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Abstract

Structural variation, including large deletions, duplications, inversions, translocations, and other rearrangements,

is common in human and cancer genomes. A number of methods have been developed to identify structural variants

from Illumina short-read sequencing data. However, reliable identification of structural variants remains challenging

because many variants have breakpoints in repetitive regions of the genome and thus are difficult to identify with short

reads. The recently developed linked-read sequencing technology from 10X Genomics combines a novel barcoding

strategy with Illumina sequencing. This technology labels all reads that originate from a small number (˜5-10) DNA

molecules ˜50Kbp in length with the same molecular barcode. These barcoded reads contain long-range sequence

information that is advantageous for identification of structural variants. We present Novel Adjacency Identification

with Barcoded Reads (NAIBR), an algorithm to identify structural variants in linked-read sequencing data. NAIBR

predicts novel adjacencies in a individual genome resulting from structural variants using a probabilistic model that

combines multiple signals in barcoded reads. We show that NAIBR outperforms several existing methods for struc-

tural variant identification – including two recent methods that also analyze linked-reads – on simulated sequencing

data and 10X whole-genome sequencing data from the NA12878 human genome and the HCC1954 breast cancer cell

line. Several of the novel somatic structural variants identified in HCC1954 overlap known cancer genes.

1 Introduction

Recent whole genome sequencing (WGS) analysis of human genomes has shown that structural variation, including

insertions, deletions, duplications, and rearrangements of genomic segments greater than 50bp, are a key component

of human variation (Sudmant et al., 2015). Collectively, structural variants affect a larger portion of the human

genome than single nucleotide variants (Pang et al., 2010). Inherited germline structural variants have been implicated

in several diseases including Crohn’s disease, rheumatoid arthritis, Type I diabetes, and autism (Mccarroll et al., 2009;

Weisenfeld et al., 2016; Sebat et al., 2007). In addition, somatic structural variants are common in cancer genomes

(Chittenden et al., 2008; Rausch et al., 2013). These include deletions of tumor suppressor genes and amplifications of

oncogenes which can promote aggressive cell growth and drive the development of cancer. Cancer genomes can also
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Figure 1: (Left) Linked-read sequencing with the 10X Genomics Chromium platform begins by fragmenting the

individual genome into large DNA molecules, which are isolated into individuals beads that contain several large

molecules and sequencing reagents. Within the bead, molecules are sheared into smaller fragments (500 bp) and

labeled with a 16bp barcode indicating its bead of origin. Illumina paired-read sequencing of each fragment results in

barcoded paired-end reads. (Right) Alignment of read-pairs to a reference genome results in concordant reads (black)

and discordant reads (red). Discordant reads indicate candidate novel adjacencies that are a result of structural variants

that distinguish individual genomes from the reference genome.

undergo dramatic rearrangement events such as chromothripsis, the shattering and random repair of chromosomes in

a single catastrophic event (Stephens et al., 2011), or chromoplexy (Baca et al., 2013), both of which result in a large

number of complex structural variants in a cancer genome.

The identification of structural variants from high-throughput DNA sequencing data is generally more challenging

than the identification of single nucleotide variants. This difficulty is primarily a result of the the fact that many

structural variants are significantly longer than the DNA sequence reads produced by current (second generation)

DNA sequencing technologies, whose read lengths are ˜300-500 nucleotides. In addition, such reads are too short for

de novo genome assembly. Thus structural variants are inferred from atypical, or aberrant, alignments of reads to a

reference genome.

Numerous methods have been developed over the past several years to identify different types of structural variants

from read alignments. Each of these methods use some combination of three signals that can be extracted from read

alignments: discordant read-pairs, split-reads, and read depth (Figure S12a). A discordant read-pair is a pair of

reads from the same fragment/insert whose alignments to the reference genome have distance and/or orientation that

differ from expected if the entire fragment was contiguous on the reference genome. A split read is a read with no

contiguous alignment to the reference genome, but rather with at least two partial alignments to the reference. (In

practice, only a single partial, or clipped, alignment may be reported by the read alignment software.) Discordant

read pairs and split reads are signatures of a novel adjacency in the individual genome; that is, two intervals that

are non-adjacent in the reference genome are adjacent in an individual genome. Methods that rely on discordant

paired reads and/or split reads include BreakDancer (Chen et al., 2009), GASV (Sindi et al., 2009a), VariationHunter

(Hormozdiari et al., 2010), Pindel (Ye et al., 2009), DELLY (Rausch et al., 2012), and LUMPY (Layer et al., 2014);

many others are reviewed in Tattini et al. (2015). Read depth is the (normalized) number of reads that map to a

particular region of the genome. Read depth can be used to identify copy-number aberrations, such as deletions

and duplications, by identifying regions of unexpectedly low or high coverage in the genome. Examples of read

depth methods include BIC-Seq (Xi et al., 2010), and CNVnator (Abyzov et al., 2011). In addition, methods such as

