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 2 

ABSTRACT 26 

Animal behavior is the integrated output of multiple brain functions. However, 27 

understanding how multiple brain functions affect behavior has been difficult. In order 28 

to decipher dynamic brain functions from time-series of behavioral data, we developed 29 

a machine learning strategy that extracts distinguishing behavioral features of sensory 30 

navigation. We first investigated experience-dependent enhancement of odor avoidance 31 

behavior of the nematode Caenorhabditis elegans. We segmented worms' trajectories 32 

during olfactory navigation into two behavioral states, analyzed 92 features of the states, 33 

and automatically extracted 9 distinguishing features modulated by prior odor 34 

experience using a statistical index, the gain ratio. The extracted features included ones 35 

previously unidentified, one of which indicated that the prior odor experience lowers 36 

worms' behavioral responses to a small increase in odor concentration, causing 37 

enhanced odor avoidance. In fact, calcium imaging analysis revealed that the response 38 

of ASH nociceptive neurons to a small odor increase was significantly reduced after 39 

prior odor experience. In addition, based on extracted features, multiple mutant strains 40 

were categorized into several groups that are related to physiological functions of the 41 

mutated genes, suggesting a possible estimation of unknown gene function by 42 

behavioral features. Furthermore, we also extracted behavioral features modulated by 43 

experience in acoustic navigation of bats. Thus, our results demonstrate that, regardless 44 

of animal species, sensory modality, and spatio-temporal scale, behavioral features 45 

during navigation can be extracted by machine learning analysis, which may lead to the 46 

understanding of information processing in the brain.  47 

 48 
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SIGNIFICANCE STATEMENT 49 

Behavior is the most important output of brain activity, and its recording has become 50 

easy because of the development of small and inexpensive cameras and small GPS 51 

devices. However, these "behavioral big data" have been used to calculate very simple 52 

indices, such as speed, direction, and goal arrival rate. In this study, we analyzed animal 53 

behavior using machine learning (also known as "artificial intelligence") and found 54 

specific behavioral features related to navigation in worms and bats. We also found 55 

activity changes in nerve cells that were reflected in the worm's behavioral changes. 56 

Thus, our results demonstrate that artificial intelligence can be used to find 57 

characteristics of animal behavior that would eventually help us understand how the 58 

brain works. 59 

 60 

Keywords: Navigation, Machine Learning, Behavior  61 
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INTRODUCTION 62 

Brain activity can be measured as time series vector data of a large number of neural 63 

activities using simultaneous optical monitoring recently (1, 2). Behavior, the integrated 64 

output of multiple brain functions such as sensory perception, memory, emotion, and 65 

decision-making, however, is still analyzed in classic ways and insufficiently studied 66 

using simple and subjectively chosen measures, such as velocity, migratory distance, 67 

and/or the probability of reaching to a particular goal. This large asymmetry in data 68 

between neural activity and behavior has emerged as one of the significant issues in 69 

modern neuroscience (3-5). In other words, without describing when and how behavior 70 

changes in detail, we may not be able to fully interpret the meaning of large-scale 71 

records of neural activities. One cause for this problem is the difficulty in the analysis of 72 

behavior: Although machine-vision techniques over small areas and GPS-based 73 

tracking over large areas allow us to continuously monitor the positions and/or postures 74 

of animals, it is still unclear which aspects of behavioral features should be focused to 75 

clarify the relationships with neural activities. 76 

 77 

One way to solve this problem is to use machine learning. Machine learning is a method 78 

of extracting latent patterns and discovering knowledge from a large amount of data (6). 79 

Machine learning-based behavioral analyses of model invertebrates, such as the fruit fly 80 

Drosophila melanogaster and the nematode Caenorhabditis elegans, have been 81 

performed because these model animals are suitable for machine vision monitoring of 82 

their behavior due to their small size and relatively simple behavioral patterns (7-13). 83 

Furthermore, these animals have relatively small neural circuits, and multiple genetic 84 
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techniques are available, suggesting that comprehensive analysis of brain function at 85 

behavioral, neuronal, and molecular levels is feasible. These analyses have provided 86 

new insights into behavioral states and behavioral motifs during voluntary movement, 87 

as well as the relationships between optogenetic activation of neurons and behavioral 88 

responses. However, machine learning has not been used to understand the brain 89 

activity related to sensory behaviors: How is environmental information transformed 90 

into behavioral responses through sensory perception and decision-making, as well as 91 

its modulation by memory and/or emotion in the nervous system? The lack of research 92 

in this topic is likely due to the fact that these invertebrate model animals are too small 93 

to accurately and easily measure sensory input during behavior. In addition, even when 94 

sensory input can be measured, the method to effectively reveal the dynamic 95 

relationships between sensory input and behavioral output has not been established. 96 

 97 

In the present study, we aimed to establish a method to objectively and 98 

comprehensively extract behavioral features that are possibly linked to the neural 99 

activities for sensory behavior. For that purpose, we analyzed two types of sensory 100 

navigation that have been monitored quantitatively but are different in modality and 101 

spatio-temporal scale—olfactory navigation of C. elegans and acoustic navigation of 102 

the bat Rhinolophus ferrumequinum nippon—using machine learning. In particular, we 103 

focused on experience-dependent modulation (i.e., "learning"; to avoid confusion with 104 

machine learning analysis, we do not use this term for biological learning hereafter) of 105 

navigation as a model for efficient extraction of differences in behavioral features. In C. 106 

elegans, experience-dependent behavioral modulation has been studied in thermotaxis 107 
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and salt-taxis, in which worms move in a preferred direction by changing the frequency 108 

of directional changes depending on the intensity of the sensory stimulus (14). 109 

Consistently, changes in neural activity to a stepwise stimulus change have been 110 

revealed by calcium imaging mostly of immobilized worms and in a few cases of freely 111 

moving worms (15-20). However, it has not been fully clarified how those behaviors 112 

are regulated by neural activity that responds to slight changes in stimuli during 113 

navigation in a sensory gradient as well as how the behavioral and neural responses are 114 

modulated by experience. Furthermore, although large scale analyses of mutant strains 115 

are available (12, 21), methods for effectively analyzing the differences in 116 

experience-dependent modulation of sensory behaviors of mutant strains have not been 117 

established.  118 

 119 

To reveal experience-dependent modulations of olfactory navigation in worms, we 120 

extracted prominent features of behavior and their relationships to odor stimuli using 121 

machine learning. For this, we segmented the animals' navigation into two behavioral 122 

states and, for individual states, calculated the gain ratio, a statistical index used in 123 

decision tree analysis to identify features that distinguish the data in different classes 124 

(22). We chose this method because it allows us to easily interpret the results of the 125 

analysis for the planning of physiological experiment of neural activities. In the present 126 

study, we analyzed 92 features of behavior and sensory information from each of ~200 127 

behavioral states of wild-type worms either with or without a prior odor experience (25 128 

worms per condition) and found that 9 features are modulated in an 129 

experience-dependent manner. One of the extracted features, the reduction in behavioral 130 
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response to a small increase in odor concentration, was consistent with a change in 131 

neuronal activity revealed by calcium imaging. In addition, we calculated gain ratios to 132 

identify the experience-dependent changes in olfactory navigation of multiple mutant 133 

strains and found that the mutants were categorized into several groups based on 134 

behavioral features, which reflect physiological functions of the mutated genes. 135 

Furthermore, we also identified experience-dependent modulation of behavioral 136 

features from bat acoustic navigation. Thus, we propose that machine learning analysis 137 

with gain ratios is an efficient strategy to reveal features of animal behavior in general. 138 

 139 

METHODS 140 

Cultivation of worms 141 

The techniques used for culturing and handling C. elegans strains have been essentially 142 

described previously (23). Wild type Bristol strain RRID:WB-STRAIN:N2_Male and 143 

mutant strains RRID:WB-STRAIN:MT1219 egl-3(n589), RRID:WB-STRAIN:VC671 144 

egl-3(ok979), RRID:WB-STRAIN:CX4544 ocr-2(ak47), RRID:WB-STRAIN:JC1636 145 

osm-9(ky10), RRID:WB-STRAIN:JC0570 tax-4(p678) were obtained from the 146 

Caenorhabditis Genetics Center (University of Minnesota, USA). 147 

RRID:WB-STRAIN:KDK1 dop-3(tm1356) was originally obtained from National 148 

BioResource Project (Japan) and backcrossed five times with N2 . 149 

 150 

Analysis of worms' olfactory navigation 151 

A 2-nonanone avoidance assay was performed as described previously (24, 25). Briefly, 152 

