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Abstract

Network oscillations across and within brain areas are critical for learning and performance
in memory tasks. While a large amount of work has focused on the generation of neural
oscillations, their effects on neuronal populations’ spiking activity and information encoding is
less known. Here, we use computational modeling and in vivo recording to demonstrate that
a shift in sub-threshold resonance can interact with oscillating input to ensure that networks
of neurons properly encode new information represented in external inputs to the weights
of recurrent synaptic connections. Using a neuronal network model, we find that due to an
input-current dependent shift in their resonance response, individual neurons in a network
will arrange their phases of firing to represent varying strengths of their respective inputs.
As networks encode information, neurons fire more synchronously, and this effect limits the
extent to which further "learning" (in the form of changes in synaptic strength) can occur.
We also demonstrate that sequential patterns of neuronal firing can be accurately stored in
the network; these sequences are later reproduced without external input (in the context of
sub-threshold oscillations) in both the forward and reverse directions (as has been observed
following learning in vivo). To test whether a similar mechanism could act in vivo, we show
that periodic stimulation of hippocampal neurons coordinates network activity and functional
connectivity in a frequency-dependent manner. We conclude that sub-threshold resonance
provides a plausible network-level mechanism to accurately encode and retrieve information
without over-strengthening connections between neurons.
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I. Introduction

Oscillations in local field potential (LFP) largely reflect coherent post-synaptic potentials among
neurons [1]. These oscillations, or rhythms, are behaviorally relevant, and their features are highly
predictive of cognitive processes in underlying neural networks [2, 1, 3, 4]. However, it is unknown
whether rhythms are byproducts or critical components of neural computation.

Neurons display complex behavior in response to oscillatory input. Many neuronal subtypes
display sub-threshold membrane resonance - which manifests as enhanced membrane voltage
responses to periodic inputs in narrow frequency bands [5, 6, 7]. Critically, the preferred frequen-
cies of neurons have been observed shift in response to depolarizing and hyperpolarizing inputs
[8, 9, 10]. This suggests that in addition to simply integrating inputs to fire a spike, neurons are
biophysically suited to perform time-dependent computations and selectively filter inputs based
on their periodicity.

The theta (4-10 Hz) rhythm is one of the major oscillations present in mammalian brain
networks [3]. Within the hippocampus, the theta rhythm plays a central role in the function of
place cells, which encode spatial and contextual information [11, 12]. Place cells show several
interesting firing features with respect to the theta rhythm. First, these cells have a changing firing
phase relationship relative to hippocampal theta (theta phrase precession) that changes with the
location of an animal in their environment [13, 14, 15]. Second, following sequential place cell
activation in the context of behavior (e.g., exploration), these same sequences of place cell firing are
replayed during theta oscillations, in either the forward or reverse direction [16, 17, 18, 19]. While
the idea that theta plays a role in the function of the hippocampal network is widely accepted, the
underlying mechanisms for phase precession and replay are still largely unknown.

Networks of neurons that display sub-threshold resonance shifts (i.e. the firing response
to oscillating input changes as a neuron is depolarized) show enhanced pattern formation and
separation when oscillating inputs are present [20, 21]. Here we show that resonating networks
have a firing pattern that is highly beneficial for both the encoding and retrieval of information
(i.e., a pattern of external inputs). Using conductance-based model neurons, which display
sub-threshold resonance, we show that networks will organize the firing of neurons around an
oscillation in a manner that represents an external input. When synapses are able to evolve via
a spike-timing dependent plasticity (STDP) rule, an input will be reliably encoded within the
synaptic weights of a network. This leads to the subsequent reproduction of the input-induced
firing pattern in the absence of the external pattern for both static and temporally dynamic
inputs. We also show that sub-threshold resonance provides a network-level mechanism both for
theta phase precession and for forward and reverse replay. Finally, we find that sub-threshold
periodic input induces stable, highly organized functional connectivity over the theta band, in both
simulated and in vivo networks. This work demonstrates that sub-threshold resonance organizes
neuronal firing phase with respect to network rhythms, and thereby facilitates the encoding and
retrieval of information.