GASVPro (Sindi et al., 2012) and SV-Bay (Iakovishina et al., 2016) combine signals from discordant read-pairs and
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read depth signals to identify structural variants. Local assembly approaches such as SvABA (Wala et al., 2017), and

novoBreak (Chong et al., 2017) achieve nucleotide level resolution of novel adjacencies. However, local assembly

approaches require the identification of candidate regions for assembly using the signals described above; thus, local

assembly generally increases specificity more than sensitivity. In addition, assembly-based approaches requires high

coverage and is typically more time consuming than read-pair or read depth based methods (Alkan et al., 2011).

The fundamental limitations in structural variant detection and whole-genome assembly are the fact that the hu-

man genome is diploid and highly repetitive (Mak et al., 2016). Short reads have low signal to assign variants to

haplotypes and to identify structural variants whose breakpoints lie in repetitive sequences. While algorithms can

help extract information from this low signal, longer reads provide stronger signal. New 3rd-generation sequencing

technologies developed by Pacific Biosciences and Oxford Nanopore produce much longer reads (exceeding 10Kbp).

However, these technologies are practically limited by their high per-base error rate and high cost compared to Illu-

mina short-read sequencing. Additionally, structural variants that are larger than the average read size or that fall in

repetitive regions still remain difficult to identify using these technologies (Weischenfeldt et al., 2013). An alternative

sequencing technology called linked-read sequencing was recently developed by 10X Genomics, and commercialized

in their Chromium platform. In this technology, long DNA molecules, 50 − 100Kbp in size are partitioned into one

of several million droplets using microfluidics. Each droplet contains a small number (˜10) of molecules (Weisenfeld

et al., 2016). The molecules in each droplet are sheared into smaller fragments and labeled with a 16bp molecular

barcode that is unique to each droplet. The fragments are then amplified and sequenced using Illumina paired-end

sequencing protocol (Figure 1). 10X Genomics’ linked-read technology thus provides both the low error rate and low

cost of Illumina sequencing as well as long-range sequencing information provided by 3rd-generation sequencing

technologies (Figure S12b). The technology is similar in some respects to the strobe sequencing technology that was

prototyped by Pacific BioSciences but never commercially released (Ritz et al., 2010, 2014).

Here, we introduce Novel Adjacency Identification with Barcoded Reads (NAIBR, pronounced ”neighbor”), a

method that identifies novel adjacencies resulting from structural variants in an individual genome from linked-read

sequencing data. NAIBR combines a novel split-read type signal from linked-reads with traditional signals of struc-

tural variants in the underlying paired-reads in the data. We demonstrate that NAIBR outperforms existing structural

variant detection algorithms – both paired-read methods and two recently developed methods (Zheng et al., 2016;

Spies et al., 2016) for linked-reads – using simulated and real linked-read sequencing data. NAIBR also leverages

haplotype phasing information from linked-reads, improving the detection of heterozygous structural variants.

2 Methods

Consider two genomes, a reference genome and an individual genome, each represented by an interval, G = [1, n]

and G′ = [1, n′] respectively. We let [i−, i+] denote an interval in the genome, where i− and i+ indicate the start

and end of the interval respectively. We consider a structural variant to be any difference between an individual

genome and a reference genome due to DNA breakage and repair, that results in the joining of two non-adjacent

intervals [i+, i−] and [j+, j−] in the reference genome. The ends of these intervals may be joined in one of four

orientations, and we indicate the four possible novel adjacencies in the individual genome by the pairs of joined

ends: (i+, j−),(i+, j+),(i−, j−), or (i−, j+). Note that novel adjacencies are formed by most of the usual structural
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variants (segmental deletions/insertions, inversions, and translocations), with the notable exception of the deletion of

a chromosome to the telomere.

NAIBR aims to identify such novel adjacencies using linked-read sequencing data. Our algorithm differs from

previously published methods in that it incorporates signals from both paired-end reads and linked-reads into a unified

model. Before defining the model, we will describe the signals we observe in paired-end and linked-read data and

how these signals are combined to identify novel adjacencies arising from structural variants in an individual genome.

