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Abstract 

Recent studies have proposed the orderly progression in the time constants of neural dynamics as 

an organizational principle of cortical computations. However, relationships between these 

timescales and their dependence on response properties of individual neurons are unknown. We 

developed a comprehensive method to simultaneously estimate multiple timescales in neuronal 

dynamics and integration of task-relevant signals along with selectivity to those signals. We 

found that most neurons exhibited multiple timescales in their response, which consistently 

increased from parietal to prefrontal to cingulate cortex. While predicting rates of behavioral 

adjustments, these timescales were not correlated across individual neurons in any cortical area, 

resulting in independent parallel hierarchies of timescales. Additionally, none of these timescales 

depended on selectivity to task-relevant signals. Our results not only suggest multiple canonical 

mechanisms for increasing timescales of neural dynamics across cortex but also point to 

additional mechanisms that allow decorrelation of these timescales to enable more flexibility.  

Introduction 

Despite the tremendous heterogeneity in terms of cell types, connectivity, and neural response 

across brain areas, neuroscientists have long entertained various ideas about parsimonious 

organizational principles that could underlie such heterogeneity (Lennie, 1998; Shepherd et al., 

2005), as well as how this heterogeneity contributes to brain computations (Shamir and 

Sompolinsky, 2006; Goris et al., 2015). Recent studies have illustrated that the heterogeneity of 

neural response across the brain is anatomically ordered (Hasson et al., 2008; Honey et al., 2012; 

Goris et al., 2014; Meder et al., 2017; Murray et al., 2014). For example, intrinsic timescales of 

neural fluctuations, presumably reflecting circuit dynamics, increase from sensory to prefrontal 

cortices (Murray et al., 2014). Moreover, time constants of modulations by reward feedback 

(reward memory) also increase in tandem with intrinsic timescales across cortical areas 

(Bernacchia et al., 2011; Murray et al., 2014).  

These parallel hierarchies of timescales in intrinsic fluctuations and reward memory, however, 

were estimated with different methods. More specifically, intrinsic timescales were estimated 

using the decay rate of autocorrelation in neural response across the population of neurons in a 
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given area (Murray et al., 2014), whereas reward-memory timescales were obtained using 

activity profiles of individual neurons across multiple trials (Bernacchia et al., 2011). Therefore, 

it is unclear whether the presumed relationship between intrinsic and reward-memory timescales 

holds at the level of individual neurons. If these timescales are correlated across individual 

neurons, it would suggest that the source of intrinsic fluctuation might also underlie the 

persistence of task-related signals. By contrast, the absence of such a relationship among 

individual neurons could indicate that there are separate mechanisms underlying these 

timescales.  

A few recent studies have shown that intrinsic timescales during the fixation period–– 

presumably before strong task-relevant signals emerge in the cortical activity ––can predict 

encoding of task-relevant signals later in the trial for some but not all cortical areas. This 

includes the encoding of chosen value during value-guided decision making (Cavanagh et al., 

2016), persistent activity during working-memory tasks (Nishida et al., 2014; Cavanagh et al., 

2018; Wasmuht et al., 2018), and activity related to upcoming behavioral responses during a 

visually-cued strategy task (Fascianelli et al., 2019; Cirillo et al., 2018). However, in all these 

studies, the decay rate of autocorrelation in the firing response of individual neurons during one 

epoch of the task (fixation period) is compared with encoding of task-relevant signals in other 

epochs of the task. This leaves open the possibility that the observed relationship might be 

spurious, because the same dynamic process related to intrinsic timescales might also influence 

the time course of task-relevant signals.  

It is also unknown whether the observed hierarchies of reward-memory timescales depend on the 

selectivity of individual neurons relative to external or task-relevant signals (response 

selectivity). For example, long reward-memory timescales might also require strong reward 

selectivity. If so, heterogeneity in response selectivity might decorrelate reward-memory 

timescales from intrinsic timescales across different neurons, even if they were generated via a 

single mechanism. By contrast, independence of timescales and response selectivity could 

indicate that reward-memory and intrinsic timescales might be generated via separate 

mechanisms. This would challenge the idea that the hierarchies of timescales occur due to 

similar processing of information across multiple brain areas (Hunt and Hayden, 2017; Yoo and 
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Hayden, 2018) and instead points to the importance of the heterogeneity of local circuits 

(Chaudhuri et al., 2015).  

