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Abstract

If many mutations confer no immediate selective advantage, they can pave the way for the discovery of fitter pheno-

types and their subsequent positive selection. Understanding the reach of neutral evolution is therefore a key problem

linking diversity, robustness and evolvability at the molecular scale. While this process is usually described as a ran-

dom walk in sequence space with clock-like regularity, new effects can arise in large microbial or viral populations

where new mutants arise before old ones can fix. Here I show that the clonal interference of neutral variants shuts

off the access to neutral ridges and thus induces localization within the robust cores of neutral networks. As a result,

larger populations can be less effective at exploring sequence space than smaller ones—a counterintuitive limitation

to evolvability which invalidates analogies between evolution and percolation. I illustrate these effects by revisiting

Maynard Smith’s word-game model of protein evolution. Interestingly, the phenomenon of neutral interference con-

nects evolutionary dynamics to a Markov process known in network science as the maximal-entropy random walk;

its special properties imply that, when many neutral variants interfere in a population, evolution chooses mutational

paths—not individual mutations—uniformly at random.
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Figure 1: Two Markovian limits of neutral evolution with sharply different dynamics. When
mutations are rare and populations mostly homogeneous, neutral evolution amounts to a simple
random walk (SRW) along a neutral network G. In larger populations, the interference of multiple
neutral mutants leads to the selection for mutational robustness, which can be described as a
maximal entropy random walk (MERW) on G. The qualitative difference between the SRW and
the MERW is illustrated here by a simple network configuration where an n-clique is connected to a
one-dimensional ridge. In that case, the SRW on the edge of the clique with jump back into it with
probability pin ∼ npout, while the MERW will jump back with the much higher probability pin ∼
n2pout. This stronger attraction towards robust cores can induce the localization of populations
within G, invalidating commonly analogies between neutral evolution and diffusion (or percolation)
in sequence space.

Introduction

Kimura famously championed the view that a large part of all evolutionary change in genomes

confer no selective advantage, i.e. molecular evolution is largely neutral (Kimura, 1983). Initially

based on high observed substitution rates (Kimura, 1968; King and Jukes, 1969), this hypothesis

was supported by the later discovery of extended neutral networks—sets of sequences connected

by one-point mutations with equivalent phenotype or function (Smith, 1970)—in many molecular

genotype-to-phenotype maps, e.g. in RNA secondary structure (Fontana et al., 1993), protein struc-
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ture (Babajide et al., 1997) or transcriptional regulation networks (Ciliberti et al., 2007). While

the exact rate of adaptive vs. neutral evolution remains under investigation (Eyre-Walker, 2006),

neutralism is now widely understood as a central aspect of evolutionary dynamics (Nei et al., 2010).

Besides ensuring a high level of mutational robustness (van Nimwegen et al., 1999), neutral evolu-

tion can enhance evolvability by providing access to novel—and possibly fitter—phenotypes (Wag-

ner, 2008). In this way, the variation generated by neutral evolution enables the “arrival of the

fittest” (Wagner, 2014) and can facilitate adaptation in new selective environments (Gibson and

Dworkin, 2004).

Because mutations are random events, it is tempting to picture neutral evolution as a simple

random walk (SRW) taking place within neutral networks, and indeed this is how it is usually

described, both verbally (Smith, 1970) and in quantitative studies (Huynen et al., 1996). For

example, Gavrilets and Gravner address the problem of speciation by considering the percolation

of random subgraphs within the sequence hypercube (Gavrilets and Gravner, 1997), assuming that

“after a sufficiently long time, the population is equally likely to be at any of the points of the

[giant] component” (Gavrilets, 1997). Similarly, Crutchfield and van Nimwegen attempt to link

evolutionary dynamics with statistical mechanics via the “maximum entropy” assumption that

“[infinite] populations [have] equal probabilities to be in any of the microscopic states consistent

with a given [neutral network]” (Crutchfield and van Nimwegen, 2002). These and many other

works treat neutral evolution as though its effect were to wash out concentration gradients in

genotype space the same way particle diffusion washes out concentration gradients in liquids or

gases.