2-3 young adult hermaphrodite worms grown synchronously were placed in the center 153 
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of a 9-cm nematode growth media (NGM) plate, and 2 µL of 30% 2-nonanone (cat. no. 154 

132-04173; Wako, Japan) diluted in EtOH (cat. no. 0057-00456; Wako, Japan) were 155 

dropped in two spots on the surface of the NGM plate (Fig. 1A top), and the worms’ 156 

behavior was recorded for 12 min. This assay was performed under the following three 157 

conditions: the worms cultivated on NGM plates with their food bacteria 158 

RRID:WB-STRAIN:OP-50 were briefly washed with NGM buffer and subjected to the 159 

assay ("naive" condition), or they were subjected to the assay after 1 h of preexposure to 160 

0.6 µL of 15% 2-nonanone diluted in EtOH or to only EtOH spotted on the lid of a 161 

NGM plate without food ("preexp" and "mock" conditions, respectively). We added the 162 

mock-treated control to confirm that 1-h starvation did not affect the odor avoidance 163 

behavior of worms and to extract behavioral features modulated by the odor 164 

preexposure compared to the naive and the mock-treated controls. Images of worms the 165 

NGM plate during odor avoidance assay were acquired by a high-resolution USB 166 

camera (DMK 72AUC02; The Imaging Source, USA) with a lens (LM16JC5MW; 167 

Kowa, Japan) at 1 Hz for 12 min. From the recorded images, the coordinates of 168 

individual animals' centroids were acquired using Move-tr/2D software (Library Co., 169 

Ltd., Tokyo, Japan) and used for the following analysis. 170 

 171 

Similar to worms' other sensory behaviors, trajectories in the 2-nonanone avoidance 172 

assay can be divided into two states: "run", a relatively long period of straight 173 

movement, and "pirouette", a period of short movements interrupted by frequent 174 

reversals and turns (24, 26). Angular change per s was calculated from the centroid 175 

coordinates, and movements of 1 s with angular change larger than 90° were classified 176 
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as a turn. A histogram of turn intervals was fitted by two exponentials, suggesting that 177 

turn intervals are regulated by two probabilistic mechanisms (25, 26). The time of the 178 

intersection of the two exponentials was defined as tcrit, and turn intervals longer or 179 

shorter than the tcrit were classified as runs or included in pirouettes, respectively. tcrit 180 

was calculated for the control (i.e., naive plus mock-treated) condition for wild-type and 181 

mutant strains, respectively. In this study, we analyzed features of runs but not of 182 

pirouettes except for their duration because pirouettes appear to have little effect on 183 

odor avoidance (25). Excel 2010 (Microsoft Corp.) was used for these calculations. The 184 

odor concentrations that worms experienced at specific spatio-temporal points were 185 

calculated according to the dynamic odor gradient model based on the measured odor 186 

concentration (19).�187 

�188 

Bats 189 

As previously described, three adult Japanese horseshoe bats (Rhinolophus 190 

ferrumequinum nippon, body length: 6.0–8.0 cm, body mass: 20–30 g) were captured 191 

from natural caves in Hyogo and Osaka prefectures in Japan (27). The bats were housed 192 

in a temperature- and humidity-controlled colony room [4 (L) × 3 (W) × 2 m (H)] with 193 

a 12-h-on/12-h-off light cycle at Doshisha University in Kyoto, Japan. The bats were 194 

allowed to fly freely and given access to mealworms and water. Captures were 195 

conducted under license and in compliance with current Japanese law. All experiments 196 

complied with the Principles of Animal Care, publication no. 86-23, revised 1985, of 197 

the National Institutes of Health, and with current Japanese law. All experiments were 198 

approved by the Animal Experiment Committee of Doshisha University. 199 
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 200 

Bat acoustic navigation 201 

Methods for acoustic navigation measurement in bats have been described elsewhere 202 

(Yamada et al., in revision). In brief, the experiments were conducted in a flight 203 

chamber, which was constructed of steel plates [9 (L) × 4.5 (W) × 2.5 m (H)] under 204 

lighting with red filters (>650 nm) to avoid visual effects on the bats. An obstacle 205 

environment was constructed using plastic chains (4 cm in diameter) that were 206 

suspended from the ceiling of the chamber. The chains were arranged at 15-cm intervals 207 

in the x-axis and at 22-cm intervals in the y-axis so that the bat was forced to fly in an 208 

S-shaped pattern without passing between chains. With this layout, three naive bats 209 

were used: each bat was observed for 12 continuous repeated flights so that 210 

echolocation behaviors in unfamiliar and familiar spaces could be compared. In this 211 

study, the initial three flights were defined as unfamiliar flights, and the last three flights 212 

were defined as familiar flights. 213 

 214 

The flight behavior of the bats was recorded using two digital high-speed video cameras 215 

(MotionPro X3; IDT Japan, Inc., Japan) at 125 frames/s, which were located in the left 216 

and right corners of the flight chamber. Based on a direct linear transformation 217 

technique, the successive 3D positions of the flying bats, as well as the locations of 218 

other objects, were reconstructed using motion analysis software (DIPPMotionPro 219 

ver. 2.2.1.0; Ditect Corp., Japan). The flight velocity vector of the bat was calculated as 220 

the time derivative of the coordinates of its flight trajectory.  221 

 222 
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Behavioral parameters included in a feature vector 223 

For the machine learning analysis of worm olfactory navigation, the following 224 

behavioral features were calculated for each run from the centroid coordinates of the 225 

worms: start time (RunTime), serial number (RunNum), velocity (V), bearing (B), odor 226 

concentration that a worm experienced during run (C), directionality ratio (Dir) (28), 227 

run's curvature (called weathervane; WV) (29), run duration (RunDur), and duration of 228 

pirouette just before the run (PirDur). Time-differential values were calculated for V 229 

(dV), B (dV), and C (dC). For these values, the average (Ave) during a run as well as 230 

average values over 2 s at the initiation (Ini) and at the termination (Ter) of a run were 231 

also calculated. For Ini and Ter, 0-2 s after the initiation and 2-4 s before the 232 

termination of a run were used; we did not use 0-2 seconds before the termination 233 

because previous studies revealed that a worm's speed drops largely during this period 234 

(25, 26). Although the time windows for worms were set based on the previous studies, 235 

the optimal time windows for bats were calculated by machine learning (see below). In 236 

addition, to analyze whether these features are independent for each run (in other words, 237 

whether any long-term trend among runs across a pirouette exists), we also calculated 238 

hysteretic effects (∆) of these run features between successive runs for V, dV, B, dB, C, 239 

and dC—in fact, a certain relationship between bearings before and after a pirouette 240 

(B_Ini∆Ter) has been reported in salt-taxis (26). For this, Ave, Ini, or Ter of each run 241 

feature was subtracted from any of the previous run features. Hysteretic effects were 242 

calculated for just one feature for RunDur, PirDur, and WV, which only possess one 243 

value per run, and not calculated for RunTime and RunNum. A total of 92 features were 244 

calculated by combining all these features.  245 
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 246 

For analysis of changes in the flight of the bats, the following behavioral features in 247 

each flight were calculated from the coordinates of the animals and obstacles: 248 

three-dimensional flight velocity (V), horizontal and vertical bearings of the flight 249 

(B_hori and B_vert, respectively), distance (R_obs) and bearing (B_obs) of the bat to 250 

the nearest edge point of the obstacle chain array, longitudinal directional distance to 251 

the frontal chain array (R_x), lateral directional distance to the inside pitch of the chain 252 

array (R_y). Time-differential values were calculated for V (dV), B (dB), dB (ddB), and 253 

the flight height (dH), which were calculated with frame units of the high-speed video 254 

cameras (1/125 s). All flight trajectories were divided into three segments: earlier, 255 

middle, and later terms. The time window for the analysis of each behavioral feature 256 

was 0.1, 0.2, or 0.3 s before or when (t = 0) passing through the chain array. A total of 257 