II. Methods

All data and code generated for this manuscript will be accessible through XXXX data archival/
public database service.
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Neuronal network model

We use a network model that is composed of N = 300 (or N = 1000 for the data in figure 5)
excitatory neurons. Neuronal dynamics were of Hodgkin Huxley type and governed by the
current balance equation:

cm
dVi
dt

= −gNam∞(V)h(V)(V − ENa)− gKdirn(V)(V − EK)− gKss(V)(V − EK)− Isyni − Iexti (1)

The gating variables h, n, and s were of the form dx/dt = (x∞(V) − x)/τx(V). The slow
potassium conductance, whose maximum value is gKs, is largely responsible for the sub-threshold
resonance displayed by this neuron model and its value was set to 1.5 mS/cm2. Additional details
of the neuronal dynamics can be found in [22].

Synaptic input was modeled as a double exponential conductance pulse with the dynamics:

gsyn,i(t) =
N

∑
j

σi,j(exp(
−(t̂j − τD)

τS
)− exp(

−(t̂j − τD)

τF
)). (2)

The decay constants, τS and τF, were set to 250.0 and 0.3 ms respectively. The synaptic delay
constant, τD, was set to 0.08 ms and t̂j = t − tj where tj is the time of the last spike of the
presynaptic neuron j. Total synaptic current to a neuron was defined as Isyn,i = gsyn,i(Vi − Esyn)
where Esyn is 0 mV. Networks had a connectivity rate of 6%. The connectivity scheme was small
world and achieved through the Watts-Strogatz method with a rewiring probability of 0.2 [23].

Network activity was driven in two distinct ways by applying a pattern to Iext,i. For the data
in figure 5 a 4 Hz oscillating current with an amplitude of 334 nA/cm2 was applied on top of a
slowly varying activation current defined by the modified gaussian function:

Iact,g(t) =
2e
−(t−µg)2

2σ2

√
2πσ2(1 + e

−1.702λ(t−µg)
σ )

. (3)

where g is the group to which a neuron is assigned (one of five groups), µg is the time of maximum
activation of that group, σ = 4000 ms the width of the activation function, and λ = 8.0 is the
skewness parameter. This leads to an activation time course that slowly grows to 227 nA/cm2

then rapidly decays to zero (5A). In all other cases networks Iext,i takes to form of an oscillating
current on top of a constant DC current.

Stimulation and recording of hippocampal networks

All procedures were approved by the University of Michigan Institutional Animal Care and
Use Committee. Pvalb-IRES-CRE mice ((B6;129P2-Pvalbtm1(cre)Arbr/J; Jackson) were crossed to
B6;129S-Gt(ROSA)26Sortm32(CAG-OP4*H134R/EYFP)Hze/J mice (Jackson) to generate PV::ChR2
mice, which expressed channelrhodopsin (ChR2) in PV-expressing (PV+) interneurons. By rhyth-
mically activating these neurons in the hippocampus with 473 nm light, principle cells within
the network were received sub-threshold periodic inhibitory stimulation. For all recordings,
PV::ChR2 mice ages 2-5 months (n = 4)were anesthetized with isoflurane and chlorprothixene (1
mg/kg IP). Mice were head-fixed and a 1 mm x 1 mm matrix multielectrode (250 µm electrode
spacing; Frederick Haer Co. (FHC), Bowdoin, ME) was slowly advanced into CA1 until stable
recordings (with consistent spike waveforms continuously present for at least 30 - min before
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baseline recording) were obtained. An optical fiber was placed adjacent to the recording array
for delivery of 473 nm laser light (CrystaLaser). Power output at the fiber tip was estimated at 3
- 10 mW for all experiments. CA1 neurons were recorded over a 15 - min baseline period, after
which PV+ interneurons were stimulated over multiple successive 15 - min periods with a range
of frequencies (2 - 18 Hz, 40 ms pulses). The various stimulation frequencies were presented in a
random interleaved manner, during which neuronal activity continued to be recorded. Only those
neurons recorded throughout the entire experiment were included in analyses of optogenetically
induced spike-field coherence and network stability changes. For in vivo data, 80 and 68 neurons,
respectively, met inclusion criteria for coherence and stability analysis. This data set also appeared
in [24].