This picture breaks down when many neutral variants co-exist within the same population, i.e.

when the number of new mutants per generation M is much larger than one. It is well known that

clonal interference can lead to the loss of beneficial mutations and limits the speed of adaptation in

asexual populations (Gerrish and Lenski, 1998; Park and Krug, 2007). Here I show that neutral in-

terference—the competition of mutants with equal adaptive value but possibly different robustness

through negative selection—has a similar, but perhaps more counter-intuitive, effect on neutral

evolution. Instead of allowing a population to explore its neutral network at a faster rate, in-

creasing M can confine it to a small, highly connected region within that network. This effect is

conceptually and mathematically similar to the Anderson conductor-insulator localization transi-

tion in disordered metals (Anderson, 1958) and can be captured with a different kind of random

walk model—a “maximal entropy random walk” (Burda et al., 2009).
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Results

Neutral evolution in a holey landscape

The simplest setting to study neutral evolution is a holey fitness landscape (Gavrilets, 1997; van

Nimwegen et al., 1999), understood as a set of genotypes with binary fitness w: a genotype is either

fully functional (w = 1), or it is unviable (w = 0). Representing possible mutations as edges turns

this landscape into a graph. Generically, the subset of functional genotypes in a holey landscape

splits in multiple connected components, one of which (the “giant component” G) contains the

majority of all genotypes. We denote A the adjacency matrix of G and d(x) =
∑

y∈GAxy the

neutral degree (number of neutral mutants) of a genotype x.

In the classical description of neutral evolution (Kimura, 1983), a functional mutant has a probabil-

ity 1/N to fix and replace the wild type through genetic drift. Under this substitution process the

entire population performs a SRW within G (with N -independent jump rate), whence the concept

of populations “diffusing in a neutral network” evoked earlier. However, when the number of new

mutants M = µN � 1, as in e.g. RNA viruses (Drake and Holland, 1999), the selection of muta-

tional robustness becomes more important than genetic drift as a driver of evolution (Schuster and

Swetina, 1988; van Nimwegen et al., 1999; Forster et al., 2006; Sanjuán et al., 2007). The dynamics

of the distribution of viable genotypes pt (x) is then better described by a replicator-mutator (or

“quasi-species”) equation of the form (van Nimwegen et al., 1999)

pt+1(x) =
1

〈w〉t

(
µ
A

L
+ (1− µ)I

)
pt(x). (1)

where L is the total number of possible mutants for each sequence and the population mean

fitness 〈w〉t = µ〈d〉t/L+ (1−µ) ensures that pt(x) is normalized in G. From 1 it is easy to see that

the equilibrium distribution (or mutation-selection balance) Q(x) is an eigenvector of the adjacency

matrix of the neutral network A; by the Perron-Frobenius theorem Q(x) is in fact the dominant

eigenvector of A and the equilibrium mean neutral degree 〈d〉∞ is its spectral radius ρ, both of

which only depend on the topology of G. Since the eigenvector Q(x) tends to concentrate in regions

with high connectivity, these facts establish the “neutral evolution of mutational robustness” (van

Nimwegen et al., 1999).

Equivalence with the maximal entropy random walk

To understand the limits of neutral evolution in interfering populations we must study the full

trajectory pt(x) and not just its asymptotic equilibrium Q (x). For this purpose we can use the
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framework recently developed in (Smerlak, 2019), which maps the non-linear dynamics 1 onto a

Markov chain on G via the change of variables qt(x) ∝ Q(x)pt(x) (SI ). This new distribution

satisfies the master equation

qt+1(x) = Rqt(x) with Rxy =
Q(x)(µAxy/L+ (1− µ)δxy)Q(y)−1

µρ/L+ (1− µ)
. (2)

This equation describes a stochastic walk on G such that, at each time step, the walker either

stays in her current location x or jumps to a neighboring node y in G with probability proportional

to Q(y)/Q(x). The sequence of actual transitions is then a maximal entropy random walk (MERW)

on G0 (SI ).