2.1 Paired-end sequencing data

In Illumina paired-end sequencing, chromosomes are sheared into small fragments and size selected such that most

fragment lengths are within the interval [lmin, lmax]. Each fragment is sequenced from both ends from opposite DNA

strands; thus one read will originate from the forward (+) strand and one from the reverse (-) strand. Paired reads are

aligned to the reference genome. Each aligned read, x, is represented by a tuple x = (lx, rx, ox, qx), where lx is

the leftmost position of x in the reference genome, rx is the rightmost position in the reference genome, ox ∈ {+,-}

is the orientation of x, and qx is the mapping probability of x. We define a read-pair to be the ordered pair 〈x, y〉,

where read x has the smaller starting coordinate. A read-pair 〈x, y〉 is concordant provided the distance between

aligned reads f = ry − lx isbetween lmin and lmax and the orientations are ox = +, oy = −. Concordant reads

are consistent with the fragment aligning contiguously to the reference genome with no rearrangement. A read pair

〈x, y〉 not satisfying this condition is discordant. Discordant read-pairs arise from either (1) errors in sequencing

and/or alignment or (2) novel adjacencies in an individual genome with respect to the reference.

2.2 Linked-read sequencing data

The linked-read sequencing technology developed 10X Genomics adds a layer of structure to Illumina paired-end

sequencing by tagging each DNA fragment with a barcode prior to sequencing (Figure 1). Barcoded read-pairs are

aligned to the reference using a linked-read aware aligner called Lariat (Bishara et al., 2015). Lariat processes all

read-pairs from a single barcode simultaneously, using the knowledge that reads originate from a small number of

long molecules. Using this prior knowledge, it finds more unique mappings than other tools and can map to highly

repetitive regions.

Read-pairs p = 〈x, y〉 originating from the same long molecule will each be tagged with the same barcode

bp ∈ N. Because molecules are partitioned into droplets uniformly at random, the likelihood of assigning the same

barcode to two molecules from nearby locations on the reference genome is low. Thus, we assume that read-pairs

with the same barcode that map near each other on an individual genome are likely to have originated from the same

long molecule. We partition such read-pairs into sets called linked-reads.

A linked-read is a set of concordant read-pairs that share the same barcode and have a maximum distance of δ

from another read-pair in the linked-read. Each linked-read is assumed to have originated from a contiguous strand of

DNA in the reference genome. The set of all concordant read-pairs in the genome is partitioned into linked-reads such

that any two read-pairs p = 〈x, y〉 and p′ = 〈x′, y′〉, where lx < l′x, are both partitioned into the same linked-read if

bp = bp′ , and lx′ − ry ≤ δ (see Figure 2a).

Any pair of linked-reads sharing a barcode may have originated from a molecule that is split with respect to the

reference genome due to the presence of a novel adjacency in an individual genome. We define a candidate split
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Figure 2: (a) A linked-read is defined by read-pairs separated by a distance ≤ δ on the reference genome. (b) Linked-

reads Li and Lj may have originated from one of 4 candidate split molecules, each supporting a novel adjacency with a

different orientation. M = (L+
i , D, L

−
j ) supports a novel adjacency (i+, j−) and indicates that the end of linked-read

Li is adjacent to the start of linked-read Lj (the arrows points to the location of the novel adjacency).

molecule as a tuple M = (L1, D, L2), where L1 and L2 are linked-reads and D is a set of discordant read pairs,

satisfying the following conditions: (1) All read pairs in L1, L2, and D share the same barcode. (2) All discordant

read pairs in D have the same orientations, and the distance between any two discordant read-pairs in D is at most

lmax. Formally, for read pairs p = 〈x, y〉, p′ = 〈x′, y′〉 ∈ D, |x − x′| < lmax and |y − y′| < lmax. (3) The linked

reads are located within δ of the discordant read-pairs in D, in the direction consistent with the orientation of D. To

indicate the last condition, we assign an orientation to each linked read in M . For example, M = (L+
1 , D, L

−
2 ) is

a candidate split molecule provided: the rightmost position, rL1 = max{ry | 〈x, y〉 ∈ L+
1 }, of L1 is within δ of

discordant read-pairs in D and the leftmost position, lL2 = min{lx | 〈x, y〉 ∈ L−2 }, of L2 is within δ of discordant

read-pairs in D. See Figure 2). Note that we also define a candidate split molecule in the case where D is the empty

set. In this case, a candidate split molecule can be formed for any of the four possible orientations of linked-reads L1

and L2: (L+
1 , ∅, L

−
2 ), (L+

1 , ∅, L
+
2 ), (L−1 , ∅, L

−
2 ), (L−1 , ∅, L

+
2 ).