42 features were calculated by combining all these features.  258 

 259 

Excel 2010 and Visual C# (Microsoft) were used for the calculations, and the 260 

Beeswarm package for R software (The R Project) was used for the scattered plot of 261 

data. These parameters are listed in Table 1 for worms and in Table 4 for bats. 262 

 263 

Behavioral classification with gain ratio 264 

In order to extract useful features, we calculated the gain ratio used in C4.5 decision tree 265 

analysis (30) for each feature. In decision tree analysis, the amount of information, 266 

which is acquired when a group of data is divided into sub-groups by a certain feature, 267 

is calculated as information gain. In other words, when dividing a group into sub-groups 268 
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by applying a certain feature, information gain is an index indicating the amount of the 269 

increased bias of data in the sub-groups after the division. The information gain was 270 

then divided by split info, a degree of division, for normalization to compute the gain 271 

ratio. For worm olfactory navigation, we extracted behavioral features that have 272 

positive gain ratios in naive versus preexposed worms or in mock-treated versus 273 

preexposed worms. Then, we chose the features that were common in both comparisons 274 

as "features modulated in experience-dependent manner". For bat acoustic navigation, 275 

behavioral features were extracted from the comparison of unfamiliar flights (1st-3rd) 276 

and familiar (10th-12th) flights. Weka software (the University of Waikato, New 277 

Zealand) (31) was used for the calculation. 278 

 279 

Calcium imaging 280 

Calcium imaging of the worms’ ASH neurons was performed according to a previous 281 

report (19). Briefly, transgenic strains expressing GCaMP3 (32) and mCherry (33) in 282 

ASH sensory neurons under the sra-6 promoter (KDK70034 and KDK70072; 20 ng/µl 283 

of sra-6p::GCaMP3, 20 ng/µl of sra-6p::mCherry, 10 ng/µl of lin-44p::GFP, 50 ng/µl 284 

of PvuII-cut N2 genomic DNA as a carrier in N2 background) were placed on an NGM 285 

agar plate on a robotic microscope system, OSB2 (19). Although these transgenic 286 

worms were immobilized with the acetyl choline receptor agonist levamisole (34) for 287 

high-throughput data acquisition by simultaneous imaging of multiple worms, the 288 

previous study revealed that the ASH activity is essentially unaffected by 289 

levamisole-treatment (19). For these worms, a constant gas flow of 8 mL/min was 290 

delivered, in which the mixture rate of 2-nonanone gas versus the air was changed to 291 
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make a temporal gradient of the odor concentration. The temporal change in odor 292 

concentration was measured by a custom-made semiconductor sensor before and after 293 

the series of calcium imagings on each day. The fluorescence signals of GCaMP3 and 294 

mCherry in ASH neurons were divided into two channels using W-View (Hamamatsu, 295 

Japan), an image splitting optic, and captured by an EM-CCD camera (ImagEM; 296 

Hamamatsu, Japan) at 1 Hz. The intensities of fluorescence signals from cell bodies 297 

were extracted and quantified by ImageJ (NIH) after background subtraction. The 298 

average ratio over 30 s prior to the odor increase was used as a baseline (F0), and the 299 

difference from F0 (∆F) was used to calculate the fluorescence intensities of GCaMP3 300 

and mCherry (F = ∆F/F0). The ratio between florescence intensities of GCaMP and 301 

mCherry (GCaMP/mCherry) was used in the figure. 302 

 303 

Statistical analysis 304 

For comparisons of behavioral features among naive, mock-treated, and preexposed 305 

worms, the Kruskal-Wallis multiple comparison test followed by the post hoc Dunn’s 306 

test were used (Fig. 2, 3 and 4), except for in the analysis of directional data, for which 307 

the Mardia-Watson-Wheeler test was used. The calculations were performed with Prism 308 

ver. 5.0 for Mac OSX (GraphPad Software, CA, USA), R (The R Project) or SPSS 309 

version 23 (IBM Corp.). 310 

 311 

RESULTS 312 

A strategy for extracting features of sensory navigation that were modulated by 313 

prior experience 314 
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In this study, we aimed to extract behavioral features using machine learning to 315 

understand changes in information processing in the brain during sensory navigation. 316 

However, identifying characteristic changes in behavior and sensory stimulus during 317 

navigation has been difficult. It is because sensory stimulus in general changes 318 

gradually and continuously during navigation, which may cause gradual or sudden 319 

response at some aspects of behavior with certain probabilities. In order to efficiently 320 

extract behavioral features of sensory navigation by machine learning, we considered 321 

the following points for the analysis: (1) segmenting behavioral states, (2) representing 322 

the animal's position as a single point, (3) calculating sensory information, and (4) using 323 

a statistical index, gain ratio. 324 

 325 

Segmenting behavioral states 326 

Segmentation is one of the important preprocessing steps of a large dataset for effective 327 

analysis (35).We considered an animal's navigation to be a series of transitions among a 328 

limited number of behavioral states for a certain period, and we analyzed features in 329 

each of the behavioral states instead of analyzing features in an entire navigation 330 

trajectory or in very short temporal unit (i.e., second or sub-second). For worm 331 

olfactory navigation, we segmented the navigation into two well-established behavioral 332 

states: runs and pirouettes (14, 26; see METHODS for details). For bat acoustic 333 

navigation, we considered the period from passing one obstacle (or from the starting 334 

point) until passing the next obstacle as one behavioral state.  335 

 336 

Representing animal's position as a point 337 
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During a behavioral state in navigation, animals move a certain distance. For the sake of 338 

proper dimensionality reduction, we calculated the trajectories of a point representing 339 

animal's position (centroid for worms and head position for bats), instead of the posture 340 

of an animal, whose description requires more detailed spatial and temporal 341 

information.  342 

 343 

Sensory information 344 

Sensory information is a key factor affecting an animal’s behavior. However, because 345 

of technical difficulties, it has been included in the analysis of sensory navigation only 346 

in a few cases for small model animals (17, 19, 36). We included the information of 347 

odor concentration, which changes dynamically during navigation of worms, as 348 

revealed by the direct measurement of odor concentrations in specific spatio-temporal 349 

points in a behavioral arena (19). 350 

 351 

Gain ratio 352 

To comprehensively examine behavioral features that can be modulated by prior 353 

experience, we focused on a statistical index used in machine learning-based 354 

classification analysis. In general, classification analysis is the task of classifying new, 355 

unlabeled data into appropriate classes using characteristic features and their parameters 356 

that have been extracted from the known class-labeled data. In the present study, 357 

however, the classification itself was not meaningful because the data were already 358 

classified, such as with or without prior experience or wild-type versus mutant strains. 359 

Instead, we focused on the procedure in the classification that finds features useful for 360 
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distinguishing between the two classes. In other words, behavioral features modulated 361 

by prior experience should be able to effectively classify the behavioral data of animals 362 

with or without this experience.  363 

 364 

For this purpose, we chose to use gain ratio, the index for decision tree analysis (22). 365 

Binary decision tree analysis is performed to split a data set into two sub-groups by 366 

automatically selecting the best feature and its parameter that has the largest 367 

information gain, the difference of the uncertainty ("information entropy") before and 368 

after division; each data point is classified into either of the sub-classes based on 369 

whether it has a larger or smaller value than the threshold. When applied for binary 370 

classification, decision tree analysis automatically evaluates the classification 371 

performance of all of a large number of features that are designed by the researchers. 372 

The result of this analysis is the extraction of certain features, which allows us to easily 373 

understand the usefulness of particular features for the classification. This is a 374 

substantial difference from the analysis by support vector machines and/or deep neural 375 

networks, where the relationships between features of the data and the classification are 376 

not easily discernible (see DISCUSSION).  377 

 378 

Behavioral features modulated by the prior experience in worm odor avoidance 379 

behavior 380 

We analyzed the experience-dependent enhancement of odor-avoidance behavior of C. 381 

elegans as a model. We have reported that preexposure of worms to the repulsive odor 382 

