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Abstract: 

Temporal continuity of object identity is a natural 
feature of visual input statistics, and it is potentially 
exploited -- in an unsupervised manner -- by the ventral 
visual stream to build and re-shape the neural 
representation in inferior temporal (IT) cortex and IT-
dependent core object recognition behavior.  Prior 
psychophysical studies in humans and 
electrophysiological studies in monkey IT are individually 
supportive of this hypothesis. However, due to 
differences in tasks and experience manipulations, it is 
not yet known if the reported plasticity of individual IT 
neurons and the reported human behavioral changes are 
quantitatively consistent. Here we tested that 
consistency by building an unsupervised plasticity 
model that captures the previously-reported IT neural 
plasticity and combined that model with a previously 
established IT-to-recognition-behavior linking model.  We 
compared the predictions of the overall model with the 
results of three new human behavioral experiments: in 
each we delivered a different type of unsupervised 
temporal contiguity experience and longitudinally 
measured its effect on performance of targeted object 
discrimination tasks. We found that, without any 
parameter tuning, the overall model accurately predicted 
the mean direction, magnitude and time course of 
performance changes in all three of these experiments.   
We also found a previously unreported dependency of 
the observed human performance change on the initial 
difficulty of the targeted object discrimination task, which 
was also largely predicted by the overall model. This 
result demonstrates the interlocking consistency of a 
range of prior neural and behavioral work, and thus adds 
support to the hypothesis that tolerant core object 
recognition in human and non-human primates is 
instructed -- at least in part -- by naturally occurring 
unsupervised temporal contiguity experience.  
 
Keywords: object recognition; unsupervised learning; 
inferior temporal cortex; neural plasticity; human 
psychophysics  

Introduction 
Among visual areas, the inferior temporal (IT) cortex is 
thought to most directly underlie core visual object 

recognition in human and non-human primates (Ito, 
Tamura, Fujita, & Tanaka, 1995; Rajalingham & 
DiCarlo, 2019). For example, simple weighted sums of 
IT neuronal population activity can accurately explain 
and predict human and monkey core object recognition 
(COR) performance (d’ values) over dozens of such 
tasks (Majaj, Hong, Solomon, & DiCarlo, 2015). 
Moreover, direct suppression of IT activity disrupts COR 
behavior (Afraz, Boyden, & DiCarlo, 2015; Rajalingham 
& DiCarlo, 2019). These results were found in the face 
of significant variation in object latent variables 
including size, position and pose, and the high 
generalization performance of the simple IT read-out 
(weighted sum) rests on the fact that many individual IT 
neurons show high tolerance to those variables 
(DiCarlo, Zoccolan, & Rust, 2012; Hung, Kreiman, 
Poggio, & DiCarlo, 2005; Li, Cox, Zoccolan, & DiCarlo, 
2009), reviewed by (DiCarlo et al., 2012).   
 

But how does the ventral stream wire itself up to 
construct these highly tolerant IT neurons?  Simulated 
IT “neurons” in the deep layers of artificial neural 
networks (ANNs) have such tolerance, and provide 
quite accurate approximations of the adult ventral visual 
stream processing (Khaligh-Razavi & Kriegeskorte, 
2014; Rajalingham et al., 2018; D. L. K. Yamins et al., 
2014). However, those ANNs are trained with millions 
of supervised (labeled) training images, an experience 
regime that is almost surely not biologically plausible 
over evolution or post-natal development. That simple 
fact rejects all such ANNs models of the construction of 
the IT tolerance, regardless of whether or not the brain 
is executing some form of backpropagation-instructed 
plasticity (Plaut & Hinton, 1987).  So the question 
remains open: how does the ventral stream wire itself 
up to construct a tolerant IT with minimal supervision? 

The temporal stability of object identity under natural 
viewing (i.e. objects do not rapidly jump in and out of 
existence) has been proposed as a key available 
source of unsupervised information that might be 
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leveraged by the visual system to construct neural 
tolerance, even during adulthood (Földiák, 1991; 
Hénaff, Goris, & Simoncelli, 2019; Rolls & Stringer, 
2006; G. Wallis, Backus, Langer, Huebner, & Bulthoff, 
2009; G Wallis & Bülthoff, 2001; Wiskott & Sejnowski, 
2002). Consistent with this view, psychophysical results 
from human subjects show that unsupervised exposure 
to unnatural temporal contiguity experience (i.e. 
laboratory situations in which object do jump in and out 
of existence) reshapes position tolerance (Cox, Meier, 
Oertelt, & DiCarlo, 2005), pose tolerance (G Wallis & 
Bülthoff, 2001) and depth illumination tolerance (G. 
Wallis et al., 2009) as measured at the behavioral level. 
Similarly, neurophysiological data from adult macaque 
IT show that unsupervised exposure to unnatural 
temporal contiguity experience reshapes IT neuronal 
position and size tolerance (Li & DiCarlo, 2008, 2010), 
in a manner that is qualitatively consistent with the 
human behavioral data.  

Taken together, our working hypothesis is that the 
ventral visual stream is under continual reshaping 
pressure via unsupervised visual experience, that such 
experience is an important part of the construction of 
the tolerant representation that is ultimately exhibited at 
the top level of the ventral stream (IT), that the IT 
population feeds downstream causal mechanistic 
chains to drive core object discrimination behavior, and 
that the performance on each such behavioral tasks is 
well approximated by linear read-out of IT (Hung et al., 
2005; Majaj et al., 2015). 

However, there is a key untested element in this 
working hypothesis:  Is the single neuronal plasticity in 
adult monkey IT and the adult human behavioral 
changes resulting from unsupervised temporal 
contiguity experience quantitatively consistent with 
each other?   In this study, we chose to focus on testing 
that missing link as it was far from obvious that it would 
hold up.  In particular, the prior IT neurophysiology work 
was with basic level objects and produced seemingly 
large changes (~25% change in IT selectivity per hour 
of exposure in (Li & DiCarlo, 2010), and the prior human 
behavioral work was with subordinate level objects and 
produced significant, but subtle changes in behavior 
(e.g. ~3% performance change in (Cox et al., 2005).   
Moreover, if we found that the link did not hold, it would 
call into question all of the elements of the overall 
working hypothesis (esp. IT’s relationship to COR 
behavior, and/or the importance of unsupervised 
plasticity to the IT representation).  Thus, either result 
would be important.  

To test whether our working hypothesis is 
quantitatively accurate over the domain of 
unsupervised temporal contiguity induced plasticity, we 

sought to build a quantitative model to predict the 
changes in human object discrimination performance 
that should result from temporally-contiguity-
experience-driven changes in IT neuronal responses. 
This model has three components: 1. a generative IT 
model (constrained by prior IT population response 
(Majaj et al., 2015)) that approximates the IT population 
representation space and can thus simulate the IT 
population response to any image of the objects (within 
the space) with variation in size; 2. an unsupervised 
plasticity rule (constrained by prior IT neural plasticity 
data (Li & DiCarlo, 2010)) to quantitatively describe and 
predict firing rate change of single IT neurons resulting 
from temporally-contiguous pair of  experienced images 
and can thus be used to update the simulated IT 
population representation; 3. an IT-to-COR-behavior 
linking model (learned weighted sums, previously 
established by (Majaj et al., 2015)) to predict behavioral 
discrimination performance from the state of the IT 
(simulated) population both before and after each 
epoch of unsupervised experience. 

To overcome the limitation of non-overlapping tasks 
in previous psychophysics and neurophysiology studies 
and to extend prior psychophysical work, we carried out 
new human behavioral experiments. Specifically, we 
measured the progression of changes in size-specific 
human object discrimination performance that resulted 
from unsupervised temporally contiguity experience 
using the same experience paradigm as the prior 
monkey neurophysiology work (Li & DiCarlo, 2010).   
We made these measurements for a wide range of 
object discrimination tasks, ranging from subordinate to 
basic level.   

We found that – without any parameter tuning -- our 
overall model accurately predicted the observed 
direction, magnitude, and time course of the changes in 
human performance for all of the tested unsupervised 
experience manipulations.  We also found that there 
was a strong dependency of learning effect on the initial 
task difficulty, with initially hard (d’<0.5) and initially 
easy (d’>2.5) COR tasks showing smaller measured 
learning effects than COR tasks of intermediate initial 
difficulty.  The former was naturally explained by the 
overall model, and the latter was explained if we 
assumed a behavioral lapse rate of ~5% (Prins, 2012).  

Taken together, this result shows that at least three 
separate types of studies (human unsupervised 
learning, IT unsupervised plasticity, and IT-to-COR-
behavior testing) are all quantitatively consistent with 
each other.  As such, this result adds support to the 
overall working hypothesis: that tolerant core object 
recognition is instructed – at least in part --- by naturally 
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occurring unsupervised temporal contiguity experience 
that gradually reshapes the non-linear image 
processing of the ventral visual stream without the need 
for millions of explicit supervisory labels (Krizhevsky, 
Sutskever, & Hinton, 2012; Y. LeCun et al., 1989; 
Riesenhuber & Poggio, 1999) and reviewed by (Yann 
LeCun, Bengio, & Hinton, 2015). 

Results 

Our working hypothesis (see Introduction) predicts that 
IT population plasticity resulting from unsupervised 
visual experience should accurately predict the 
direction, magnitude, and time course of all changes in 
human object discrimination performance resulting from 
the same visual exposure. To quantitatively test these 
predictions, we first carried out a set of human 
psychophysical experiments with unsupervised 
experience that closely approximate an unsupervised 
experience paradigm that has been shown to reliably 
produce  IT plasticity (measured as changes in size 
tolerance at single IT recording site) (Li & DiCarlo, 
2010).   

Measure changes in human object discrimination 
performance induced by unsupervised visual 
experience.  

The basic experimental strategy is that, after testing 
initial object discrimination performance on a set of 
discrimination tasks (“Test phase”, Fig. 1a), we provide 
an epoch of unsupervised visual experience (“Exposure 
phase”, Fig. 1a) that is expected to result in IT plasticity 
(based on the results of (Li & DiCarlo, 2010)).  At the 
end of the exposure epoch, we re-measure 
discrimination performance (Test phase), then provide 
the next epoch of unsupervised experience (Exposure 
phase), etc. (see Fig. 1a). This strategy allowed us to 
evaluate the accumulation of positive or negative 
behavioral changes (a.k.a. “learning”) resulting from 
four unsupervised experience epochs (400 exposure 
“trials” each) over approximately 1.5 to 2 hours.  We 
include control discrimination tasks to subtract out any 
general learning effects. 

Specifically, we evaluated changes in discrimination 
performance (relative to initial performance) of each of 
a set of size-specific object discrimination tasks.  A total 
of 174 human subjects on Amazon Mechanical Turk 
(see Methods and (Kar, Kubilius, Schmidt, Issa, & 
DiCarlo, 2019; Majaj et al., 2015; Rajalingham et al., 
2018)) participated in this experiment.  

To measure object discrimination performance in 
each subject, we used a set of 2-way alternative forced 
choice (2AFC) sub-tasks (size-specific object 

discrimination task; see Methods). These sub-tasks 
were randomly-interleaved (trial by trial) in each Test 
Phase, and the key test conditions used in the analyses 
(brackets indicated with d’s in Fig. 1B) were embedded 
within a balanced set of six sub-tasks and cover trials 
(see Fig. 1B and Methods). 

