (red line). Middle panel depicts repeat averaged calcium activity of one example ON cell. Bottom panel depicts

example tail-trace during one repeat of one imaging plane.

C) Behavior raster plot (summed across repeats) of all 1200 planes imaged across 40 fish. Each black tick identifies the start

of a swim bout. Stimulus depicted on top for reference.

D) Histogram of directional bias of tail movement across all bouts in all fish. The directional bias is calculated as the sum

of angles to the right of the midline during a bout minus the sum of angles to the left of the midline during a bout over

the absolute sum of angles. During bouts in which the tail only deflected to the left this will yield a 1, for bouts exclusively

to the right a -1 while symmetric tail-undulations will score as 0. Coloring and dashed lines reflect cutoff between “flick”

and “swim” categories. Inset shows example tail traces during flick to the right (top), swim (middle) and flick to the left

(bottom).

E) Heat map of trial averaged activity of all cells across all experiments that have been identified as heat-responsive. Cells

are sorted according to ON vs. OFF criteria. Color scale indicates ∆F/F0.

F) Experiment average bout frequencies of flick (orange line) and swim (blue line) type bouts. The stimulus is depicted on

top for reference. Dashed grey lines indicate start of temperature decline to reveal off response in swims.

See also Figure S1.
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Figure 2. Heat related activity is widespread across the brain
A-B) Fraction of heat responsive cells within selected brain regions. Color scale indicates percentage of heat-sensitive cells

within each selected region. Grey cells were not analyzed for this panel. Scale bars, 100µm Pl.: Pallium, SbP.: Subpallium,

Hab.: Habenula, Crb.: Cerebellum, Rh5/6: rhombomeres five and six of the hindbrain, POA: Preoptic area, TG L: Left

trigeminal ganglion, TG R: Right trigeminal ganglion. Colored lines on top delineate major subdivisions of the brain, FB:

Forebrain, MB: Midbrain, HB: Hindbrain. Note that trigeminal ganglia are not to scale.

A) Dorsal view of the brain, anterior left, left side bottom.

B) Side-view of left hemisphere, anterior left, dorsal top.

C) Distribution of ON (green) and OFF (magenta) cells across the zebrafish brain (top projection). The projection shows

all cells identified across 30 individual experiments which have been registered onto a common reference brain. Scale bar

100µm, anterior left, left side bottom. Black outlines mark approximate location of trigeminal ganglia which are shown in

insets to the right (TG R right trigeminal ganglion, TG L left trigeminal ganglion). Each trigeminal ganglion depicts cells

across five fish registered onto a common reference ganglion. Scale bar 50µm, anterior left.

D) Side-view of the brain in C), only cells in the left hemisphere are depicted. Scale bar 100µm, anterior left, dorsal top.

E) Fraction of heat ON cells (green) and heat OFF cells (magenta) in select brain regions.

F) For regions that were imaged in heat and tap experiments depicts the fraction of stimulus responsive cells that only

responded to the heat stimulus (red), cells that only responded to the tap stimulus (blue) and multimodal cells that responded

to both heat and tap (purple).

See also Figure S2.
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Figure 3. Motor cells can be separated according to behavior and stimulus conditions
A) Example behavioral regressors (black) and activity trace of one correlated cell. Top: Cell encoding all motor events in

a plane (orange); Middle: Cell encoding left flicks in a plane (purple); Bottom: Cell encoding swims in a plane (brown).

Numbers indicate correlation coefficient.

B) Clustered heatmap of correlations of motor-cell activity to individual motor regressors. All motor: Regressor included all

motor events of a given plane. Flicks: Regressor only included flicks. Right flicks: Regressor only included right flicks. Left

flicks: Regressor only included left flicks. Swims: Regressor only included swims. Evoked motor: Regressor only included

motor events while the heat stimulus was on. Spontaneous motor: Regressor only included motor events while the heat

stimulus was off. Cells are only assigned to a more specialized motor cluster if the correlation to the specialized regressor

is significantly higher than to the general regressor (p < 0.01, bootstrap hypothesis test). All-motor (AM): N = 5049 cells;

Flicks (F): N = 420; Flick- right (FR): N = 319; Flick-left (FL): N = 298; Swims (S): N = 1338; Evoked-motor (EVK): N =

950; Spontaneous-motor (SPNT): N = 763

C-D) Fraction of motor correlated cells within selected brain regions. Color scale indicates percentage of motor-correlated cells

within each identified region. Scale bars, 100µm. Pl.: Pallium, Hab.: Habenula, ncMLF: nucleus of the medial longitudinal

fascicle, Crb.: Cerebellum, Ant. HB: Anterior hindbrain. Grey cells were not analyzed for this panel.

C) Dorsal view of the brain, anterior left, left side bottom.

D) Side-view of left hemisphere, anterior left, dorsal top.

E) Quantification of percentage of motor correlated cells in select brain regions. Red bars: Forebrain; purple: Midbrain;

blue: Hindbrain.

F) Distribution of Flick-right (green) and Flick-left (purple) cells, top projection. Anterior left, scale bar = 100µm

G) Distribution of Evoked-motor (red) and Spontaneous-motor (blue) cells, top projection. Anterior left, scale bar = 100µm.