To address aforementioned questions, we developed a general and robust method to fit individual 

neurons’ response to estimate four distinct timescales in the activity of individual neurons along 

with their selectivity to task-relevant signals simultaneously (Figure 1a–c). We applied this 

method to recordings from 866 single neurons in four cortical areas across six monkeys 

performing the same competitive game of matching pennies (Barraclough et al., 2004).  

Results 

General method for estimation of multiple timescales. We aimed to keep our method for 

estimating timescales as general as possible while capturing heterogeneity in neural response 

(Figure 1a–c). More specifically, based on previous studies (Murray et al., 2014; Bernacchia et 

al., 2011), we assumed that neural response at any time point in a trial could depend on activity 

during earlier epochs in the same trial and similar epochs in the preceding trials, as well as on 

reward outcome (reward vs. no reward) and choice (left vs. right) on the preceding trials. The 

first type of dependence—activity from epochs in the same trial—was captured by an 

autoregressive (AR) component that predicts spikes in a given 50-msec time bin based on spikes 

in the preceding 8 time bins. The autoregression coefficient for each term of this AR component 

was then transformed to a time constant via the time lag associated with a given coefficient (see 

Equations 1-2 in Methods). In general, this method provides multiple timescales for individual 

neurons. To assign a single intrinsic timescale to each neuron, we used the longest timescale 

among all the timescales estimated from statistically significant autoregression coefficients. We 

did so because dynamics on smaller timescales would reach an asymptote faster and thus are less 

important for the overall time course of neural response. Intrinsic timescales based on this 

approach closely match timescales based on autocorrelation (see below).  

In addition, because of the structured nature of the task with specific time epochs, we 

hypothesized that neural response on a given epoch could be influenced by the activity in the 

same epoch in the previous trials, and thus, we included a second AR component to estimate a 

“seasonal” timescale for each neuron (Figure 1a). The third and fourth types of dependence 

were captured by two exponential memory-trace components (filters) that could predict  
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Figure 1. Parallel hierarchies of timescales of neural fluctuations and integration of task-relevant 
signals across cortex. (a–c) Simultaneous estimation of four types of timescales in neural 
response, illustrated for activity of an example ACC neuron. Activity in a given time epoch is 
related to response during previous epochs in the same trial (intrinsic timescale: 𝜏"#$%"#&"'; a), 
response during the same epoch in the preceding trials (seasonal timescale: 𝜏&()&*#)+; a), reward 
outcome on previous trials measured by a memory-trace filter (reward-memory timescale: 
𝜏%(,)%-; b), and monkeys’ choice (left vs. right) in the preceding trials (choice-memory 
timescale: 𝜏'.*"'(; c). (d–g) Hierarchies of the four types of timescales across the cortex. Plots 
show the median of intrinsic (d), seasonal (e), reward-memory (f), and choice-memory (g) 
timescales in four cortical areas estimated using the best model for fitting response of each 
neuron. Error bars indicate s.e.m. Only neurons that showed significant timescales are included 
in each panel. Bar graphs show the fraction of neurons with a significant timescale in each area.  
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fluctuations of each neuron’s response around its average activity profile in a given time bin 

based on reward feedback and choice on the previous trials, respectively. The corresponding 

exponential coefficients were then used to estimate the timescale of a “reward-memory” (Figure 

1b) and “choice-memory” (Figure 1c) for each neuron (Bernacchia et al., 2011). Finally, we also 

included multiple exogenous terms to capture selectivity to reward outcome and choice in the 

current trial, and their interactions. We used all possible combinations of the two autoregressive 

and two memory-trace components as well as the presence or absence of exogenous terms (task-

relevant signals) to generate 32 (= 21) models (Supplementary Table 1). 

Considering the complexity of our models, we first tested whether our fitting method could 

identify the correct model by fitting data generated with one model using all the 32 models (see 

Model recovery in Methods). We found that our method could identify the correct model most 

of the time despite the large number of models considered (Supplementary Figure 1). 

Moreover, we also tested how reliably our methods can identify the best model for each neuron 

by computing the coefficient of determination (R-squared) for best models and comparing them 

with those of the second-best models as well as models that only include exogenous terms and 

thus no timescales. 

