2	Experience-dependent modulation of behavioral features in sensory navigation of
3	nematodes and bats revealed by machine learning
4	Short Title: Machine learning extraction of behavioral features
5	
6	Authors: Shuhei J. Yamazaki ¹ , Yosuke Ikejiri ¹ , Fumie Hiramatsu ¹ , Kosuke Fujita ^{1, 5} ,
7	Yuki Tanimoto ^{1, 6} , Akiko Yamazoe-Umemoto ¹ , Yasufumi Yamada ² , Koichi Hashimoto ³ ,
8	Shizuko Hiryu ² , Takuya Maekawa ⁴ , Koutarou D. Kimura ^{1*}
9	
10	Affiliations
11	¹ Department of Biological Sciences, Graduate School of Science, Osaka University,
12	Toyonaka, Osaka 560-0043, Japan
13	² Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto
14	6100321, Japan
15	³ Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi
16	980-8579, Japan
17	⁴ Department of Multimedia Engineering, Graduate School of Information Science and
18	Technology, Osaka University, Suita, Osaka 565-0871, Japan
19	⁵ Present address: Department of Ophthalmology, Graduate School of Medicine, Tohoku
20	University, Sendai, Miyagi 980-8574, Japan
21	⁶ Present address: RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
22	
23	*Correspondence: kokimura-lab@umin.ac.jp or kokimura@bio.sci.osaka-u.ac.jp
24	Classification: Biological Sciences, Neuroscience
25	

26 ABSTRACT

27Animal behavior is the integrated output of multiple brain functions. However, 28understanding how multiple brain functions affect behavior has been difficult. In order 29to decipher dynamic brain functions from time-series of behavioral data, we developed 30 a machine learning strategy that extracts distinguishing behavioral features of sensory 31navigation. We first investigated experience-dependent enhancement of odor avoidance 32behavior of the nematode Caenorhabditis elegans. We segmented worms' trajectories 33 during olfactory navigation into two behavioral states, analyzed 92 features of the states, 34and automatically extracted 9 distinguishing features modulated by prior odor 35experience using a statistical index, the gain ratio. The extracted features included ones 36 previously unidentified, one of which indicated that the prior odor experience lowers 37 worms' behavioral responses to a small increase in odor concentration, causing 38 enhanced odor avoidance. In fact, calcium imaging analysis revealed that the response 39 of ASH nociceptive neurons to a small odor increase was significantly reduced after 40 prior odor experience. In addition, based on extracted features, multiple mutant strains 41 were categorized into several groups that are related to physiological functions of the 42mutated genes, suggesting a possible estimation of unknown gene function by 43behavioral features. Furthermore, we also extracted behavioral features modulated by experience in acoustic navigation of bats. Thus, our results demonstrate that, regardless 44 45of animal species, sensory modality, and spatio-temporal scale, behavioral features 46 during navigation can be extracted by machine learning analysis, which may lead to the 47understanding of information processing in the brain.

48

 $\mathbf{2}$

49 SIGNIFICANCE STATEMENT

Behavior is the most important output of brain activity, and its recording has become 50easy because of the development of small and inexpensive cameras and small GPS 5152devices. However, these "behavioral big data" have been used to calculate very simple 53indices, such as speed, direction, and goal arrival rate. In this study, we analyzed animal 54behavior using machine learning (also known as "artificial intelligence") and found 55specific behavioral features related to navigation in worms and bats. We also found activity changes in nerve cells that were reflected in the worm's behavioral changes. 5657Thus, our results demonstrate that artificial intelligence can be used to find 58characteristics of animal behavior that would eventually help us understand how the 59brain works.

60

61 Keywords: Navigation, Machine Learning, Behavior

62 **INTRODUCTION**

63 Brain activity can be measured as time series vector data of a large number of neural 64 activities using simultaneous optical monitoring recently (1, 2). Behavior, the integrated 65 output of multiple brain functions such as sensory perception, memory, emotion, and 66 decision-making, however, is still analyzed in classic ways and insufficiently studied 67 using simple and subjectively chosen measures, such as velocity, migratory distance, 68 and/or the probability of reaching to a particular goal. This large asymmetry in data 69 between neural activity and behavior has emerged as one of the significant issues in 70modern neuroscience (3-5). In other words, without describing when and how behavior 71changes in detail, we may not be able to fully interpret the meaning of large-scale 72records of neural activities. One cause for this problem is the difficulty in the analysis of 73behavior: Although machine-vision techniques over small areas and GPS-based 74tracking over large areas allow us to continuously monitor the positions and/or postures 75of animals, it is still unclear which aspects of behavioral features should be focused to 76 clarify the relationships with neural activities. 77

One way to solve this problem is to use machine learning. Machine learning is a method of extracting latent patterns and discovering knowledge from a large amount of data (6). Machine learning-based behavioral analyses of model invertebrates, such as the fruit fly *Drosophila melanogaster* and the nematode *Caenorhabditis elegans*, have been performed because these model animals are suitable for machine vision monitoring of their behavior due to their small size and relatively simple behavioral patterns (7-13). Furthermore, these animals have relatively small neural circuits, and multiple genetic

85	techniques are available, suggesting that comprehensive analysis of brain function at
86	behavioral, neuronal, and molecular levels is feasible. These analyses have provided
87	new insights into behavioral states and behavioral motifs during voluntary movement,
88	as well as the relationships between optogenetic activation of neurons and behavioral
89	responses. However, machine learning has not been used to understand the brain
90	activity related to sensory behaviors: How is environmental information transformed
91	into behavioral responses through sensory perception and decision-making, as well as
92	its modulation by memory and/or emotion in the nervous system? The lack of research
93	in this topic is likely due to the fact that these invertebrate model animals are too small
94	to accurately and easily measure sensory input during behavior. In addition, even when
95	sensory input can be measured, the method to effectively reveal the dynamic
96	relationships between sensory input and behavioral output has not been established.
97	
98	
	In the present study, we aimed to establish a method to objectively and
99	In the present study, we aimed to establish a method to objectively and comprehensively extract behavioral features that are possibly linked to the neural
99 100	
	comprehensively extract behavioral features that are possibly linked to the neural
100	comprehensively extract behavioral features that are possibly linked to the neural activities for sensory behavior. For that purpose, we analyzed two types of sensory
100 101	comprehensively extract behavioral features that are possibly linked to the neural activities for sensory behavior. For that purpose, we analyzed two types of sensory navigation that have been monitored quantitatively but are different in modality and
100 101 102	comprehensively extract behavioral features that are possibly linked to the neural activities for sensory behavior. For that purpose, we analyzed two types of sensory navigation that have been monitored quantitatively but are different in modality and spatio-temporal scale—olfactory navigation of <i>C. elegans</i> and acoustic navigation of
100 101 102 103	comprehensively extract behavioral features that are possibly linked to the neural activities for sensory behavior. For that purpose, we analyzed two types of sensory navigation that have been monitored quantitatively but are different in modality and spatio-temporal scale—olfactory navigation of <i>C. elegans</i> and acoustic navigation of the bat <i>Rhinolophus ferrumequinum nippon</i> —using machine learning. In particular, we

107 *elegans*, experience-dependent behavioral modulation has been studied in thermotaxis

108 and salt-taxis, in which worms move in a preferred direction by changing the frequency 109 of directional changes depending on the intensity of the sensory stimulus (14). 110 Consistently, changes in neural activity to a stepwise stimulus change have been 111 revealed by calcium imaging mostly of immobilized worms and in a few cases of freely 112moving worms (15-20). However, it has not been fully clarified how those behaviors 113are regulated by neural activity that responds to slight changes in stimuli during 114navigation in a sensory gradient as well as how the behavioral and neural responses are 115modulated by experience. Furthermore, although large scale analyses of mutant strains 116 are available (12, 21), methods for effectively analyzing the differences in 117 experience-dependent modulation of sensory behaviors of mutant strains have not been 118 established. 119

120 To reveal experience-dependent modulations of olfactory navigation in worms, we 121extracted prominent features of behavior and their relationships to odor stimuli using 122machine learning. For this, we segmented the animals' navigation into two behavioral 123 states and, for individual states, calculated the gain ratio, a statistical index used in 124 decision tree analysis to identify features that distinguish the data in different classes 125(22). We chose this method because it allows us to easily interpret the results of the 126analysis for the planning of physiological experiment of neural activities. In the present 127study, we analyzed 92 features of behavior and sensory information from each of ~ 200 128behavioral states of wild-type worms either with or without a prior odor experience (25 worms per condition) and found that 9 features are modulated in an 129130 experience-dependent manner. One of the extracted features, the reduction in behavioral

131	response to a small increase in odor concentration, was consistent with a change in					
132	neuronal activity revealed by calcium imaging. In addition, we calculated gain ratios to					
133	identify the experience-dependent changes in olfactory navigation of multiple mutant					
134	strains and found that the mutants were categorized into several groups based on					
135	behavioral features, which reflect physiological functions of the mutated genes.					
136	Furthermore, we also identified experience-dependent modulation of behavioral					
137	features from bat acoustic navigation. Thus, we propose that machine learning analysis					
138	with gain ratios is an efficient strategy to reveal features of animal behavior in general.					
139						
140	METHODS					
141	Cultivation of worms					
142	The techniques used for culturing and handling C. elegans strains have been essentially					
143	described previously (23). Wild type Bristol strain RRID:WB-STRAIN:N2_Male and					
144	mutant strains RRID:WB-STRAIN:MT1219 egl-3(n589), RRID:WB-STRAIN:VC671					
145	egl-3(ok979), RRID:WB-STRAIN:CX4544 ocr-2(ak47), RRID:WB-STRAIN:JC1636					
146	osm-9(ky10), RRID:WB-STRAIN:JC0570 tax-4(p678) were obtained from the					
147	Caenorhabditis Genetics Center (University of Minnesota, USA).					
148	RRID:WB-STRAIN:KDK1 dop-3(tm1356) was originally obtained from National					
149	BioResource Project (Japan) and backcrossed five times with N2.					
150						
151	Analysis of worms' olfactory navigation					
152	A 2-nonanone avoidance assay was performed as described previously (24, 25). Briefly,					
153	2-3 young adult hermaphrodite worms grown synchronously were placed in the center					

154 of a 9-cm nematode growth media (NGM) plate, and 2 μL of 30% 2-nonanone (cat. no.