Our first experiments used pairs of faces as the 
objects to discriminate, and we targeted our exposure 
manipulations at the big (2x) size (see Fig. 1; later, we 
targeted other pairs of objects and other sizes). 
Specifically, we used eight face objects from a previous 
study (Majaj et al., 2015).  We chose these face objects 
at this size because, prior to unsupervised exposure, 
they had intermediate discriminability (mean d’ = 
2.0±0.1 for big size, frontal view, n=28 pairs of faces), 
thus allowing us the possibility to measure both positive 
and negative changes in discrimination performance.  
For each subject, two target faces (manipulated during 
exposure) and two control faces (not shown during 
exposure) were randomly chosen from these eight 
faces. 

Subjects were instructed to identify the single 
foreground face in a briefly presented test image 
(100ms) by choosing among two alternative choice 
faces immediately presented after the test image, one 
of which always correct (i.e. 50% chance rate). The test 
image contained one foreground object with variation in 
view (position, size, pose), overlaid on a random 
background (see Methods for test image generation). 
The choice images were always baseline views (i.e. 
size of ~2 degree, canonical pose) without background.  

Similar to prior work testing the effects of 
unsupervised exposure on single-site IT recordings (Li 
& DiCarlo, 2010), each experiment consisted of two 
phases (Figure 1A): Test Phases to intermittently 
measure the size-specific object discrimination 
performance (d’) for the target face pair and control face 
pair (four face objects in total; three d’ measurements in 
each group of subjects, see Fig. 1B bottom); and 
Exposure Phases to provide unsupervised visual 
experience (pairs of images with different sizes in close 
temporal proximity; Figure 1A) that – based on prior 
work -- was expected to improve or decrease the 
discrimination performance on the exposed objects.  

The purpose of the Exposure Phase was to deploy 
unsupervised visual experience manipulations to target 
a particular object pair (two “target” objects) at particular 
views (e.g. sizes) of those target objects. For each 
exposure event, two images, each containing a different 
size object (frontal; no background) were presented 
consecutively (100 ms each) (see Methods for details).   
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Figure 1. Experimental design and conceptual hypothesis. A) Illustration of human behavioral experimental design and an 
example trial from the Test Phase and from the Exposure Phase. B) Top: example confusion matrix for a 2AFC size-specific 
sub-task run during each Test Phase to monitor object-specific, size-specific changes in discrimination performance (see 
Methods). Bottom: the two unsupervised exposure flavors deployed in this study (see Methods). Only one of these was deployed 
during each Exposure Phase (see Fig. 2). Exposed images of example exposed objects (here, faces) are labeled with asterisks, 
and the arrows indicate the exposure events (each is a sequential pair of images). Note that other object and sizes are tested 
during the Test Phases, but not exposed during the Exposure Phase (see d’ brackets vs. asterisks). Each bracket with a d’ 
symbol indicates a pre-planned discrimination sub-task that was embedded in the Test Phase and contributed to the results 
(Fig. 2). In particular, performance for target-objects at non-exposed size (d’ labeled with dashed lines), target-objects at exposed 
size (d’ labeled with bold solid lines) and control objects (d’ labeled with black line) were calculated based on test phase choices. 
C) Expected qualitative changes in the IT neural population representations of the two objects that results from each flavor of 
exposure (based on Li et al., 2010). In each panel, the six dots show three standard sizes of two objects along the size-variation 
manifold of each object. Assuming simple readout of IT to support object discrimination (e.g. linear discriminant, see Majaj et 
al., 2015), non-swapped exposure tends to build size tolerant behavior by straightening out the underlying IT object manifolds, 
while swapped exposure tends to disrupt (“break”) size tolerant behavior by bending the IT object manifolds toward each other 
at the swapped size.  This study asks if that idea is quantitatively consistent across neural and behavioral data without any 
parameter tuning.
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Figure 2. Measured human unsupervised learning effects as a function of amount of unsupervised exposure (each “exposure 
event” is the presentation of two, temporally-adjacent images, see Fig. 1A, right). We conducted three longitudinal unsupervised 
exposure experiments (referred to as u1, u2, u3). A) Swapped exposure experiment intended to “break” size tolerance (n=102 
subjects; u1). Upper panels are the changes in d’ relative to initial d’ for targeted objects (faces) at exposed size (big) (red line), 
control objects (other faces) at the same size (big) (black line) and targeted faces at non-exposed size (small) (dashed black 
line) as a function of number of exposure events prior to testing. Lower panel is the to-be-predicted learning effect determined 
by subtracting change of d’ for control objects from the change of d’ for target objects (i.e red line minus black line). B) Same as 
A, but for non-swapped exposure experiment (n=36 subjects; u2). C) Same as A, except for non-swapped exposure followed by 
swapped exposure (n=37 subjects; u3) to test the reversibility of the learning. In all panels. error bars indicate bootstrapped 
standard error of the mean.

In non-swapped exposure events, both images 
contained the same object (expected to “build” size 
tolerance under the temporal contiguity hypothesis). In 
swapped exposure events, each images contained a 
different target object (expected to ‘break’ size 
tolerance under the temporal contiguity hypothesis). 
The conceptual predictions of the underlying IT neural 
population target object manifolds (DiCarlo & Cox, 
2007) are that: non-swapped exposure events will 
straighten the manifold of each target object by 
associating size exemplars of the same object (as in the 
natural world), and that swapped exposure events will 
bend and decrease the separation between the two 
manifolds by incorrectly associating size exemplars of 
different objects (Fig 1C).   This logic and experimental 
setup are adopted entirely from prior work (Li & DiCarlo, 
2008, 2010). 

In our studies here, we specifically focused on 
manipulating the size tolerance in the medium size (x1 
of baseline view; ~2 deg) to big size (x2 of baseline 
view; ~4 deg) regime.  Thus, the images shown during 
the Exposure Phase (indicated by * in Figure 1B) were 
always medium- and big-size, frontal-view of the target 
objects. We conducted three types of unsupervised 
exposure experiments (u): swapped (u1), non-swapped 
(u2) and non-swapped, followed by swapped (u3).  

In Experiment u1 (swapped exposure events), we 
found that discrimination of the target face pair viewed 
at big size decreased with increasing numbers of  
exposure events (Figure 2A; top rows; red solid line; 
n=102 subjects). We found little to no change in 
performance for the non-exposed (small size) versions 
of those same faces (black dashed line; mean initial d´ 
is 1.2±0.1) or for non-exposed control faces (also tested 
at big size, black solid line). Lower panels in Figure 2A 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.900837doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.900837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

showed the learning effect defined by subtracting 
changes in control face discrimination performance (to 
remove general learning effects over the experience 
epochs, which turned out to be small; see Fig. 2A upper 
panel). In sum, we demonstrated an unsupervised, 
object-selective, size-selective temporal contiguity 
induced learning effect that was qualitatively consistent 
with prior work in ‘breaking’ tolerance (Cox et al., 2005; 
G Wallis & Bülthoff, 2001), and we measured the 
accumulation of that learning over increasing amounts 
of unsupervised exposure. 

In Experiment u2 (non-swapped exposure events), 
we found that discrimination of the target face pair 
viewed at big size increased with increasing numbers of  
exposure events (Figure 2B; top rows; blue solid line; 
n=36 subjects).  As in Experiment u1, we found little to 
no change in performance for the non-exposed (small 
size) versions of those same faces or for non-exposed 
control faces (also tested at big size, black solid line).  
This shows that, as predicted by the temporal contiguity 
hypothesis, unsupervised experience can build size 
tolerance at the behavioral level. 

Interestingly, after ~800 exposure events, the 
exposure induced learning effects appeared to plateau 
in both ‘breaking’ tolerance conditions (Experiment u1, 
Fig. 2A) and ‘building’ tolerance conditions (Experiment 
u2), Fig. 2B, suggesting a limit in the measurable 
behavioral effects (see Discussion). 

To test whether this unsupervised learning effect is 
reversible, we measured human performance in a 
combined design (Experiment u3) by first providing 
exposure epochs that should ‘build’ tolerance, followed 
by exposure epochs that should ‘break’ tolerance (n=37 
subjects).   Consistent with the results of Experiments 
u1 and u2, we found that size tolerance first increased 
with non-swapped (‘build”) exposures and then 
decreased with swapped (“break”) exposures (Fig. 2C), 
and that the effect did not spill over to the control 
objects.  

In sum, these results confirmed that the effect of 
unsupervised visual experience was specific (to 
manipulated object and sizes) and strong even in 
adults. Furthermore, the measured human learning 
effect trajectories with different unsupervised visual 
exposure conditions (u1, u2, u3) were taken as 
behavioral effects that must – without any parameter 
tuning -- be quantitatively predicted by our working 
hypothesis (that links IT neural responses to COR 
behavior; see Introduction).    We next describe how we 
built an overall computational model to formally 
instantiate that working hypothesis to make those 
predictions.  

A generative model to simulate the population 
distribution of IT responses.  

To generate predictions of human behavior 
performance, we need to measure or otherwise 
estimate individual IT neural responses to the same 
images used in the human psychophysical testing 
(above) for a sufficiently large set of IT neurons (a.k.a. 
IT population responses).  Because each of the objects 
we used in human psychophysics had been previously 
tested in neural recording experiments from monkey IT, 
we did not collect new IT population responses (very 
time consuming), but we decided instead to make 
suitably accurate predictions of the population pattern 
of IT response for test images of those objects.  To do 
this, we built a generative model of the IT population 
based on the previously recorded IT population 
response data to those objects. The output of this model 
is the firing rate of a simulated IT population to one 
presentation of a newly rendered test image (generated 
from the 64 base objects used in the previous study). 
With this model, we could simulate IT population 
responses to any images rendered from the 
psychophysically tested objects without recording more 
neurons in behaving animals.  