Functional network structure

Functional network structure was calculated for both simulated and recorded networks in a similar
manner. The first measure was spike wave coherence which was calculated as the range of the
spike-triggered average of the LFP over a window of ± 50 ms normalized by the peak amplitude
of the LFP. In simulated networks the LFP was the sum of all synaptic currents. This value ranges
between 0, when spikes occur randomly in the LFP oscillation, and 1, when spikes always occur at
the same time. In simulated networks the LFP was the sum of synaptic currents.

The second measure of functional network structure was the stability of functional connections
though time [25, 24]. The basis of functional connectivity was the average temporal proximity
of spikes between neurons and given by AMDij =

1
N ∑ ∆ti

kk for the i-th to j-th neurons. Here
∆ti

k is the time difference between the k-th spike fired by neuron j and the nearest spike fired by
neuron i. To determine whether neurons i and j are functional connected AMDij is compared
to the null value given the firing rate of neuron j and random firing of neuron i by the Z-score

FCij =
√

Ni
µj−AMDij

σj
. The null distribution of MD is dependent on the inter-spike intervals (ISIs)

of neuron j. For an ISI of length L, the first two moments of MD are µL =< MDL >= L/4
and < (MDL)2 >= L2/12. We will find an ISI of length L within a spike train of length
T with a probability of pL = L/T. Thus all the intervals in the spike train of neuron j the
expected value is µj =< MDj >= ∑L pLµL = 1

T ∑L
L2

4 . The expected standard deviation is

σ2
j =< (MDj)

2 > − < MDj >
2 where < (MDj)

2 >= 1
T ∑L

L3

12 . To measure the stability of inferred
functional connections spiking data were separated by into non-overlapping time windows for
which FCij values were aggregated into matrices FCt. Between adjacent time windows cosine

similarity, defined by Ct,t+1 = <FCt ,FCt+1>√
<FCt ,FCt>×<FCt+1,FCt+1>

, was used to quantify the change in

functional network structure as a value between 0 (randomized) and 1 (no change). The stability
of the functional network was quantified as the average similarity between adjacent time windows.
Time windows were 2s for simulated data and 1 minute for recorded data.

III. Results

We investigated the role that sub-threshold resonance plays in pattern and sequence learning using
networks of model neurons which receive three types of input (Figure 1A). First, each cell in the
network receives a unique level of external, direct current (DC) indicated by the color map. Second,
the entire network receives the same oscillating input of varying frequency and magnitude. Third,
individual neurons receive the summed synaptic activity defined by their presynaptic cells in the
network. The weights of synapses evolve via STDP during learning phases of simulations.
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Input dependent resonance shift allows for selective activation of subsets of
neurons

The neuronal model displays an input-dependent resonance shift (Figure 1B). A neuron will
respond to a wider range of oscillation frequencies if it receives a larger DC input. There are two
main regimes apparent in the resonance profile, a 1:1 regime where the neuron fires one spike per
cycle at low frequencies and a 1:2 regime where the neuron fires every other cycle at high input
frequencies. For an oscillation of 0 Hz (i.e. in the absence of any oscillation), an additional DC
current is added to the DC input so that neurons receive the same total input magnitude as when
an oscillation is present. This case does not lead to neuronal spiking.

The broadening of the resonance response occurs within networks as well (Figure 1C). To
show this we formed three clusters within a network with varying intra-cluster coupling (0.2, 1.0,
and 1.4 mS/cm2), while keeping inter-cluster coupling constant. This leads to groups with high
(green), moderate (light blue), and low (dark blue) synaptic input. The raster plots in Figure 1 D,E,
and F show network activity at 12, 14, and 16 Hz and demonstrate how increasing the frequency
of the oscillation provides for selective activation of clusters with stronger coupling.