We found that the best model for each neuron, which often involved about three types of 

timescales (Supplementary Figure 2), captured larger variances of neural activity than the 

second-best model and the model that did not include any timescales (Supplementary Figure 

3). These results show that dynamics associated with these timescales indeed capture unique 

variability in neural response beyond what is predicted by task-relevant signals. Interestingly, the 

best model for most neurons (~99.5%) in all four cortical areas included an intrinsic AR 

component (Supplementary Figure 4), illustrating the importance of intrinsic fluctuations in 

explaining neural variability across cortex. Together, these results demonstrate the robustness of 

our method in estimating multiple timescales related to dynamics of neural response. 

Parallel but independent hierarchies of timescales. After validating our estimation method 

and fitting procedure, we used all 32 models to fit individual neurons’ response to identify the 

best model for each neuron based on cross-validation, and to simultaneously estimate selectivity 

to task-relevant signals as well as intrinsic, seasonal, choice-memory, and reward-memory 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.955427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955427


 7 

timescales. We observed hierarchies for all of the estimated timescales across the four cortical 

areas, from the lateral intraparietal area (LIP) to the dorsomedial prefrontal cortex (dmPFC) to 

the dorsolateral prefrontal cortex (dlPFC) to the anterior cingulate cortex (ACC).  

The median value of intrinsic timescales increased from ~60 ms in LIP to ~120 ms in ACC with 

the dmPFC and dlPFC exhibiting intermediate values (Figure 1d). These intrinsic timescales, 

however, were significantly smaller than those reported in Murray et al. (2014), which could be 

due to using the decay on autocorrelations between spikes during the fixation period in that 

study. To test this possibility, we applied our method to neural response during the fixation 

period only and found the median intrinsic timescales to be significantly larger for the activity 

during this epoch compared with the entire trial (Supplementary Figure 5a). Nonetheless, 

applying our method to neural response during the fixation period we observed a range of 

intrinsic timescales similar to those reported based on autocorrelation.  

Similar to intrinsic timescales, our new seasonal timescales also increased from LIP to ACC 

(Figure 1e). However, seasonal timescales were an order of magnitude larger than intrinsic 

timescales and significantly smaller fractions of neurons exhibited these timescales. Similarly, 

reward- and choice-memory timescales increased from parietal to prefrontal to cingulate cortex; 

these timescales assumed values between intrinsic and seasonal timescales (Figure 1f,g). 

Overall, we found that LIP and ACC consistently exhibited the shortest and longest timescales, 

whereas the two prefrontal areas showed intermediate values. Therefore, our method extended 

previous findings about intrinsic and reward-memory timescales to the single-cell level and 

moreover, revealed two new hierarchies of seasonal and choice-memory timescales. 

Our results suggest that the estimated timescales increase in tandem across the four cortical areas 

as is evident from changes in the medians of these timescales across the four areas. To examine 

this relationship more closely, we computed the correlations between timescales within 

individual neurons across all cortical areas (cortex-wise correlations) based on simultaneously 

estimated timescales for each neuron. We found significant correlations between most pairs of 

timescales except between seasonal and reward-memory timescales and between seasonal and 

choice-memory timescales (Figure 2). Similar correlation between intrinsic and reward-memory 
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timescales has been reported before but using only population-level estimates (Murray et al., 

2014).  

 

Figure 2. Relationship between different types of timescales across all cortical areas (cortex-
wise correlation). Plots show estimated timescales for individual neurons (color dots) and 
median timescales (symbols) against one another across four cortical areas as indicated in the 
legend: seasonal vs. intrinsic timescales (a), reward-memory vs. intrinsic timescales (b), choice-
memory vs. intrinsic timescales (c), reward-memory vs. seasonal timescales (d), choice-memory 
vs. seasonal timescales (e), and choice-memory vs. reward-memory timescales (f).Error bars 
indicate s.e.m. The cortex-wise correlation was significant between most pairs of timescales: 
intrinsic and seasonal (Spearman correlation, 𝑟 = 0.18, 𝑝 = 0.0013), intrinsic and reward-
memory (Spearman correlation, 𝑟 = 0.46, 𝑝 = 0), intrinsic and choice-memory (Spearman 
correlation, 𝑟 = 0.45, 𝑝 = 6.19 × 10>?@), and reward-memory and choice-memory (Spearman 
correlation, 𝑟 = 0.51, 𝑝 = 1.89 × 10>AB). There was no significant correlation between seasonal 
and reward-memory timescales (Spearman correlation, 𝑟 = 0.06, 𝑝 = 0.37) and between 
seasonal and choice-memory timescales (Spearman correlation, 𝑟 = 0.11, 𝑝 = 0.13).  