This generative IT model captures the IT neuronal 
representation space with a Multi-Dimensional 
Gaussian (MDG) model, assuming the distribution of IT 
population responses is Gaussian-like for each object 
(see Method for Gaussian validation) (Figure 3A). 
Because the MDG preserves the covariance matrix of 
IT responses to 64 objects, any random draw from this 
MDG gives rise to an object response preference profile 
(one response level for each of 64 objects) of a 
simulated IT neural site. To simulate the effect of 
changes in object size, for each simulated site, we 
randomly chose a size tuning kernel from a batch of size 
tuning curves that we had obtained by fitting curves to 
real IT responses across changes in presented object 
size (n=168 recording sites; data from (Majaj et al., 
2015)).  Motivated by prior work (Li et al., 2009), we 
assumed separability of object representation and size 
tuning, and simulated the response to any of the 64 
objects at any of the three sizes as the outer product of 
the object and size tuning curves (Figure 3A bottom). 
However, since most measured size-tuning curves are 
not perfectly separable (DiCarlo et al., 2012; Rust & 
DiCarlo, 2010) and because the tested conditions 
included arbitrary background for each condition, we 
introduced independent clutter variance caused by 
backgrounds on top of this for each size of an object 
(Figure 3A) by randomly drawing from the distribution of 
variance across different image exemplars for each 
object. We then introduced trial-wise variance for each  
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Figure 3. Generative IT model and validation of the IT-to-COR-behavior linking model. A) Generative IT model based on real IT 
population responses. Top left box: schematic illustration of the neuronal representation space of IT population with a multi-
dimensional Gaussian (MDG) model. Each point of the Gaussian cloud is one IT neural site. Bottom box: The distribution of 
object preference of a simulated IT neural site for all 64 objects (i.e. a sample drawn from the MDG, highlighted as a red dot; 
each color indicates a different object). A size tuning kernel is drawn from the a batch of size tuning curves (upper right box) and 
multiplied by the object  response distribution (outer product), resulting in a fully size-tolerant (i.e. separable) neural response 
matrix (64 objects x 3 sizes). To simulate the final mean response to individual images with different backgrounds, we added a 
“clutter” term to each element of the response matrix (s2clutter; see Methods). To simulate the trial-by-trial “noise” in the response 
trials, we added a repetition variance (s2repeats; see Methods). B) Response distance matrices for neuronal responses from real 
IT recording sites (n=168 sites) and one simulated IT population (n=168 model sites) generated from the model. Each matrix 
element is the distance of the population response between pairs of objects as measured by Pearson correlation (64 objects, 
2016 pairs). C) Similarity of the model IT response distance matrix to the actual IT response distance matrix.  Each dot represents 
the unique values of the two matrices (n=2016 object pairs), calculated for the real IT population sample and the model IT 
population sample (r=0.93±0.01). D) Determination of the two hyperparameters of the IT-to-behavior linking model.  Each panel 
shows performance (d’) as a function of number of recording sites (training images fixed at m=20) for model (red) and real IT 
responses (black) for two object discrimination tasks (Task 1 is easy, human pre-exposure d’ is ~3.5; Task 2 is hard, human 
pre-exposure d’ is ~0.8; indicated by dashed lines). In both tasks, the number of IT neural sites for the IT-to-behavior decoder 
to match human performance is very similar (n~260 sites), and this was also true for all 24 tasks (see E), demonstrating that a 
single set of hyperparameters (m=20, n=260) could explain human pre-exposed performance over all 24 tasks (as previously 
reported by Majaj et al., 2015). E) Consistency between human performance and model IT based performance of 24 different 
tasks for a given pair parameters (number of training samples m = 20 and number of recording sites n = 260). The consistency 
between model prediction and human performance is 0.83±0.05 (Pearson correlation +/- SEM). F) Manifold of the two 
hyperparameters (number of recording sites and number of training images) where each such pairs (each dot on the plot) yields 
IT-based performance that matches initial (i.e. pre-exposure) human performance (i.e. each pair yields a high consistency match 
between IT model readout and human behavior, as in E).  The dashed line is an exponential fit to those dots.  

image based on the distribution of trial-wise variance of 
the recorded IT neural population. In sum, this model 
can generate a new, statistically typical pattern of IT 
response over a population of any desired number of 
simulated IT neural sites to different image exemplars 
within the representation space of 64 base objects at a 
range of sizes (here targeting “small”, “medium”, and 
“big” sizes to be consistent with human behavioral 
tasks; see Methods for details). 

To check if the simulation is statistically accurate in 
terms of the layout of images in IT population 

representation space, we compared the representation 
similarity matrix (RSM; correlation between neuronal 
population responses to different images) of different 
draws of a simulated IT with the RSM measured from 
the actual IT neural data (Figure 3B). One typical 
example of that is shown in Figure 3C, revealing high 
correlation of the two RSMs (r=0.93±0.01). While this 
does not guarantee that any such simulated IT 
population is fully identical to an IT population that might 
exist in an actual monkey or human IT, our goal was 
simply to get the simulated IT population response 
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distribution in the proper range (up to second order 
statistics). 

A standard IT-to-COR-behavior linking model for 
core object discrimination behavior. 

To make predictions about how IT neural changes will 
results in behavioral changes, we first needed a model 
to establish the linkage between IT population response 
and core object discrimination behavior prior to any 
experience-induced effects. We have previously found 
that simple weighted linear sums of IT neural responses 
accurately predict the performance (d’) of human object 
discrimination for new images of those same objects 
(here termed the IT-to-COR-behavior linking model) 
(Majaj et al., 2015). That model has only two free 
hyperparameters: the number of neural sites and the 
number of labeled (a.k.a. “training”) images used to set 
the weights of the decoder for each object 
discrimination.  Once those two hyperparameters are 
locked, it has been empirically demonstrated that  
performance for any object discrimination task on new 
images is accurately predicted by its trained decoder 
(Majaj et al., 2015). To test whether the simulated IT 
population activity from the generative IT model (above) 
could quantitatively reproduce those prior results and to 
lock these two hyperparameters, we compared the 
predicted performance (for any given object recognition 
task) based on the simulated IT population (Figure 3D; 
red solid line) with the predicted performance based on 
the previously recorded IT neural population (black 
solid line).  We did this as a function of number of 
recording sites, for a set of object recognition tasks. 
Figure 3D illustrated two example tasks (errorbar is 
standard error across 40 random subsamples of 
recording sites). As expected, we found that the model 
predictions overlapped with decoded performance of 
real IT neural sites, indicating that our generative IT 
model has captured the relevant components of the IT 
population response.   

    We next set out to choose the two free 
hyperparameters (number of sites and number of 
training examples). The crossing point with human 
performance in Figure 3D reflects how many neural 
sites are necessary to reach human performance level 
for a given number of training samples. Unlike the real 
IT neural data (n=168 recording sites) which required 
extrapolation to estimate the number of sites matching 
human absolute performance (Majaj et al., 2015), we 
simulated up to 1000 IT sites with the generative model 
to cover the range of neural sites necessary to reach 
human performance.   

Consistent with Majaj et al (Majaj et al., 2015), we 
found that the number of simulated IT sites required to 

match human was similar across different tasks 
(260±23 IT sites given 20 training images  (tested over 
24 object discrimination tasks: low variation 8-way 
tests: 8 basic level, 8 car identification and 8 face 
identification tasks; previously used in (Majaj et al., 
2015)).  Specifically, we here used 260 sites with 20 
training samples for all tasks, and the match between 
the decoded simulated IT performance and human 
performance over all discrimination tasks was 
r=0.83±0.05 (n=24 tasks), similar to previously reported 
match between decoded neural IT performance and 
human for the same tasks (r=0.868 from (Majaj et al., 
2015)). Note that other specific combinations of the 
number of IT sites and the number of training examples 
are also suitable (Figure 3F) and we explored this later.   

In sum, by setting the two decoder hyperparameters 
to match initial human performance, we established a 
fixed linear decoder rule that could be applied to our 
simulated IT population to quantitatively predict the 
expected performance of the subject (i.e. the owner of 
that IT population) for any object discrimination task.   

The consequence is that, because the linkage model 
between the IT population and behavior is now fixed, 
any changes in the IT population are automatically 
mapped to predicted changes (if any) in behavioral 
performance (with no free parameters).  From here on, 
we locked down the generative IT model and the 
decoders that matched human initial performance 
(before learning), and we combine both of these models 
later to make predictions of direction and magnitude of 
behavioral performance change (if any) that should 
result from any given change in the IT population (Fig. 
2).  

Unsupervised IT plasticity rule.  

To model the IT neural population response changes 
that result from the unsupervised visual experience 
provided to the human subjects, we developed an 
unsupervised IT plasticity rule guided by previous 
studies of IT plasticity effects in the rhesus monkey that 
used the same paradigm of unsupervised visual 
experience that we provided here to our human 
subjects (Li et al., 2009; Li & DiCarlo, 2008, 2010).  In 
particular, we set out to build an unsupervised IT 
plasticity rule that could predict the (mean) response 
change that occurs in each and every IT neuron as a 
result of each presented pair of temporally-contiguous 
visual images. We assumed that the same model would 
also apply to human “IT” without any parameter 
modifications (see Discussion). 

Those prior monkey studies revealed that exposure 
to altered (“swapped”) visual statistics typically disrupts 
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the size-tolerance of single IT neurons, while exposure 
to normal statistics in visual experience (non-swapped 
condition) typically builds size tolerance  (Li & DiCarlo, 
2010). To develop our unsupervised IT plasticity rule, 
we replicated the exact same experiment used in the 
monkeys on simulated-IT neurons.  Figure 4A illustrates 
the exposure design for single IT sites, where the 
preferred object (P) and non-preferred object (N) of 
each neuron are defined by the magnitude of neuronal 
activity (z-scored across all objects for each IT site). 
Selectivity of a neuron is measured by the difference of 
neuronal responses to its preferred and non-preferred 
objects (P-N) /(P+N), the same as (Li & DiCarlo, 2010).  

We used a Hebbian-like (associative) plasticity rule 
(Caporale & Dan, 2008; D.O. Hebb, 1949; Oja, 1982; 
Paulsen & Sejnowski, 2000), which updates firing rate 
for each pair of images based on the difference of 
neuronal firing rate (FR) between the lagging and 
leading images (see Method). Our plasticity rule states 
that the modification of firing rate of neuron to the 
leading image at time t is equal to the difference of firing 
rate between lagging and leading images multiplied by 
a plasticity rate a. This plasticity rule tends to reduce 
the difference in neuronal responses to consecutive 
images and implies a temporal association to images 
presented close in time. The plasticity rule is 
conceptually similar to previously proposed temporal 
continuity plasticity or (a.k.a. slow feature analysis) 
(Berkes & Wiskott, 2005; Földiák, 1990, 1991; 
Mitchison, 1991; Sprekeler, Michaelis, & Wiskott, 
2007). It is physiologically attractive because the 
findings on short-term synaptic plasticity revealed that 
synaptic efficacy changes over time in a way that 
reflects the history of presynaptic activity (Markram, 
Gerstner, & Sjöström, 2012; Markram, Lübke, 
Frotscher, & Sakmann, 1997). Even though 
conceptually similar, our plasticity rule is a ‘descriptive’ 
rather than a ‘mechanistic’ rule of plasticity at all stages 
of the ventral stream.  That is, the rule does not imply 
that all the underlying plasticity is in IT cortex itself – but 
only aims to quantitatively capture and predict the 
changes in IT responses resulting from unsupervised 
visual experience. It is general in a sense that it can 
make predictions for different objects or dimensions of 
variations, but it is (currently) limited in that it:  only 
applies to temporally paired image associations, it 
ignores any correlation in the neural response patterns, 
and it assumes that updates occur only in the 
responses to the exposed images (i.e. non-exposed 
object/size combinations are not affected).   