155 132-04173; Wako, Japan) diluted in EtOH (cat. no. 0057-00456; Wako, Japan) were

156 dropped in two spots on the surface of the NGM plate (Fig. 1A top), and the worms'

- 157 behavior was recorded for 12 min. This assay was performed under the following three
- 158 conditions: the worms cultivated on NGM plates with their food bacteria

159 RRID:WB-STRAIN:OP-50 were briefly washed with NGM buffer and subjected to the

assay ("naive" condition), or they were subjected to the assay after 1 h of preexposure to

161 0.6 µL of 15% 2-nonanone diluted in EtOH or to only EtOH spotted on the lid of a

162 NGM plate without food ("preexp" and "mock" conditions, respectively). We added the

163 mock-treated control to confirm that 1-h starvation did not affect the odor avoidance

164 behavior of worms and to extract behavioral features modulated by the odor

165 preexposure compared to the naive and the mock-treated controls. Images of worms the

166 NGM plate during odor avoidance assay were acquired by a high-resolution USB

167 camera (DMK 72AUC02; The Imaging Source, USA) with a lens (LM16JC5MW;

168 Kowa, Japan) at 1 Hz for 12 min. From the recorded images, the coordinates of

169 individual animals' centroids were acquired using Move-tr/2D software (Library Co.,

170 Ltd., Tokyo, Japan) and used for the following analysis.

171

172 Similar to worms' other sensory behaviors, trajectories in the 2-nonanone avoidance

assay can be divided into two states: "run", a relatively long period of straight

- 174 movement, and "pirouette", a period of short movements interrupted by frequent
- 175 reversals and turns (24, 26). Angular change per s was calculated from the centroid
- 176 coordinates, and movements of 1 s with angular change larger than 90° were classified

177	as a turn. A histogram of turn intervals was fitted by two exponentials, suggesting that
178	turn intervals are regulated by two probabilistic mechanisms (25, 26). The time of the
179	intersection of the two exponentials was defined as t_{crit} , and turn intervals longer or
180	shorter than the t_{crit} were classified as runs or included in pirouettes, respectively. t_{crit}
181	was calculated for the control (i.e., naive plus mock-treated) condition for wild-type and
182	mutant strains, respectively. In this study, we analyzed features of runs but not of
183	pirouettes except for their duration because pirouettes appear to have little effect on
184	odor avoidance (25). Excel 2010 (Microsoft Corp.) was used for these calculations. The
185	odor concentrations that worms experienced at specific spatio-temporal points were
186	calculated according to the dynamic odor gradient model based on the measured odor
187	concentration (19).
188	

189 **Bats**

190 As previously described, three adult Japanese horseshoe bats (*Rhinolophus*

191 *ferrumequinum nippon*, body length: 6.0–8.0 cm, body mass: 20–30 g) were captured

192 from natural caves in Hyogo and Osaka prefectures in Japan (27). The bats were housed

in a temperature- and humidity-controlled colony room [4 (L) \times 3 (W) \times 2 m (H)] with

194 a 12-h-on/12-h-off light cycle at Doshisha University in Kyoto, Japan. The bats were

allowed to fly freely and given access to mealworms and water. Captures were

196 conducted under license and in compliance with current Japanese law. All experiments

197 complied with the Principles of Animal Care, publication no. 86-23, revised 1985, of

198 the National Institutes of Health, and with current Japanese law. All experiments were

approved by the Animal Experiment Committee of Doshisha University.

200

201 Bat acoustic navigation

202	Methods for acoustic navigation measurement in bats have been described elsewhere
203	(Yamada et al., in revision). In brief, the experiments were conducted in a flight
204	chamber, which was constructed of steel plates [9 (L) \times 4.5 (W) \times 2.5 m (H)] under
205	lighting with red filters (>650 nm) to avoid visual effects on the bats. An obstacle
206	environment was constructed using plastic chains (4 cm in diameter) that were
207	suspended from the ceiling of the chamber. The chains were arranged at 15-cm intervals
208	in the <i>x</i> -axis and at 22-cm intervals in the <i>y</i> -axis so that the bat was forced to fly in an
209	S-shaped pattern without passing between chains. With this layout, three naive bats
210	were used: each bat was observed for 12 continuous repeated flights so that
211	echolocation behaviors in unfamiliar and familiar spaces could be compared. In this
212	study, the initial three flights were defined as unfamiliar flights, and the last three flights
213	were defined as familiar flights.
214	
215	The flight behavior of the bats was recorded using two digital high-speed video cameras
216	(MotionPro X3; IDT Japan, Inc., Japan) at 125 frames/s, which were located in the left
217	and right corners of the flight chamber. Based on a direct linear transformation
218	technique, the successive 3D positions of the flying bats, as well as the locations of
219	other objects, were reconstructed using motion analysis software (DIPPMotionPro
220	ver. 2.2.1.0; Ditect Corp., Japan). The flight velocity vector of the bat was calculated as

the time derivative of the coordinates of its flight trajectory.

222

223 Behavioral parameters included in a feature vector

224	For the machine learning analysis of worm olfactory navigation, the following
225	behavioral features were calculated for each run from the centroid coordinates of the
226	worms: start time (RunTime), serial number (RunNum), velocity (V), bearing (B), odor
227	concentration that a worm experienced during run (C), directionality ratio (Dir) (28),
228	run's curvature (called weathervane; WV) (29), run duration (RunDur), and duration of
229	pirouette just before the run ($PirDur$). Time-differential values were calculated for V
230	(dV), $B(dV)$, and $C(dC)$. For these values, the average (Ave) during a run as well as
231	average values over 2 s at the initiation (Ini) and at the termination (Ter) of a run were
232	also calculated. For Ini and Ter, 0-2 s after the initiation and 2-4 s before the
233	termination of a run were used; we did not use 0-2 seconds before the termination
234	because previous studies revealed that a worm's speed drops largely during this period
235	(25, 26). Although the time windows for worms were set based on the previous studies,
236	the optimal time windows for bats were calculated by machine learning (see below). In
237	addition, to analyze whether these features are independent for each run (in other words,
238	whether any long-term trend among runs across a pirouette exists), we also calculated
239	hysteretic effects (Δ) of these run features between successive runs for V, dV, B, dB, C,
240	and dC —in fact, a certain relationship between bearings before and after a pirouette
241	$(B_{Ini\Delta}Ter)$ has been reported in salt-taxis (26). For this, Ave, Ini, or Ter of each run
242	feature was subtracted from any of the previous run features. Hysteretic effects were
243	calculated for just one feature for RunDur, PirDur, and WV, which only possess one
244	value per run, and not calculated for RunTime and RunNum. A total of 92 features were
245	calculated by combining all these features.

246

247	For analysis of changes in the flight of the bats, the following behavioral features in
248	each flight were calculated from the coordinates of the animals and obstacles:
249	three-dimensional flight velocity (V), horizontal and vertical bearings of the flight
250	(<i>B_hori</i> and <i>B_vert</i> , respectively), distance (<i>R_obs</i>) and bearing (<i>B_obs</i>) of the bat to
251	the nearest edge point of the obstacle chain array, longitudinal directional distance to
252	the frontal chain array (R_x) , lateral directional distance to the inside pitch of the chain
253	array (R_y) . Time-differential values were calculated for $V(dV)$, $B(dB)$, $dB(ddB)$, and
254	the flight height (dH) , which were calculated with frame units of the high-speed video
255	cameras (1/125 s). All flight trajectories were divided into three segments: earlier,
256	middle, and later terms. The time window for the analysis of each behavioral feature
257	was 0.1, 0.2, or 0.3 s before or when $(t = 0)$ passing through the chain array. A total of
258	42 features were calculated by combining all these features.
259	
260	Excel 2010 and Visual C# (Microsoft) were used for the calculations, and the
261	Beeswarm package for R software (The R Project) was used for the scattered plot of
262	data. These parameters are listed in Table 1 for worms and in Table 4 for bats.
263	
264	Behavioral classification with gain ratio
265	In order to extract useful features, we calculated the gain ratio used in C4.5 decision tree

analysis (30) for each feature. In decision tree analysis, the amount of information,

which is acquired when a group of data is divided into sub-groups by a certain feature,

268 is calculated as information gain. In other words, when dividing a group into sub-groups

269by applying a certain feature, information gain is an index indicating the amount of the 270increased bias of data in the sub-groups after the division. The information gain was 271then divided by split info, a degree of division, for normalization to compute the gain 272ratio. For worm olfactory navigation, we extracted behavioral features that have 273positive gain ratios in naive versus preexposed worms or in mock-treated versus 274preexposed worms. Then, we chose the features that were common in both comparisons 275as "features modulated in experience-dependent manner". For bat acoustic navigation, 276behavioral features were extracted from the comparison of unfamiliar flights (1st-3rd) and familiar (10th-12th) flights. Weka software (the University of Waikato, New 277Zealand) (31) was used for the calculation. 278

279

280 Calcium imaging

281 Calcium imaging of the worms' ASH neurons was performed according to a previous

report (19). Briefly, transgenic strains expressing GCaMP3 (32) and mCherry (33) in

ASH sensory neurons under the *sra-6* promoter (KDK70034 and KDK70072; 20 ng/µl

284 of *sra-6p::GCaMP3*, 20 ng/µl of *sra-6p::mCherry*, 10 ng/µl of *lin-44p::GFP*, 50 ng/µl

of PvuII-cut N2 genomic DNA as a carrier in N2 background) were placed on an NGM

agar plate on a robotic microscope system, OSB2 (19). Although these transgenic

worms were immobilized with the acetyl choline receptor agonist levamisole (34) for

288 high-throughput data acquisition by simultaneous imaging of multiple worms, the

- 289 previous study revealed that the ASH activity is essentially unaffected by
- 290 levamisole-treatment (19). For these worms, a constant gas flow of 8 mL/min was
- delivered, in which the mixture rate of 2-nonanone gas versus the air was changed to

292	make a temporal gradient of the odor concentration. The temporal change in odor
293	concentration was measured by a custom-made semiconductor sensor before and after
294	the series of calcium imagings on each day. The fluorescence signals of GCaMP3 and
295	mCherry in ASH neurons were divided into two channels using W-View (Hamamatsu,
296	Japan), an image splitting optic, and captured by an EM-CCD camera (ImagEM;
297	Hamamatsu, Japan) at 1 Hz. The intensities of fluorescence signals from cell bodies
298	were extracted and quantified by ImageJ (NIH) after background subtraction. The
299	average ratio over 30 s prior to the odor increase was used as a baseline (F_0), and the
300	difference from $F_{\theta}(\Delta F)$ was used to calculate the fluorescence intensities of GCaMP3
301	and mCherry ($F = \Delta F/F_0$). The ratio between florescence intensities of GCaMP and
302	mCherry (GCaMP/mCherry) was used in the figure.
<u> </u>	

303

304 **Statistical analysis**

For comparisons of behavioral features among naive, mock-treated, and preexposed 305

306 worms, the Kruskal-Wallis multiple comparison test followed by the post hoc Dunn's

307 test were used (Fig. 2, 3 and 4), except for in the analysis of directional data, for which

308 the Mardia-Watson-Wheeler test was used. The calculations were performed with Prism

- 309 ver. 5.0 for Mac OSX (GraphPad Software, CA, USA), R (The R Project) or SPSS
- 310 version 23 (IBM Corp.).