2-nonanone causes enhancement of avoidance behavior to the odor. After 1 h of 383 
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preexposure, worms migrate farther away from the odor source as a type of 384 

non-associative middle-term learning (24). A series of genetic analyses indicated that 385 

neuropeptide and dopamine signaling pathways are required for acquisition and 386 

execution of the odor memory, respectively (25), suggesting that this non-associative 387 

middle-term memory is caused by a circuit-level modulation of neural activity rather 388 

than simple sensory sensitization.  389 

 390 

Previous studies analyzed several features and revealed that run duration is the major 391 

behavioral change caused by odor preexposure, likely because of reduction in the 392 

pirouette initiation rate (24, 25). However, this did not rule out the possibility that other 393 

behavioral features play more profound effects. Moreover, multiple mutant strains 394 

exhibit their own abnormalities in the enhanced odor avoidance behavior (see below), 395 

although identification of the features modulated in each mutant strain is 396 

time-consuming and laborious. To reveal features modulated by prior experience 397 

comprehensively and effectively, we calculated the gain ratio by comparing naive 398 

versus preexposed and mock-treated versus preexposed animals, and we considered 399 

features that were extracted from both comparisons.  400 

 401 

In the machine learning analysis, we calculated gain ratios of 92 features (Fig. 1 and 402 

Table 1; see METHODS for details) and extracted 18 and 15 features from the 403 

comparisons of naive versus preexposed and mock-treated versus preexposed worms, 404 

respectively (Table 2). Nine features were shared between the two comparisons, 405 

suggesting that those features were modulated by the prior experience to cause the 406 
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enhanced odor avoidance (Table 2 and Fig. 2A). These features are related to run 407 

duration (RunDur), temporal differences in bearing (dB_X), odor concentration (C_X), 408 

and its temporal difference during runs (dC_X). Modulation of run duration (RunDur; 409 

Fig. 2B) by the prior odor experience was previously revealed by traditional analysis 410 

(24). Thus, this result supports the validity of the machine learning analysis.  411 

 412 

Experience-dependent modulations of temporal differences in bearing (dB_X; Fig. 2C 413 

for example and Table 2) have not been revealed previously. Its contribution to the 414 

enhancement of avoidance distance, however, are unclear. Differences between the 415 

average or the terminal bearing change and the previous initial value (dB_Ave∆Ini or 416 

dB_Ter∆Ini) were also extracted (Table 2), while the differences were likely due to the 417 

modulation in the previous initial value (∆Ini), not due to the change in hysteretic 418 

effects.  419 

 420 

Odor stimuli during runs, which likely drive the worms' odor avoidance behavior, were 421 

also found to be modulated in several aspects: the initial, terminal, and average odor 422 

concentration (C_Ini, C_Ter, and C_Ave), and the terminal and average odor 423 

concentration change (dC_Ter and dC_Ave) (Table 2; Fig. 2D and E for C_Ave and 424 

dC_Ave, respectively, for examples). However, this result does not directly imply that 425 

the lower odor concentration is the causal reason for the enhanced avoidance distance; 426 

one possible scenario is that, because the odor-experienced worms were located farther 427 

away from the odor source, they sensed a lower concentration of the odor.  428 

 429 
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Because the terminal and average values of odor concentration change (dC_Ter and 430 

dC_Ave) were extracted, and because a previous study demonstrated that worm odor 431 

avoidance behavior depends on dC, rather than C, at least in naive conditions (19), we 432 

investigated these features more in detail. We compared ensemble averages of dC/dt 433 

that worms sensed during the last 30 s of each run (Fig. 2F). Interestingly, although 434 

most of the control (i.e. naive and mock-treated) worms sensed 2-3 µM odor 435 

concentrations (Fig. 2D), dC/dt at the end of each run was ± 0.1 nM/s on average (Fig. 436 

2F; 0.09 ± 0.72 and -0.09 ± 0.76 nM/s for naive and mock-treated animals, respectively). 437 

This result suggests that, to initiate a pirouette, worms respond to a subtle odor 438 

concentration change, of which the magnitude is 1/20,000 - 1/30,000 of the odor 439 

concentration itself per second. Even considering that sensory information is temporally 440 

integrated for a few seconds during worm chemosensory navigation (19, 37), this value 441 

is far lower than the general psychological threshold for sensory signals: The lower 442 

threshold of signal change (∆S) is more than 1/100 of the signal intensity (S) (38).  443 

 444 

This extreme sensitivity to positive dC/dt was modulated by prior experience of the 445 

odor. The terminal dC/dt was significantly higher than in naive and mock-treated 446 

animals (1.58 ± 0.6 nM/s compared to the values in the previous paragraph; p < 0.01, 447 

the Kruskal-Wallis multiple comparison test followed by the post hoc Dunn's test). This 448 

change in terminal dC/dt could be the cause for the enhanced odor avoidance behavior 449 

and suggest the following model: the worms without prior experience of the odor are 450 

highly sensitive to a slight increase in odor concentration during a run, which is a sign 451 

of inappropriate movement toward the source of the repulsive odor, and they respond to 452 
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it by initiating a pirouette. In contrast, the worms with prior odor experience ignore the 453 

slight odor increase and continue the run, which leads to a longer run duration (Fig. 454 

2G).  455 

 456 

The responsiveness of sensory neurons to odor increases was modulated by odor 457 

experience 458 

If the change in sensitivity to positive dC/dt is the causal reason for the enhanced odor 459 

avoidance behavior, it should be associated with changes in neural activity. Thus, we 460 

analyzed the responsiveness of a likely candidate group of neurons, ASH nociceptive 461 

neurons (39, 40). Previously we established the OSB2 microscope system that allows 462 

for calcium imaging of C. elegans neurons in vivo under odor stimuli resembling ones 463 

that worms experience during the odor avoidance assay in the plates (19). Using the 464 

OSB2 system, we found that ASH neurons are the major sensory neurons to cause 465 

pirouettes upon increases in 2-nonanone concentration (19). However, whether the ASH 466 

response is modulated by 2-nonanone experience has not been studied. 467 

 468 

We found that ASH responses were modulated by prior odor experience in a manner 469 

consistent with the behavioral modulation. When the worms were stimulated with 5 470 

nM/s odor increase, which is the lowest rate of change to cause the threshold-level 471 

behavioral response in the previous study (19), ASH neurons in naive as well as 472 

mock-treated worms exhibited robust responses (Fig. 3A and B). However, the ASH 473 

responses were significantly reduced in the preexposed animals (Fig. 3B and C). This 474 

result suggests that prior odor experience causes the reduced response to the odor 475 
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increase, which causes longer run durations and enhanced odor avoidance behavior.  476 

 477 

Extracted behavioral features of mutant strains correspond to gene functions 478 

We also investigated whether feature extraction from behavior of mutant strains can 479 

allow us to understand relationships between chemosensory behavior and gene 480 

functions in the nervous system. By calculating gain ratios, we analyzed mutants of 481 

genes that are known to be involved in the experience-dependent modulation of 482 

2-nonanone avoidance behavior, such as that for proprotein convertase (required for 483 

neuropeptide signaling), EGL-3 (41), and the D2-type dopamine receptor DOP-3 (25, 484 