Networks learn patterns of external input and reproduce the reverse

To investigate the basis of learning through synaptic plasticity in this model, we had networks
encode a pattern of external input (a pattern of DC inputs with varied magnitude across the
network) to connections (Figure 2). We monitored phase at which the cells fire relative to the
oscillations, as a function of their input magnitude. The simulations were split into five phases:
prior to input pattern (red in Figure 2B), input pattern (yellow), after learning has saturated
(green), and two replay periods (with and without prior patterned DC input). During the period
prior to the input pattern and the replay periods all neurons received the same moderate DC input
and STDP was disabled.

Replay period one shows the effect of learning the input pattern and replay period two shows
the effect of a second learning period where no input pattern is present.

The raster plots in Figure 2A show the evolution of firing phase across each period of the
simulation. The color indicates the magnitude of input current a cell receives and cells are sorted
by this value with highly activated neurons having a higher input rank. Before any input cells fire
randomly over a narrow band of phases (Figure 2A far left). The input pattern leads to organized
firing with highly activated cells firing at earlier phases (Figure 2A inner left). As the pattern
is learned, the overall phase shifts, but cells return to firing at a uniform phase, independent of
their DC input (Figure 2A center). When learning is suspended and the external input pattern
is removed the network show the reverse pattern of activation (Figure 2A inner right). After a
second period of learning (but with a uniform external input) the network returns to firing at
a uniform phase (Figure 2A far right). The above relationships are summarized in Figure 2B as
we plot relative phase of neuronal spiking as a function of their DC input magnitude. Red line
(Pre) depict firing phases before DC input is activated, thus all phases remain the same. After
the input is activated, but before learning, the firing cells shows strong dependence on the input
magnitude with their phase decreasing with increasing magnitude of input (input; yellow line) .
After learning spike timing dependent plasticity is turned on the neurons again equalize their
firing phases (post; green line). When the patterned input is removed (i.e. all neurons receive the
same DC magnitude), the neurons activate in reverse order (blue line; replay 1). Finally, when
the learning is again activated, but neurons do not received the patterned input, the phases of
the neuronal firing equalize again (violet line, replay 2). Figure 2C depicts the time-course of
the evolution of firing phase for 11 neurons having different DC input values. The bars above
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Figure 1: Input-dependent resonance shift allows for selectively activating subsets of neurons. (A) Model cells receive 3
types of input. External input is direct current (DC) which varies in magnitude with cell identity, represented
by the color mapped arrow. All cells receive an identical oscillating input, represented by the sine wave.
Additionally cells receive the synaptic inputs from neighboring cells according to network connectivity
and synaptic weights. (B) The input-dependent resonance shift manifests as a broadening of the resonance
curve with increasing excitation of the cells. (C) Broadening of the resonance curve also occurs for changes
in synaptic weights which provides for selective activation of sunsets of cells based on synaptic coupling.
Dashed lines show the frequencies corresponding to the raster plots in panels D,E,F, which show the divergent
activation for frequencies between 12 and 16 Hz. Error bars = ± s.e.m.
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indicate timeline when input and learning are present (dark gray -input but no learning; black
- learning and input, light gray - no input and no learning). The neurons initially show varied
phase response to DC input, which rapidly converges during learning. This convergence is due to
the universal learning rule which mimics spike timing dependent plasticity [26], namely that the
connection between two neurons is strengthen if the postsynaptic cells fires after the presynaptic
cell, and conversely it is weakened when the presynaptic cells fires after the postsynaptic cell.
Thus, the network-wide effect of this rule is that the connections from strongly (input) driven
neurons to weakly driven neurons will strengthen, these from weakly driven neurons to strongly
driven neurons will weaken. After input is deactivated, after learning, the neurons activate in
reverse order.