To show the effects of this unsupervised IT plasticity 
rule, we illustrate with an example simulated IT neuron.  
The simulated neuron in Figure 4B was initialized to be 

– like many adult IT neurons – highly size tolerant:  its 
response to a preferred object (P) is always greater 
than response to a non-preferred object (N) at each 
size. After applying the unsupervised exposure design 
in Figure 4A (200 exposure events for each arrow, 1600 
exposure events in total), the responses to each of the 
six conditions (2 objects x 3 sizes) evolved as shown in 
Figure 4B.  We note two important consequences of this 
plasticity rule. First, because the rule was designed to 
decrease the difference in response across time, 
responses to images presented consecutively tend to 
become more similar to each other, which results in a 
reduction in the response difference between P and N 
at both the swapped and the non-swapped sizes. 
Second, once the neuron reached a state in which its 
response is no different over consecutively exposed 
images, the learning effect saturates. Notably, unlike 
adaptive changes in plasticity rate in the typical 
supervised optimization of deep neural networks 
(Kingma & Ba, 2014), our plasticity rate is kept constant 
over the “lifetime” of the model. The gradual shrinkage 
of learning effect (D(P-N) /(P+N)) as more and more 
exposure events are provided was a consequence of 
the gradual reduction in the absolute difference 
between neuronal responses to the two consecutive 
images that makeup each exposure event.  

There is only one free parameter in our plasticity rule 
equation--the plasticity rate a. We determined this 
parameter using the single neuron physiology data 
collected previously in the lab (Li & DiCarlo, 2010). 
Figure 4C shows the average IT plasticity effect that 
results from different settings of a (here the plasticity 
effect is defined by the normalized changes in 
selectivity: D(P-N)/(P-N), exactly as was done in (Li & 
DiCarlo, 2010).  As expected, a higher plasticity rate (a) 
results in greater model IT plasticity effects (Fig 4C).  
We chose the plasticity rate (a) that best matched the 
prior monkey IT neurophysiology results (i.e. the a that 
resulted in the minimal difference between the model IT 
plasticity effect (solid lines) and the experimentally 
reported IT plasticity effect (dashed lines) for swapped, 
non-swapped and medium object sizes; see Fig 4C 
middle). The best a is 0.0016 nru per exposure event 
(nru=normalized response units; see Methods for 
intuition about approximate spike rate changes).  Once 
we set the plasticity rate, we locked it down for the rest 
of this study (otherwise noted later where we test rate 
impact). 

We next asked if our IT plasticity rule naturally 
captured the other IT plasticity effects reported in the 
monkey studies (Li & DiCarlo, 2010).  Specifically, it 
was reported that, for each neural site, the selectivity 
that results from given a fixed amount of unsupervised  
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Figure 4. Temporal continuity-based IT single-neuron plasticity rule. A) Illustration of exposure design for single IT neuron 
plasticity (adapted directly from (Li & DiCarlo, 2010)). P refer to preferred object of the IT neuron, N refer to non-preferred object 
of that neuron. B) We developed an IT plasticity rule that modifies the model neuronal response to each image in individual 
neurons according to the difference in neuronal response between lagging and leading images for each exposure event (see 
Methods).  The figure shows the model predicted plasticity effects for a standard, size-tolerance IT neuron and 1600 exposure 
events (using the same exposure design as Li and DiCarlo, 2010; i.e. 400 exposure events delivered (interleaved) for each of 
the four black arrows in Panel A) for three different plasticity rates. Dashed lines indicate model selectivity pattern before learning 
for comparison. C) Normalized change in over time for modeled IT selectivity for three different plasticity rates. Dashed lines are 
the mean single neurons and multi-unit sites plasticity results from same neurons in Li and DiCarlo, 2010 (mean change in P vs. 
N responses, where the mean is taken over all P > N selective neurons that were sampled and then tested, see (Li & DiCarlo, 
2010)). Solid lines are the mean predicted single neuron plasticity for the mean IT model “neurons” (where these neurons were 
sampled and tested in a manner analogous to (Li & DiCarlo, 2010), see Methods). Blue line indicates the change in P vs. N 
selectivity at the non-swapped size, green indicates change in selectivity at the medium size and red indicates change in 
selectivity at the swapped size. Error bars indicate standard error of the mean. D) Mean swapped object (red) and non-swapped 
object (blue) plasticity that results for different model IT neuronal sub-groups – each selected according their initial pattern of P 
vs. N selectivity (analogous to the same neural sub-group selection done by (Li & DiCarlo, 2010) c.f. their Fig. 6 and 7). 
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exposure depends on the initial selectivity of that site. 
Thus, the unsupervised “swapped” experience 
manipulation causes a reduction of selectivity for neural 
sites that show a moderate level of initial P (preferred 
object) vs. N (non-preferred object) selectivity at the 
swapped size, and the same amount of unsupervised 
experience reverses the selectivity of neuronal sites 
that show a low level of initial selectivity at the swapped 
size (i.e. cause the site to, oxymoronically, prefer object 
N over object P).  Li & DiCarlo (2010) also reported that 
the more natural, “non-swapped” experience 
manipulation caused a building of new selectivity (for 
neurons that initially show a strong preference for P at 
some  sizes, but happened to have low P vs. N 
selectivity at the non-swapped size).   

We tested for both of these effects in our model by 
selecting subsets of neurons in the simulated IT 
population in exactly the same way as (Li & DiCarlo, 
2010) (sampled from n=1000 simulated IT units) and 
then applied the plasticity rule to those units.  We found 
a very similar dependency of the IT plasticity to those 
previously reported IT plasticity effects (Figure 4D; cf. 
Fig. see Figures 6 and 7 of (Li & DiCarlo, 2010)). 

Given that our IT plasticity rule tends to pull the 
response of temporally contiguous images toward each 
other (Berkes & Wiskott, 2005; Földiák, 1990, 1991; 
Mitchison, 1991; Sprekeler et al., 2007), it is not entirely 
obvious how this can build selectivity (i.e. pull response 
to P and N apart).  The reason this occurs is that some 
IT neurons have (by chance draw from the generative 
model of IT, above) initially high selectivity for P vs. N 
at the medium size and no selectivity at (e.g.) the big 
size. (Indeed, such variation in the IT population exists 
as reported in (Li & DiCarlo, 2010)).  By design, the non-
swapped (“natural”) unsupervised exposure temporally 
links Pmed (high response) with Pbig, which – given the 
plasticity rule -- tends to pull the Pbig response upward 
(pull it up higher than Nbig). In addition, the non-
swapped exposure links Nmed (low response) with Nbig, 
which can pull the Nbig response downward (provided 
that the Nmed response is initially lower than the Nbig 
response). Both effects thus tend to increase the Pbig 
vs. Nbig response difference (that is, both effects tend to 
“build” selectivity for P vs. N at the big presentation size, 
which results in the neuron preferring object P over 
object N at both the medium and the big sizes – a 
property referred to as size “tolerance”).  This effect is 
observed in single IT neuron size tuning curve for P and 
N before and after learning (see Figure 3 in (Li & 
DiCarlo, 2010)). Indeed, it is this effect that conceptually 
motivated temporal contiguity plasticity in the first place 

-- natural-occurring statistics can be used to equalize 
the responses to the same object over nuisance 
variables (such as size).  

In sum, our very simple IT plasticity rule quantitatively 
captures the average IT plasticity effects for which its 
only free parameter was tuned, and it also naturally 
captures the more subtle IT neural changes that have 
been previously described.   

Putting together the overall model to predict human 
unsupervised learning effects 

To summarize, we have: A. built and tested a 
generative IT model that captured the object 
representation space and variability in the actual 
primate IT population;  B. locked down a set of 
parameters of a linear decoder rule that quantitatively 
links the current state of the simulated IT population to 
predicted human performance on any discrimination 
task (including the ones we plan to test);  C. defined an 
IT plasticity rule that describes how each individual IT 
neuron changes as a result of each unsupervised 
exposure event and we locked down the only free 
parameter (plasticity rate) in that rule to match existing 
monkey IT plasticity data (see Supp. Fig. 1A). At this 
point, we could – without any parameter tuning -- 
combine each of these three model components into a 
single overall model that predicts the direction, 
magnitude and time course of human unsupervised 
learning effects that should result from any 
unsupervised learning experiment using this exposure 
paradigm (pairwise temporal image statistics).     

Specifically, to generate the predictions for each of 
unsupervised learning experiments (u: u1, u2, u3, see 
Fig. 2) we: 1) initialized a potential adult human IT (from 
the generative IT model) with a total of 260 simulated IT 
recording sites, 2) built linear decoders for the planned 
object discrimination tasks that read from all 260 sites, 
using 20 training examples for each and every task,  3) 
froze the parameters of all such decoders (i.e. froze the 
resulting weighting on each simulated IT neuron on the 
“subject’s” object choice decision),  4) “exposed” the IT 
model population to the same unsupervised temporal 
exposure history as the human subjects, using the IT 
plasticity rule to update the model “IT” after each 
temporally-adjacent image exposure pair to update the 
responses of each simulated IT neuron (note that the 
plasticity trajectory of each neuron is dependent on both 
its initial object/size response matrix (1), and the 
sequence of images applied during unsupervised 
experience (u)), 5) measured the changes in 
“behavioral” performance of the overall model (changes 
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in object discrimination performance of the (frozen) 
decoders (2)), and 6) took those changes as the 
predictions of the expected changes in human 
performance that should result from that unsupervised 
experience (u).    

To give robust model estimates of the average 
predicted effects, we repeated this process (1-6) 100 
times for each experiment (u) and averaged the results, 
which is analogous to running multiple subjects and 
averaging their results (as we did with the human data, 
see Fig. 2).  For clarity, we note that the prediction 
stochasticity is due to: random sampling of the IT 
generative population, the clutter variability introduced 
in the generative IT model when generating the initial 
population response for each test image, the trial-by-
trial variation in the simulated IT responses, the random 
unsupervised exposure event sequence (see Methods), 
and randomly drawn test images, all of which we expect 
to average out. 

Note that, in expecting that these overall model 
predictions might be accurate, we are implicitly making 
the following assumptions: a) monkey IT and human IT 
are approximately identical (Kriegeskorte et al., 2008; 
Rajalingham, Schmidt, & DiCarlo, 2015), b) the linkage 
of IT to behavioral performance is approximately 
identical (as suggested by (Majaj et al., 2015); c) human 
IT unsupervised plasticity is the same as monkey IT 
unsupervised plasticity, and d) humans do not re-learn 
or otherwise alter the assumed mechanistic linkage 
between IT and behavior during or after unsupervised 
visual experience (at least not at the time scales of 
these experiments: 1.5 to 2 hours).  

Results:  predicted learning vs. observed learning 

Figure 5A,D,E show the model-predicted learning 
effects (black solid line) for each of the three 
unsupervised experiments (u1, u2 , u3)  plotted on top 
of the observed measured human learning effects (red 
line, reproduced from the learning effects shown in Fig. 
2 bottom). For each experiment, we found that the 
overall model did a very good job of predicting the 
direction, magnitude and time course of the changes in 
human behavior.  The directional predictions are not 
surprising given prior qualitative results, but the 
accurate predictions of the magnitude and time course 
are highly non-trivial (see below). Despite these 
prediction successes, we also noticed that the 
predictions were not perfect, most notably after large 
numbers of unsupervised exposures (e.g. Fig. 5E, right 
most points), suggesting that one or more of our 
assumptions and corresponding model components is 
not entirely accurate (see Discussion).  

Given the surprising overall quantitative accuracy of 
the model predictions straight “out of the box”, we 
wondered if those predictions might somehow occur 
even for models that we had not carefully tuned to the 
initial (pre-exposure) human performance and the 
previously reported IT plasticity.  That is, which 
components of the model are critical to this predictive 
success?  We tested this in two ways (focusing here on 
experiment u1).  