42), as well as genes involved in sensation of chemical signals, such as those for TRP 485 

channel homologs OCR-2 and OSM-9 (43, 44) and the cGMP-gated cation channel 486 

TAX-4 (45), whose relationships to the 2-nonanone avoidance behavior have not been 487 

studied.  488 

 489 

egl-3, encoding a homolog of proprotein convertase, is required for neuropeptide 490 

biosynthesis, expressed in many neurons, and known to be involved in various aspects 491 

of worm behavior including learning (25, 41, 46). Deletion and missense mutations of 492 

the gene are known to cause severe and mild phenotypes, respectively (25, 47). Our 493 

previous study revealed that run duration is not increased after preexposure in egl-3 494 

mutants, suggesting that neuropeptide signaling is required for the acquisition of odor 495 

preexposure memory (25). In the present study, the abnormal features were similar 496 

between deletion (ok979) and missense (n589) mutants, namely, run duration 497 

(Run_Dur), odor concentration (C_Ave, C_Ini, C_Ter), and odor concentration change 498 
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(dC_Ave, dC_Ter), although the deletion mutants exhibited additional abnormal 499 

features (Table 3 and Fig. 4). Increases in odor concentration in preexposed worms 500 

were interesting because they were observed only in egl-3 mutants but not in any other 501 

mutants. 502 

 503 

Mutations in dop-3, which encodes a homolog of the D2-type dopamine receptor, were 504 

previously found to affect migratory direction after preexposure (25). This was 505 

concluded because the mutants did not exhibit enhanced avoidance distance, although 506 

run duration was increase after preexposure, and because run terminal bearing (B_Ter) 507 

was worsened (25). These features were extracted in this analysis (Table 3), further 508 

supporting the reliability of this analysis. In addition, the averaged directionality ratio 509 

(Dir_Ave) was worsened (Table 3 and Fig. 4C). This is also consistent with the idea that 510 

migratory direction is worsened in dop-3 mutants after preexposure. Moreover, lowered 511 

velocity (V_Ave, V_Ter; Table 3 and Fig. 4B) was also extracted, which may also 512 

contribute to the failure in the enhanced odor avoidance. Such multiple abnormal 513 

phenotypes are consistent with the fact that dop-3 is expressed in many neurons and 514 

involved in the regulation of multiple aspects of behavior (48). 515 

 516 

ocr-2 and osm-9 both encode homologs of TRP-type cation channels, expressed in 517 

multiple sensory neurons including ASH neurons and considered to be involved in 518 

sensory perception as well as its modulation (43). We found that mutants for these two 519 

genes did not exhibit significantly enhanced odor avoidance (Fig. 4A). In addition, 520 

these mutants exhibited increases in velocity (V_Ave and V_Ter) after preexposure, 521 
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which was specific for these two mutants but not observed in other mutants. Some 522 

features are specific for each mutant strains, which may reflect the differences in their 523 

expression and/or function (43). Mutants of tax-4, encoding a homolog of the 524 

cGMP-gated cation channel expressed in different sets of sensory neurons, exhibited a 525 

unique pattern of features (Table 3, Fig. 4). 526 

 527 

Taken together, our results suggest that the pattern of extracted features from mutant 528 

strains may reflect functional groupings of the mutated genes. Thus, profiling and 529 

classification of extracted mutant features of unknown genes may be useful to estimate 530 

their physiological functions. 531 

 532 

Feature extraction of experience-dependent modulation of acoustic navigation of 533 

bats 534 

To demonstrate the general applicability of our method, we examined features of 535 

acoustic navigation in bats. We have previously reported that bats improve their flight 536 

trajectory in an indoor space with obstacles in an experience-dependent manner 537 

(Yamada et al., in revision). Here, we analyzed 42 features using gain ratios and 538 

extracted several features, such as velocity (V), distance to the obstacle chain array 539 

(R_obs and R_x), and horizontal bearing of the flight (B_hori) (Table 4 and Fig. 5A-C). 540 

Interestingly, although velocity (V) itself was modulated by flight experience, 541 

acceleration (dV) was not (Fig. 5D), suggesting that bats may determine flight speed 542 

before initiating but not during navigation, at least in our experimental conditions. 543 

Because the bats' vocalizations reflect their attention or decisions (49), our results 544 
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suggest that such higher brain functions during navigation could be extracted by 545 

machine learning analysis. 546 

 547 

DISCUSSION 548 

In the present study, we extracted behavioral features that are modulated by experience 549 

from olfactory navigation of worms and from acoustic navigation of bats using machine 550 

learning analysis. In the case of worm olfactory navigation, we found a neural correlate 551 

for one of the newly identified features: The reduced behavioral response to an increase 552 

in odor concentration was consistent with the reduced response of ASH nociceptive 553 

neurons to a small increase in odor concentration. In addition, we also found that mutant 554 

strains can be grouped based on extracted features, which may correspond to the 555 

physiological roles of genes in chemotaxis and/or experience-dependent modulation. 556 

Furthermore, our machine learning analysis was applied to acoustic navigation of bats 557 

to extract the features modulated by prior experience. 558 

 559 

Extraction of behavioral features by machine learning 560 

Machine learning has been playing a major role in classifying behavioral data of model 561 

animals into several categories (7-13, 50). Instead of such behavioral classification, 562 

however, we intended to use a machine learning technique for extracting characteristic 563 

features of sensory behavior to decipher information processing in the brain. For that 564 

purpose, we first hypothesized that a change in a behavioral feature reflects a change in 565 

activity of a functional unit of the brain. Then, we used machine learning to extract 566 

behavioral features that differ between two classes of behavior, rather than to categorize 567 
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the behavioral data into two classes; in our study, two classes (e.g., "with or without 568 

prior experience" or "wild-type versus mutant strains") were determined per se and did 569 

not need to be categorized.  570 

 571 

In addition, we also included sensory information that worms experienced during the 572 

course of behavior in the machine learning analysis. Although small model animals 573 

such as C. elegans or Drosophila melanogaster are suitable for machine vision 574 

monitoring and subsequent quantitative analysis of behavior, their small size makes it 575 

difficult to measure sensory signals they receive during behavior. We have solved this 576 

problem by precisely measuring the odor concentration at multiple spatio-temporal 577 

points in a paradigm to assess olfactory behavior of worms (19), which allowed us to 578 

include the information of odor concentration and its temporal changes (C and dC) into 579 

the feature vector for the machine learning analysis. Our machine learning method 580 

could also be used for detailed analysis of sensory navigation in the environment where 581 

the gradients of chemical signal were also quantitatively monitored (36, 51, 52). 582 

 583 

As a result, we were able to find multiple behavioral features modulated by prior 584 

experience, including the temporal odor concentration change (dC_Ter), which was 585 

consistent with the experience-dependent change in the responsiveness of ASH 586 

nociceptive neurons. Such an effective and objective approach to estimate neural 587 

function from comprehensive behavioral analysis may play important roles in the 588 

understanding of recent large-scale monitoring of neuronal activity (see below). 589 

 590 
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For machine learning-based classification, support vector machines and deep learning 591 

have also been used (53, 54). However, in these analyses, it is difficult for researchers 592 

to understand which features are characteristic to each group because these algorithms 593 

attempt to combine multiple features in a single representation. In other words, it is 594 

difficult to use the results of classification for subsequent experiments and/or analysis to 595 

further investigate the neural correlates of the behavioral differences. In contrast, in the 596 

calculation of gain ratio, all features are evaluated independently, allowing us to 597 

immediately translate the results of analysis to a new understanding and/or hypothesis 598 

for subsequent experiments and analyses, as shown in the present study. Thus, we 599 

conclude that the method used in this study—making a list of characteristic features 600 

based on gain ratios and subsequently performing detailed analyses on each of extracted 601 

features—is effective to understand the basic principles of neural functions regulating 602 

behavior. 603 

 604 

However, causal relationships among extracted features should be considered carefully. 605 

For example, because odor concentration (C) and temporal odor concentration change 606 

(dC) are both features of sensory stimuli, they were likely candidates for the cause of 607 

changes in behavioral response. However, we regard that dC, rather than C itself, is the 608 

causal reason because of the following: (1) previous quantitative analysis in the plate 609 

assay paradigm revealed that pirouettes and runs are strongly correlated with positive or 610 

negative dC, respectively, rather than the value of C; (2) in the OSB2 robotic 611 

microscope system, positive or negative dC caused high or low levels of turning, such 612 

as pirouettes and runs, respectively (19). For example, the lower C in preexposed 613 
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worms is likely caused by their relatively lower positions in the odor gradient (i.e., 614 

farther positions from the odor source) caused by the enhanced avoidance behavior. In 615 

other words, sensory behaviors are closed loops—changes in sensory input cause 616 

changes in behavior, while changes in behavior should also cause changes in sensory 617 

input because the positions and/or directions of sensory organs are changed due to the 618 

behavior. Thus, even when sensory features are extracted by machine learning, causal 619 

relationships with behavioral features should be evaluated by independent experiments: 620 