Pattern learning saturates naturally in resonating networks

Above results indicate that the phases on neuronal activations rapidly converge during learning
to minimize the phase difference between the cells. This behavior has two desired effects: 1)
the synaptic changes will saturate - the synaptic efficacies will stop changing when the phases
converge, and 2) the input differences between the cells are mapped onto their synaptic weights.
To show these effects we presented an input (DC) pattern to network for a long time-period and
tracked the time course of synaptic change. If the learning rate (the magnitude of synaptic change
corresponding to ∆t = 0) allows, both the maximum (Figure 3A) and mean (Figure 3B) synaptic
weight will saturate before the end of the simulation. Regardless of learning rate there is a large
increase in synaptic change followed by a gradual decline to no change in synapse strength (Figure
3C). The time of peak synaptic change is delayed for slower learning rates. Note that the input
pattern is the same for all conditions in Figure 3(A,B,C). Both the final mean synapse strength
(Figure 3D black) and time it takes to saturate (Figure 3D red) depend on the range of currents in
the external pattern. The time to saturation is the time it takes for the mean synaptic strength to
fall within 1% of its final value.

Saturation of learning occurs when the input pattern is fully mapped to the synaptic weights
in the network. This is quantified in Figure 4. The mapping of the input pattern is reversed in
the synaptic weights. Highly activated cells, which fire at an earlier phase, strengthen outward
connections (black trace) while weakening inputs (red trace). Cells given lower external inputs
do the opposite, strengthening inputs and weakening outputs. This leads to the external input
pattern and the synaptic input pattern being complimentary, leading to all cell receiving the same
net input.

Overall, cells with the lowest DC current within the input pattern strengthen inputs more than
the rest of the network while highly activated cells do the opposite. The new pattern of synaptic
connectivity is complementary to the input pattern, which leads to all neurons firing at the same
phase. Synchronous firing terminates learning because as spike-time differences between neurons
approaches zeros there is no net synaptic change (though simplified in our model as zero synaptic
change for ∆t < 1.5ms). When the external input is removed, the complementary synaptic input
distribution lead to a reversal in firing order from the input pattern.

Sub-threshold resonance facilitates sequence learning and replay

Next we investigated whether we can use sub-threshold resonance shifts to store sequential
neuronal activation to model the phenomenon of sequential replay following experience [11].
Sequences were generated by delivering a slowly varying current to sequentially activate subsets
of neurons (Figure 5A; solid lines), with each group resonating with the oscillating current in turn.
This current is to model preferential activation of subpopulations of place cells when traverses a
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Figure 2: Resonating networks learn by mapping input patterns to synaptic weights. (A) Raster plots show the
relationship between the phase of firing and the external input to the neuron. Black lines show the trace of
the oscillating input and the color of the rasters shows the DC input to the given cell. Cells are sorted by
their input rank. Sub-panels in A correspond to before DC input distribution is applied (Pre), with DC
input distribution (Input), after learning has saturated (Post), after learning/ no DC distribution (Replay
1), and after a second period of learning with no DC distribution (Replay 2). (B) The relationship between
firing phase and DC input varies between negatively, positively, and not correlated for different epochs of the
simulation. Data are averaged over 10 cycles of the oscillation. Error bars = ± s.e.m. (C) Transitioning from
the input-pattern depending firing phases to synchronous firing is gradual. Lines trace the firing phase of 12
neurons with varying input magnitudes across time. The horizontal bars above indicate when the external
input and learning are present (dark gray -input but no learning; black - learning and input, light gray - no
input and no learning).
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Figure 3: Learning saturates naturally after input pattern is completely mapped to synapses. Saturation of learning
reliably occurs given that the learning rate is high enough for the given time. Both maximum (A) and mean
(B) synaptic weight saturate. Line color indicates network learning rate. (C) The majority of synaptic change
occurs early during the learning period then gradually decreases to zeros. Inset shows the total length of the
simulation. (D) Final mean synapse strength and time until learning saturates depends on the spread of the
input distribution. Error bars = ± s.e.m.
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Input