We say that a candidate split molecule M supports a novel adjacency provided that the distances and orienta-

tions of the linked and discordant reads in M are consistent with the novel adjacency. For example, candidate split

molecule M = (L+
1 , D, L

−
2 ) supports the novel adjacency (i+, j−) provided: (1) The orientation of the candidate

split molecule matches the orientation of the novel adjacency. (2) Each read-pair p = 〈x, y〉 ∈ D, is at most lmax

from breakends i and j: i− lmax ≤ rx ≤ i and j ≤ ly ≤ j+ lmax. (3) Oriented linked-reads L+
i and L−j are at most

a distance δ from positions i and j respectively: i− δ ≤ rL1 ≤ i and j ≤ lL2 ≤ j + δ.
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Figure 3: (a) A candidate split molecule for novel adjacency (i+, j−) consists of a linked-read L+
i a linked-read L−

j ,

within a distance δ of position j and a set of discordant reads D. Barcoded reads aligned to the reference genome

may originate from an individual genome that either contains a novel adjacency (Ai+,j− ) or does not contain a novel

adjacency (Āi+,j− ). (b) Under the alternative hypothesis Ai+,j− that i+ and j− are adjacent in an individual genome,

reads in barcode 3 are close and are likely to have originated from a single molecule. (c) Under the null hypothesis

Āi+,j− that i and j are non-adjacent in an individual genome, reads in barcode 3 are separated by a large distance

and are likely to have originated from two molecules. Barcode 2 contains a read that is discordant under Āi+,j− and

therefore assumed to be mismapped.

According to the definitions above, for a given barcode and novel adjacency (i+, j−), there is at most one can-

didate split molecule that supports this novel adjacency. We define the set M to be the set of all candidate split

molecules supporting a novel adjacency (i+, j−). For ease of exposition, we will describe the model below for

a novel adjacency of the form (i+, j−), but the model may be applied to novel adjacencies with any of the four

orientations.

2.3 Likelihood ratio score

We use a likelihood ratio score to evaluate the evidence support a novel adjacency. Given a potential novel adjacency

(i+, j−), let Ai+,j− be the event of a novel adjacency (i+, j−) in an individual genome and let event Āi+,j− to be

the absence of this novel adjacency. Let M be the set of all candidate split molecules supporting novel adjacency

(i+, j−). We compare the likelihood P (M | Ai+,j−) ofAi+,j− and the likelihood P (M | Āi+,j− of Āi+,j− given

the set of observed candidate split molecules (Figure 3) using the log-likelihood ratio

Λi+,j− = log
P (M | Ai+,j−)

P (M | Āi+,j−)
. (1)

We report novel adjacencies with log-likelihood ratio, Λi+,j− > c (selection of c is described in the Supplement) as

the set of predicted novel adjacencies in the individual genome.

We now describe how we compute each of the terms in the log-likelihood ratio. First, we assume that the locations

of molecules with different barcodes are independent. Combining this assumption with the requirement that candidate
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split molecules with different barcodes must originate from different molecules, we have that P (M | Ai+,j−) and

P (M | Ai+,j−) are each the product of the individual probabilities of observing each candidate split molecule

M = (L+
i , D, L

−
j ) ∈ M . Next, a candidate split molecule M may have either originated from a single molecule

that spans the interval [i+, j−] or from two molecules, each of which does not span the interval [i+, j−]. Let EM

be the event that candidate split molecule M originates from a single molecule and let E
L+

i
and E

L−j
be the events

that linked-reads L+
i and L−j originate from unique molecules. Thus, the probability of observing candidate split

molecule M is the probability of two disjoint events: that M originates from one molecule (EM ), or that L+
i and L−j

originate from two different molecules (E
L+

i
∩E

L−j
). Thus, the log-likelihood ratio Λi+,j− is calculated as follows,

Λi+,j− =

∏
M∈M

[
P (EM | Ai+,j−) + P (E

L+
i
∩ E

L−j
| Ai+,j−)

]
∏

M∈M

[
P (EM | Āi+,j−) + P (E

L+
i
∩ E

L−j
| Āi+,j−)

] .
We now describe how we calculate the probabilities of EM and E

L+
i
∩ E

L−j
given the the events Ai+,j−

and Āi+,j− . Given a candidate split molecule M = (L+
i , D, L

−
j ) supporting a novel adjacency (i+, j−),

P (EM | Ai+,j−) is the probability that M was sequenced from a single molecule when i+ and j− are adjacent

in the individual genome; correspondingly, P (EM | Āi+,j−) is the probability that M was sequenced from a single

molecule when i+ and j− are not adjacent in the individual genome. We model the sequencing of a molecule as the

generation of mapped reads through three sequential processes: (1) molecule size selection, (2) molecule sequencing,

and (3) read mapping. We assume that the fragmentation of chromosomes into long molecules and the sequencing of

reads from a molecule are independent processes. This assumption of independence is reasonable because sequencing

occurs after molecules are sheared into short fragments.