An open loop system, which allows control of sensory stimuli and monitoring behavior 621 

independently, such as the OSB2 system (19), will provide an effective solution. 622 

 623 

Analysis of multiple mutant strains revealed that the extracted features appeared to be 624 

correlated with the physiological roles of the genes. For example, two alleles of a gene 625 

required for neuropeptide signaling (egl-3) exhibited similar feature patterns, which 626 

were different from mutants of a dopamine-signaling gene (dop-3). In addition, 627 

mutations in two homologous but distinct TRP-type channel genes required for sensory 628 

signaling (ocr-2 and osm-9) exhibited a similar feature pattern, and the one for cyclic 629 

nucleotide-gated ion channels (tax-4) exhibited a different pattern. It is interesting that 630 

mutants of genes with similar functions exhibited similar behavioral features although 631 

these genes should influence animal behavior in a complex manner. These results 632 

suggest that behavioral features of mutants of a novel gene may be categorized to a 633 

group of genes which have similar physiological functions. In other words, feature 634 

extraction using gain ratio of multiple mutant strains can allow estimation of gene 635 

functions in the nervous system.  636 
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 637 

In conclusion, we established a machine learning method to effectively reveal different 638 

features of two different sensory behaviors. In particular, it is important to include not 639 

only the behavior itself but also environmental sensory information that animals sense 640 

in the feature vectors. Furthermore, it is also necessary to verify causal relationships of 641 

the extracted features by other methods, such as using an open loop experimental setup. 642 

In addition, this method can be used for estimation of the physiological function of 643 

genes. 644 

 645 

This method could be applied to analysis of more complex behaviors of other animals. 646 

In the case of visual and acoustic stimuli, it is not clear what features of the stimuli (e.g., 647 

shapes, colors, and brightness for visual stimuli, and frequency and intensity for 648 

acoustic stimuli) have the most prominent effects on behavior in a particular context. 649 

We believe that our method presented herein, which allows extraction of the essential 650 

features of information processing for sensory behaviors in the brain in an objective and 651 

comprehensive manner, will help to solve this problem. Poor description of behavior 652 

with simple indices compared to "big data" on neuronal activity is being recognized as 653 

one of the significant problems in modern neuroscience (3-5). We expect that 654 

comprehensive and objective feature extraction would increase the wealth of description 655 

of behavior, which will provide us clues to understand more of the big data from brain 656 

activity monitoring. 657 

 658 

FIGURE LEGENDS 659 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 12, 2017. ; https://doi.org/10.1101/198879doi: bioRxiv preprint 

https://doi.org/10.1101/198879


 30 

Figure 1. A workflow of the machine learning method for the analysis of worm odor 660 

avoidance behavior; "Behavioral data" (Top) Examples of the trajectories of 3 worms 661 

during 12 min of 2-nonanone avoidance assay, overlaid on a schematic drawing of a 662 

9-cm agar plate. (Second from the top) A magnified view of trajectories of a worm, in 663 

which runs are blue and pirouettes are red. (Second from the bottom and bottom) 664 

Graphs showing the odor concentration (C, second from the bottom) and temporal 665 

changes in C (dC, bottom) at the worm's position at 1-s intervals during the odor 666 

avoidance assay. "Feature vector" From the (x, y) coordinates of each worm's centroid, 667 

velocity, bearing, odor concentration, and their derivatives (V, B, C, dV, dB, and dC) as 668 

well as the difference between the present and the previous values (∆) were calculated. 669 

"Gain ratio" One example (C_Ter) of calculating gain ratio is shown. 670 

 671 

Figure 2. Extracted features that were modulated by prior experience of the odor. (A) 672 

Enhanced odor avoidance behavior of worms caused by odor preexposure. (Left) End 673 

points of 25 worms in each condition plotted on a schematic drawing of the assay plate. 674 

(Right) Avoidance distance (distance between the center line of the plate and end point 675 

of behavior) of each worm. Each bar represents median. Significant differences were 676 

observed in the preexposed worms compared to the naive and mock-treated worms 677 

(***p < 0.001, Kruskal-Wallis test with post hoc Dunn's test). (B, C, D and E) 678 

Distributions of extracted features. Duration (B), the initial value of bearing change (C), 679 

the average odor concentration (D), and the average odor concentration change (E) of 680 

each run (**p < 0.01 and ***p < 0.001, Kruskal-Wallis test with post hoc Dunn's test). 681 

tcrit for wild type worms was 13.1. Bars represent median and first and third quartiles. 682 
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(F) Time course changes in ensemble averages of odor concentration (dC) that worms 683 

experienced before the termination of runs. On average, naive and mock-treated worms 684 

experienced odor decrements of about -8 nM/s until 15 s before the end of each run, 685 

when the decrements started to become very close to zero at the end of the run. In 686 

contrast, preexposed animals consistently experienced smaller (i.e., shallower) odor 687 

decrements during runs, and the average odor concentration changes at the end of runs 688 

were positive. Bars represent mean ± SEM. (G) A model relationship between odor 689 

concentration change and behavioral response during navigation along the odor gradient. 690 

When naive and mock-treated worms sensed a slight increase in the odor concentration, 691 

which is a sign of migrating in the wrong direction, they stopped a run and started a 692 

pirouette to search for a new direction. In contrast, the preexposed worms did not 693 

respond to a slight increase in odor concentration, leading to longer run durations and 694 

shorter pirouette durations in total, which likely contribute to the enhanced avoidance 695 

distance. Numbers of worms are 25 for all the conditions, and all the statistical details 696 

are described in Supplementary Table 1. 697 

 698 

Figure 3. Sensory responses to slight odor concentration increases were reduced by 699 

preexposure to the odor. (A) A schematic drawing of calcium imaging of neural activity 700 

of worms under odor stimuli. Several immobilized worms were simultaneously exposed 701 

to an odor flow whose concentration was changed by controlling syringe pumps. (B) 702 

Responses (GCaMP/mCherry) of ASH neurons in naive (n = 25), mock-treated (n = 29), 703 

and preexposed (n = 26) worms. Thick colored lines with gray shadows indicate mean ± 704 

SEM, and thin lines indicate individual responses. (C) Distributions of peak values 705 
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during the odor-increasing phase (t = 40-80 s) shown in panel B. Bars represent median. 706 

(***p < 0.001, Kruskal-Wallis test with post hoc Dunn's test). 707 

 708 

Figure 4. Examples of extracted features of mutant strains. Avoidance distance (A), the 709 

average velocity (B), the average migratory direction (C), and the initial odor 710 

concentration (D) per run are shown. tcrit for each strain was 8.1 (egl-3(n589)), 7.2 711 

(egl-3(ok979)), 18.1 (dop-3(tm1356)), 11.2 (ocr-2(ak47)), 17.8 (osm-9(ky10)), and 6.7 712 

(tax-4(p678)). Thick bars represent statistical differences between preexposed worms 713 

versus naive and mock-treated worms, suggesting differences caused by the odor 714 

preexposure; thin bars represent statistical differences between preexposed worms 715 

versus naive or mock-treated worms, which were not caused by the preexposure. (**p < 716 

0.01 and ***p < 0.001, Kruskal-Wallis test with post hoc Dunn's test) 717 

 718 

Figure 5. Experience-dependent changes in bat acoustic navigation. (A) Measurement 719 

system for 3D flight trajectory of a bat during obstacle avoidance flight in a chamber. 720 

(B) Representative flight trajectories of a bat in horizontal plane during repeated flight 721 

in the obstacle course. The top figure combines the initial three (red) and last three 722 