First, we changed the IT plasticity rate (a) to be either 
four times smaller or four times bigger than empirically 
observed in the prior monkey IT neurophysiology (solid 
gray lines) and re-ran the entire simulation procedure 
(above). In both cases, the predictions were now clearly 
different in magnitude than the observations (Fig. 5A).  
This result is arguably the strongest evidence that the 
single unit IT plasticity effects fully account for -- and do 
not over-account for -- the human unsupervised 
learning effects. 

Second, we changed the two decoder 
hyperparameters (number of neural sites and number 
of training images) such that they were no longer 
correctly aligned with the initial human performance 
levels. Figure 5B illustrates the two-dimensional 
hyperparameter space, and the dashed line represents 
potential choices of the two hyperparameters that 
match human initial performance (the IT-to-COR-
behavior matching manifold; Figure 3F). Regions above 
(or below) that manifold indicate hyperparameter 
choices where the decoders are better (or worse) 
performing than initial human performance.  We found 
that the unsupervised learning effects predicted by the 
overall model (Fig. 5C, two black lines on top of each 
other corresponding to two choices of 
hyperparameters, black dots in Figure 5B) continued to 
well-approximate human learning effects. This was also 
true for other combinations of hyperparameters along 
the dashed black manifold in Fig. 5B (~10 combinations 
tested; results were similar to those shown in Fig. 
5C,D,E, not shown).  In other words, for model settings 
in which the overall model matched the initial human 
performance over all tasks, the predictions of the 
unsupervised learning effects remained similarly 
accurate.   

In contrast, for choices of the two hyperparameters 
that did not match human initial performance, the 
unsupervised learning effect predicted by the overall 
model clearly differed from the observed human 
learning effect. Specifically, when the overall model 
starts off with “super-human” performance, it 
overpredicted the learning effect, and when it starts off 
as “sub-human” it underpredicted the learning effect.   
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Figure 5. Overall model predicted learning effects vs. actual learning effects (red). A) Overall model predicted learning effect 
(solid black line) for experiment u1 (swapped exposure) with the IT-to-behavior linking model matched to initial human 
performance (hyperparameters: number of training images m = 20, number of model neural sites n = 260; see Fig. 3) and the 
IT plasticity rate matched to prior IT plasticity data (0.0016, see Fig. 4). Red line indicates measured human learning effect 
(reproduced from Fig. 2A lower). Grey lines indicate model predictions for 4 times smaller plasticity rate and 4 times larger 
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plasticity rate. Error bars are standard error over 100 runs of the overall model, see text. B) Decoder hyperparameter space: 
number of training samples and number of neural features (recording sites). The dashed line indicates pairs of hyperparameters 
that give rise to IT IT-to-behavior performances that closely approximate human initial (pre-exposure) human object recognition 
performance over all tasks.  C) Predicted unsupervised learning effects with different choices of hyperparameters (in all cases, 
the IT plasticity rate was 0.0016 – i.e. matched to the prior IT plasticity data, see Fig. 4). The two black lines (nearly identical, 
and thus appear as one line) are the overall model predicted learning that results from hyperparameters indicated by the black 
dots (i.e. two possible correct settings of the decoder portion of the overall model, as previously established by (Majaj et al., 
2015)). Green and blue lines are the overall model predictions that result from hyperparameters that do not match human initial 
performance (i.e. non-viable IT-to-behavior linking models).  D) Predicted learning effect (black line) and measured human 
learning effect (red) for building size tolerance exposure. E) Model predicted learning effect (black line) and measured human 
learning effect (red) for building and then breaking size tolerance exposure.  In both D and E, the overall model used the same 
parameters as in A (i.e. IT plasticity rate of 0.0016, number of training samples m = 20 and number of model neural sites n = 
260). 

In sum, it is not the case that any decoders will 
produce the correct predictions – proper setting of the 
IT-to-COR-behavior linkage model is critical.  It is 
important to note that we did not tune these 
hyperparameters based on fitting the unsupervised 
effects in Fig. 2 – they were derived in accordance with 
prior work that did not involve any unsupervised 
learning (Majaj et al., 2015).  

The unsupervised learning effect depended on the 
initial task difficulty.  

So far, we have established a quantitative overall model 
that accurately predicts the direction, magnitude and 
time course of learning effects resulting from a range of 
unsupervised exposure manipulations. For each of 
those tests, we focused on object discrimination tasks 
that had an intermediate level of initial task difficulty 
(face discrimination tasks with initial d’ around 2.0), so 
that we had dynamic range to see both increases and 
decreases in performance (e.g. Fig. 2).  However, we 
noticed that our IT plasticity rule seemed to imply that 
those learning effects would depend on the strength of 
the initial selectivity of individual IT neurons for the 
exposed objects (i.e. the initial P vs. N response 
difference). The intuition is that this response difference 
is the driving force for IT plasticity updates (e.g. no 
difference leads to no update, large difference leads to 
large update).  This in turn implied that the learning 
effect size should depend on the initial task 
performance (d’). 

To test for this dependence, we focused on the 
unsupervised size tolerance “breaking” manipulation 
(as in u1, Fig. 2A, but with 800 unsupervised “swapped” 
exposures; see Methods), and tested new sets of 
human subjects using a wide range initial task 
difficulties, ranging from subordinate object 
discriminations (low d’) to basic level object 
discriminations (high d’). We focused on 13 size-
specific object discrimination sub-tasks with either 
small-medium size swapping exposure or medium-big 
size swapping exposure. Each subject received only 

one exposure variant (see Methods). For each 
exposure variant, 20-40 new human subjects were 
tested, and we quantified the unsupervised learning 
effect (“breaking”) as the change (from initial) in 
performance (relative to control objects, as in Fig. 2A).  

Figure 6B showed that unsupervised learning effect 
plotted against pre-exposure task difficulty for all 13 
object discrimination tasks. This result not only confirms 
that this unsupervised learning effect is observed for a 
range of object discriminations (e.g. not just face 
objects), but it also showed a relationship between task 
difficulty (d’) and the magnitude of that learning effect. 
In particular, for initially easy tasks (d’ > ~2.5) and 
initially difficult tasks (d’ < ~0.5), we observed a smaller 
learning effect than tasks with intermediate initial 
performance.  

We found that our overall model quite naturally -- for 
the reasons outlined above -- predicted the smaller 
learning effect for initially difficult tasks (the left side of 
Fig. 6B).  Notably, the model did not naturally predict 
the lack of observed learning effects for the initially easy 
tasks (high d’ of Fig. 6B). However, that discrepancy 
could be simply explained if we assume there is a lapse 
rate (Prins, 2012) in human performance (that is, a 
fraction of trials for which the subject simply guesses, 
regardless of the quality of the sensory-driven 
information). The intuition here is that, human subjects 
make task-independent mistakes (“lapses”), and even 
a low rate of random lapses, puts a ceiling on the d’ 
value that can be experimentally measured (Fig, 6A). In 
the context of our learning experiments, this would 
mean that the underlying neural representation might 
indeed be changing a great deal (at least, that is what 
our current model predicts), but those changes cannot 
be measured as changes in human performance in the 
face of a lapse-rate induced measurement ceiling (e.g. 
an “underlying” d’ of 5 changes to a d’ of 3.5, but we 
measure a d’ of ~3 in both cases and thus report a d’ 
change of ~0).  Fig. 6B shows the predictions of the 
overall model (identical to the model used in Fig. 5), with 
an assumed lapse rate of 9%.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.900837doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.900837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 

 

Figure 6. Learning effect as a function of initial task difficulty. A) Illustration of the saturation of measured d’ that results from the 
assumption that the subject guesses on a fraction of trials (lapse rate), regardless of the quality of the sensory evidence provided 
by the visually-evoked IT neural population response (x axis). B) Measured human learning effect for different tasks (colored 
points) as a function of initial (pre-exposure) task difficulty (d’) with comparison to model predictions (grey squares; model lapse 
rate for this plot is 9%). Different colors indicate different types of tasks and exposures: green indicates small-size face 
discrimination learning effect induced with medium-small swapped exposure (n=100 subjects); blue indicates big-size face 
discrimination learning effect induced with medium-big swapped exposure (n=161 subjects); red indicates small-size basic level 
discrimination learning effect induced with medium-small swapped exposure (n=70 subjects). Error bars indicate bootstrapped 
standard error of the mean over subjects (n~20-40 subjects per point).
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Discussion 

The goal of this study was to ask if previously reported 
temporal-contiguity driven unsupervised plasticity in 
single IT neurons accounts for temporal-contiguity 
driven unsupervised learning effects in humans. 

To do that, we built an overall computational model to 
predict human performance change resulting from 
plasticity in IT single neuron firing rates under the 
paradigm of unsupervised temporal contiguity exposure 
(temporally contiguous pairs of images). The overall 
model had three core components:  A) a generative 
model of a baseline adult IT neuronal population, B) an 
IT-population-to-COR-behavior linking model (adopted 
directly from (Majaj et al., 2015)), and C) an IT plasticity 
rule that aimed to capture and predict how pairs of 
temporally associated images lead to updates in the 
(future) image-driven responses of each individual IT 
neuron. Each of these three model components was 
guided by and constrained by prior work to set its 
parameters, and the combined overall computational 
model thus had zero free parameters. 

To test the overall model, we asked the model to 
predict the human performance changes for three 
separate unsupervised learning experiments, and 
compared those predictions with the human 
performance changes (averaged over human subjects) 
that we measured in those three experiments. We found 
that the direction, magnitude, and time course of those 
mean unsupervised learning effects were all very well 
predicted by the overall model (but not perfectly 
predicted). We also found that the model could naturally 
explain the dependence of the measured unsupervised 
learning on initial object discrimination difficulty (when 
we assumed a reasonable behavioral lapse rate).  

In sum, this work successfully establishes a 
quantitative linking model between the plasticity in 
single IT neurons and human behavioral changes (both 
improvements and disruptions) for temporal-contiguity 
driven unsupervised learning.  More broadly, its 
success supports the overarching hypothesis that 
temporally contiguous unsupervised learning builds 
neural representations that underlie robust (i.e. tolerant) 
core object recognition, even in adults. 

We were somewhat surprised that the overall model 
did such an accurate job of predicting the human 
learning effects essentially from predicted updates on 
the responses of individual IT neurons.  This was 
surprising because the overall model implicitly assumes 
that: monkey IT and human IT are approximately 
identical (Kriegeskorte et al., 2008; Rajalingham et al., 

2018), the linkage of IT to core object recognition 
behavior is approximately identical in monkeys and 
humans (as previously suggested, (Majaj et al., 2015)), 
human unsupervised IT plasticity is the same as 
monkey IT plasticity (we are not aware of any previous 
tests of human IT plasticity under these conditions), that 
little or no behaviorally relevant plastic changes occur 
in the mechanistic linkage between IT and behavior 
during or after unsupervised visual experience (at least 
not at the time scales of these experiments: 1.5 to 2 
hours).  Of course, the results here do not prove any of 
the above assumptions, but they argue that it is most 
parsimonious to assume that all of the above are correct 
assumptions until further experiments show otherwise.  