Thus, we model the probability P (EM | Ai+,j−) as,

P (EM | Ai+,j−) = P (S(M) = s) · P (R(M) = ρ) · P (QM ),

where S(M) = the size of molecule M,

R(M) = the sequencing rate of molecule M, and

QM = the event that all reads in M are correctly mapped,

and the probability P (EM | Āi+,j−) as,

P (EM | Āi+,j−) = P (S(M) = s̄) · P (R(M) = ρ̄) · P (QM\D)

where QM\D = the event that reads in M \D are correctly

mapped and reads in D are mismapped.

We model the size S(M) of a molecule M by a negative binomial distribution, P (S(M) = ·) = NB(·), with

parameters estimated from the collection of all aligned linked reads. We assume that the vast majority of linked-reads

in the data originate from molecules that are contiguous with respect to the reference genome. Formally, the size of

a linked-read L is rL − lL, where rL = max{ry | 〈x, y〉 ∈ L} and lL = min{lx | 〈x, y〉 ∈ L} are the rightmost

and leftmost positions, respectively, of paired reads in L. This approximation tends to slightly underestimate the true

length of a molecule due to missing reads at the ends of the molecule. Under Ai+,j− , the size of candidate split

molecule M is approximately s = (i − lLi) + (rLj − j), the sum of the portions of the molecule aligning to the

left and right of the novel adjacency. Similarly, under Āi+,j− , the size of M is approximated by s̄ = rLj − lLi , the
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distance between the leftmost position in Li and the rightmost position in Lj . For the case where i+ and j− are on

different chromosomes, P (S(M) = s̄) = 0.

We model the sequencing rate R(M) of a molecule M by a Gamma distribution, P (R(M) = ·) = Γ(·). The

negative binomial and Gamma distributions provide a good fit to the empirical distributions of molecule size and

sequencing rate respectively (Figure S2), but other distributions can be used (Table S1). The sequencing rate of a

candidate split moleculeM underAi+,j− is approximated by ρ =
|L+

i ∪D∪L
−
j |

s
, the number of reads sequenced from

M normalized by the size s ofM . The sequencing rate ofM under Āi+,j− is approximated by ρ̄ =
|L+

i ∪L
−
j |

s̄
. Under

Āi+,j− , we exclude D from the set of reads sequenced from M because these reads are assumed to be mismapped.

We now define the probabilities P (QM ) and P (QM\D) of mapping reads to the reference genome. Under

Ai+,j− , all reads in M are correctly mapped, an event with probability

P (QM ) ≈
∏

〈x,y〉∈L+
i ∪D∪L

−
j

(qx + qy
2

)
,

where qx and qy are the mapping probabilities of reads x and y obtained from the alignment software. We chose to

approximate the mapping probability of the read-pair p = 〈x, y〉 to be the average of the mapping probabilities of

each read, which we found to perform well on data. Under Āi+,j− , concordant reads in L+
i and L−j are correctly

mapped and discordant reads in D are mismapped, an event with probability,

P (QM\D) ≈
∏

〈x,y〉∈D

(
1− qx + qy

2

)
·

∏
〈x,y〉∈L+

i ∪D∪L
−
j

(qx + qy
2

)
.

We calculate the probability P (E
L+

i
∩ E

L−j
) | Ai+,j−) that L+

i and L−j were sequenced from two different

molecules as the product of the probabilities that L+
i and L−j were sequenced from independent molecules with

corresponding sizes si, sj and sequencing rates pi, pj , and that the reads from the two molecules were then properly

mapped to the reference genome, the latter event denoted by event QM . Formally,

P (E
L+

i
∩ E

L−j
) |Ai+,j−) =

P (S(Li) = si) · P (R(Li) = ρi)·

P (S(Lj) = sj) · P (R(Lj) = ρj) · P (QM ),

where sk = rLk − lLk and ρk = |Lk|
sk

.

Under Āi+,j− , the probabilities of molecule size selection and sequencing remain the same. However any dis-

cordant reads in D will be mismapped under Āi+,j− , resulting in the last term being the probability P (QM\D).

2.4 Incorporating haplotype phase

10X Genomics provides phasing as part of its alignment pipeline, using linked-reads to phase SNPs into large phase

blocks. Each position i in the reference genome is assigned a phase block mi and any SNP within phase block mi

will be assigned to either haplotype 1 or haplotype 2. Zheng et al. (2016) report that the current software can phase

> 95% of SNPs to a phase blocks of size > 0.5Mb, with an average error rate of 0.03%. Let mx ∈ N denote the

phase block of a read x, aligned to the reference genome, and let hx ∈ {1, 2} denote the haplotype of read x. We

define Mα,β ⊆ M be the subset of candidate split molecules M = (L+
i , D, L

−
j ) such that the haplotype hLi of

linked-read Li is α, the haplotype hLj of linked-read Lj is β, and for all read pairs 〈x, y〉 in D, hx = α and hy = β.
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On the linked-read datasets described in the Results below, we found that > 99% of linked-reads (δ = 10Kbp)

contain read-pairs that are assigned to a unique phase block and haplotype. We omit the small number of linked-reads

containing read-pairs from multiple haplotypes or phase blocks from further analysis.