311

312 RESULTS

313 A strategy for extracting features of sensory navigation that were modulated by prior experience 314

315 In this study, we aimed to extract behavioral features using machine learning to 316 understand changes in information processing in the brain during sensory navigation. 317 However, identifying characteristic changes in behavior and sensory stimulus during 318 navigation has been difficult. It is because sensory stimulus in general changes 319 gradually and continuously during navigation, which may cause gradual or sudden 320 response at some aspects of behavior with certain probabilities. In order to efficiently 321 extract behavioral features of sensory navigation by machine learning, we considered 322the following points for the analysis: (1) segmenting behavioral states, (2) representing 323 the animal's position as a single point, (3) calculating sensory information, and (4) using 324a statistical index, gain ratio.

325

326 Segmenting behavioral states

327 Segmentation is one of the important preprocessing steps of a large dataset for effective

328 analysis (35). We considered an animal's navigation to be a series of transitions among a

329 limited number of behavioral states for a certain period, and we analyzed features in

- ach of the behavioral states instead of analyzing features in an entire navigation
- trajectory or in very short temporal unit (i.e., second or sub-second). For worm
- 332 olfactory navigation, we segmented the navigation into two well-established behavioral
- 333 states: runs and pirouettes (14, 26; see METHODS for details). For bat acoustic
- anavigation, we considered the period from passing one obstacle (or from the starting

335 point) until passing the next obstacle as one behavioral state.

336

337 Representing animal's position as a point

338	During a behavioral state in navigation, animals move a certain distance. For the sake of
339	proper dimensionality reduction, we calculated the trajectories of a point representing
340	animal's position (centroid for worms and head position for bats), instead of the posture
341	of an animal, whose description requires more detailed spatial and temporal
342	information.
343	
344	Sensory information
345	Sensory information is a key factor affecting an animal's behavior. However, because
346	of technical difficulties, it has been included in the analysis of sensory navigation only
347	in a few cases for small model animals (17, 19, 36). We included the information of
348	odor concentration, which changes dynamically during navigation of worms, as
349	revealed by the direct measurement of odor concentrations in specific spatio-temporal
350	points in a behavioral arena (19).
351	
352	Gain ratio
353	To comprehensively examine behavioral features that can be modulated by prior

experience, we focused on a statistical index used in machine learning-based 354

classification analysis. In general, classification analysis is the task of classifying new, 355

356 unlabeled data into appropriate classes using characteristic features and their parameters

357 that have been extracted from the known class-labeled data. In the present study,

358 however, the classification itself was not meaningful because the data were already

359classified, such as with or without prior experience or wild-type versus mutant strains.

360 Instead, we focused on the procedure in the classification that finds features useful for distinguishing between the two classes. In other words, behavioral features modulated
by prior experience should be able to effectively classify the behavioral data of animals
with or without this experience.

364

365	For this purpose	, we chose to use	gain ratio.	the index for	decision t	ree analysis (22).

366 Binary decision tree analysis is performed to split a data set into two sub-groups by

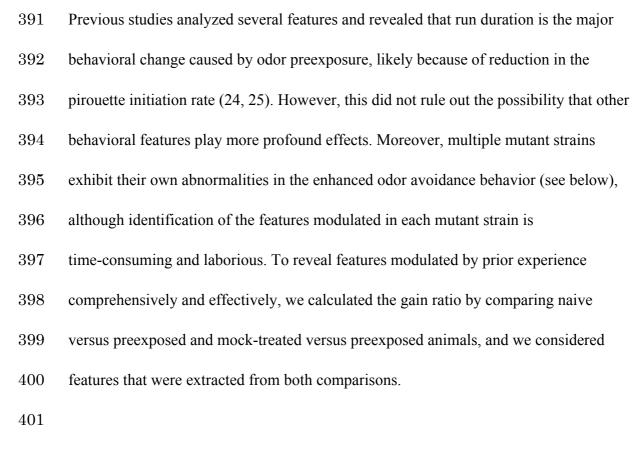
- 367 automatically selecting the best feature and its parameter that has the largest
- 368 information gain, the difference of the uncertainty ("information entropy") before and
- 369 after division; each data point is classified into either of the sub-classes based on
- 370 whether it has a larger or smaller value than the threshold. When applied for binary
- 371 classification, decision tree analysis automatically evaluates the classification
- 372 performance of all of a large number of features that are designed by the researchers.
- 373 The result of this analysis is the extraction of certain features, which allows us to easily
- understand the usefulness of particular features for the classification. This is a
- 375 substantial difference from the analysis by support vector machines and/or deep neural
- are networks, where the relationships between features of the data and the classification are
- anot easily discernible (see DISCUSSION).
- 378

379 Behavioral features modulated by the prior experience in worm odor avoidance380 behavior

We analyzed the experience-dependent enhancement of odor-avoidance behavior of *C*.

- 382 *elegans* as a model. We have reported that preexposure of worms to the repulsive odor
- 383 2-nonanone causes enhancement of avoidance behavior to the odor. After 1 h of

preexposure, worms migrate farther away from the odor source as a type of
non-associative middle-term learning (24). A series of genetic analyses indicated that
neuropeptide and dopamine signaling pathways are required for acquisition and
execution of the odor memory, respectively (25), suggesting that this non-associative
middle-term memory is caused by a circuit-level modulation of neural activity rather
than simple sensory sensitization.



402 In the machine learning analysis, we calculated gain ratios of 92 features (Fig. 1 and

403 Table 1; see METHODS for details) and extracted 18 and 15 features from the

- 404 comparisons of naive versus preexposed and mock-treated versus preexposed worms,
- 405 respectively (Table 2). Nine features were shared between the two comparisons,
- 406 suggesting that those features were modulated by the prior experience to cause the

407	enhanced odor avoidance (Table 2 and Fig. 2A). These features are related to run
408	duration (<i>RunDur</i>), temporal differences in bearing (dB_X), odor concentration (C_X),
409	and its temporal difference during runs (dC_X). Modulation of run duration (<i>RunDur</i> ;
410	Fig. 2B) by the prior odor experience was previously revealed by traditional analysis
411	(24). Thus, this result supports the validity of the machine learning analysis.
412	
413	Experience-dependent modulations of temporal differences in bearing (dB_X ; Fig. 2C
414	for example and Table 2) have not been revealed previously. Its contribution to the
415	enhancement of avoidance distance, however, are unclear. Differences between the
416	average or the terminal bearing change and the previous initial value $(dB_Ave\Delta Ini \text{ or }$
417	$dB_Ter\Delta Ini$) were also extracted (Table 2), while the differences were likely due to the
418	modulation in the previous initial value (ΔIni), not due to the change in hysteretic
419	effects.
420	
421	Odor stimuli during runs, which likely drive the worms' odor avoidance behavior, were
422	also found to be modulated in several aspects: the initial, terminal, and average odor

423 concentration (*C_Ini*, *C_Ter*, and *C_Ave*), and the terminal and average odor

424 concentration change (dC_Ter and dC_Ave) (Table 2; Fig. 2D and E for C_Ave and

425 *dC_Ave*, respectively, for examples). However, this result does not directly imply that

426 the lower odor concentration is the causal reason for the enhanced avoidance distance;

427 one possible scenario is that, because the odor-experienced worms were located farther

428 away from the odor source, they sensed a lower concentration of the odor.

429

430	Because the terminal and average values of odor concentration change (dC_Ter) and
431	dC_Ave) were extracted, and because a previous study demonstrated that worm odor
432	avoidance behavior depends on dC , rather than C , at least in naive conditions (19), we
433	investigated these features more in detail. We compared ensemble averages of dC/dt
434	that worms sensed during the last 30 s of each run (Fig. 2F). Interestingly, although
435	most of the control (<i>i.e.</i> naive and mock-treated) worms sensed 2-3 µM odor
436	concentrations (Fig. 2D), dC/dt at the end of each run was ± 0.1 nM/s on average (Fig.
437	2F; 0.09 ± 0.72 and -0.09 ± 0.76 nM/s for naive and mock-treated animals, respectively).
438	This result suggests that, to initiate a pirouette, worms respond to a subtle odor
439	concentration change, of which the magnitude is 1/20,000 - 1/30,000 of the odor
440	concentration itself per second. Even considering that sensory information is temporally
441	integrated for a few seconds during worm chemosensory navigation (19, 37), this value
442	is far lower than the general psychological threshold for sensory signals: The lower
443	threshold of signal change (ΔS) is more than 1/100 of the signal intensity (S) (38).
444	
445	This extreme sensitivity to positive dC/dt was modulated by prior experience of the
446	odor. The terminal dC/dt was significantly higher than in naive and mock-treated
447	animals (1.58 \pm 0.6 nM/s compared to the values in the previous paragraph; $p < 0.01$,
448	the Kruskal-Wallis multiple comparison test followed by the post hoc Dunn's test). This
449	change in terminal dC/dt could be the cause for the enhanced odor avoidance behavior
450	and suggest the following model: the worms without prior experience of the odor are
451	highly sensitive to a slight increase in odor concentration during a run, which is a sign
452	of inappropriate movement toward the source of the repulsive odor, and they respond to

453 it by initiating a pirouette. In contrast, the worms with prior odor experience ignore the

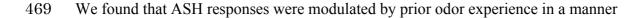
454 slight odor increase and continue the run, which leads to a longer run duration (Fig.

455 2G).

- 456
- 457 The responsiveness of sensory neurons to odor increases was modulated by odor458 experience
- 459 If the change in sensitivity to positive dC/dt is the causal reason for the enhanced odor
- 460 avoidance behavior, it should be associated with changes in neural activity. Thus, we
- 461 analyzed the responsiveness of a likely candidate group of neurons, ASH nociceptive
- 462 neurons (39, 40). Previously we established the OSB2 microscope system that allows
- 463 for calcium imaging of *C. elegans* neurons *in vivo* under odor stimuli resembling ones
- that worms experience during the odor avoidance assay in the plates (19). Using the
- 465 OSB2 system, we found that ASH neurons are the major sensory neurons to cause
- 466 pirouettes upon increases in 2-nonanone concentration (19). However, whether the ASH

467 response is modulated by 2-nonanone experience has not been studied.