(blue) flight trajectories. Each behavioral feature was collected in three segments: 723 

earlier, middle, and later terms. Bottom figure shows an expanded view of the earlier 724 

term in the first flight. Definition of the horizontal bearing of the flight (B_hori), 725 

distance (R_obs), and bearing (B_obs) of the bat to the nearest edge point of the 726 

obstacle chain array, longitudinal directional distance to the frontal chain array (R_x), 727 

and lateral directional distance to the inside pitch of the chains array (R_y) are indicated. 728 
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Time windows for the analysis of each behavioral feature were 0.1, 0.2, or 0.3 s before  729 

or when (t = 0) passing through the chain array. (C) A list of extracted features of bat 730 

acoustic navigation modulated by flight experience. (D) Distributions of V(-0.3) and 731 

dV(-0.3) are plotted. Bars represent median and first and third quartiles. (*p < 0.05, 732 

Kruskal-Wallis test with post hoc Dunn's test). 733 

 734 
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Table 1. A list of behavioral features used for worms' olfactory navigation  884 

 885 

  886 

Parameters Definition 
RunNum Number of a run 
RunTime Start time of a run 
RunDur Duration of a run 
PirDur Duration of the previous pirouette 
V_Ave Average velocity during a run 
V_Ini Velocity at run initiation 
V_Ter Velocity at run termination 
dV_Ave Average acceleration during a run 
dV_Ini Acceleration at run initiation 
dV_Ter Acceleration at run termination 
B_Ave Bearing of migratory vector throughout a run  
B_Ini Bearing at run initiation 
B_Ter Bearing at run termination 
dB_Ave Average temporal changes in bearing 
dB_Ini Temporal changes in bearing at run initiation 
dB_Ter Temporal changes in bearing at run termination 
C_Ave Average odor concentration during a run 
C_Ini Odor concentration at run initiation 
C_Ter Odor concentration at run termination 
dC_Ave Average temporal changes in odor concentration during a run 
dC_Ini Temporal changes in odor concentration at run initiation 
dC_Ter Temporal changes in odor concentration at run termination 
Dir_Ave Average directionality ratio 
Dir_Ini Directionality ratio at run initiation 
Dir_Ter Directionality ratio at run termination 
WV Curving rate of a run  

  
RunDurΔ Current RunDur minus the previous RunDur 
PirDurΔ Current PirDur minus the previous PirDur 
WVΔ Current WV minus the previous WV 
X_AveΔAve Current Ave minus the previous Ave 
X_AveΔIni Current Ave minus the previous Ini 
X_AveΔTer Current Ave minus the previous Ter 
X_IniΔAve Current Ini minus the previous Ave 
X_IniΔIni Current Ini minus the previous Ini 
X_IniΔTer Current Ini minus the previous Ter 
X_TerΔAve Current Ter minus the previous Ave 
X_TerΔIni Current Ter minus the previous Ini 
X_TerΔTer Current Ter minus the previous Ter 
�X = V, dV, B, dB, C, dC, Dir� 
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Table 2. Extracted features of worms' olfactory navigation modulated by prior 887 

odor experience 888 

naive vs pre-exp mock vs pre-exp 

V_Ave 0.1796 C_Ter 0.1337 

Run_Dur 0.1558 C_Ave 0.0998 

dB_Ini 0.1349 C_Ini 0.0932 

C_IniΔAve 0.1230 dC_Ave 0.0854 

C_IniΔIni 0.1230 dC_Ini 0.0810 

dB_TerΔIni 0.1191 dC_Ter 0.0749 

dB_AveΔIni 0.1013 dC_IniΔTer 0.0722 

C_Ave 0.0983 dC_TerΔIni 0.0490 

C_Ter 0.0942 dV_AveΔIni 0.0478 

dB_IniΔTer 0.0924 dV_Ini 0.0478 

C_Ini 0.0914 dV_Ave 0.0364 

dB_IniΔAve 0.0839 Run_Dur 0.0352 

V_AveΔAve 0.0815 dB_Ini 0.0342 

dC_Ter 0.0810 dB_TerΔIni 0.0304 

Run_DurΔ 0.0785 dB_AveΔIni 0.0298 

dC_Ave 0.0547   

C_AveΔTer 0.0394   

Pir_Dur 0.0326   

Bold letters indicate features shared between the two comparisons. 889 

  890 
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Table 3. Summary of extracted features of wild-type and mutant strains that are modulated by prior odor experience 891 

Only features with statistical differences between preexposed worms versus naive and mock-treated worms are shown. 892 
  893 

strain RunDur V_Ave V_Ini V_Ter B_Ter dB_Ini C_Ave C_Ini C_Ter dC_Ave dC_Ter Dir_Ave RunNum 

wild-type up 
    

down down down down up up 
  

egl-3(n589) 
      

up up up 
    

egl-3(ok979) 
 

down down down 
 

down up up up 
    

dop-3(tm1356) up down 
 

down up 

 
   

up up down 
 

ocr-2(ak47) 
 

up 
 

up up 
        

osm-9(ky10) up up 
 

up 
         

tax-4(p678) 
            

up 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 12, 2017. ; https://doi.org/10.1101/198879doi: bioRxiv preprint 

https://doi.org/10.1101/198879


Yamazaki_170609_v20clear.docx  2017/10/12, 15:16:32 

 43 

Table 4. A list of behavioral features used for bats' acoustic navigation  894 

 895 
t = -0.3, -0.2, -0.1, or 0 s. B_obs(t) and R_x(t) were not calculated for t = 0. 896 

 897 

 898 

Parameters Definition 
V(t) Fight velocity in 3D space 
dV(t) Flight acceleration in 3D space 
B_hori(t) Absolut bearing of the flight vector in a horizontal plane 
dB_hori(t) Temporal change in bearing of the flight vector in a horizontal plane 
ddB_hori(t) Temporal acceleration in bearing of the flight vector in a horizontal plane 
B_vert(t) Absolut bearing of the flight vector in a vertical plane 
B_obs(t) Absolute bearing to the edge point of the nearest chain array 
R_obs(t) Distance from the bat to the edge point of the nearest chain array 
R_x(t) Longitudinal directional distance to the frontal chain array 
R_y(t) Lateral directional distance to the inside pitch of the chain array 
dH(t) Temporal change in flight height 
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Supplementary Table 1. Detailed results of statistical tests.
Figure Parameter Number of

naive
Number of
mock

Number of
preexp.

Unit of
number

Multiple test df value of
multiple test

p value of
multiple test

Other result of
multiple test

Post-hock
test

df value of
post-hock
test

p value of post-hock test Other result of
post-hock test

2A, 4A �5/*%".$&�%*23".$&�/'
��

�
 �
 �
 animals Kruskal-Wallis
test

2 <0.0001(***) 24.451 Dunn's test 1 naive vs mock: 0.7621(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 0.0001(***)

z = 0.6619
z = 4.5747
z = 3.9128

2B �4.�%41"3*/.�/'��� ��� ��� �� runs Kruskal-Wallis
test

2 <0.0001(***) 18.76 Dunn's test 1 naive vs mock: 1(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 0.0006(***)

z = -0.4269
z = -3.9959
z = -3.547

2C �.*3*",�%�&"1*.(�/'��� ��� ��� �� runs Mardia-
Watson-
Wheeler test

2 <0.0001(***) 64.69 Mardia-
Watson-
Wheeler test

1 naive vs mock: <0.0001(***)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 0.002(**)

W = 26.305
W = 59.795
W = 12.007

2D �5&1"(&��/.$��/'��� ��� ��� �� runs Kruskal-Wallis
test

2 <0.0001(***) 68.69 Dunn's test 1 naive vs mock: 0.1351(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = -1.6951
z = 6.3349
z = 7.9016