We define a haplotype-specific log-likelihood ratio,

Λα,β
i+,j−

= log
P (Mα,β | Ai+,j−)

P (Mα,β | Āi+,j−)
. (2)

Each novel adjacency in a diploid genome is the result a heterozygous structural variant on haplotype 1, a het-

erozygous structural variant on haplotype 2, or a homozygous structural variant affecting both haplotypes. If positions

i and j are on the same phase block mi = mj , then the haplotypes of i and j must match. Thus, we calculate the

log-likelihood ratio Λhi+,j− to be the maximum of Λ1,1

i+,j−
, Λ2,2

i+,j−
, and Λi+,j− , corresponding to a novel adjacency

resulting from a heterozygous structural variant on haplotype 1, a heterozygous structural variant on haplotype 2, or

a homozygous structural variant,

Λhi+,j− = max(Λ1,1

i+,j−
,Λ2,2

i+,j−
,Λi+,j−). (3)

However, if positions i and j are not on the same phase block, mi 6= mj , then the haplotypes of i and j may not

match. For example, SNPs assigned to haplotype 1 of phase block mi may originate from the same chromosome as

SNPs assigned haplotype 2 of phase block mj . In this case, we calculate the log-likelihood ratio Λhi+,j− as,

Λhi+,j− = max(Λ1,1

i+,j−
,Λ2,2

i+,j−
,Λ1,2

i+,j−
,Λ2,1

i+,j−
Λi+,j−), (4)

which accounts for the ambiguity in haplotype assignment. NAIBR reports both the phased log-likelihood ratio

Λhi+,j− as well as the inferred haplotype for each novel adjacency.

3 Results

We assess NAIBR’s ability to detect novel adjacencies in simulated and real 10X long-read sequencing data and

benchmark against 5 other methods: Long Ranger (Zheng et al., 2016), GROC-SVs (Spies et al., 2016), GASV

(Sindi et al., 2009b), GASVPro (Sindi et al., 2012), and LUMPY (Layer et al., 2014). We chose these methods for

comparison because they utilize different combinations of signals to identify and rank novel adjacencies. Long Ranger

is 10X Genomics’ structural variant detection program. Long Ranger identifies novel adjacencies by computing

overlapping pairs of linked-reads and computes a likelihood score based on the number of overlaps observed in

the data. GROC-SVs is also designed for linked-read sequencing data. GROC-SVs identifies structural variants by

performing local assembly on barcoded reads. GROC-SVs operates in two steps. First it assigns p-value to novel

adjacencies, and then it performs local assembly, labelling novel adjacencies as assembled or unassembled. In some

cases, unassembled variants have smaller p-values than assembled variants. GASV, GASVPro, and LUMPY analyze

paired-end sequencing data. When running these algorithms on 10X Genomics data we ignore barcodes and treat the

data as Illumina paired-end sequencing data. GASV uses only discordant read-pairs and ranks novel adjacencies by

the number of supporting discordant read-pairs. GASVPro uses a combination of discordant read-pairs and breakend

read depth to assign a log-likelihood score to each predicted novel adjacency. LUMPY uses discordant and split reads

to call novel adjacencies and reports a p-value for each adjacency.
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We benchmark NAIBR against each method on both simulated and real data. Reported novel adjacencies are

ranked from highest to lowest confidence according to the metrics used by each method. We run each method using

its default parameters. More specifics can be found in the Supplement.

We simulate several types of structural variants – including duplications, deletions, translocations, and inversions

– on chromosomes 17 and 18 of the human reference genome hg19. To assess NAIBR’s ability to detect novel adja-

cencies that occur on a single haplotype, we simulate two test genomes, one that contains 400 homozygous structural

variants and one that contains 400 different structural variants on each haplotype. Translocations and inversions create

more than 1 novel adjacency in the simulated genome, resulting in 508 homozygous novel adjacencies in the first sim-

ulated genome and 1027 heterozygous novel adjacencies in the second simulated genome. We simulate linked-read

sequencing to 30X coverage. Details on simulation can be found in the Supplement. Figure 4a shows the precision-

recall curve for all 5 methods run on the 30X test dataset containing 508 homozygous novel adjacencies. NAIBR

has the highest recall of all methods, correctly identifying 479/508 homozygous novel adjacencies. GASV correctly

identified 309/508 variants, however GASV reported several thousand variants, resulting in very low precision at

high values of recall. LUMPY performed similarly to GASV, correctly identifying 308/508 true variants, however

the algorithm only reports variants with high probability scores according to their scoring metric, resulting in lower

recall. GASVPro identified as many true variants as NAIBR at 50% recall, but only reported 289/508 true variants

in total, compared to 479 reported by NAIBR.