468



470 consistent with the behavioral modulation. When the worms were stimulated with 5

- 471 nM/s odor increase, which is the lowest rate of change to cause the threshold-level
- 472 behavioral response in the previous study (19), ASH neurons in naive as well as
- 473 mock-treated worms exhibited robust responses (Fig. 3A and B). However, the ASH
- 474 responses were significantly reduced in the preexposed animals (Fig. 3B and C). This
- 475 result suggests that prior odor experience causes the reduced response to the odor

476 increase, which causes longer run durations and enhanced odor avoidance behavior.

477

478 Extracted behavioral features of mutant strains correspond to gene functions 479 We also investigated whether feature extraction from behavior of mutant strains can 480 allow us to understand relationships between chemosensory behavior and gene 481 functions in the nervous system. By calculating gain ratios, we analyzed mutants of

482 genes that are known to be involved in the experience-dependent modulation of

483 2-nonanone avoidance behavior, such as that for proprotein convertase (required for

484 neuropeptide signaling), EGL-3 (41), and the D2-type dopamine receptor DOP-3 (25,

485 42), as well as genes involved in sensation of chemical signals, such as those for TRP

486 channel homologs OCR-2 and OSM-9 (43, 44) and the cGMP-gated cation channel

487 TAX-4 (45), whose relationships to the 2-nonanone avoidance behavior have not been488 studied.

489

egl-3, encoding a homolog of proprotein convertase, is required for neuropeptide 490 491 biosynthesis, expressed in many neurons, and known to be involved in various aspects 492 of worm behavior including learning (25, 41, 46). Deletion and missense mutations of 493 the gene are known to cause severe and mild phenotypes, respectively (25, 47). Our 494 previous study revealed that run duration is not increased after preexposure in egl-3 495mutants, suggesting that neuropeptide signaling is required for the acquisition of odor 496 preexposure memory (25). In the present study, the abnormal features were similar between deletion (ok979) and missense (n589) mutants, namely, run duration 497 498 (Run Dur), odor concentration (C Ave, C Ini, C Ter), and odor concentration change

499 (dC_Ave, dC_Ter) , although the deletion mutants exhibited additional abnormal

500 features (Table 3 and Fig. 4). Increases in odor concentration in preexposed worms

501 were interesting because they were observed only in *egl-3* mutants but not in any other

502 mutants.

503

504 Mutations in *dop-3*, which encodes a homolog of the D2-type dopamine receptor, were 505previously found to affect migratory direction after preexposure (25). This was 506concluded because the mutants did not exhibit enhanced avoidance distance, although 507run duration was increase after preexposure, and because run terminal bearing (B Ter) 508was worsened (25). These features were extracted in this analysis (Table 3), further 509supporting the reliability of this analysis. In addition, the averaged directionality ratio 510(Dir Ave) was worsened (Table 3 and Fig. 4C). This is also consistent with the idea that 511migratory direction is worsened in *dop-3* mutants after preexposure. Moreover, lowered 512velocity (V Ave, V Ter; Table 3 and Fig. 4B) was also extracted, which may also 513contribute to the failure in the enhanced odor avoidance. Such multiple abnormal 514phenotypes are consistent with the fact that *dop-3* is expressed in many neurons and 515involved in the regulation of multiple aspects of behavior (48). 516ocr-2 and osm-9 both encode homologs of TRP-type cation channels, expressed in 517518multiple sensory neurons including ASH neurons and considered to be involved in

519 sensory perception as well as its modulation (43). We found that mutants for these two

- 520 genes did not exhibit significantly enhanced odor avoidance (Fig. 4A). In addition,
- 521 these mutants exhibited increases in velocity (*V_Ave* and *V_Ter*) after preexposure,

522	which was specific for these two mutants but not observed in other mutants. Some
523	features are specific for each mutant strains, which may reflect the differences in their
524	expression and/or function (43). Mutants of <i>tax-4</i> , encoding a homolog of the
525	cGMP-gated cation channel expressed in different sets of sensory neurons, exhibited a
526	unique pattern of features (Table 3, Fig. 4).
527	
528	Taken together, our results suggest that the pattern of extracted features from mutant
529	strains may reflect functional groupings of the mutated genes. Thus, profiling and
530	classification of extracted mutant features of unknown genes may be useful to estimate
531	their physiological functions.
532	
533	Feature extraction of experience-dependent modulation of acoustic navigation of
534	bats
	bats To demonstrate the general applicability of our method, we examined features of
534 535 536	
535	To demonstrate the general applicability of our method, we examined features of
535 536 537	To demonstrate the general applicability of our method, we examined features of acoustic navigation in bats. We have previously reported that bats improve their flight
535 536 537 538	To demonstrate the general applicability of our method, we examined features of acoustic navigation in bats. We have previously reported that bats improve their flight trajectory in an indoor space with obstacles in an experience-dependent manner
535 536	To demonstrate the general applicability of our method, we examined features of acoustic navigation in bats. We have previously reported that bats improve their flight trajectory in an indoor space with obstacles in an experience-dependent manner (Yamada et al., in revision). Here, we analyzed 42 features using gain ratios and
535 536 537 538 539 540	To demonstrate the general applicability of our method, we examined features of acoustic navigation in bats. We have previously reported that bats improve their flight trajectory in an indoor space with obstacles in an experience-dependent manner (Yamada et al., in revision). Here, we analyzed 42 features using gain ratios and extracted several features, such as velocity (<i>V</i>), distance to the obstacle chain array
535 536 537 538 539 540 541	To demonstrate the general applicability of our method, we examined features of acoustic navigation in bats. We have previously reported that bats improve their flight trajectory in an indoor space with obstacles in an experience-dependent manner (Yamada et al., in revision). Here, we analyzed 42 features using gain ratios and extracted several features, such as velocity (V), distance to the obstacle chain array (R_obs and R_x), and horizontal bearing of the flight (B_hori) (Table 4 and Fig. 5A-C).
535 536 537 538 539	To demonstrate the general applicability of our method, we examined features of acoustic navigation in bats. We have previously reported that bats improve their flight trajectory in an indoor space with obstacles in an experience-dependent manner (Yamada et al., in revision). Here, we analyzed 42 features using gain ratios and extracted several features, such as velocity (V), distance to the obstacle chain array (R_obs and R_x), and horizontal bearing of the flight (B_hori) (Table 4 and Fig. 5A-C). Interestingly, although velocity (V) itself was modulated by flight experience,
535 536 537 538 539 540 541 542	To demonstrate the general applicability of our method, we examined features of acoustic navigation in bats. We have previously reported that bats improve their flight trajectory in an indoor space with obstacles in an experience-dependent manner (Yamada et al., in revision). Here, we analyzed 42 features using gain ratios and extracted several features, such as velocity (V), distance to the obstacle chain array (R_obs and R_x), and horizontal bearing of the flight (B_hori) (Table 4 and Fig. 5A-C). Interestingly, although velocity (V) itself was modulated by flight experience, acceleration (dV) was not (Fig. 5D), suggesting that bats may determine flight speed

- 545 suggest that such higher brain functions during navigation could be extracted by
- 546 machine learning analysis.
- 547

548 **DISCUSSION**

- 549 In the present study, we extracted behavioral features that are modulated by experience
- 550 from olfactory navigation of worms and from acoustic navigation of bats using machine
- 551 learning analysis. In the case of worm olfactory navigation, we found a neural correlate
- 552 for one of the newly identified features: The reduced behavioral response to an increase
- in odor concentration was consistent with the reduced response of ASH nociceptive
- neurons to a small increase in odor concentration. In addition, we also found that mutant
- strains can be grouped based on extracted features, which may correspond to the
- 556 physiological roles of genes in chemotaxis and/or experience-dependent modulation.
- 557 Furthermore, our machine learning analysis was applied to acoustic navigation of bats
- 558 to extract the features modulated by prior experience.
- 559

560 Extraction of behavioral features by machine learning

- 561 Machine learning has been playing a major role in classifying behavioral data of model
- animals into several categories (7-13, 50). Instead of such behavioral classification,
- 563 however, we intended to use a machine learning technique for extracting characteristic
- features of sensory behavior to decipher information processing in the brain. For that
- 565 purpose, we first hypothesized that a change in a behavioral feature reflects a change in
- activity of a functional unit of the brain. Then, we used machine learning to extract
- 567 behavioral features that differ between two classes of behavior, rather than to categorize

the behavioral data into two classes; in our study, two classes (e.g., "with or without prior experience" or "wild-type versus mutant strains") were determined *per se* and did not need to be categorized.

571

In addition, we also included sensory information that worms experienced during the 572573course of behavior in the machine learning analysis. Although small model animals 574such as C. elegans or Drosophila melanogaster are suitable for machine vision 575monitoring and subsequent quantitative analysis of behavior, their small size makes it 576difficult to measure sensory signals they receive during behavior. We have solved this 577problem by precisely measuring the odor concentration at multiple spatio-temporal 578points in a paradigm to assess olfactory behavior of worms (19), which allowed us to 579include the information of odor concentration and its temporal changes (C and dC) into 580the feature vector for the machine learning analysis. Our machine learning method 581could also be used for detailed analysis of sensory navigation in the environment where 582the gradients of chemical signal were also quantitatively monitored (36, 51, 52). 583584As a result, we were able to find multiple behavioral features modulated by prior 585experience, including the temporal odor concentration change (dC Ter), which was 586consistent with the experience-dependent change in the responsiveness of ASH 587nociceptive neurons. Such an effective and objective approach to estimate neural 588function from comprehensive behavioral analysis may play important roles in the 589understanding of recent large-scale monitoring of neuronal activity (see below). 590

591For machine learning-based classification, support vector machines and deep learning 592have also been used (53, 54). However, in these analyses, it is difficult for researchers 593to understand which features are characteristic to each group because these algorithms 594attempt to combine multiple features in a single representation. In other words, it is 595difficult to use the results of classification for subsequent experiments and/or analysis to 596further investigate the neural correlates of the behavioral differences. In contrast, in the 597calculation of gain ratio, all features are evaluated independently, allowing us to 598immediately translate the results of analysis to a new understanding and/or hypothesis 599 for subsequent experiments and analyses, as shown in the present study. Thus, we 600 conclude that the method used in this study—making a list of characteristic features 601 based on gain ratios and subsequently performing detailed analyses on each of extracted 602 features—is effective to understand the basic principles of neural functions regulating 603 behavior.