2E �5&1&(&�%�/.$��/'��� ��� ��� �� runs Kruskal-Wallis
test

2 0.0003(***) 16.56 Dunn's test 1 naive vs mock: 0.3202(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 0.0085(**)

z = -1.2441
z = -4.001
z = -2.7671

3C Peak value of
GCaMP3/mCherry

�
 �� � animals Kruskal-Wallis
test

2 <0.0001(***) 30.11 Dunn's test 1 naive vs mock: 0.0949(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 0.0004(***)

z = 1.8571
z = 5.3589
z = 3.6525

4A �5/*%".$&�%*23".$&�/'
�������
��

�
 �
 �
 animals Kruskal-Wallis
test

2 0.7763(ns) 0.51 Dunn's test 1 - -

4A �5/*%".$&�%*23".$&�/'
������������

�
 �
 �
 animals Kruskal-Wallis
test

2 0.0128(*) 8.72 Dunn's test 1 naive vs mock: 0.3924(ns)
naive vs preexposure: 0.0051(**)
mock vs preexposure: 0.1069(ns)

z = -1.1226
z = -2.9265
z = -1.8039

4A �5/*%".$&�%*23".$&�/'
����������
��

	� 	� 	� animals Kruskal-Wallis
test

2 0.8196(ns) 0.40 Dunn's test 1 - -

4A �5/*%".$&�%*23".$&�/'
��������	��

�� �� � animals Kruskal-Wallis
test

2 0.2001(ns) 3.22 Dunn's test 1 - -

4A �5/*%".$&�%*23".$&�/'
�����������

�	 �� �	 animals Kruskal-Wallis
test

2 0.0191(*) 7.91 Dunn's test 1 naive vs mock: 0.1625(ns)
naive vs preexposure: 0.0075(**)
mock vs preexposure: 0.3141(ns)

z = 1.6058
z = 2.8055
z = 1.2552

4A �5/*%".$&�%*23".$&�/'
����	�����

�� �� �� animals Kruskal-Wallis
test

2 0.0008(***) 14.39 Dunn's test 1 naive vs mock: 0.0506(ns)
naive vs preexposure: 0.0002(***)
mock vs preexposure: 0.1175(ns)

z = 2.1232
z = 3.7932
z = 1.7605

4B �5&1"(&�20&&%�/'��� ��� ��� �� runs Kruskal-Wallis
test

2 0.2796(ns) 2.55 Dunn's test 1 - -

4B �5&1"(&�20&&%�/'�����
���
��

��� ��	 ��
 runs Kruskal-Wallis
test

2 <0.0001(***) 80.44 Dunn's test 1 naive vs mock: <0.0001(***)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = -8.9653
z = -4.5544
z = 4.6671

4B �5&1"(&�20&&%�/'�����
��������

��� ��� �
� runs Kruskal-Wallis
test

2 <0.0001(***) 137.51 Dunn's test 1 naive vs mock: 0.3296(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = 1.2272
z = 11.1444
z = 9.1734

4B �5&1"(&�20&&%�/'�����
������
��

��� ��� ��� runs Kruskal-Wallis
test

2 <0.0001(***) 39.19 Dunn's test 1 naive vs mock: 0.6155(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = 0.8234
z = 5.795
z = 4.9154

4B �5&1"(&�20&&%�/'�����
����	��

�� �	� �� runs Kruskal-Wallis
test

2 <0.0001(***) 50.52 Dunn's test 1 naive vs mock: 0.075(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = -1.9599
z = -6.9657
z = -4.6254

4B �5&1"(&�20&&%�/'�����
�������

�	� ��
 ��� runs Kruskal-Wallis
test

2 <0.0001(***) 66.85 Dunn's test 1 naive vs mock: 0.2053(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = -1.4875
z = -7.5979
z = -6.4146

4B �5&1"(&�20&&%�/'�����
	�����

	�� 
�� 	�� runs Kruskal-Wallis
test

2 <0.0001(***) 20.69 Dunn's test 1 naive vs mock: <0.0001(***)
naive vs preexposure: 0.0019(**)
mock vs preexposure: 0.3492(ns)

z = -4.456
z = -3.2307
z = 1.1931

4C �5&1"(&�%*1&$3*/.",*37
1"3*/�/'���

��� ��� �� runs Kruskal-Wallis
test

2 0.2781(ns) 2.56 Dunn's test 1 - -

4C �5&1"(&�%*1&$3*/.",*37
1"3*/�/'��������
��

��� ��	 ��
 runs Kruskal-Wallis
test

2 0.0042(**) 10.96 Dunn's test 1 naive vs mock: 0.0014(**)
naive vs preexposure: 0.1115(ns)
mock vs preexposure: 0.1585(ns)

z = -3.3036
z = -1.7844
z = 1.6179

4C �5&1"(&�%*1&$3*/.",*37
1"3*/�/'�������������

��� ��� �
� runs Kruskal-Wallis
test

2 0.1357(ns) 4.00 Dunn's test 1 - -

4C �5&1"(&�%*1&$3*/.",*37
1"3*/�/'�����������
��

��� ��� ��� runs Kruskal-Wallis
test

2 <0.0001(***) 38.61 Dunn's test 1 naive vs mock: 1(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = -0.3986
z = 5.1836
z = 5.5349

4C �5&1"(&�%*1&$3*/.",*37
1"3*/�/'���������	��

�� �	� �� runs Kruskal-Wallis
test

2 0.0135(*) 8.62 Dunn's test 1 naive vs mock: 0.0062(**)
naive vs preexposure: 0.6577(ns)
mock vs preexposure: 0.0541(ns)

z = -2.8694
z = -0.7747
z = 2.0962

4C �5&1"(&�%*1&$3*/.",*37
1"3*/�/'������������

�	� ��
 ��� runs Kruskal-Wallis
test

2 0.6949(ns) 0.73 Dunn's test 1 - -

4C �5&1"(&�%*1&$3*/.",*37
1"3*/�/'�����	�����

	�� 
�� 	�� runs Kruskal-Wallis
test

2 <0.0001(***) 37.08 Dunn's test 1 naive vs mock: <0.0001(***)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 1(ns)

z = -5.4554
z = -5.2773
z = 0.0423

4D �.*3*",��/.$��/'��� ��� ��� �� runs Kruskal-Wallis
test

2 <0.0001(***) 57.75 Dunn's test 1 naive vs mock: 0.1381(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = -1.6846
z = 5.7215
z = 7.284

4D �.*3*",��/.$��/'�����
���
��

��� ��	 ��
 runs Kruskal-Wallis
test

2 <0.0001(***) 48.82 Dunn's test 1 naive vs mock: 1(ns)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = 0.0374
z = -6.0955
z = -5.8855

4D �.*3*",��/.$��/'�����
��������

��� ��� �
� runs Kruskal-Wallis
test

2 <0.0001(***) 83.00 Dunn's test 1 naive vs mock: 0.002(**)
naive vs preexposure: <0.0001(***)
mock vs preexposure: <0.0001(***)

z = -3.2048
z = -9.0932
z = -5.4678

4D �.*3*",��/.$��/'�����
������
��

��� ��� ��� runs Kruskal-Wallis
test

2 <0.0001(***) 30.83 Dunn's test 1 naive vs mock: 0.001(***)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 0.064(ns)

z = -3.4101
z = -5.4972
z = -2.0269

4D �.*3*",��/.$��/'�����
����	��

�� �	� �� runs Kruskal-Wallis
test

2 0.0151(*) 8.38 Dunn's test 1 naive vs mock: 0.0057(**)
naive vs preexposure: 0.2973(ns)
mock vs preexposure: 0.1517(ns)

z = 2.8947
z = 1.2868
z = -1.6393

4D �.*3*",��/.$��/'�����
�������

�	� ��
 ��� runs Kruskal-Wallis
test

2 0.0637(ns) 5.51 Dunn's test 1 - -

4D �.*3*",��/.$��/'�����
	�����

	�� 
�� 	�� runs Kruskal-Wallis
test

2 <0.0001(***) 76.84 Dunn's test 1 naive vs mock: <0.0001(***)
naive vs preexposure: <0.0001(***)
mock vs preexposure: 0.8193(ns)

z = 8.0792
z = 7.3115
z = -0.6035

Figure Parameter Number of
Groups

Number of
initial

Number of
last

Unit of
number

Statistical
tests used

p value Other result

5D �*()3�5&,/$*37�*.���
20"$&�"3�3�����

� �� �� flights Mann–Whitney
test

0.0234(*) Mann-Whitney U = 233.0

5D �,*()3�"$$&,&1"3*/.�*.���
20"$&�"3�3�����

� �� �� flights Mann–Whitney
test

0.2326(ns) Mann-Whitney U = 295.0