The MERW was introduced as a Markov process with optimal mixing properties by Burda et

al. (Burda et al., 2009) and has found applications in complex networks theory, image analysis and

other fields. In a nutshell, while a simple random walker is “blind” (or “drunk”) and therefore

chooses the next node to visit uniformly at random among nearest neighbors, a maximal-entropy

random walker is “curious”: her transition probabilities are such that the each new step is as

surprising as possible, i.e. the MERW maximizes the entropy rate of the process. Somehow

paradoxically, the blind walker is sure to eventually visit all nodes of a (finite, connected) graph

with finite probability, but the curious walker may not: in irregular networks, the equilibrium

probability of the maximum-entropy random walker is exponentially suppressed outside a small

“localization island” (Burda et al., 2009), as in Fig. S1. In the context of neutral evolution, this

implies that narrow neutral ridges are much more difficult to traverse than is usually appreciated—

percolation is not enough.

Revisiting Maynard Smith’s four-letter model

To illustrate this localization effect I reconsidered Maynard Smith’s famous toy model of protein

evolution (Smith, 1970). In the set of all possible four-letter words, Maynard Smith used meaning

as a binary measure of fitness: any meaningful word is considered functional. He gave the sequence

of one-point mutations σ = (word,wore,gore,gone,gene) as an example of a neutral path,

arguing that, unless a large section of genotype space can be traversed through such neutral paths,

molecular evolution is impossible. It is easy to come up with other examples of neutral paths; in

the following we will focus on σ′ = (opus,onus,anus,ants,arts).

Using the Wolfram dataset of English “KnownWords” we find that, out of 2405 meaningful four-

letter words, 2268 belong to the giant component G, including both paths σ and σ′. However,

due to the irregular structure of G0 with three communities separated by narrow ridges (Fig. 2A),

the majority of these words have negligible equilibrium probability: a core of just 420 (resp. 1064)

words concentrates 90% (resp. 99%) of the total probability (Fig. S2). In particular, if all the
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words in Maynard Smith’s path σ (except gene) belong to the 99%-core, none of the words in σ′

do. Note that the words with the largest equilibrium probability are poorly predicted from their

neutral degree, as illustrated in Fig. 2B: while says and seed both have relatively high neutrality

(d = 21), the former is ten thousand times more frequent than the latter. This highlights that the

“neutral evolution of mutational robustness” is not simply the evolutionary advantage of robust

genotypes—it is a selection principle which singles out, on a logarithmic scale, a subset of robust

(e.g. bays) and non-robust (e.g. whys) genotypes that are globally well-connected in G. These

patterns generalize to words of different lengths (Fig. S4 and Table S1).
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Figure 2: Localization in Maynard Smith’s holey landscape of meaningful four-letter words. A:
The giant component with vertices colored by their logarithmic probability at mutation-selection
balance, with the neutrals paths σ and σ′ highlighted in boldface characters. While σ is deep
in the core and easily evolvable, σ′ belongs to a narrow ridge which can hardly be traversed. B:
The evolutionary stability of four-letter words, measured by their probability at mutation-selection
equilibrium, is correlated with their neutral degree (mutational robustness), but cannot be reliably
inferred from it. C: The rank plot of Q (x) shows the approximately exponential decay of the
equilibrium density away from the core typical of localization phenomena.

In multiple runs of a simple evolutionary simulation with a 10% mutation probability per genome

per generation, population size N = 103 and time horizon of 104 generations, gene almost always

evolved from word (through Maynard Smith’s or, more often, some other path), but—because of

the fragility of its intermediate forms—arts only rarely evolved from opus (Fig. 3A and S3).
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When it did evolve, arts arose in the first few generations of the run, before the population

got permanently trapped in the core. Strikingly, smaller (but not too small) populations had

a higher probability to evolve arts at least once within the prescribed time horizon (Fig. 3B). This

effect is due to the coupling between individuals through negative selective pressures and would be

incomprehensible if we view neutral evolution as diffusion.
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Figure 3: A: The evolution of arts from opus (left column) is a very different challenge than that
of gene from word (right column), as is seen by comparing the time to evolve the target word
at varying N (top row, with a cutoff after 104 generations) and the shape of 〈d〉t trajectories
at N = 103 (bottom row, with the black horizontal line representing the equilibrium value ρ and
black dots the endpoint of successful trajectories). While the likelihood of success of word→ gene
increases with the population size, it does not for opus → arts. If a population does not succeed
to evolve arts in the first few generations of the run, before it can get trapped in the core, it
never will. B: The likelihood to evolve a genotype from another through neutral evolution can
depend non-monotonically on the population size. Here there were 103 attempts with µ = 0.1, and
a population with 100 individuals was more likely to evolve opus → arts at least once than one
with 1000 individuals. C: The convergence to equilibrium, here measured by the rescaled mean
degree 〈d〉′t, is much faster in a neutrally evolving population (NE) than in diffusing one (SRW)
of the same size; it is however consistent with the maximal mixing property of the MERW.
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RNA secondary structures