Long Ranger and GROC-SVs are each designed to utilize linked-reads, however both methods are limited to

the identification of certain types of variants. Long Ranger reports variants larger than 30Kbp and GROC-SVs only

reports variants larger than 10Kbp. The simulated dataset contains 369 novel adjacencies larger than 10Kbp and 269

structural variants larger than 30Kbp. Both Long Ranger and GROC-SVs perform with lower precision than NAIBR.

For GROC-SVs, 38/39 of assembled novel adjacencies were present in the truth set, showing that the local assembly

approach has high precision. However an additional 59 true novel adjacencies were predicted by GROC-SVs but

failed to assemble, indicating that local assembly removes many true positives. We perform the same comparison on

a simulated dataset containing 800 heterozygous novel adjacencies with similar results. We also compare the runtime

and memory usage of NAIBR to other methods and find that NAIBR outperforms other linked-read methods (see

Supplement). These results demonstrate that NAIBR’s incorporation of both linked-read and paired-end read data

improves performance over other methods without significant additional time or memory requirements.

3.1 Benchmarking on NA12878

To assess NAIBR’s ability to detect known variants from a real dataset, we obtained whole-genome sequencing data

of individual NA12878 of the 1000 Genomes Project from 10X genomics (https://support.10xgenomics.com/genome-

exome/datasets/

NA12878 WGS 210). The data was sequenced on the Chromium platform to 35X sequencing coverage with the

Illumina Hiseq2500 to produce 845 million 98bp reads with mean insert size of 340bp and a mean molecule size of

68Kbp. We used the 2,950 validated novel adjacencies in NA12878 reported in Layer et al. (2014) as the truth set.

Novel adjacencies in this dataset were validated by split-read mapping analysis of independent long-read sequencing

data from PacBio or Illumina Moleculo platforms.

Figure 4b shows the precision-recall curves each method against 121 validated structural variants larger than
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Figure 4: a) Precision-recall curve for NAIBR, Long Ranger, GROC-SVs, GASV, GASVPro, and LUMPY on 30X

simulated data from chromosomes 17 and 18, containing 400 homozygous structural variants. b) Precision-recall

curve for NAIBR, GASV, GASVPro, LUMPY, GROC-SVs, and Long Ranger evaluated against the set of 123 vali-

dated structural variants > 7Kbp from NA12878 (Layer et al., 2014). c) Precision-recall curve for NAIBR, GASV,

GASVPro, LUMPY, GROC-SVs, and Long Ranger evaluated against the set of validated structural variants ≥ 30Kbp

from breast cancer cell line HCC1954 (Bignell et al., 2007; Stephens et al., 2009; Galante et al., 2011).

7Kbp. NAIBR correctly predicted 73/121 novel adjacencies > 7Kbp. GASV also correctly predicted 73 novel

adjacencies but displayed poor precision. GROC-SVs reported variants that it was able to assemble using its local

assembly pipeline as well as variants that were not assembled. The local assembly step of GROC-SVs drastically

reduces the number of reported false positives but also fails to assemble several predictions matching the truth set.

Long Ranger reported 17 novel adjacencies, correctly identifying 12/32 variants larger than 30Kbp from the truth

set, compared to 17/32 variants larger than 30Kbp detected by NAIBR. Figure S9 shows the precision-recall curves

for each of the 5 methods on different structural variant sizes, ranging from 50bp-30Kbp. NAIBR outperforms

other linked-read methods at detecting variants between 50bp and 10Kbp and outperforms paired-end methods at

detecting variants larger than 5Kbp. NAIBR outperforms both linked-read and paired-end methods at detecting

variants between 1Kbp and 10Kbp. In summary, NAIBR detects large structural variants (> 1Kbp) with better

precision than paired-end callers GASV, GASVPro, and LUMPY and has higher recall and precision for variants

smaller than 10Kbp compared to linked-read callers Long Ranger and GROC-SVs.