604

605 However, causal relationships among extracted features should be considered carefully. 606 For example, because odor concentration (C) and temporal odor concentration change 607 (dC) are both features of sensory stimuli, they were likely candidates for the cause of 608 changes in behavioral response. However, we regard that dC, rather than C itself, is the 609 causal reason because of the following: (1) previous quantitative analysis in the plate 610 assay paradigm revealed that pirouettes and runs are strongly correlated with positive or 611 negative dC, respectively, rather than the value of C; (2) in the OSB2 robotic 612 microscope system, positive or negative dC caused high or low levels of turning, such 613 as pirouettes and runs, respectively (19). For example, the lower C in preexposed

614 worms is likely caused by their relatively lower positions in the odor gradient (i.e., 615 farther positions from the odor source) caused by the enhanced avoidance behavior. In 616 other words, sensory behaviors are closed loops-changes in sensory input cause 617 changes in behavior, while changes in behavior should also cause changes in sensory 618 input because the positions and/or directions of sensory organs are changed due to the 619 behavior. Thus, even when sensory features are extracted by machine learning, causal 620 relationships with behavioral features should be evaluated by independent experiments: 621 An open loop system, which allows control of sensory stimuli and monitoring behavior 622 independently, such as the OSB2 system (19), will provide an effective solution. 623

624 Analysis of multiple mutant strains revealed that the extracted features appeared to be

625 correlated with the physiological roles of the genes. For example, two alleles of a gene

626 required for neuropeptide signaling (egl-3) exhibited similar feature patterns, which

627 were different from mutants of a dopamine-signaling gene (*dop-3*). In addition,

628 mutations in two homologous but distinct TRP-type channel genes required for sensory

629 signaling (*ocr-2* and *osm-9*) exhibited a similar feature pattern, and the one for cyclic

630 nucleotide-gated ion channels (*tax-4*) exhibited a different pattern. It is interesting that

631 mutants of genes with similar functions exhibited similar behavioral features although

these genes should influence animal behavior in a complex manner. These results

633 suggest that behavioral features of mutants of a novel gene may be categorized to a

- 634 group of genes which have similar physiological functions. In other words, feature
- 635 extraction using gain ratio of multiple mutant strains can allow estimation of gene
- 636 functions in the nervous system.

637

638	In conclusion, we established a machine learning method to effectively reveal different
639	features of two different sensory behaviors. In particular, it is important to include not
640	only the behavior itself but also environmental sensory information that animals sense
641	in the feature vectors. Furthermore, it is also necessary to verify causal relationships of
642	the extracted features by other methods, such as using an open loop experimental setup.
643	In addition, this method can be used for estimation of the physiological function of
644	genes.
645	
646	This method could be applied to analysis of more complex behaviors of other animals.
647	In the case of visual and acoustic stimuli, it is not clear what features of the stimuli (e.g.,
648	shapes, colors, and brightness for visual stimuli, and frequency and intensity for
649	acoustic stimuli) have the most prominent effects on behavior in a particular context.
650	We believe that our method presented herein, which allows extraction of the essential
651	features of information processing for sensory behaviors in the brain in an objective and
652	comprehensive manner, will help to solve this problem. Poor description of behavior
653	with simple indices compared to "big data" on neuronal activity is being recognized as
654	one of the significant problems in modern neuroscience (3-5). We expect that
655	comprehensive and objective feature extraction would increase the wealth of description
656	of behavior, which will provide us clues to understand more of the big data from brain
657	activity monitoring.
658	

659 FIGURE LEGENDS

660	Figure 1. A workflow of the machine learning method for the analysis of worm odor
661	avoidance behavior; "Behavioral data" (Top) Examples of the trajectories of 3 worms
662	during 12 min of 2-nonanone avoidance assay, overlaid on a schematic drawing of a
663	9-cm agar plate. (Second from the top) A magnified view of trajectories of a worm, in
664	which runs are blue and pirouettes are red. (Second from the bottom and bottom)
665	Graphs showing the odor concentration (<i>C</i> , second from the bottom) and temporal
666	changes in $C(dC, bottom)$ at the worm's position at 1-s intervals during the odor
667	avoidance assay. "Feature vector" From the (x, y) coordinates of each worm's centroid,
668	velocity, bearing, odor concentration, and their derivatives $(V, B, C, dV, dB, and dC)$ as
669	well as the difference between the present and the previous values (Δ) were calculated.
670	"Gain ratio" One example (C_Ter) of calculating gain ratio is shown.
671	
672	Figure 2. Extracted features that were modulated by prior experience of the odor. (A)

673 Enhanced odor avoidance behavior of worms caused by odor preexposure. (Left) End

674 points of 25 worms in each condition plotted on a schematic drawing of the assay plate.

675 (Right) Avoidance distance (distance between the center line of the plate and end point

676 of behavior) of each worm. Each bar represents median. Significant differences were

677 observed in the preexposed worms compared to the naive and mock-treated worms

678 (***p < 0.001, Kruskal-Wallis test with *post hoc* Dunn's test). (B, C, D and E)

679 Distributions of extracted features. Duration (B), the initial value of bearing change (C),

680 the average odor concentration (D), and the average odor concentration change (E) of

681 each run (**p < 0.01 and ***p < 0.001, Kruskal-Wallis test with *post hoc* Dunn's test).

682 *t_{crit}* for wild type worms was 13.1. Bars represent median and first and third quartiles.

683 (F) Time course changes in ensemble averages of odor concentration (dC) that worms 684 experienced before the termination of runs. On average, naive and mock-treated worms 685 experienced odor decrements of about -8 nM/s until 15 s before the end of each run, 686 when the decrements started to become very close to zero at the end of the run. In 687 contrast, preexposed animals consistently experienced smaller (i.e., shallower) odor 688 decrements during runs, and the average odor concentration changes at the end of runs 689 were positive. Bars represent mean \pm SEM. (G) A model relationship between odor 690 concentration change and behavioral response during navigation along the odor gradient. 691 When naive and mock-treated worms sensed a slight increase in the odor concentration, 692 which is a sign of migrating in the wrong direction, they stopped a run and started a 693 pirouette to search for a new direction. In contrast, the preexposed worms did not 694 respond to a slight increase in odor concentration, leading to longer run durations and 695 shorter pirouette durations in total, which likely contribute to the enhanced avoidance 696 distance. Numbers of worms are 25 for all the conditions, and all the statistical details 697 are described in Supplementary Table 1. 698

699 Figure 3. Sensory responses to slight odor concentration increases were reduced by

1 igure 5. Sensory responses to singlit outer concentration increases were reduced by

700 preexposure to the odor. (A) A schematic drawing of calcium imaging of neural activity

of worms under odor stimuli. Several immobilized worms were simultaneously exposed

to an odor flow whose concentration was changed by controlling syringe pumps. (B)

703 Responses (GCaMP/mCherry) of ASH neurons in naive (n = 25), mock-treated (n = 29),

and preexposed (n = 26) worms. Thick colored lines with gray shadows indicate mean \pm

705 SEM, and thin lines indicate individual responses. (C) Distributions of peak values

706	during the od	lor-increasing	g phase ($t =$	= 40-80 s)	shown in i	panel B. Bars	represent median.
.00	during the od	ior moreusing	phase (i	10 00 5)		puner D. Durb	represent incurun.

- 707 (***p < 0.001, Kruskal-Wallis test with *post hoc* Dunn's test).
- 708

709	Figure 4. Examples of extracted features of mutant strains. Avoidance distance (A), the
710	average velocity (B), the average migratory direction (C), and the initial odor
711	concentration (D) per run are shown. t_{crit} for each strain was 8.1 (<i>egl-3(n589)</i>), 7.2
712	(egl-3(ok979)), 18.1 (dop-3(tm1356)), 11.2 (ocr-2(ak47)), 17.8 (osm-9(ky10)), and 6.7
713	(tax-4(p678)). Thick bars represent statistical differences between preexposed worms
714	versus naive and mock-treated worms, suggesting differences caused by the odor
715	preexposure; thin bars represent statistical differences between preexposed worms
716	versus naive <i>or</i> mock-treated worms, which were not caused by the preexposure. (** $p <$
717	0.01 and *** $p < 0.001$, Kruskal-Wallis test with <i>post hoc</i> Dunn's test)
718	
719	Figure 5. Experience-dependent changes in bat acoustic navigation. (A) Measurement
719 720	Figure 5. Experience-dependent changes in bat acoustic navigation. (A) Measurement system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber.
720	system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber.
720 721	system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber.(B) Representative flight trajectories of a bat in horizontal plane during repeated flight
720 721 722	system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber.(B) Representative flight trajectories of a bat in horizontal plane during repeated flight in the obstacle course. The top figure combines the initial three (red) and last three
720721722723	system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber.(B) Representative flight trajectories of a bat in horizontal plane during repeated flight in the obstacle course. The top figure combines the initial three (red) and last three (blue) flight trajectories. Each behavioral feature was collected in three segments:
 720 721 722 723 724 	system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber. (B) Representative flight trajectories of a bat in horizontal plane during repeated flight in the obstacle course. The top figure combines the initial three (red) and last three (blue) flight trajectories. Each behavioral feature was collected in three segments: earlier, middle, and later terms. Bottom figure shows an expanded view of the earlier
 720 721 722 723 724 725 	system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber. (B) Representative flight trajectories of a bat in horizontal plane during repeated flight in the obstacle course. The top figure combines the initial three (red) and last three (blue) flight trajectories. Each behavioral feature was collected in three segments: earlier, middle, and later terms. Bottom figure shows an expanded view of the earlier term in the first flight. Definition of the horizontal bearing of the flight (<i>B_hori</i>),

Time windows for the analysis of each behavioral feature were 0.1, 0.2, or 0.3 s before

730 or when (t = 0) passing through the chain array. (C) A list of extracted features of bat

acoustic navigation modulated by flight experience. (D) Distributions of V(-0.3) and

732 dV(-0.3) are plotted. Bars represent median and first and third quartiles. (*p < 0.05,

733 Kruskal-Wallis test with *post hoc* Dunn's test).

734

735

736 ACKNOWLEDGEMENTS

737 We thank Drs. André Brown, Katsuyoshi Matsushita, Ken-ichi Hironaka, Takuma

738 Degawa, and the Kimura laboratory members for suggestions and comments on this

739 work. Nematode strains were provided by the Caenorhabditis Genetics Center (funded

by the NIH Office of Research Infrastructure Programs P40 OD010440) and by

741 National Bioresource Project funded by the Ministry of Education, Culture, Sports,

Science and Technology (MEXT), Japan. This work was supported by Interdisciplinary

743 graduate school program for systematic understanding of health and disease (for S.J.Y.),

744 by KAKENHI 25249020 and JP16H06536 (for K.H.), JP16H06542 (for S.H.),

JP16H06539 (for T.M.), JP16H06545 (for K.D.K.) from the MEXT, by PRESTO

746 JPMJPR14D8 (for S.H.) by JST, and by Osaka University Co-Creation Program (for

747 T.M. and K.D.K.).

748

749 AUTHOR CONTRIBUTIONS

- 750 S.J.Y, T.M. and K.D.K. designed the experiments, S.J.Y, Y.I., F.H., K.F., Y.T., Y.Y.,
- 751 K.H., S.H. and K.D.K. performed the experiments, S.J.Y. and T.M. analyzed the data,
- and S.J.Y. and K.D.K. wrote the manuscript. All authors reviewed the manuscript.