We noted a small discrepancy between the 
predictions of the model and the human learning data 
at the longest exposure durations that we tested (1600 
exposure; ~1.5 hour); see Fig. 5A,C), where the model 
predicted slightly stronger behavioral changes than 
measured. One possibility is that learning over long 
periods of unsupervised exposure involves more 
complicated mechanisms in addition to our simplified 
unsupervised IT plasticity rule. For example, perhaps 
the plasticity rate slows down as the subject fatigues in 
the experiment. Or perhaps the plasticity mechanisms 
involve some type of renormalization of the responses 
of each IT neuron to retain some selectivity to different 
objects, as motivated by prior theoretical work on 
temporal contiguity learning (Sprekeler et al., 2007; 
Wiskott & Sejnowski, 2002). Similarly, plasticity along 
the ventral stream could involve homeostatic range 
adjustment which is fundamental to individual neurons 
(Turrigiano & Nelson, 2004), as motivated by studies of 
LTP and LTD plasticity in V1 neurons (e.g. BCM rules 
(Bienenstock, Cooper, & Munro, 1982; Toyoizumi, 
Pfister, Aihara, & Gerstner, 2005)). While we did not 
explicitly model any of these neural plasticity effects, 
they could be explored in future modeling studies.  

Tolerant object recognition and temporal-continuity 
driven unsupervised learning 

Human (and monkey) visual object recognition is highly 
tolerant to object viewpoint, even under short, but 
natural, viewing durations of ~200 msec referred to as 
“core object recognition” (COR) (DiCarlo et al., 2012).  
Much evidence suggests that this ability derives from 
neural non-linear processing (and thus neural re-
representation) of the incoming image along the ventral 
visual stream, and some ANN models have become 
reasonably accurate emulators of that non-linear 
processing and of its supported COR behavior (Cadieu 
et al., 2014; Krizhevsky et al., 2012; Kubilius et al., 
2018; Yamins et al., 2014). However, because the 
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“learning” of those models is highly non-biological (in 
the sense that millions of labeled images are used to 
explicitly supervise the learning), a key question 
remains completely open: how does the ventral stream 
develop its non-linear processing strategy?    

One proposed idea is that, during post-natal 
development and continuing into adulthood,  naturally-
occurring temporally continuous visual experience can 
implicitly instruct plasticity mechanisms along the 
ventral stream that, working together, lead to the  
transform-invariant object representation (Berkes & 
Wiskott, 2005; Einhäuser, Hipp, Eggert, Körner, & 
König, 2005; Földiák, 1991; G. Wallis et al., 2009). 
Intuitively, the physics of time and space in our natural 
world constrains the visual experience we gain in 
everyday life. Because identity preserving retinal 
projections often occur closely in time, the 
spatiotemporal continuity of our viewing experience 
could thus be useful to instructing the non-linear 
processing that in turn supports highly view-tolerant 
object recognition behavior.  Under this hypothesis, 
objects do not need to be labeled per se, they are 
simply the sources that statistically “travel together” 
over time.  

We are not the first to propose this overarching 
hypothesis or variants of it, as the theoretical idea dates 
back to at least ~1960 (Attneave, 1954; Barlow, 1961). 
Földiák suggested that the internal representation 
should mimic physical entities in real life which are 
subject to continuous changes in time (Földiák, 1990, 
1991). This process is purely unsupervised and 
achieves transformation invariance by extracting slow 
features from quickly varying sensory inputs (Berkes & 
Wiskott, 2005; Sprekeler et al., 2007; Wiskott & 
Sejnowski, 2002). A range of mathematical 
implementations of learning rules (Berkes & Wiskott, 
2005; Földiák, 1991; Isik, Leibo, & Poggio, 2012; 
Körding, Kayser, Einhäuser, & König, 2004; Wiskott & 
Sejnowski, 2002) all include variants of this same 
conceptual idea: to achieve response stability of each 
neuron over time (while also maintaining response 
variance over the full population of neurons). Various 
synaptic plasticity mathematical rules and associated 
empirical observations support this form of 
unsupervised learning: Hebbian learning (D.O. Hebb, 
1949; Földiák, 1991; Lowel & Singer, 1992; Paulsen & 
Sejnowski, 2000), anti-Hebbian Learning (Földiák, 
1990; Mitchison, 1991; Pehlevan, Sengupta, & 
Chklovskii, 2017), BCM rule (Bienenstock et al., 1982; 
Toyoizumi et al., 2005) and spike-timing dependent 
plasticity (Caporale & Dan, 2008; Markram et al., 1997; 
Rao & Sejnowski, 2001). This prior work showed that 
unsupervised learning of neural representations of 

objects through temporal continuity was possible, at 
least in theory.  

Human psychophysics studies have provided 
empirical evidence supporting the role of unsupervised 
temporal contiguity plasticity in visual object 
recognition. Wallis and Bulthoff found that unsupervised 
exposure to temporal image sequences of different 
views of different faces led performance deficits 
compared to sequences of the same face (Wallis & 
Bülthoff, 2001; Guy Wallis & Bülthoff, 1999). They also 
pointed out that these results were only observed in 
similar face pairs (i.e. low d’) rather than very distinct 
faces (i.e. higher d’). Cox et al showed that ‘swapped’ 
unsupervised experience of pairs of images across 
saccades could reduce (“break”) position tolerance of 
object discrimination (Cox et al., 2005). Balas and Sinha 
showed that observing object motion can increase both 
generalization to nearby views and selectivity to 
exposed views (Balas & Sinha, 2008). These 
behavioral observations revealed that unsupervised 
temporal contiguity is constantly contributing to the 
tolerance of object recognition behavior, even in adults, 
and thus it must be inducing some kind of underlying 
neural changes somewhere in the brain. 

Our human psychophysical results reported here 
extend this prior work in three ways. First, we measured 
the learning effects over prolonged periods of time, 
which allowed us to test for accumulation and 
saturation. Second, we found that the behavioral 
learning effect is reversible (Fig. 2C). Third, we found 
that this unsupervised learning effect depended on 
initial task difficulty, which might explain why some 
studies report stronger effects than others. For 
example, Wallis and Bulthoff found that the learning 
effects on view tolerance were only observed in similar 
face pairs rather than very distinct faces (Wallis & 
Bülthoff, 2001), and those similar face pairs have initial 
d’ that happens to reside in the mid-range where we 
predict/observe the largest behavioral effects (Fig. 6B). 
Third, and most importantly, we designed our 
unsupervised visual statistical manipulations in the 
same way as previous monkey neurophysiology 
experiments, which allowed us to quantitatively 
compare our human behavioral results with prior 
monkey neuronal results. 

Because IT is, among other ventral stream areas, 
thought to most directly underlie object discrimination 
behavior (DiCarlo et al., 2012; Ito et al., 1995; 
Rajalingham & DiCarlo, 2019) and IT plasticity has been 
found in many studies ((Baker, Behrmann, & Olson, 
2002; Logothetis, Pauls, & Poggio, 1995; Messinger, 
Squire, Zola, & Albright, 2001), reviewed by  (Op de 
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Beeck & Baker, 2010)), it is natural to ask if temporally 
contiguous unsupervised experience also leads to 
plastic changes in IT neurons. Miyashita and 
colleagues showed that neurons in the temporal lobe 
shape their responses during learning of arbitrarily-
paired images such that each neuron’s response 
becomes more similar to images that were presented 
nearby in time (Miyashita, 1988, 1993; Naya, Yoshida, 
& Miyashita, 2003; Sakai & Miyashita, 1991). Li and 
DiCarlo directly tested the role of unsupervised visual 
experience in IT neuronal tolerance by manipulating the 
identities and properties of objects presented 
consecutively in time (Li & DiCarlo, 2008, 2010). They 
found that, over ~1.5 hours of unsupervised exposure 
of ‘swapped’ temporal statistics, the size and position 
tolerance of IT neuronal responses were significantly 
modified, and that these changes were not reward or 
task dependent (Li & DiCarlo, 2012).  

While that prior experimental work seemed 
qualitatively consistent with the overarching theoretical 
idea, it did not demonstrate that the behavioral learning 
effects could be explained by the IT neural effects. The 
results of our study here show that those two effects are 
quantitatively consistent with each other – the 
behavioral effects are almost exactly accounted for by 
the IT neural effects. 

Future directions 

One future direction is to extend our current overall 
model to other modalities, like view invariance or 
position invariance. This could be done by collecting 
further psychophysical data, adding proper tuning 
kernels to the current generative IT model and using the 
same IT plasticity rule and decoding model. A second 
future direction is to extend our current model to other 
objects beyond the 64 that have been tested in 
monkeys and human. This could be achieved through 
testing new IT population responses to new and old 
objects and then embedding the new objects in the 
multi-dimensional gaussian model of the IT population 
representation space based on neuronal population 
response similarity. Alternatively, we can use an image 
computable deep artificial neural network models that 
quite accurately predicts ventral stream neuronal 
population responses (Kubilius et al., 2018; Daniel L K 
Yamins et al., 2014) and use the “IT” layer to build a 
much larger representation space of objects. A third 
future direction is to develop new unsupervised learning 
algorithms that implement some of the core ideas of 
temporal contiguity learning, but are scaled to produce 
high performing visual systems that are competitive 
with state-of-the-art neural network systems trained by 
full supervision.  Many computational efforts have 

touched on this direction (Agrawal, Carreira, & Malik, 
2015; Bahroun & Soltoggio, 2017; Goroshin, Bruna, 
Tompson, Eigen, & LeCun, 2014; Higgins et al., 2016; 
Kheradpisheh, Ganjtabesh, & Masquelier, 2016; Lotter, 
Kreiman, & Cox, 2016; Srivastava, Mansimov, & 
Salakhutdinov, 2015; Wang & Gupta, 2015; Whitney, 
Chang, Kulkarni, & Tenenbaum, 2016), and some are 
just beginning to make predictions about the responses 
along the ventral stream (Zhuang, Yan, Nayebi, & 
Yamins, 2019; Zhuang, Zhai, & Yamins, 2019). A key 
next step will be to put those full scale models to 
experimental test at both the neurophysiological and 
behavioral levels. 
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Methods  

Datasets from prior work 
To build a quantitative linking model that predicts 
unsupervised learning effects in humans from neuronal 
response in IT, we used three experimental datasets: 1. 
Human data: human psychophysics performance data 
collected with Amazon Mechanical Turk; 2. IT 
population data: simultaneous recordings of 168 sites 
with multi-electrode Utah array recordings implanted in 
monkey IT (from a previous study (Majaj et al., 2015)); 
and 3. IT single-site learning data: multi-unit activity 
recorded with single electrodes in monkey IT (from a 
previous study (Li & DiCarlo, 2010)). 

 
IT population dataset: Multi-electrode array 

recordings from two awake macaque monkeys 
provided 168 multi-unit IT neuronal responses to 64 
objects (5460 high-variation naturalistic images) for 
modeling use. Image presentation was 100 ms, and 
each image was repeated between 25 and 50 times. 
Spike counts were binned in the time window 70–170 
ms post stimulus presentation and averaged across 
repetitions, to produce a 5,760 by 168 neural response 
pattern array. The 64 exemplar objects come from eight 
categories (animals, boats, cars, chairs, faces, fruits, 
planes and tables).  Images were generated by placing 
a single exemplar object on a randomly-drawn natural 
scene background, at a wide range of positions, sizes 
and poses. Images were presented at 8 deg diameter 
at the center of gaze to awake fixating animals in a rapid 
serial visual presentation (RSVP) procedure (horizontal 
black bars indicate stimulus-presentation period). See 
(Majaj et al., 2015) for details. 