3.2 Tumor cell line HCC1954

We test NAIBR’s ability to detect somatic structural variants in tumor cell line HCC1954T. The cell line was derived

from a grade 3 invasive ductal carcinoma and sequenced by 10X Genomics to 35X coverage with a mean molecule

size of 85Kbp. The matched normal HCC1954N was sequenced by 10X Genomics to 35X coverage with a mean

molecule size of 88Kbp. We identify novel adjacencies in both HCC1954T and HCC1954N using 4 different methods:

NAIBR, Long Ranger, GASV, and LUMPY. We formed a set of 369 true novel adjacencies by combining PCR-

validated novel adjacencies from three previous studies: Bignell et al. (2007), Stephens et al. (2009), and Galante

et al. (2011).

NAIBR identifies 142 PCR-validated novel adjacencies, significantly more than Long Ranger (100), GASV (117),
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and LUMPY (55) (Figure S6). NAIBR also demonstrates better precision at all levels of recall than other methods

(Figure 4c). Notably, GASV has significantly lower precision than Long Ranger and NAIBR, predicting over ten

times as many novel adjacencies with lower recall than the other methods (Figure S6). NAIBR significantly outper-

forms Long Ranger at identifying duplications and interchromosomal events (Figure S5), identifying 72 duplications

compared to 50 identified by Long Ranger and 53 interchromosomal events compared to 37 predicted by Long

Ranger. Over 30% of the breakends predicted by NAIBR lie within 50bp of the breakends of the PCR-validated

novel adjacencies, compared to approximately 10% of breakends predicted by Long Ranger and GASV (Figure S7).

Several of the novel adjacencies in HCC1954T that were not identified by Long Ranger and GASV affect known

oncogenes and tumor suppressors. For example, a novel adjacency between Chr11:93153935 and Chr11:93160223

occurs within the gene CCDC67, potentially leading to loss of function of the gene. CCDC67 has recently been iden-

tified as a tumor suppressor gene (Yin et al., 2016; Zhu et al., 2014). A novel adjacency between Chr14:89829140

and Chr7:155683934 affects the forkhead transcription factor checkpoint suppressor, CHES1. CHES1 expression has

been shown to be reduced across many cancer types (Huot et al., 2014). A novel adjacency between Chr11:69059340

and Chr11:69089741, surrounding the MYEOV gene (Chr:69061613-69064754), is potentially a result of a dupli-

cation of MYEOV. MYEOV has been shown to be amplified in breast cancer patients and has been identified as a

candidate oncogene (Janssen et al., 2002).

4 Discussion

We present NAIBR, a probabilistic algorithm for the identification of novel adjacencies using linked-read sequencing

data. Linked-read sequencing combines low per-base error rate of short-read sequencing technologies with long-

range linking information of long-read technologies. Linked-read sequencing offers drastically improved mapping

and phasing results compared to paired-end sequencing (Bishara et al., 2015) with similar cost, making it an attractive

option for researchers. NAIBR is one of the first algorithms that identifies structural variation by using signals

unique to linked-read sequencing data. NAIBR uses discordant read-pairs obtained from paired-end reads combined

with candidate split molecule obtained from linked-reads to identify and rank novel adjacencies. NAIBR detects

novel adjacencies with higher accuracy and precision than existing methods on both simulated and real linked-read

sequencing data.

We also demonstrate NAIBR’s ability to predict somatic novel adjacencies from cancer data by applying it to cell

line HCC1954. Several novel adjacencies detected by NAIBR were not identified by other methods, including novel

adjacencies affecting tumor suppressor genes CCDC67 and CHES1 and candidate oncogene MYEOV. While some

of the novel adjacencies predicted by NAIBR might be verified PCR, it is possible that long-read sequencing data

(e.g.from PacBio or Oxford Nanopore) would be required, since these adjacencies were not readily apparent from

short-read sequencing data.

As future work, we plan to incorporat.epse additional signals, such as read depth and split-reads, into our proba-

bilistic model for identifying novel adjacencies. Our algorithm can also be extended by performing local assembly on

linked-reads supporting novel adjacencies to reconstruct structural variants, as is done by GROC-SVs (Spies et al.,

2016).

The utility of linked-reads in identifying novel adjacencies between nearby positions on the reference genome
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(such as a small deletion) is limited by the fact that each molecule is sequenced to low coverage, introducing large

gaps between read-pairs sequenced from the same molecule. Thus, with the current Chromium technology from 10X

Genomics, linked-reads provide substantial additional power to detect large structural variants but provide little addi-

tional power above that of paired-end sequencing in the detection of small structural variants. However, linked-read

sequencing is a very new technology and is likely to improve in the coming years. As molecules are sequenced to

higher coverage, NAIBR’s ability to detect novel adjacencies using candidate split molecules will improve signifi-

cantly, enabling the identification of novel adjacencies arising from smaller structural variants.
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