REFERENCES

$754 \\ 755$	1.	Alivisatos AP, et al. (2012) The Brain Activity Map Project and the Challenge of Functional Connectomics. <i>Neuron</i> 74(6):970–974.
756 757	2.	Landhuis E (2017) Neuroscience: Big brain, big data. <i>Nature</i> 541(7638):559–561.
758 759 760	3.	Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D (2017) Neuroscience Needs Behavior: Correcting a Reductionist Bias. <i>Neuron</i> 93(3):480–490.
761 762 763	4.	Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF (2014) Big behavioral data: psychology, ethology and the foundations of neuroscience. <i>Nat</i> <i>Neurosci</i> 17(11):1455–1462.
764 765	5.	Anderson DJ, Perona P (2014) Toward a Science of Computational Ethology. <i>Neuron</i> 84(1):18–31.
766 767	6.	Bishop CM (2006) Pattern Recognition and Machine Learning (Springer Verlag).
768 769	7.	Vogelstein JT, et al. (2014) Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning. <i>Science</i> 344(6182):386–392.
770 771 772	8.	Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., & Branson, K. (2013). JAABA: Interactive machine learning for automatic annotation of animal behavior. <i>Nat Meth</i> , <i>10</i> (1), 64–67.
773 774 775	9.	Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of <i>Drosophila</i> . <i>Nat Meth</i> 6(6):451–457.
776 777 778	10.	Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P (2009) Automated monitoring and analysis of social behavior in <i>Drosophila</i> . <i>Nat Meth</i> 6(4):297–303.

779 780 781	11.	Baek J-H, Cosman P, Feng Z, Silver J, Schafer WR (2002) Using machine vision to analyze and classify <i>Caenorhabditis elegans</i> behavioral phenotypes quantitatively. <i>J Neurosci Methods</i> 118(1):9–21.
782 783 784	12.	Brown AEX, Yemini EI, Grundy LJ, Jucikas T, Schafer WR (2013) A dictionary of behavioral motifs reveals clusters of genes affecting <i>Caenorhabditis elegans</i> locomotion. <i>Proc Natl Acad Sci USA</i> 110(2):791–796.
785 786	13.	Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2008) Dimensionality and Dynamics in the Behavior of <i>C. elegans. PLoS Comput Biol</i> 4(4):e1000028.
787 788	14.	Lockery SR (2011) The computational worm: spatial orientation and its neuronal basis in <i>C. elegans</i> . <i>Curr Opin Neurobiol</i> 21(5):782–790.
789 790	15.	Suzuki H, et al. (2008) Functional asymmetry in <i>Caenorhabditis elegans</i> taste neurons and its computational role in chemotaxis. <i>Nature</i> 454(7200):114–117.
791 792 793	16.	Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in <i>Caenorhabditis elegans</i> . <i>Nat Meth</i> 4(9):727–731.
794 795 796	17.	Clark DA, Gabel CV, Gabel H, Samuel ADT (2007) Temporal activity patterns in thermosensory neurons of freely moving <i>Caenorhabditis elegans</i> encode spatial thermal gradients. <i>J Neurosci</i> 27(23):6083–6090.
797 798 799	18.	Kimura KD, Miyawaki A, Matsumoto K, Mori I (2004) The <i>C. elegans</i> Thermosensory Neuron AFD Responds to Warming. <i>Curr Biol</i> 14(14):1291– 1295.
800 801	19.	Tanimoto Y, et al. (2017) Calcium dynamics regulating the timing of decision-making in <i>C. elegans. eLife</i> 6:13819.
802 803 804	20.	Larsch J, Ventimiglia D, Bargmann CI, Albrecht DR (2013) High-throughput imaging of neuronal activity in <i>Caenorhabditis elegans</i> . <i>Proc Natl Acad Sci USA</i> 110(45):E4266–73.
805 806	21.	Yemini E, Jucikas T, Grundy LJ, Brown AEX, Schafer WR (2013) A database of <i>Caenorhabditis elegans</i> behavioral phenotypes. <i>Nat Meth</i> 10(9):877–879.

bioRxiv preprint doi: https://doi.org/10.1101/198879; this version posted October 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

807	22.	Quinlan JR (1986) Induction of Decision Trees. Mach Learn 1(1):81–106.
808	23.	Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94.
809 810 811	24.	Kimura KD, Fujita K, Katsura I (2010) Enhancement of odor avoidance regulated by dopamine signaling in <i>Caenorhabditis elegans</i> . <i>J Neurosci</i> 30(48):16365–16375.
812813814815	25.	Yamazoe-Umemoto A, Fujita K, Iino Y, Iwasaki Y, Kimura KD (2015) Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of <i>Caenorhabditis elegans</i> . <i>Neurosci</i> <i>Res</i> 99:22–33.
816 817	26.	Pierce-Shimomura JT, Morse TM, Lockery SR (1999) The fundamental role of pirouettes in <i>Caenorhabditis elegans</i> chemotaxis. <i>J Neurosci</i> 19(21):9557–9569.
818 819 820	27.	Yamada Y, Hiryu S, Watanabe Y (2016) Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight. <i>J Comp Physiol A</i> 202(11):791–801.
821 822	28.	Gorelik R, Gautreau A (2014) Quantitative and unbiased analysis of directional persistence in cell migration. <i>Nat Protoc</i> 9(8):1931–1943.
823 824	29.	Iino Y, Yoshida K (2009) Parallel use of two behavioral mechanisms for chemotaxis in <i>Caenorhabditis elegans</i> . <i>J Neurosci</i> 29(17):5370–5380.
825	30.	Quinlan JR (1992) C4.5 (Morgan Kaufmann, San Mateo).
826 827	31.	Frank E, Hall MA, Witten IH (2016) The WEKA Workbench (Online Appendix). <i>Data Mining</i> (Morgan Kaufmann). Forth Edition.
828 829	32.	Tian L, et al. (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. <i>Nat Meth</i> 6(12):875–881.
830 831 832	33.	Shaner NC, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from <i>Discosoma sp.</i> red fluorescent protein. <i>Nat Biotech</i> 22(12):1567–1572.

833 834	34.	Lewis JA, Wu CH, Berg H, Levine JH (1980) The genetics of levamisole resistance in the nematode <i>Caenorhabditis elegans</i> . <i>Genetics</i> 95(4):905–928.
835	35.	Zheng Y (2015) Trajectory Data Mining. ACM Trans Intell Syst Technol 6(3):1-
836		41.
837	36.	Louis M, Huber T, Benton R, Sakmar TP, Vosshall LB (2008) Bilateral olfactory
838		sensory input enhances chemotaxis behavior. Nat Neurosci 11(2):187-199.
839	37.	Kato S, Xu Y, Cho CE, Abbott LF, Bargmann CI (2014) Temporal responses of
840		C. elegans chemosensory neurons are preserved in behavioral dynamics. Neuron
841		81(3):616–628.
842	38.	Teghtsoonian R (1971) On the exponents in Stevens' law and the constant in
843		Ekman's law. <i>Psycho Rev</i> 78(1):71–80.
844	39.	Kaplan JM (1996) Sensory signaling in Caenorhabditis elegans. Curr Opin
845		<i>Neurobiol</i> 6(4):494–499.
846	40.	Bargmann CI (2006) Chemosensation in C. elegans. WormBook:1–29.
847	41.	Kass J, Jacob TC, Kim P, Kaplan JM (2001) The EGL-3 proprotein convertase
848		regulates mechanosensory responses of Caenorhabditis elegans. J Neurosci
849		21(23):9265–9272.
850	42.	Suo S, Ishiura S, Van Tol HHM (2004) Dopamine receptors in C. elegans. Eur J
851		<i>Pharmacol</i> 500(1-3):159–166.
852	43.	Tobin D, et al. (2002) Combinatorial expression of TRPV channel proteins
853		defines their sensory functions and subcellular localization in C. elegans neurons.
854		Neuron 35(2):307–318.
855	44.	Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with
856		structural similarity to channels, is required for olfaction, mechanosensation, and
857		olfactory adaptation in <i>Caenorhabditis elegans</i> . J Neurosci 17(21):8259–8269.

858 859 860	45.	Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in <i>C. elegans</i> . <i>Neuron</i> 17(4):707–718.
861	46.	Li C, Kim K (2008) Neuropeptides. WormBook:1-36.
862 863 864 865	47.	Husson SJ, Clynen E, Baggerman G, Janssen T, Schoofs L (2006) Defective processing of neuropeptide precursors in <i>Caenorhabditis elegans</i> lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. <i>J Neurochem</i> 98(6):1999–2012.
866 867	48.	Chase DL, Koelle MR (2007) Biogenic amine neurotransmitters in <i>C. elegans</i> . <i>WormBook</i> :1–15.
868 869	49.	Moss CF, Surlykke A (2010) Probing the natural scene by echolocation in bats. <i>Front Behav Neurosci</i> 4. doi:10.3389/fnbeh.2010.00033.
870 871 872	50.	Hong W, et al. (2015) Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. <i>Proc Natl Acad Sci USA</i> 112(38):E5351–E5360.
873 874	51.	Gershow M, et al. (2012) Controlling airborne cues to study small animal navigation. <i>Nat Meth</i> 9(3):290–296.
875 876 877	52.	Albrecht DR, Bargmann CI (2011) High-content behavioral analysis of <i>Caenorhabditis elegans</i> in precise spatiotemporal chemical environments. <i>Nat Meth</i> 8(7):599–605.
878 879	53.	Burges CJC (1998) A tutorial on support vector machines for pattern recognition. <i>Data Mining and Knowledge Discovery</i> 2(2):121–167.
880 881 882	54.	LeCun Y, Bengio Y, Hinton G (2015) Deep learning. <i>Nature</i> 521(7553):436–444.