The cortex-wise correlation between timescales could be driven simply by the gradual increase 

in all timescales across the four cortical areas. Therefore, we tested whether these timescales are 
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correlated across neurons within a given brain area because the presence or lack of correlation 

between timescales within individual neurons would suggest similar or separate mechanisms for 

generations of these timescales, respectively. Indeed, we did not find any evidence for 

correlation between any pairs of timescales in any cortical areas (Figure 3). The only evidence 

for such correlation, which did not survive the Bonferroni correction, was observed between 

choice- and reward-memory timescales in LIP and dlPFC. Overall, we found that although all 

four types of timescales consistently increased across cortex in tandem, there was no relationship 

between them across individual neurons in a given area. This indicates that the previously 

reported correlation between intrinsic and reward-memory timescales was mostly driven by 

between-region differences.  

 

Figure 3. Independence between different types of timescales within individual neurons within 
individual cortical areas. Each row of panels shows the estimated timescales within individual 
neurons against one another for a given cortical area indicated on the left. Reported are the 
Spearman correlation coefficients and corresponding p-values, and the number of neurons with 
significant values of a given pair of timescales. The solid lines represent the regression line that 
was fit to log timescales.  
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Considering that these findings are null results, we performed additional simulations to test 

whether our method is sensitive enough to detect correlations between timescales across 

individual neurons within a given cortical area if such correlations exist indeed. More 

specifically, we used activity profiles of randomly selected neurons in our dataset to simulate 

neural response with significant correlations between certain pairs of timescales, and then used 

our method to estimate those timescales from the simulated data (see Correlation recovery 

simulations in the Methods). We found that our method can detect existing correlations between 

pairs of timescales and there was no systematic bias in estimated correlations (Supplementary 

Figure 6). 

Behavioral relevance of estimated timescales. To estimate the four timescales, we fit neural 

response considering all task-relevant signals. This method guarantees that the estimated 

timescales capture unique variability in neural response, but it is still unclear whether they are 

relevant and contribute to behavior. To examine whether any of the four neural timescales are 

relevant for choice behavior during the game of matching pennies, we estimated timescales at 

which monkeys’ choice behavior on the current trial is influenced by reward and choice on the 

preceding trials for each session of the experiment (see Behavioral timescales in Methods). We 

then calculated the correlations between these two behavioral timescales and each of the four 

neural timescales.  

We found significant correlations between the behavioral reward timescales (which is directly 

related to the learning rate in the RL models) and reward-memory timescales in all cortical areas 

(Figure 4a-d). A similar relationship has been reported previously but by considering behavioral 

and neural timescales from three cortical areas together, but has not been tested for individual 

brain areas (Bernacchia et al., 2011). We also found significant correlations between behavioral 

choice timescales and choice-memory timescales of neurons in all cortical areas (Figure 4e-h). 

Importantly, there was no significant correlation between the behavioral reward timescales and 

choice-memory timescales (Spearman correlation; LIP: r = 0.16, 𝑝 = 0.052; dmPFC: r =

−0.05, 𝑝 = 0.60; dlPFC: r = −0.06, 𝑝 = 0.37; ACC: r = −0.03, 𝑝 = 0.83) or between 

behavioral choice timescales and reward-memory timescales (Spearman correlation; LIP: r =

−0.04, 𝑝 = 0.63; dmPFC: r = −0.05, 𝑝 = 0.63; dlPFC: r = −0.09, 𝑝 = 0.21; ACC: r = 0.09, 

𝑝 = 0.34). These results illustrate that reward- and choice-memory timescales in all cortical 
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areas were specifically predictive of behavior in terms of the integration of previous choice and 

reward outcomes, respectively.   

In contrast to these links between behavioral timescales measuring the decays in the effect of 

previous reward and choice and corresponding neural timescales, there was no correlation 

between the behavioral timescales and intrinsic or seasonal timescales (Supplementary Figure 

7). These results demonstrate that not only our estimated reward-and choice-memory timescales 

are linked to the integration of reward and choice outcomes over time (trials), but more 

importantly, intrinsic timescales may not directly contribute to behavior as previously 

hypothesized (Bernacchia et al., 2011; Murray et al., 2014).   