 
IT plasticity dataset: Physiology data of unsupervised 

IT plasticity effects measured in single neurons and 
multi-unit sites in macaque monkey IT cortex were 
reanalyzed from Li & DiCarlo, 2010 (n=42 sites).  The 
firing rate of sorted units were tested in response to 
preferred (P) and non-preferred (N) objects, each 
presented at a range of sizes, and were re-tested after 
different amounts of unsupervised exposure to evaluate 
the effect of that exposure on those response 
measures.  See (Li & DiCarlo, 2010) for details. 
 
Image generation 
We used the same 3D object models as previous 
published IT-behavior study (Majaj et al., 2015) and 
applied the same rendering mechanism (ray-tracing 
software) to each 3D object while parametrically varying 
its position, rotation and size, and projected on a 
randomly chosen unique natural background (out of a 

pool of 130 images) to generate new test image 
examples. All images were achromatic. The ground 
truth of each image was the identity of the generating 
3D model, and this was used to evaluate performance 
accuracy. This naturalistic image generation allows us 
to gain full control of all the object-related meta-data in 
the images while preserving a relatively natural core 
object recognition experience.  
 

For each object, we pre-define a “baseline view” (i.e. 
exact center of gaze, size of ~2 degree or 1/3 of the 
diameter of the image, and canonical pose; see 
Methods of (Majaj et al., 2015; Rajalingham et al., 
2018)). Variations in size, position and rotation are 
transformations relative to baseline view of the object. 
Since our focus here was unsupervised learning of size-
tolerant object selectivity, we intentionally introduced 
more images that only vary in size to measure size 
tolerance. Medium-sized objects were the ‘baseline’ 
size (~2 deg). Small-sized objects were 0.5x of baseline 
(~1 deg). Big-sized objects were 2x that of baseline (~4 
deg). All test images for different sizes were generated 
with random naturalistic backgrounds.  We thus created 
a set of 240 “size test” images per object (i.e. 80 images 
per object at each of the three test sizes). The final test 
images were each 512 x 512 pixels and were always 
presented to the subject at a total extent of ~7 degree 
of visual angle at the center of gaze (as in the prior 
neurophysiology studies above).  

 
To neutralize possible size-specific attentional effects 

and possible size-specific adaptation effects, we 
presented these “size test” images intermixed with 
other “cover” images of the same objects.  These cover 
images were generated using mild variation in all of the 
object view parameters. Specifically, we sampled 
randomly and uniformly from the following ranges: [-
1.2°, +1.2°] for object position in both azimuth (h) and 
elevation (v); [-2.4°, +2.4°] for rotation in all 3 axes; and 
[x0.7, x1.3] for size. These cover images were mixed 
randomly with the “size test” images (above) at a ratio 
of 1 cover image per “size test” image to generate a set 
of psychophysical test images for each subject 
(illustrated in supplemental Figure 1B). The behavioral 
results from the cover images were not part of the 
analyses.  

 
Human psychophysics and analysis 
All human experiments were done in accordance with 
the MIT Committee on the Use of Humans as 
Experimental Subjects. A total of 505 (174 subjects in 
Figure 2 and 331 subjects in Figure 6) subjects 
completed our tasks published through Amazon’s 
Mechanical Turk, an online platform where subjects can 
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participate in non-profit psychophysical experiments for 
payment based on the duration of the task. Aspects of  
core object recognition performance were measured 
based on the behavioral report following each test 
image presentation (Rajalingham et al., 2018). Previous 
work compared the results of core object recognition 
tasks measured in the laboratory setting with controlled 
viewing with results measured via Amazon MTurk, and 
found virtually identical results (Pearson correlation 
0.94±0.01; from (Majaj et al., 2015)).  

Each behavioral experiment contained two types of 
phases: a Test Phase in which specific aspects of 
object discrimination performance were measured (see 
below), and an Exposure Phase in which pairs of 
temporally contiguous images were experienced (See 
Fig. 1). The main experiment consisted of five Test 
Phases (200 trials each; 6-8 min) and four interleaved 
Exposure Phases (400 exposure events each; 12-
20min) that together allowed us to measure exposure-
induced changes in size-specific object discrimination 
over time (total experiment time ranged from 90 min to 
120 min). 

Test phase. Our goal was to measure the 
discriminability of targeted (exposed) pairs of objects at 
targeted (exposed) sizes (and, as references, we also 
measured discriminability for control object pairs and for 
target objects at a non-exposed size). Conceptually, 
each such discrimination sub-task (size-specific object 
discrimination task) is a generated set of images from 
object A at a specific size that must be discriminated 
from a generated set of images of object B at a specific 
size, and mapped to the same object at a medium size 
(e.g, See Fig. 1B, choice images).  For clarity, we note 
that, given this design, the only variation in each of 
these sub-task image test sets was the image 
background. These size-specific sub-tasks were 
randomly interleaved with cover trials to disguise this 
underlying fact from the subject (see Supp. Fig. 1B).  

 
To measure performance on each sub-task, we used 

a two-way forced alternative classification (2AFC) 
design. Each 2AFC trial started with a central fixation 
point. Subjects were requested to fixate the black 
fixation point, because the test image was always 
presented briefly at that location and they might miss it 
otherwise. After 500 ms, the fixation dot disappeared 
and a test image appeared centered at dot location 
(center of the screen) for 100ms, followed by the 
presentation of two “choice” images presented on the 
left and right of the screen (Figure 1A).  One of the 
choice images always matched the identity (or 
category) of the object that was used to generate the 
test image and was thus the correct choice, and its 
location was randomly assigned on each trial (50% on 

the right and 50% on the left). After mouse-clicking a 
choice image, the subject was given another fixation 
point (i.e. the next Test Phase trial began). No feedback 
on correctness of the choice was given.  

 
To measure size-specific discrimination performance,  

we created size-specific 2AFC sub-tasks. Specifically, 
each sub-task was a balanced (i.e. 50% / 50%) set of 
size-specific test images generated from object A and 
object B (see above), and the two choices presented 
after each test image were “clean” examples of object 
A and object B at a standard (“medium”) size (see Fig. 
1A).  
 

For each subject, the test images were 
pseudorandomly drawn from the a test image pool that 
contained the desired number of ‘size test’ images and 
cover images (see Supp. Fig. 1B). Among the 200 trials 
(50 test image of each test object; 4 objects in total), 
40% contained the “size test” images (20 for each 
object; 10 for small and 10 for big), 10% contained 
baseline views (medium size; 5 for each object), and 
the remaining 50% test images were “cover images” 
(see above) that were not used in analyses (see Supp. 
Fig. 1B for example test images). The number of test 
images for target and control object pairs were thus 
balanced. The number of test images for small and big 
sizes were also balanced regardless of exposure type. 
As a result, for each subject, we created six size-
specific 2AFC sub-tasks in total (3 different sizes for 
each object pair) regardless of exposure type. The 
number of test images for target and control face pairs 
at different sizes in each test phase is specified in Supp. 
Fig. 1B.  
 

To evaluate exposure induced learning effects, we 
only calculated the discrimination performance of three 
exposure-relevant sub-tasks (pre-planned, see Fig. 
1B): 1. The sub-task with exposed (target) objects at the 
exposure manipulated size (Fig. 1b, red or blue d’); 2. 
the sub-task with non-exposed (control) objects at the 
exposure manipulated size (Fig. 1b, black d’) ; 3. the 
sub-task with exposed (target) objects at the non- 
manipulated size (Fig. 1b, dashed black d’). For 
example, one subject might have been randomly 
assigned to: exposure type = (experiment u1, swapped 
condition), target size = (big size),  target objects = (face 
A, face B),  control objects = (face C, face D). In this 
example, each Test Phase aimed to measure 
performance (d’) on three specific sub-tasks:  [face A 
big vs. face B big], [face C big vs. face D big] and [face 
A small vs. face B small].    
 

The sizes of the subject groups are provided in 
Results. The test trials for size and objects were always 
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balanced in each subject group. In Figure 2, the subject 
groups differ in the exposure type (3 subject groups).  In 
each of these three groups, the target exposure size 
was the big size, and within each group, the specific 
face objects for target and control were randomly 
selected for each subject. In Figure 6, the 13 subject 
groups correspond to the 13 subtasks that were 
targeted for exposure (see below).  Within each subject 
group, the targeted type of object (i.e. face or basic 
level) and the targeted exposure size (i.e. medium-big 
or medium-small) was the same for all subjects, and 
within each group, the specific objects for target and 
control were randomly selected within the targeted type.  

 
We computed the d’ for each exposure-relevant sub-

task (typically three d’ values for each subject group; 
see Fig. 1B) based on the population (pooled) confusion 
matrix of the entire subject group. For each sub-task, 
we constructed a 2x2 confusion matrix by directly filling 
the behavioral choices into hit, miss, false alarm and 
correct rejection according to the stimuli and response 
of each trial (Fig. 1B). From the pooled confusion 
matrix, we computed the d´ for each sub-task. We used 
standard signal detection theory to compute d´s from 
the confusion matrix (d´ = Z(TPR) – Z(FPR), where Z is 
the inverse of the cumulative Gaussian distribution 
function, and TPR and FPR are true positive and false 
positive rates respectively). The d’ value was bounded 
within -7.4 to 7.4 (via an epsilon of 0.0001).  The mean 
d’ for each sub-task of each subject group was 
determined by averaging the d’ calculated from each 
bootstrapped subjects sample (which is converges to 
the d’ of the pooled confusion matrix). The errorbar of 
performance (SEM) was estimated as the standard 
deviation of d’ over all bootstrap samples (1000 
samples in each case),  

 
Exposure phase.  Each exposure trial (a.k.a. 

exposure “event”) in the exposure phase was intended 
to deliver a pair of temporally-contiguous images at the 
center of gaze.  Each trial initiated with the presentation 
of a small, central black dot (~0.5 deg), and the subject 
was required to mouse-click on that dot (this is intended 
to naturally bring the center of gaze to the dot). 
Immediately after a successful mouse-click (within 0.5 
deg of the dot), two images were presented sequentially 
at the location of the black dot.  Each image was shown 
for 100ms with no time lag between them. After the 
event, the black dot reappeared at a new, randomly-
chosen location (out of 9 possible locations) on the 
screen (i.e. the next exposure trial began).  The details 
of those images are described below in the context of 
the specific experiments carried out. 

 
Because we here focused on the effects of 

unsupervised exposure events on size tolerance, the 
size of object in each of the two sequential images was 
always different and always included the medium 
(“baseline”) size: either big-sized objects paired with 
medium-sized objects, or small-sized objects paired 
with medium-size objects. In either variant, the order of 
those two images was counterbalanced, as in (Li & 
DiCarlo, 2010) (e.g.. approximately half of the events 
transitioned from medium to big objects and the other 
half from big to medium objects; signified by the double 
headed arrows in Fig. 1B). 
 