Output

Figure 4: Input pattern maps to both synaptic inputs and outputs. After learning, input strength (black) is anti-
correlated with input magnitude of a neuron in the pattern and output strength (red) is correlated. Error
bars = ± s.e.m.

series of spatial locations. The asymmetry in its shape is to model the forward approach as the
animal sees oncoming location. At the same time it provides input relationships between the cells
to strengthen connections between the cells from prior location to the next consecutive location
on the maze. The activation sequences were presented to the network 10 times during which
synapses were allowed to evolve using the same learning rule as before. After this learning phase,
the sequence can be reproduced in both the forward (Figure 5F) and reverse directions (Figure
5D). Both types of replay occur under different dynamical conditions. Reverse replay occurs
when the whole network is depolarized to resonate with the oscillating input, but all neurons are
activated to the same extent (i.e., each neuron receives the same D.C. input). This is due to the fact
that more recently-activated neuronal groups receive overall larger input than groups activated
previously due to asymmetry in connections. This results in earlier phase activation when the
network resonates with the oscillatory current. In contrast, forward sequential replay occurs when
the network is driven by external noise. The neurons which fire early in the sequence subsequently
depolarize neurons at the adjacent location, making them more prone to fire. Summary data is
shown in Figure 5E for reverse replay firing phase among the 5 groups. During reverse replay
groups activated earlier in the sequence reliably fire at a later phase of the oscillation (Red trace).
Without any learning (when STDP is off), groups generally fire at the same phase of the oscillation
(black trace). During forward replay the feed-forwardness of the intergroup connections dominate.
The original firing order of the groups is reproduced and early groups fire before late groups
(Figure 5E; red trace).

Sequential learning leads to connections being strengthened in the same direction of the
sequence (feedforward) and weakens connections in the reverse (feedback). Mean synaptic
weights between groups show strengthened connections in the direction of the sequence and
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Figure 5: Sub-threshold resonance facilitates sequence learning. (A) Networks were trained to reproduce sequential
activation of subsets of neurons. Subsets were brought into resonance with an oscillating input by adding
a slowly varying current (solid lines). Spiking activity of each group is represented by the raster plots of
different colors. (B) Learning induces feedforward connectivity motif within synaptic weights. Mean synaptic
weights between groups show strengthened connections in the direction of the sequence and weakened
connections in reverse. (C) Feedforward motif emerges steadily over training runs. (D) After learning,
resonating networks display reverse reactivation of the sequence. The raster plot shows a single oscillation of
network activity with time represented as phase with respect to the oscillating input. (E) Reverse reactivation
is quantified for networks with (red) and without synaptic plasticity. (F) After learning non-resonating
networks display reactivation of the sequence in the same order as it was presented. The raster plot shows
a single oscillation of network activity with time represented as absolute simulation time. (G) The delay
between group firing is quantified in with and without synaptic plasticity. Error bars = ± s.e.m.

weakened connections in reverse (Figure 5B). This is quantified for the entire network by the
direction index which is (∑G−1

i=0 wi,i+1 − wi+1,i)/(∑G−1
i=0 wi,i+1 + wi+1,i), where wi,i+1 is the mean

synaptic weight of connections between groups (Figure 5C).

Functional network structure emerges in the theta band.