As a second illustrative example I reconsidered the neutral network of RNA secondary structures

studied in (van Nimwegen et al., 1999). The secondary structure of an RNA molecule is the

pattern of pairings between complementary bases along its sequence, and can be represented with

brackets (paired bases) and dots (unpaired bases). Here we consider sequences of length ` = 18

with minimum-free-energy secondary structure “((((((. . . .)))..)))” and only purine-pyrimidine base

pairs. With the RNA Vienna folding algorithm v2.4.8 (Hofacker, 2003), the giant component has

size |G0| = 17557, but its mutation-selection equilibrium distribution Q (x) varies over 7 orders of

magnitude between core and periphery due to narrow ridges within G (Fig. 4); such ridges are also

seen in the experimental assay of a small protein neutral network (Podgornaia and Laub, 2015),

and may be a generic feature of biological genotype-to-phenotype mappings (Aguirre et al., 2011).

Thus, in molecular evolution as well as in Maynard Smith’s toy model, neutral evolution may not

efficiently sample neutral networks. Statements to the effect that “diffusion enables the search of

vast areas in genotype space” (Huynen et al., 1996) must therefore be qualified accordingly.

log Q

-22.5

-20.0
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Figure 4: The neutral network of the RNA secondary structure “((((((. . . .)))..)))” with only purine
(R) - pyrimidine (Y) base pairs (van Nimwegen et al., 1999), as predicted by the RNA Vienna
algorithm v2.4.8. Its giant component consists of multiple communities separated by narrow ridges
which induce the localization of the mutation-selection equilibrium Q and limits non-equilibrium
dynamics accordingly. For this reason the notion that “diffusion enables the search of vast areas in
genotype space” (Huynen et al., 1996) must be understood as holding within communities but not
between them.
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Robustness and evolvability

The association of NE with the MERW rather than the SRW has notable implications for the clas-

sical issues of robustness and evolvability (Masel and Trotter, 2010). In the literature, the potential

of (e.g. RNA) sequences to generate new phenotypes—their evolvability—has been related to the

(linear or logarithmic) size |G0| of their neutral network (Jörg et al., 2008), aka their versatility. The

rationale for this hypothesis is that a large neutral network potentially communicates with many

other neutral networks (other phenotypes) through “portal” sequences interfacing between them.

But, just like the randomness of an information source should be quantified by its entropy and not

merely its alphabet size (Shannon, 1948), the reach of neutral evolution should be quantified by

its ability to generate new sequences, not by the number of all possible sequences. Information

theory provides the correct language for this: in the M � 1 regime, the versatility of a phenotype

should be measured by the entropy H(Q) = −
∑

x∈GQ(x) logQ(x) of its mutation-selection equi-

librium, or equivalently by the effective size |G|eff = 2H(Q) of the giant component. In both cases

considered above this quantity is much smaller than the naive value |G|: with four-letter words we

have |G|eff = 346.6� 2268, and for the RNA secondary structure |G|eff = 3971.8� 17557.

Conclusion

I have described the localization of populations within neutral networks induced by the competition

for mutational robustness among neutral mutants. This “neutral interference” is interference in

the two senses of the word: in the biological sense, because it involves the competition of clonal

subpopulations, an effect usually referred to as clonal interference; and in the physical sense, because

localization is an interference phenomenon normally encountered in (classical or quantum) wave

mechanics. The link between these two seemingly different process—the evolution of molecular

populations and the destructive interference of waves—is provided by the MERW, a Markov chain

whose local transition probabilities depend on the global structure of the underlying graph.