 

Figure 4.  Relationship between reward- and choice-memory timescales and behavioral 
timescales. (a–d) Plots show behavioral reward timescales vs reward-memory timescales of 
individual neurons recorded during the same sessions, separately for different cortical areas as 
indicated on the top. Reported are the Spearman correlation coefficients and corresponding p-
values and the solid lines represent the regression line that was fit to log values. (e–h) The same 
as in a–d but for behavioral choice timescales. There were significant correlations between 
behavioral and neural timescales in all cortical areas (𝑃 < G.G1

H
= 0.00625). 
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Dependence of neural timescales on response selectivity. Our finding that four estimated 

timescales are independent of each other suggests that multiple mechanisms underlie the 

generation of these timescales. However, if all or some of the estimated timescales depend on 

response selectivity of individual neurons, inherent heterogeneity in response selectivity could 

render these timescales decorrelated across individual neurons even if they were generated via a 

single mechanism. Therefore, we performed additional analyses to examine whether the 

observed hierarchies of timescales and their relationships depend on the selectivity to task-

relevant signals (reward outcome, choice, and their interaction). This was possible because in 

addition to ensuring that estimated timescales actually captured unique variability in neural 

response, our method also allowed us to measure the selectivity of individual neurons to task-

relevant signals. 

First, we found that a significant fraction of neurons in all cortical areas were selective to task-

relevant signals, as reflected in the majority of best models to include the exogenous terms (LIP: 

66.34%, 𝜒A = 11.63, 𝑝 = 9.19 × 10>1; dmPFC: 69.73%, 𝜒A = 17.56, 𝑝 = 4.73 × 10>1; dlPFC: 

59.32%, 𝜒A = 6.67, 𝑝 = 2.89 × 10>K; ACC: 59.74%, 𝜒A = 7.72, 𝑝 = 5.17 × 10>K). Similar to 

previous findings based on fits of neural response with regression models (Barraclough et al., 

2004; Donahue et al., 2013), we found significant fractions of neurons in all cortical areas to 

show selectivity to reward outcome right after reward feedback and selectivity to choice after 

target onset and when a choice was made (Supplementary Figure 8). Interestingly, similar 

fractions of neurons encoded reward outcome across the four cortical areas (𝜒A(3) = 3.49, 𝑝 =

0.062) whereas the fraction of neurons selective to choice decreased from LIP to ACC (𝜒A(3) =

23.6, 𝑝 = 1.2 × 10>N).   

Second, we examined whether any of the estimated timescales varied with general or specific 

selectivity to any task-relevant signals. We did not find any significant difference between 

timescales of neurons with and without selectivity to task-relevant signals (Figure 5; 

Supplementary Table 2). We further examined whether estimated timescales depend on 

specific selectivity to reward outcome but did not find any evidence for this in any cortical area 

(Supplementary Figure 9; Supplementary Table 3). Similarly, we did not find evidence for 

the dependence of timescales on specific selectivity to choice in any cortical areas; Nonetheless, 

the overall reward-memory timescales were significantly larger for neurons that were not 
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selective to choice signal (Supplementary Figure 10; Supplementary Table 4). This suggests a 

small tendency for neurons with no choice selectivity to integrate reward feedback over longer 

timescales. 

As mentioned earlier, a few recent studies have shown that the timescales for the decay of 

autocorrelation in the firing response of individual neurons during the fixation period, often 

referred to as intrinsic timescales, are predictive of encoding of task-relevant signals. Therefore, 

we tested whether intrinsic timescales based on autocorrelation depend on selectivity to task-

relevant signals. Similar to our results based on our comprehensive method, however, we did not 

find any difference between the intrinsic timescales of neuron with and without task-relevant 

selectivity (Supplementary Figure 5b). This result indicates that the lack of a relationship 

between response selectivity and intrinsic timescales is not unique to our method and could be 

related to the task studied here. Nonetheless, it is important to ensure that intrinsic timescales 

capture unique variability in neural response; otherwise, any relationship between such 

timescales and task-relevant signals could be spurious.   