Grey cells in F-G are non-motor related cells representing brain outline.

See also Figure S3.
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Figure 4. Diversity of heat responses increases in the hindbrain
A-A”) Characterization of heat responses in the trigeminal ganglion.

A) Response types extracted via spectral clustering, ON cells orange, OFF cells blue. Thick lines indicate cell-average activity,

shading indicates bootstrap standard error.

A’) Pairwise correlations of the response types to quantify similarity.

A”) Coefficient of determination (R2) for using one (diagonal) or up to two of the response types to predict flicks (left panel)

or swims (right panel).

B-B”) Characterization of heat responses in the Rhombomere 5/6 region of the hindbrain

B) Response types extracted via spectral clustering. Fast-ON cells red, Slow-ON cells orange, Fast-OFF cells green, Slow-

OFF cells blue and Delayed-OFF cells brown. Thick lines indicate cell-average activity, shading indicates bootstrap standard

error.

B’) Pairwise correlations of the response types to quantify similarity.

B”) Coefficient of determination (R2) for using one (diagonal) or up to two of the response types to predict flicks (left panel)

or swims (right panel). A linear model combining just two activity types was chosen for direct comparison with the trigeminal

activity types.

C) Mutual information with the motor output by knowing the stimulus (hollow bar) or all heat-related activity in the given

brain regions (grey trigeminal ganglion, blue hindbrain, red forebrain) or motor cell activity (orange bar). The filled black

bar quantifies the entropy in the motor output itself. The height of the grey box indicates mutual information in Rh 5/6 and

marks regions not included in the circuit model.

D) Schematic of response diversification between detection in the trigeminal and cells in rhombomeres 5 and 6 of the hindbrain

followed by the generation of motor output (black arrow). Colors indicate response types.

See also Figure S4.
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Figure 5. A dynamic model of sensori-motor transformation during heat perception
A) Schematic of the first model stage which relates sensory heat input to activity in the two trigeminal cell types. Red curve

depicts sensory stimulus of experiments used for fitting the model. Bottom panel is schematic depiction of the influences of

the individual components (linear factors, filter, nonlinearity) of the dynamic model using the trigeminal ON cell type as an

example.

A1) Model prediction of trigeminal ON activity (orange) and measured activity (black) (left panel), impulse response of the

model filter (top right) and linear coefficient (bottom right).

A2) Model prediction of trigeminal OFF activity (blue) and measured activity (black) (left panel), impulse response of the

model filter (top right) and linear coefficient (bottom right)

B) Schematic of the second model stage which relates trigeminal output activity to the activity types observed in Rhom-

bomeres 5/6 of the hindbrain. Note that the three types in the right column rely on indirect inhibition via the slow ON or

slow OFF types.

B1) Model prediction of Slow-ON activity (orange) and measured activity (black) (left panel), impulse response of the model

filter (top right) and the linear coefficients for the trigeminal ON (orange) and OFF (blue) cells (bottom right).

B2) - B5) Same as B1) but for Slow-OFF (B2), Fast-ON (B3), Fast-OFF (B4), and Delayed-OFF (B5) types.

C) Schematic of the third model stage relating output rates in the hindbrain units to activation rates of the motor correlated

cells

C1) Scatter plots of actual versus predicted output rates of modeled All-motor activity (left panel) and the linear coefficients

for the Fast-ON (red), Slow-ON (orange), Fast- OFF (green), Slow-OFF (blue) and Delayed-OFF (brown) types.

C2) - C5) Same as C1) but for Flicks (C2), Swims (C3), Evoked-Motor (C4) and Spontaneous-Motor (C5) types.

D) Schematic of the last model stage relating output rates of the motor correlated cells to behavioral rates.

D1) Scatter plots of actual versus predicted behavior rates of modeled swim output (left panel) and the linear coefficients for

the All-motor (black), Flick (orange), Swims (purple), Evoked-motor (red) and Spontaneous-motor (blue) cells.

D2) Same as D1 but for predicted behavior rates of flick output.

Shading and error bars indicate 99 % confidence intervals after sampling from the posterior distribution.

See also Figure S5.
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Figure 6. The model predicts behavioral and neural activity in response to novel stimuli
A) Schematic of the full feed-forward model. Colored arrows depict the mixing of sensory input or activity in a previous

stage with arrowheads indicating positive (activating) and bars indicating negative (inhibiting) effects. Opacity of arrows

indicates the weight of a given component in the fit.

B) Prediction of swims (top) and flicks (bottom) based on the model for the same experiments that were used to fit the model.

Colored lines represent prediction, black line is observed behavior convolved with the calcium kernel. Stimulus depicted on

top for reference.

C) Prediction of swims (top) and flicks (bottom) based on the sensory input delivered and motor output observed during the

heat and tap experiments. Note that periods in which the behavior is affected by the tap itself have been excluded from the

plot. Colored lines represent prediction, black line is observed behavior convolved with the calcium kernel. Stimulus depicted

on top for reference.

D) Cluster average activity (colored lines) of the indicated types versus each model predicted regressor (black line). Stimulus

is depicted on top for reference. The black arrowhead indicates timing of the tap which was present in this test stimulus but

which was not included in our modeling. Shading indicates bootstrap standard error.

See also Figure S6.
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