These observations reveal sharper constraints on the navigability of neutral networks than previ-

ously appreciated: not only does evolution favor high mutational robustness and low genetic loads,

it also positively refuses to engage in tightrope walking along narrow neutral ridges. This effect

manifests itself in the surprising non-monotonic dependence of discovery rates of certain target

genotypes on population size and implies that hopes to “infer the complete structure of the neutral

network from accurate measurements of the transient population dynamics” (van Nimwegen et al.,

1999) are unfounded. In this way we can only hope to infer the structure of the robust cores of

neutral networks. In molecular fitness landscapes, walking a narrow ridge is not a priori easier

than crossing a fitness valley.
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Supplementary Information

Selection-mutation dynamics as a Markov process

In (Smerlak, 2019) I showed that continuous-time replicator-mutator (or quasispecies) equations

can be understood in terms of a derived Markov process, in which the logarithm of the selection-

mutation equilibrium plays the tole of an effective potential. With discrete generations, this scheme

can be reformulated as follows. Given a discrete space X, consider a sequence of probability

distributions pt : X → R evolving under the dynamics

pt+1(x) =
Bpt(x)∑
y Bpt(y)

(3)

with B any irreducible non-negative matrix. (Here I identify a function on Xwith the vector of its

values.) In replicator-mutator systems we have B = MW with W a diagonal matrix of Wrightian

fitnesses and M a stochastic matrix of mutation probabilities. The process 3 is not Markovian due

to the global interactions introduced by the normalization factor; for this reason it is difficult to

interpret it in terms of “evolutionary trajectories”.

This can be remedied by means of the change of variable qt(x) ∝ S(x)pt(x), where S is the (left)

eigenvector of B with largest eigenvalue; by the Perron-Frobenius theorem this vector is positive

and its eigenvalue is the spectral radius σ of S. Via this transformation—which only depends

on t through a global constant—we obtain a Markovian representation of the original dynamical

problem with master equation

qt+1(x) = B̃qt(x) with B̃xy =
S(x)BxyS(y)−1

σ
. (4)

For this derived process the function U = −2 logS plays the role of a potential; its analysis reveals

the metastable states and preferred trajectories of the original (non-linear) process (Smerlak,

2019). The equilibrium distribution for 4 is q∞(x) ∝ S2(x), and the original distribution can be

reconstructed from qt(x) with pt(x) ∝ S(x)−1qt(x). When B happens to be the adjacency matrix A

of a connected graph G, as in neutral evolution, the process 4 coincides with the MERW on G.
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The maximal entropy random walk

The SRW on a connected graph G with adjacency matrix A and degree matrix D = diag(d(x))x∈G

is the Markov chain with transition matrix

Rxy = Prob(x|y) =
Axy

d(y)
. (5)

By contrast, the MERW was defined in (Burda et al., 2009) as the Markov chain with transition

matrix

Prob(x|y) =
Q(x)AxyQ(y)−1

ρ
(6)

where Q is the dominant eigenvector of A with eigenvalue ρ (equal to the spectral radius of A). This

Markov chain maximizes the entropy rate among ergodic stationary processes on G by assigning

equal probability to all paths connecting two given nodes. Rather paradoxically, this property of

“maximal mixing” also leads to dynamical localization when the graph G is irregular, as in Fig.

S1.

Attraction to a clique in the SRW and MERW

The qualitative difference between the SRW and the MERW can be understood by considering the

probabilities pin,out for a walker to jump into (resp. out of) a fully connected subgraph with n nodes

(an n-clique) along a ridge, as in Fig. 1. Since there are n−1 edges going in and 1 edge going out, for

the SRW these probabilities are simply pSRW
in = (n− 1)/n and pSRW

out = 1/n, hence pSRW
in /pSRW

out = n.

To evaluate the same ratio for the MERW, we must compute the dominant eigenvector Q of

the adjacency matrix A for the complete graph over n nodes {1, · · · , n} with one extra node,

labelled 0, attached to vertex 1. By symmetry this eigenvector Q = (q0, q1, · · · qn) can be chosen

such that q2 = · · · = qn = 1. Writing AQ = ρQ then gives a system of two quadratic equations

for (q0, q1), from which we then obtain pMERW
in /pMERW

in = (n−1)/q0. Because q0 ∼ 1/n when n� 1,

this gives pMERW
in /pMERW

in ∼ n2 as claimed in Fig. 1.