Parameters	Definition	880
RunNum	Number of a run	886
RunTime	Start time of a run	000
RunDur	Duration of a run	
PirDur	Duration of the previous pirouette	
V_Ave	Average velocity during a run	
V_Ini	Velocity at run initiation	
V_Ter	Velocity at run termination	
dV_Ave	Average acceleration during a run	
dV_Ini	Acceleration at run initiation	
dV_Ter	Acceleration at run termination	
B_Ave	Bearing of migratory vector throughout a run	
B_Ini	Bearing at run initiation	
B_Ter	Bearing at run termination	
dB_Ave	Average temporal changes in bearing	
dB_Ini	Temporal changes in bearing at run initiation	
dB_Ter	Temporal changes in bearing at run termination	
C_Ave	Average odor concentration during a run	
C_Ini	Odor concentration at run initiation	
C_Ter	Odor concentration at run termination	
dC_Ave	Average temporal changes in odor concentration during a run	
dC_Ini	Temporal changes in odor concentration at run initiation	
dC_Ter	Temporal changes in odor concentration at run termination	
Dir_Ave	Average directionality ratio	
Dir_Ini	Directionality ratio at run initiation	
Dir_Ter	Directionality ratio at run termination	
WV	Curving rate of a run	
RunDur∆	Current RunDur minus the previous RunDur	
PirDur∆	Current PirDur minus the previous PirDur	
WV⊿	Current WV minus the previous WV	
X_Ave∆Ave	Current Ave minus the previous Ave	
	Current Ave minus the previous Ini	
X_Ave∆Ter	Current Ave minus the previous Ter	
X_Ini∆Ave	Current Ini minus the previous Ave	
	-	

Current Ini minus the previous Ini

Current Ini minus the previous Ter

Current Ter minus the previous Ave

Current Ter minus the previous Ini

Current Ter minus the previous Ter

X Ini∆Ini

X Ini∆Ter

 $X_Ter \Delta Ave$

X Ter∆Ini

X Ter∆Ter

(X = V, dV, B, dB, C, dC, Dir)

Table 1. A list of behavioral features used for worms' olfactory navigation

odor experi	ience				
naive vs pr	·e-exp	mock vs pre-exp			
V_Ave	0.1796	C_Ter	0.1337		
Run_Dur	0.1558	C_Ave	0.0998		
dB_Ini	0.1349	C_Ini	0.0932		
C_Ini∆Ave	0.1230	dC_Ave	0.0854		
C_Ini∆Ini	0.1230	dC_Ini	0.0810		
dB_Ter∆Ini	0.1191	dC_Ter	0.0749		
dB_Ave∆Ini	0.1013	dC_Ini∆Ter	0.0722		
C_Ave	0.0983	dC_Ter∆Ini	0.0490		
C_Ter	0.0942	dV_Ave∆Ini	0.0478		
dB_Ini∆Ter	0.0924	dV_Ini	0.0478		
C_Ini	0.0914	dV_Ave	0.0364		
dB_Ini∆Ave	0.0839	Run_Dur	0.0352		
V_Ave∆Ave	0.0815	dB_Ini	0.0342		
dC_Ter	0.0810	dB_Ter∆Ini	0.0304		
Run_Dur∆	0.0785	dB_Ave∆Ini	0.0298		
dC_Ave	0.0547				
C_Ave∆Ter	0.0394				
Pir_Dur	0.0326				

887 Table 2. Extracted features of worms' olfactory navigation modulated by prior

889 Bold letters indicate features shared between the two comparisons.

891 Table 3. Summary of extracted features of wild-type and mutant strains that are modulated by prior odor experience

strain	RunDur	V_Ave	V_Ini	V_Ter	B_Ter	dB_Ini	C_Ave	C_Ini	C_Ter	dC_Ave	dC_Ter	Dir_Ave	RunNum
wild-type	up					down	down	down	down	up	up		
egl-3(n589)							up	up	up				
egl-3(ok979)		down	down	down		down	up	up	up				
dop-3(tm1356)	up	down		down	up					up	up	down	
ocr-2(ak47)		up		up	up								
osm-9(ky10)	up	up		up									
tax-4(p678)													up

892 Only features with statistical differences between preexposed worms versus naive *and* mock-treated worms are shown.

bioRxiv preprint doi: https://doi.org/10.1101/198879; this version posted October 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Yamazaki_170609_v20clear.docx

2017/10/12, 15:16:32

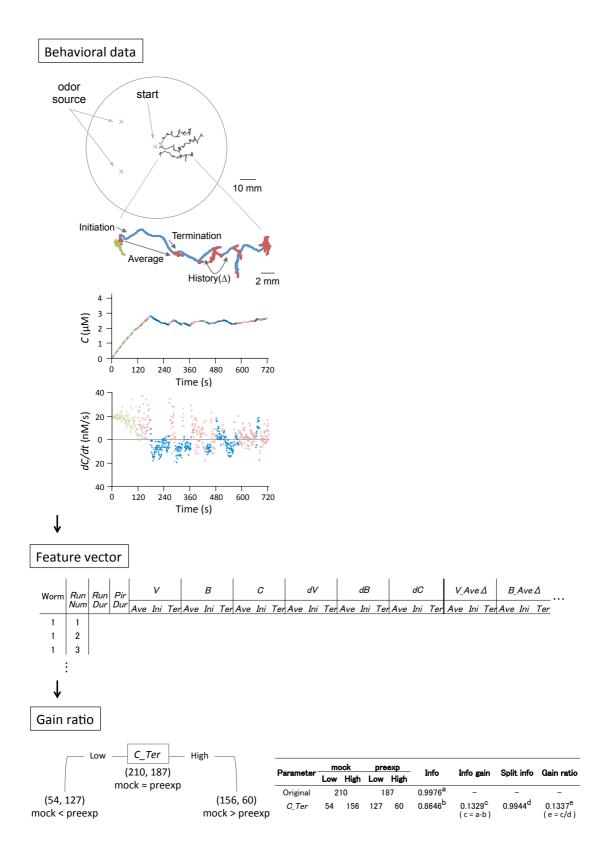
894 Table 4. A list of behavioral features used for bats' acoustic navigation

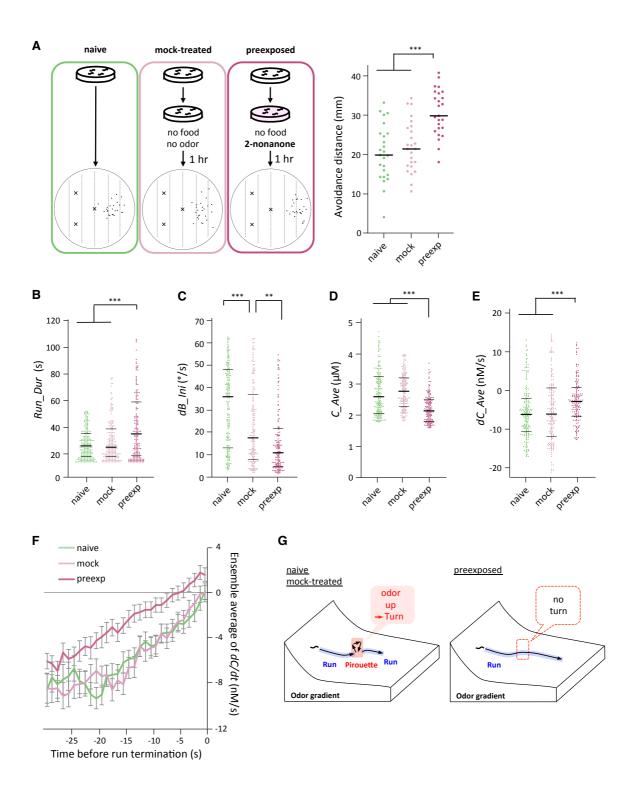
Parameters	Definition
V(t)	Fight velocity in 3D space
dV(t)	Flight acceleration in 3D space
B_hori(t)	Absolut bearing of the flight vector in a horizontal plane
dB_hori(t)	Temporal change in bearing of the flight vector in a horizontal plane
ddB_hori(t)	Temporal acceleration in bearing of the flight vector in a horizontal plane
B_vert(t)	Absolut bearing of the flight vector in a vertical plane
$B_{obs(t)}$	Absolute bearing to the edge point of the nearest chain array
$R_obs(t)$	Distance from the bat to the edge point of the nearest chain array
$R_x(t)$	Longitudinal directional distance to the frontal chain array
$R_y(t)$	Lateral directional distance to the inside pitch of the chain array
dH(t)	Temporal change in flight height

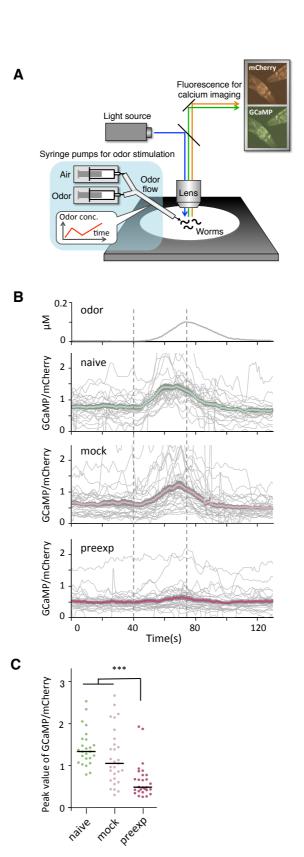
897

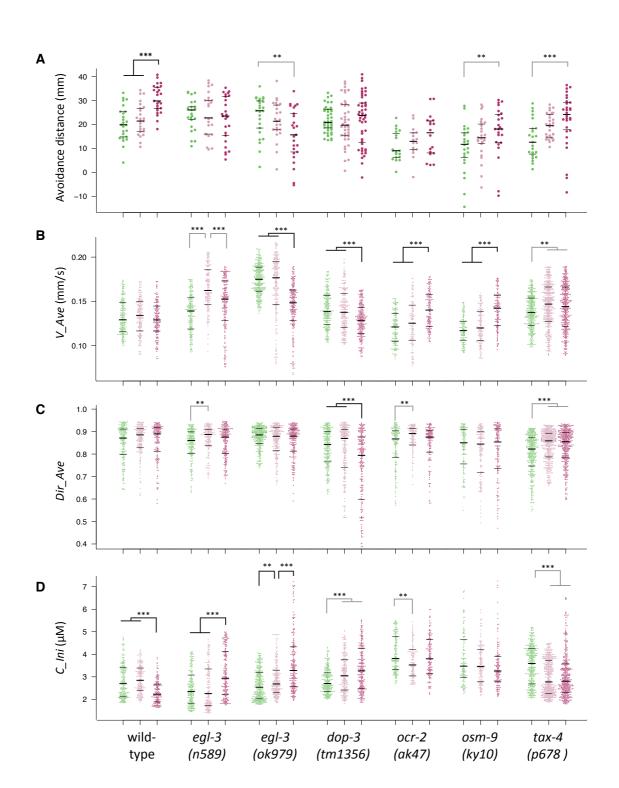
895 896

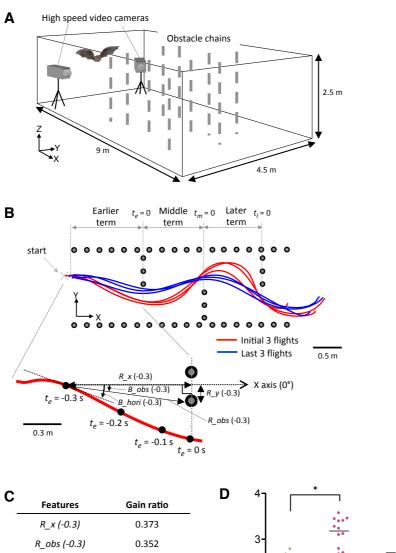
bioRxiv preprint doi: https://doi.org/10.1101/198879; this version posted October 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