Flavors of unsupervised exposure. Following prior 
work (Cox et al., 2005; Li & DiCarlo, 2010; G Wallis & 
Bülthoff, 2001), there are two basic flavors of 
unsupervised exposure. The first flavor is referred to as 
the swapped exposure, in which the two images within 
each exposure event are generated from different 
objects (here, at different sizes).  Based on prior work 
(Cox et al., 2005; G Wallis & Bülthoff, 2001) this 
exposure flavor is expected to gradually “break” 
(disrupt) size tolerance discrimination of those two 
objects. The second flavor is non-swapped exposure, in 
which the two images are generated from the same 
object (here, at different sizes).  While this has been 
less studies in human psychophysics, based on prior IT 
neurophysiology results (Li & DiCarlo, 2010), this 
exposure flavor is expected to gradually build size 
tolerant discrimination of those two objects.  

 
Experimental designs. Our main experimental goal 

(Fig, 2 results) was to test the directions, magnitudes 
and temporal profiles of changes In size-tolerant object 
discrimination (assessed in the Test Phases, see 
above) resulting from different types of unsupervised 
exposure conditions (Figure 1&2).  To do that, we 
deployed the two flavors (above) in three types of 
unsupervised experience types (u), and each subject 
was tested in only one of those three types.  The first 
type (u1) was a series of swapped exposure epochs 
(intuitively, this aims for maximal “breaking”). The 
second type (u2) was a series of non-swapped 
exposure epochs (intuitively, this aims for maximal 
“building”). The third type (u3) was two swapped 
exposure epochs followed by two non-swapped 
exposure epochs (intuitively, this aims to test the 
reversibility of the unsupervised learning).  

Each type of experiment lasted for about 90 minutes 
and each consisted of 9 phases in total: 5 test phases 
(200 test images each) and 4 exposure epochs (400 
exposure events in each epoch; Figure 1A). This 
experiment was done with face objects only in a total of 
174 subjects over all conditions (u1 = 102 subjects, u2 
= 36 subjects, u3 = 37 subjects).  
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Our secondary experimental goal was to study how 
learning effect depends on the perceptual similarity of 
the exposed objects. To do this, we chose pairs of 
objects to cover a wide range of initial discrimination 
difficulties. Intuitively, it is easier to discriminate and 
elephant from a pear, than it is to discriminate an apple 
from a pear.  Specifically, we chose a total of 13 size-
specific object pairs selected from a set of 8 face 
objects (n=10 pairs) and 6 basic level objects (n=3 
pairs).  For subjects being exposed to faces, the control 
objects were also faces; for subjects exposed to basic 
level objects, the control objects were other basic level 
objects.  These 13 pairs were selected based on pilot 
experiments that suggested that they would span a 
range of initial discrimination performance. Indeed, 
when tested in the full experiment (below), we found 
that mean human initial discrimination difficulties 
ranged broadly (d’ range: 0.4 to 2.6, based on the first 
Test Phase).  We thus ran 13 groups of subjects (i.e. 
one group per target object/size pair) with ~20-40 
subjects per group.  Because the goal here was to test 
the magnitude of size-specific learning (not the time 
course), we tested only the “swapped” flavor of 
unsupervised experience using just one long exposure 
epoch (consisting of 800 exposure events). Each 
subject was exposed with only one pair of objects, and 
was exposed to one size variant of the exposure: small-
medium size swapping or medium-big size swapping. 
We bracketed that unsupervised exposure with one 
pre-exposure Test phase (200 trials) and one post-
exposure Test phase (also 200 trials). The learning 
effect was always measured at the exposed size (e.g. if 
exposed with small-medium swapping, the learning 
effect was measured as the performance change of 
small size discrimination task of the exposed object 
pair), subtracting the performance change for control 
object pair at the exposed size (all exactly analogous to 
Fig. 2A).  
 
Generative IT model 
We modeled the IT neuronal population response 
based on the IT population dataset collected from 
monkey IT cortex with a Multi-Dimensional Gaussian 
(MDG) model. This model assumes that the distribution 
of IT population response (the distribution the mean 
responses of individual IT neurons to all images of an 
object) to each object is Gaussian-like. We tested this 
hypothesis with a normality test and found 81.25% (52 
out of 64 distributions for 64 objects) of the IT population 
response distributions were Gaussian (reject when 
p<0.01). This MDG model preserves the covariance 
matrix of neuronal responses to all 64 objects that have 
been tested in monkey IT cortex. A random draw (of a 
64x1 vector) from the MDG is conceptualized as the 

average response (over image repetitions) of a 
simulated IT recording site to each of the 64 objects. To 
generate the simulated IT tuning over changes in object 
size, we multiplied (outer product) that 64x1 vector with 
a randomly chosen size tuning kernel (1x3 vector) that 
was randomly sampled from a batch of size tuning 
curves that we had obtained by fitting curves to real IT 
responses across changes in presented object size 
(n=168 recording sites; data from (Majaj et al., 2015)). 
This gives rise to perfectly size tolerant simulated IT 
neurons (i.e. by construction, the tuning over object 
identity and over size are perfectly separable). To 
introduce more biological realism and to approximate 
the fact that each image is presented on a random 
background, we randomly jittered each value in the 
64x3 matrix by a zero mean, iid shift of each matrix 
element (drawn from the distribution of variance across 
image exemplars for each object from IT neural data; 
s2clutter). Given this procedure, we could generate a 
potentially infinite number of simulated IT neurons and 
their (mean) responses to each and every image 
condition of interest.   We verified that, even with the 
simplifying assumptions imposed here, the population 
responses of simulated IT populations were quite 
similar to the actual IT neural population responses (in 
the sense of image distances in the IT population 
space, see Results).  

 
To generate a hypothetical IT neural (model) 

population, we simply repeated the above process to 
obtain the requested number of model neurons in the 
simulated population (note: the MDG and the size 
tuning kernel pool was always fixed). In addition, when 
we “recorded” from these neurons (e.g. in Fig. 3A), we 
additionally added response “noise” that was 
independently drawn on each repetition of the same 
image (s2repeats; mean zero, variance scaled with the 
mean to approximate known IT Poisson repetition 
“noise”). 
 
IT-to-behavior linking model 
To generate behavioral performance predictions from 
model IT population responses, we applied a previously 
defined IT-to-recognition-behavior linking  model (Majaj 
et al., 2015). In that study, the authors used actual IT 
neural population responses to show that a set of 
possible IT-to-behavioral linking models could each 
accurately describe and predict human performance on 
all tested recognition tasks within the reliability limits of 
the data. We here used one of the simplest, most 
biological plausible of those models -- a linking model 
that seeks to infer the test image’s true label by 
computing the Pearson correlation between the mean 
IT population response to each possible object class 
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(computed on the IT response to the training images) 
and the IT population response evoked by the current 
test image (note, test images are never used in the 
training of decoders). In other words, the model’s 
“choice” of object category for each test image was 
taken to be the choice object whose (simulated) IT 
population mean (over the training images) was closest 
to the population vector evoked by the current test 
image.  The only difference from the prior work (Majaj 
et al., 2015) is that here we used simulated IT neurons 
(see Generative IT model, above) to drive the 
“behavior” of the model.  (Note that the linking model 
has two key hyperparameters (see Results) and, for 
each simulation run, we held those constant.) 

 
Since the model (IT population + linking model) could 

now be treated as a behaving “subject,” we analyzed 
the behavioral choices in exactly the same way as the 
actual human behavioral choices to arrive at d’ values 
that could be directly compared (i.e. generate a 
confusion matrix for each 2AFC sub-task, see above). 

 
Similarly, to test a new model “subject,” we simply 

generated an entirely new IT model population (see 
above) and then found the parameters of the IT-to-
behavior linking model for that subject.   

 
To simulate human lapses (see Results), we 

introduced a (fixed) percentage of trials in each of the 
“behavioral” confusion matrices where model 
responses were randomly chosen. Note, when initial d’ 
is below ~2, the lapse rate most consistent with the data 
(9%) has little influence on measurable performance 
(see Fig. 6A) and thus only a minor effect on the model 
in Fig, 5.. Therefore, all predictions in Figure 5 were 
made with 0% lapse rate. 

 
Unsupervised IT plasticity model 
We built a descriptive (non-mechanistic) learning rule 
with the same fundamental concept as previous 
computational models of temporal continuity learning 
(Földiák, 1990, 1991; Sprekeler et al., 2007; Wiskott & 
Sejnowski, 2002), except its mathematical 
implementation. In our setup, there are always only two 
images in each exposure event (a leading image and a 
lagging image).  Our plasticity rule states that, after 
each exposure event, the modification of the mean firing 
rate response to the leading image is updated as 
follows:   
 

 
This plasticity rule tends to reduce the response 
difference between two exposed images (i.e. it tends to 

create response stability over time, assuming that the 
statistics of the future are similar).  In our overall model, 
we apply this plasticity rule to each and every simulated 
IT neuron (true) after each and every exposure event. 
Note that, under repeated exposure events, the firing 
rate to all images will continue to change until there is 
no difference in responses to the leading and lagging 
images, which means the responses will eventually 
reach a steady state.  
 

Compared with previous plasticity rules (e.g. Hebbian 
rule) for temporal continuity learning, our plasticity rule 
is relatively simple. Our plasticity rule updates each IT 
unit’s output firing rate directly rather than its input 
weights (Földiák, 1991). Based on immediate activity 
history, our learning rule continuously changes each 
unit’s output by pulling its responses to consecutive 
images closer until reaching steady state. This learning 
rule has several features. First, it is temporally 
asymmetric, which means the direction of rate change 
of the leading image depends on the sequence of 
leading and lagging image. In another word, the 
response to the lagging image is going to pull the 
response to the leading image towards it. However, 
since our experiments randomized the leading and 
lagging images on each exposure trial, this results is a 
change in the response to both images rather than an 
asymmetric change. Second, the effect of our plasticity 
rule is constrained to exposed image pairs and ignores 
any correlation in the neural representation space. 
Even though we do not yet have experimental data to 
accurately generalize the plasticity rule further than 
what has been presented in this paper, it is potentially 
generalizable to other types of tolerance (position, 
pose) and to other exposure paradigms. 

 
The plasticity rate that best matches neural data is 

0.0016 nru per exposure event (nru=normalized 
response units). The normalized response is calculated 
by D(P-N)/(P-N),  where P and N represent the z-scored 
firing rate (across all objects) to preferred and non-
preferred objects. Z-score is measured in terms 
of standard deviations from the mean. Therefore, 1 
normalized response unit is 1 std of the response (firing 
rate) distribution across all tested objects. Since the 
mean multi-unit firing rate is 90±23 spk/sec (std across 
objects) for the IT population across 64 objects, we  
estimate that one nru is ~23 spk/sec. Therefore, 0.0016 
nru corresponds to a firing rate change of ~0.035 
spk/sec per exposure event, which means that ~30 
exposure events of this kind would give rise to 1 spk/sec 
change in P vs. N selectivity.  
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Supplemental figure 1 

  

Supplementary figure 1. Paper outline and example test images. A) Outline diagram. B) Example test images 
and number of different types of test images per test phase (200 trials total).    
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