Evolutionary simulations

The simulations displayed in Fig. 2 and S3 were performed with the following algorithm, which

takes as input a connected graph G, an integer δ ≥ maxx∈G d (x) representing the total number

of possible (neutral or lethal) mutants a genotype can have, a population size N , a mutation

probability µ, a time horizon T , an initial genotype x0 ∈ G and a target genotype x1 ∈ G. Here we
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denote for each x ∈ G ν (x) the set of its d (x) neighbors in G, and let ν (x) be the set obtained

by adjoining δ − d (x) copies of the symbol † (meaning “dead”) to ν (x).

First, generate an initial population P0 consisting of N copies of x0. Next, for each generation t, per-

form the two following steps:

• mutation: draw a number n ∼ Binom(N,µ) and replace n randomly chosen individuals x

in Pt by random samples from the corresponding ν(x); these samples together with the

elements of Pt not chosen for mutation form the mutated population P ′t

• selection: sample with replacement N elements from P ′t ∩ G and collect them in a new

population Pt+1

The algorithm terminates whenever x1 ∈ Pt (the target genotype is found) or t = T (the time

horizon is reached).

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.922831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922831
http://creativecommons.org/licenses/by/4.0/


Supplementary Figures

Figure S1: Illustration of the difference between the simple (or generic) random walk (top) and
the maximal entropy random walk (bottom) in a two-dimensional lattice with defects. The SRW
choose elementary steps uniformly at random among nearest neighbors and eventually fills the
lattice uniformly (top); the MERW chooses paths between fixed nodes uniformly at random and
ends up trapped in a defect-poor “localization island” (bottom). Illustration by Jarek Duda (CC
BY-SA 4.0).
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0.90064 0.99003

90%-core 99%-core

Figure S2: The 90%- and 99%-cores within the giant component of meaningful four-letter English
words, with size 420 and 1024 respectively (out of 2268 words in the giant component and 2405 in
total). These cores correspond to regions with higher mutational robustness (van Nimwegen et al.,
1999).
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Figure S3: Sample evolutionary trajectories for the word→ gene (top) and opus→ arts (bottom)
problems, with success shown as a black dot. When just a few mutants co-exist in the popula-
tion (M = 1), neutral evolution is insensitive to mutational robustness and behaves as a SRW,
blindly exploring the whole neutral network. As M increases, the attraction towards the core of
the giant component (where 〈d〉 = ρ, indicated by the black horizontal line) becomes stronger and
the likelihood to walk a tightrope such as σ′ decreases accordingly.
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Figure S4: Giant components in the holey landscapes of meaningful English words of different
lengths `, with words x colored by their logarithmic mutation-selection equilibrium probabil-
ity Q(x). In all cases the latter displays exponentially localization in a robust core.
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Supplementary Table

Word
length l

Number of
meaningful words

Giant component
size —G—

Giant component
effective size |G|eff

Sizes ratio
|G|eff/|G|

3 621 603 265.4 0.97
4 2403 2268 346.6 0.94
5 4753 3598 588.9 0.76
6 7763 3353 64.93 0.43
7 10926 2081 42.67 0.19

Table S1: Holey landscapes of meaningful English words of different lengths, see Fig. S4.
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Jacobo Aguirre, Javier M. Buldú, Michael Stich, and Susanna C. Manrubia. Topological Structure

of the Space of Phenotypes: The Case of RNA Neutral Networks. PLoS ONE, 6(10):e26324, oct

2011. doi: 10.1371/journal.pone.0026324. URL https://doi.org/10.1371%2Fjournal.pone.

0026324.

P. W. Anderson. Absence of Diffusion in Certain Random Lattices. Physical Review, 109(5):1492–

1505, mar 1958. doi: 10.1103/physrev.109.1492. URL https://doi.org/10.1103%2Fphysrev.

109.1492.

Aderonke Babajide, Ivo L Hofacker, Manfred J Sippl, and Peter F Stadler. Neutral networks

in protein space: a computational study based on knowledge-based potentials of mean force.