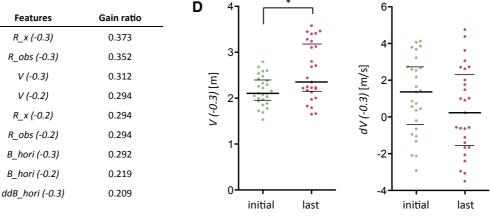












Supplementary Table 1

a, 4A 3 0 5	Avoidance distance of N2 Run duration of N2	25	25								test		
2	Run duration of N2			25	animals	Kruskal-Wallis test	2	<0.0001(***)	24.451	Dunn's test	1	naive vs mock: 0.7621(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: 0.0001(***)	z = 0.6619 z = 4.5747 z = 3.9128
þ		219	210	187	runs	Kruskal-Wallis test	2	<0.0001(***)	18.76	Dunn's test	1	naive vs mock: 1(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: 0.0006(***)	z = -0.4269 z = -3.9959 z = -3.547
	Initial dBearing of N2	219	210	187	runs	Mardia- Watson- Wheeler test	2	<0.0001(***)	64.69	Mardia- Watson- Wheeler test	1	naive vs mock: <0.0001(***) naive vs preexposure: <0.0001(***) mock vs preexposure: 0.002(**)	W = 26.305 W = 59.795 W = 12.007
Ξ	Average Conc. of N2	219	210	187	runs	Kruskal-Wallis test	2	<0.0001(***)	68.69	Dunn's test	1	naive vs mock: 0.1351(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: <0.0001(***)	z = -1.6951 z = 6.3349 z = 7.9016
	Averege dConc. of N2	219	210	187	runs	Kruskal-Wallis test	2	0.0003(***)	16.56	Dunn's test	1	naive vs mock: 0.3202(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: 0.0085(**)	z = -1.2441 z = -4.001 z = -2.7671
c	Peak value of GCaMP3/mCherry	25	29	28	animals	Kruskal-Wallis test	2	<0.0001(***)	30.11	Dunn's test	1	naive vs mock: 0.0949(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: 0.0004(***)	z = 1.8571 z = 5.3589 z = 3.6525
4	Avoidance distance of egf-3(n589)	25	25	25	animals	Kruskal-Wallis test	2	0.7763(ns)	0.51	Dunn's test	1		-
4	Avoidance distance of egf-3(ok979)	25	25	25	animals	Kruskal-Wallis test	2	0.0128(*)	8.72	Dunn's test	1	naive vs mock: 0.3924(ns) naive vs preexposure: 0.0051(**) mock vs preexposure: 0.1069(ns)	z = -1.1226 z = -2.9265 z = -1.8039
A	Avoidance distance of dop-3(tm1356)	46	46	47	animals	Kruskal-Wallis test	2	0.8196(ns)	0.40	Dunn's test	1		
A	Avoidance distance of ocr=2(ak47)	19	16	18	animals	Kruskal-Wallis test	2	0.2001(ns)	3.22	Dunn's test	1		
A	Avoidance distance of osm=9(ky10)	24	26	24	animals	Kruskal-Wallis test	2	0.0191(*)	7.91	Dunn's test	1	naive vs mock: 0.1625(ns) naive vs preexposure: 0.0075(**) mock vs preexposure: 0.3141(ns)	z = 1.6058 z = 2.8055 z = 1.2552
4	Avoidance distance of tax=4(p678)	23	29	30	animals	Kruskal-Wallis test	2	0.0008(***)	14.39	Dunn's test	1	naive vs mock: 0.0506(ns) naive vs preexposure: 0.0002(***) mock vs preexposure: 0.1175(ns)	z = 2.1232 z = 3.7932 z = 1.7605
3	Average speed of N2	219	210	187	runs	Kruskal-Wallis test	2	0.2796(ns)	2.55	Dunn's test	1	-	-
3	Average speed of egi- 3(n589)	227	194	235	runs	Kruskal-Wallis test	2	<0.0001(***)	80.44	Dunn's test	1	naive vs mock: <0.0001(***) naive vs preexposure: <0.0001(***) mock vs preexposure: <0.0001(***)	z = -8.9653 z = -4.5544 z = 4.6671
3	Average speed of eg/- 3(ok979)	370	260	252	runs	Kruskal-Wallis test	2	<0.0001(***)	137.51	Dunn's test	1	naive vs mock: 0.3296(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: <0.0001(***)	z = 1.2272 z = 11.1444 z = 9.1734
ı	Average speed of dop- 3(tm1356)	276	266	279	runs	Kruskal-Wallis test	2	<0.0001(***)	39.19	Dunn's test	1	naive vs mock: 0.6155(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: <0.0001(***)	z = 0.8234 z = 5.795 z = 4.9154
3	Average speed of <i>ocr</i> - 2(ak47)	180	142	168	runs	Kruskal-Wallis test	2	<0.0001(***)	50.52	Dunn's test	1	naive vs mock: 0.075(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: <0.0001(***)	z = -1.9599 z = -6.9657 z = -4.6254
3	Average speed of osm- 9(ky10)	147	175	160	runs	Kruskal-Wallis test	2	<0.0001(***)	66.85	Dunn's test	1	naive vs mock: 0.2053(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: <0.0001(***)	z = -1.4875 z = -7.5979 z = -6.4146
3	Average speed of tax- 4(p678)	402	531	473	runs	Kruskal-Wallis test	2	<0.0001(***)	20.69	Dunn's test	1	naive vs mock: <0.0001(***) naive vs preexposure: 0.0019(**) mock vs preexposure: 0.3492(ns)	z = -4.456 z = -3.2307 z = 1.1931
:	Average directionality ratio of N2	219	210	187	runs	Kruskal-Wallis test	2	0.2781(ns)	2.56	Dunn's test	1	-	-
2	Average directionality ratio of eg/-3(n589)	227	194	235	runs	Kruskal-Wallis test	2	0.0042(**)	10.96	Dunn's test	1	naive vs mock: 0.0014(**) naive vs preexposure: 0.1115(ns) mock vs preexposure: 0.1585(ns)	z = -3.3036 z = -1.7844 z = 1.6179
2	Average directionality ratio of eg/-3(ok979)	370	260	252	runs	Kruskal-Wallis test	2	0.1357(ns)	4.00	Dunn's test	1	-	-
;	Average directionality ratio of dop-3(tm1356)	276	266	279	runs	Kruskal-Wallis test	2	<0.0001(***)	38.61	Dunn's test	1	naive vs mock: 1(ns) naive vs preexposure: <0.0001(***) mock vs preexposure: <0.0001(***)	z = -0.3986 z = 5.1836 z = 5.5349
5	Average directionality ratio of ocr-2(ak47)	180	142	168	runs	Kruskal-Wallis test	2	0.0135(*)	8.62	Dunn's test	1	naive vs mock: 0.0062(**) naive vs preexposure: 0.6577(ns)	z = -2.8694 z = -0.7747 z = 2.0962
-	Average directionality ratio of osm-9(ky10)	147	175	160	runs	Kruskal-Wallis test	2	0.6949(ns)	0.73	Dunn's test	1	mock vs preexposure: 0.0541(ns)	z = z.090z
;	Average directionality ratio of tax=4(p678)	402	531	473	runs	Kruskal-Wallis test	2	<0.0001(***)	37.08	Dunn's test	1	naive vs mock: <0.0001(***) naive vs preexposure: <0.0001(***) mock up preexposure: 1(no)	z = -5.4554 z = -5.2773 z = 0.0423
0	Initial Conc. of N2	219	210	187	runs	Kruskal-Wallis test	2	<0.0001(***)	57.75	Dunn's test	1	mock vs preexposure: 1(ns) naive vs mock: 0.1381(ns) naive vs preexposure: <0.0001(***) mock us preexposure: <0.0001(***)	z = -1.6846 z = 5.7215
)	Initial Conc. of eg/- 3(n589)	227	194	235	runs	Kruskal-Wallis test	2	<0.0001(***)	48.82	Dunn's test	1	naive vs preexposure: <0.0001(***) naive vs preexposure: <0.0001(***) naive vs preexposure: <0.0001(***)	z = 7.284 z = 0.0374 z = -6.0955 z = -5.8855
0	Initial Conc. of egl- 3(ok979)	370	260	252	runs	Kruskal-Wallis test	2	<0.0001(***)	83.00	Dunn's test	1	naive vs preexposure: <0.0001(***) naive vs mock: 0.002(**) naive vs preexposure: <0.0001(***)	z = -3.2048 z = -9.0932
,	Initial Conc. of dop- 3(tm1356)	276	266	279	runs	Kruskal-Wallis test	2	<0.0001(***)	30.83	Dunn's test	1	mock vs preexposure: <0.0001(***) naive vs mock: 0.001(***) naive vs preexposure: <0.0001(***)	z = -5.4678 z = -3.4101 z = -5.4972
0	Initial Conc. of ocr- 2(ak47)	180	142	168	runs	Kruskal-Wallis test	2	0.0151(*)	8.38	Dunn's test	1	mock vs preexposure: 0.084(ns) naive vs mock: 0.0057(**) naive vs preexposure: 0.2973(ns)	z = -2.0269 z = 2.8947 z = 1.2868
5	Initial Conc. of osm- 9(ky10)	147	175	160	runs	Kruskal-Wallis test	2	0.0637(ns)	5.51	Dunn's test	1	mock vs preexposure: 0.1517(ns)	z = -1.6393 -
5	Initial Conc. of tax- 4(p678)	402	531	473	runs	Kruskal-Wallis test	2	<0.0001(***)	76.84	Dunn's test	1	naive vs mock: <0.0001(***) naive vs preexposure: <0.0001(***) mock vs preexposure: 0.8193(ns)	z = 8.0792 z = 7.3115 z = -0.6035

Figure Parameter Number of Number of Number of Unit of Statistical p value Other result Groups initial last number tests used

5D	Fight velocity in 3D space at t=-0.3	2	27	27	flights	Mann-Whitney test	0.0234(*)	Mann-Whitney U = 233.0

5D Flight acceleration in SD 2 27 27 flights Mann-Whitney 0.2326(ns) Mann-Whitney U = 295.0 space at t=0.3