To validate our model, we next sought to compare the behavior of simulated networks with in
vivo networks. Information representation and subsequent encoding of information require stable
spike time relationships and since sub-threshold resonance leads to stable spike-time vs phase
relationships in our model we used functional connectivity as a proxy for sub-threshold resonant
behavior. In networks driven by oscillatory input (a 0.3 µA/cm2 amplitude sine wave with a 0.3
µA/cm2 DC offset) and background noise, oscillatory input leads to highly organized functional
network structure between 4 - 10 Hz (Figure 6). We quantified functional connectivity in three
ways: spike-LFP coherence, mean average minimum difference (AMD) z-score, and functional
network stability. Spike-LFP coherence, which represents the reliability of the time of spikes
within the LFP oscillation across the entire network, shows a noise dependent resonance effect
for stimulation between 3 and 13 Hz (Figure 6A). AMD z-score and functional network stability
are related measures that are based on the pairwise relationships between spike times of neurons
across the network. The average significance (z-score) of AMD measures between neurons shows
a narrow resonance effect between 4 and 10 Hz with a peak effect at 6 Hz which depends on the
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level of background noise (Figure 6B). Functional network stability, which is how similar AMD
z-scores are across time and captures the stability spike-time relationships, displays a similarly
narrow resonance effect between 4 - 10 Hz, but maintains a near maximal value throughout this
band (Figure 6C). To validate the effects of sub-threshold stimulation on neuronal networks we
optogenetically stimulated in vivo hippocampal networks. Rhythmic stimulation of parvalbumin-
expressing (PV+) interneurons in PV::ChR2 transgenic mice was used to ensure that principle
cells within the network were received sub-threshold periodic inhibitory stimulation. Rhythmic
optogenetic stimulation of PV+ interneurons leads to significant increases in both spike-LFP
coherence and functional network stability for frequencies between 4-10 Hz among the principle
cells within the network (Figure 6D).

IV. Discussion

We demonstrated in a biophysical model that shifting sub- threshold resonance facilitates learning
of static and sequential patterns in neural networks. Our model combines sub- threshold activation
of neurons by stable and oscillating cur- rents which leads to firing in a narrow frequency band.
The firing rate resonance of our model neurons displays an input dependent broadening which
allows for selective activation of subsets of neurons within a network. The resonance effect also
leads to detailed mapping of a firing phase versus input relationship beneficial for the encoding of
patterns into synaptic weights, and for the autonomous termination of learning. The resonant
effect at the single neuron level leads to the emergence of highly organized spike-time relationships
at the theta band which we have also shown in in vivo experiments.

The input-dependent broadening of the resonance curve in firing rate (Figure 1) allows for
selective activation of subsets of neurons within a network with increasing input frequency as
has been demonstrated in other computational models indicating this is a general property of
neural networks with sub-threshold resonance [21]. This provides a mechanism for networks to
change representations by shifting the pattern of input strengths, or alternatively, by modulation
of the oscillatory input frequency. Such a mechanism would operate similarly for both externally
generated (i.e. sensory input) and internal (i.e. stored representations within synapses) inputs.

The above described mechanism can simultaneously promote both forward and reverse replay
of recently-learned sequences in neural networks. The reverse firing phase relationship and
learning saturation seen in the external pattern simulations provide a plausible mechanism for
the generation of reverse replay events in vivo (Figure 7). This mechanism relies on the fact that
neurons with high input fire at early phases of oscillatory drive when in resonance. Before any
synaptic change occurs the firing phase is governed by the distribution of the external inputs
the cells receive. As learning progresses, neurons with the lowest external input strengthen
their synaptic inputs more than the rest of the population, while highly activated neurons do
the opposite. This is quantified in Figure 4. The emerging pattern of synaptic connectivity is
complementary to the input pattern, which leads to all neurons firing at the same phase (i.e., in
synchrony). Synchronous firing leads to no net synaptic change and thus terminates learning. As
the complimentary input pattern is now represented within synaptic weights, in the absence of
external input neurons fire in the reverse order.