Folding and Design, 2(5):261–269, oct 1997. doi: 10.1016/s1359-0278(97)00037-0. URL https:

//doi.org/10.1016%2Fs1359-0278%2897%2900037-0.

Z. Burda, J. Duda, J. M. Luck, and B. Waclaw. Localization of the Maximal Entropy Random

Walk. Physical Review Letters, 102(16), apr 2009. doi: 10.1103/physrevlett.102.160602. URL

https://doi.org/10.1103%2Fphysrevlett.102.160602.

Stefano Ciliberti, Olivier C. Martin, and Andreas Wagner. Robustness Can Evolve Gradually in

Complex Regulatory Gene Networks with Varying Topology. PLoS Computational Biology, 3

(2):e15, 2007. doi: 10.1371/journal.pcbi.0030015. URL https://doi.org/10.1371%2Fjournal.

pcbi.0030015.

James P. Crutchfield and Erik van Nimwegen. The Evolutionary Unfolding of Complexity. In

Natural Computing Series, pages 67–94. Springer Berlin Heidelberg, 2002. doi: 10.1007/978-3-

642-55606-7 4. URL https://doi.org/10.1007%2F978-3-642-55606-7_4.

J. W. Drake and J. J. Holland. Mutation rates among RNA viruses. Proceedings of the Na-

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.922831doi: bioRxiv preprint 

https://doi.org/10.1371%2Fjournal.pone.0026324
https://doi.org/10.1371%2Fjournal.pone.0026324
https://doi.org/10.1103%2Fphysrev.109.1492
https://doi.org/10.1103%2Fphysrev.109.1492
https://doi.org/10.1016%2Fs1359-0278%2897%2900037-0
https://doi.org/10.1016%2Fs1359-0278%2897%2900037-0
https://doi.org/10.1103%2Fphysrevlett.102.160602
https://doi.org/10.1371%2Fjournal.pcbi.0030015
https://doi.org/10.1371%2Fjournal.pcbi.0030015
https://doi.org/10.1007%2F978-3-642-55606-7_4
https://doi.org/10.1101/2020.01.28.922831
http://creativecommons.org/licenses/by/4.0/


tional Academy of Sciences, 96(24):13910–13913, nov 1999. doi: 10.1073/pnas.96.24.13910. URL

https://doi.org/10.1073%2Fpnas.96.24.13910.

Adam Eyre-Walker. The genomic rate of adaptive evolution. Trends in Ecology & Evolution, 21

(10):569–575, oct 2006. doi: 10.1016/j.tree.2006.06.015. URL https://doi.org/10.1016%2Fj.

tree.2006.06.015.

Walter Fontana, Peter F. Stadler, Erich G. Bornberg-Bauer, Thomas Griesmacher, Ivo L. Hofacker,

Manfred Tacker, Pedro Tarazona, Edward D. Weinberger, and Peter Schuster. RNA folding and

combinatory landscapes. Physical Review E, 47(3):2083–2099, mar 1993. doi: 10.1103/physreve.

47.2083. URL https://doi.org/10.1103%2Fphysreve.47.2083.

Robert Forster, Christoph Adami, and Claus O. Wilke. Selection for mutational robustness in finite

populations. Journal of Theoretical Biology, 243(2):181–190, nov 2006. doi: 10.1016/j.jtbi.2006.

06.020. URL https://doi.org/10.1016%2Fj.jtbi.2006.06.020.

Sergey Gavrilets. Evolution and speciation on holey adaptive landscapes. Trends in Ecology &

Evolution, 12(8):307–312, aug 1997. doi: 10.1016/s0169-5347(97)01098-7. URL https://doi.

org/10.1016%2Fs0169-5347%2897%2901098-7.

Sergey Gavrilets and Janko Gravner. Percolation on the Fitness Hypercube and the Evolution of

Reproductive Isolation. Journal of Theoretical Biology, 184(1):51–64, jan 1997. doi: 10.1006/

jtbi.1996.0242. URL https://doi.org/10.1006%2Fjtbi.1996.0242.

Philip J. Gerrish and Richard E. Lenski. The fate of competing beneficial mutations in an asexual

population. In Mutation and Evolution, pages 127–144. Springer Netherlands, 1998. doi: 10.

1007/978-94-011-5210-5 12. URL https://doi.org/10.1007%2F978-94-011-5210-5_12.

Greg Gibson and Ian Dworkin. Uncovering cryptic genetic variation. Nature Reviews Genetics, 5

(9):681–690, sep 2004. doi: 10.1038/nrg1426. URL https://doi.org/10.1038%2Fnrg1426.

I. L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research, 31(13):3429–3431,

jul 2003. doi: 10.1093/nar/gkg599. URL https://doi.org/10.1093%2Fnar%2Fgkg599.

M. A. Huynen, P. F. Stadler, and W. Fontana. Smoothness within ruggedness: the role of neutrality

in adaptation. Proceedings of the National Academy of Sciences, 93(1):397–401, jan 1996. doi:

10.1073/pnas.93.1.397. URL https://doi.org/10.1073%2Fpnas.93.1.397.

Thomas Jörg, Olivier C Martin, and Andreas Wagner. Neutral network sizes of biological RNA

molecules can be computed and are not atypically small. BMC Bioinformatics, 9(1):464, 2008.

doi: 10.1186/1471-2105-9-464. URL https://doi.org/10.1186%2F1471-2105-9-464.

Motoo Kimura. Evolutionary Rate at the Molecular Level. Nature, 217(5129):624–626, feb 1968.

doi: 10.1038/217624a0. URL https://doi.org/10.1038%2F217624a0.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.922831doi: bioRxiv preprint 

https://doi.org/10.1073%2Fpnas.96.24.13910
https://doi.org/10.1016%2Fj.tree.2006.06.015
https://doi.org/10.1016%2Fj.tree.2006.06.015
https://doi.org/10.1103%2Fphysreve.47.2083
https://doi.org/10.1016%2Fj.jtbi.2006.06.020
https://doi.org/10.1016%2Fs0169-5347%2897%2901098-7
https://doi.org/10.1016%2Fs0169-5347%2897%2901098-7
https://doi.org/10.1006%2Fjtbi.1996.0242
https://doi.org/10.1007%2F978-94-011-5210-5_12
https://doi.org/10.1038%2Fnrg1426
https://doi.org/10.1093%2Fnar%2Fgkg599
https://doi.org/10.1073%2Fpnas.93.1.397
https://doi.org/10.1186%2F1471-2105-9-464
https://doi.org/10.1038%2F217624a0
https://doi.org/10.1101/2020.01.28.922831
http://creativecommons.org/licenses/by/4.0/


Motoo Kimura. The Neutral Theory of Molecular Evolution. Cambridge University Press, 1983.

doi: 10.1017/cbo9780511623486. URL https://doi.org/10.1017%2Fcbo9780511623486.

J. L. King and T. H. Jukes. Non-Darwinian Evolution. Science, 164(3881):788–798, may 1969. doi:

10.1126/science.164.3881.788. URL https://doi.org/10.1126%2Fscience.164.3881.788.

Joanna Masel and Meredith V. Trotter. Robustness and Evolvability. Trends in Genetics, 26(9):

406–414, sep 2010. doi: 10.1016/j.tig.2010.06.002. URL https://doi.org/10.1016%2Fj.tig.

2010.06.002.

Masatoshi Nei, Yoshiyuki Suzuki, and Masafumi Nozawa. The Neutral Theory of Molecular

Evolution in the Genomic Era. Annual Review of Genomics and Human Genetics, 11(1):265–

289, sep 2010. doi: 10.1146/annurev-genom-082908-150129. URL https://doi.org/10.1146%

2Fannurev-genom-082908-150129.

S.-C. Park and J. Krug. Clonal interference in large populations. Proceedings of the National

Academy of Sciences, 104(46):18135–18140, nov 2007. doi: 10.1073/pnas.0705778104. URL

https://doi.org/10.1073%2Fpnas.0705778104.

Anna I. Podgornaia and Michael T. Laub. Pervasive degeneracy and epistasis in a protein-protein

interface. Science, 347(6222):673–677, feb 2015. doi: 10.1126/science.1257360. URL https:

//doi.org/10.1126%2Fscience.1257360.
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