Learning through STDP, or any Hebbian mechanism, requires either saturation or compensatory
plasticity mechanisms to counteract the inherent positive feedback effects on firing rate, leading to
network instability. Previous implementations of STDP have employed boundaries on synaptic
weights, dynamic asymmetries between potentiation and depression, or renormalization of
synaptic weights to preserve firing rates (reviewed in [27]). Our model proposes an alternative
mode for preventing instability (Figure 5). As the input pattern is encoded into synaptic weights
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Figure 6: Resonating networks have organized functional structure over a narrow frequency band. Theta band resonance
leads to highly organized functional network structure. In simulated networks spike-LFP coherence (A), mean
AMD z-score (B), and functional network stability (C) all dramatically increase between 4-10 Hz. This effect
is robust to noise, which is indicate by line color. (D) In vivo optogenetic stimulation of hippocampal PV+
neurons lead to similar increases in spike-LFP coherence and functional network stability at these frequencies.
Error bars = ± s.e.m.
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Figure 7: The model purposes a mechanism for the generation of reverse replay. Reverse replay due to how an input
pattern imposes a phase procession of neuron firing due with respect to the oscillation. As the network learns
the pattern inputs to weakly excited neurons are strengthened while those to highly excited cells are weakened.
These synaptic changes compensate for the differences in excitation, leading to synchronous firing. When the
pattern is removed the reverse mapping of synaptic weights leads to reverse reactivation.
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and the firing phase distribution becomes more uniform changes in synaptic weights decrease and
stop due to features of the STDP curve around ∆t = 0, which is a reasonable fit to experimental
data [26]. While many plasticity mechanisms exist both at the cellular and network level, the
current mechanism provides an elegant solution to the question of when neural networks terminate
learning of input patterns.

We have shown experimentally that our model agrees with pattern formation observed in
hippocampal networks when channelrhodopsin-expressing PV+ interneurons are rhythmically
stimulated. Within the hippocampus, functional network structure emerges or stabilizes during
stimulation in the theta band (4-10 Hz). Using several methods of measuring functional connec-
tivity within networks, we found a robust resonance effect in the formation of stable network
structure (Figure 6). This effect is due to the organizing the firing of the network around the
phase of the oscillatory input. That this effect is reproducible in various neuronal models [20] and
in vivo suggests that it may be a general feature of activity is organized in neural networks, to
optimize encoding of input patterns.

The input-dependent organization of network activity facilitated by subthreshold resonance
provides a network-level substrate for sequential learning (Figure 5). When subsets of neurons
have overlapping activation curves the relationship between input and firing phase creates spike
time differences that are optimized for encoding the sequence order. One requirement for this
result is that the activation of neurons needs to be skewed in time - in other words, repolarization
occurs more rapidly than depolarization (Figure 5A). This ensures that connections strengthened
by a balanced STDP regime are feedforward with respect to the sequence order, while feedback
connections are weakened. Within the context of hippocampal place cells sequences, there is some
evidence for this required skewness in activation [28, 29], though in an experience dependent
manner [30]. Replay is the most direct readout of sequential learning. In the hippocampus, replay
of place cell sequences occur both in the forward and reverse direction [16, 28, 17, 19]. These
replay modes are represented in different proportions across behavioral states, with reverse replay
being more prevalent during sleep [19]. In our model, forward replay occurs when a network is
driven by noise (i.e. randomly activated) and reverse occurs when the network is reactivated by
oscillating input (Figure 5D-F). These two network-activation states capture aspects of the awake
resting (no theta rhythm, and decreased sensory activation, leading to forward replay) and sleep
(theta presence, and low or decreased sensory activation, leading to reverse replay).

Hippocampal place cells show a theta phase precession in their firing, as an animal approaches
a location neurons which code for a near-by place will fire in the troughs of the theta oscillation
while those which code for a far place fire near the peak [14]. This phenomenon has also been
shown in the entorhinal cortex [13] and in the ventral striatum ([15]. In our model cells in
resonance with an oscillating rhythm they show a similar firing versus phase relationship.

Beyond the context of place cells, our model demonstrates how a network can translate
information between the two main modes of neural coding rate [31] and phase [32, 33, 34, 35]
coding. Both rate coding, where stimuli are represented by the firing rate of neurons, and phase
coding, where information is represented in the time differences between spikes, are observed in
nervous systems. Rate coding is a simpler and due to its super-threshold nature more reliable it is
limited in its functionality in dynamic pattern separation [36]. Our results provide a mechanism
for the translation between these two coding schemes and allows for networks to switch through
neuromodulation [21]. While the extent to which this precise mechanism is responsible for
information encoding in the brain remains an open question, our present data suggest that it has
explanatory value for many of the observed in vivo phenomena surrounding learning.
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