Figure 5.  No evidence for the dependence of timescales on overall selectivity to task-relevant 
(reward outcome and choice) signals. Plots show the median of the estimated intrinsic (a), 
seasonal (b), reward-memory (c), and choice-memory timescales (d) in four cortical areas, 
separately for neurons with (gold) and without (purple) any type of selectivity to task-relevant 
signals. The dashed lines show the median across all four areas, and error bars indicate s.e.m. 
Insets show the fractions of neurons with and without any task-relevant signals (for all neurons 
with a significant timescale) in different areas. Detailed statistics for comparing neurons with and 
without task-relevant selectivity are provided in Supplementary Table 2.  
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Third, despite similar hierarchies of timescales for neurons with different types of selectivity, 

reward- and choice-memory timescales might still depend on the strength of modulation within 

each type. To test this possibility, we examined correlations between timescales of reward- and 

choice-memory integration and the magnitude of selectivity to reward, choice, and their 

interactions (quantified by standardized regression coefficients for the corresponding exogenous 

signals) but did not find any significant relationship (Supplementary Figure 11). Furthermore, 

we did not find significant correlation between timescales and neural firing rates in any cortical 

area (Supplementary Figure 12). These results illustrate that activity related to reward and 

choice memory were independent of immediate response to these signals within individual 

neurons.  

Together, results presented above illustrate the independence of estimated timescales and 

selectivity to task-relevant signals. These findings suggest that the four estimated timescales 

related to various dynamics of cortical neural response are not generated via a single mechanism 

that is then modulated and sculpted by response properties of individual neurons. Instead, they 

suggest that multiple mechanisms underlie the generation of the four estimated timescales.   

Discussion 

We developed a comprehensive and robust method to estimate multiple timescales related to 

dynamics of neural response along with selectivity of individual neurons to important task-

relevant signals. By applying this method to neuronal activity recorded from four cortical areas, 

we provide evidence for the presence of four parallel timescales related to neural response 

modulations by previous reward and choice outcomes (reward- and choice-memory timescales), 

ongoing fluctuations in neural firing (intrinsic timescale), and response during similar task 

epochs in the preceding trials (seasonal timescale). Although evidence for intrinsic, reward- and 

choice-memory timescales have been provided before (Bernacchia et al., 2001; Murray et al., 

2014), the relationship between these timescales within individual neurons and their dependence 

on response selectivity and the precise nature of the observed relationships between the 

selectivity to task-relevant signals and intrinsic timescales based on autocorrelation were not 

known.  
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Our method also identified a new timescale related to fluctuations of neural response to 

experimental epochs (events) across trials and the importance of these dynamics for capturing 

response variability even though only less than half of the recorded neurons exhibited seasonal 

timescales. The seasonal timescales were the longest timescales and could reflect internal neural 

dynamics controlled by top-down signals that could set the state of cortical dynamics that 

ultimately influence task performance (Carnevale et al., 2012). It is possible that seasonal 

timescales emerge the task being learned and that is why less neurons exhibit seasonal 

timescales. 

We found four parallel hierarchies of timescales, from parietal to prefrontal to cingulate cortex, 

at the level of individual neurons. However, none of the four timescales depended on the 

selectivity of individual neurons to task-relevant signals, and there was no systematic 

relationship between these timescales across individual neurons in a given cortical area. These 

indicate that the previously reported correlation between intrinsic and reward-memory timescales 

(Murray et al., 2014) was mostly driven by between-region differences and was not a property of 

individual neural response. In addition, our findings contradict a few recent studies showing that 

intrinsic timescales based on autocorrelation can predict encoding of task-relevant signals in 

some cortical areas (Cavanagh et al,, 2016; Cavanagh et al., 2018; Fascianelli et al., 2019; 

Nishida et al., 2014; Wasmuht et al., 2018). This could be due to differences in the experimental 

paradigms, methods for estimations of intrinsic timescales, or both, and could simply reflect 

reporting bias considering the large number of studies that have examined the decay in 

autocorrelation of neural response. More specifically, because intrinsic timescales using the 

decay in autocorrelation are usually obtained from a fixation period (presumably before strong 

task-relevant signals emerge in the cortical activity), it is unclear that corresponding dynamics 

capture unique variability in neural response beyond task-relevant signals, suggesting that the 

relationship between such intrinsic timescales and encoding of task-relevant signals observed in 

previous studies might be spurious.    

Our results suggest that the four estimated timescales and corresponding dynamics are not 

generated via a single mechanism and modulated by response properties of individual neurons 

and, instead, are produced by distinct mechanisms. More specifically, the independence of 

intrinsic timescales from neural selectivity and the gradual increase of these timescales across 
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cortex confirm the previously postulated role of slower synaptic dynamics (perhaps due to short-

term synaptic plasticity) in higher cortical areas (Murray et al., 2014; Wang et al., 2008). 

Nonetheless, distinct hierarchies of timescales can be generated by other mechanisms than those 

underlying intrinsic timescales (Miller et al., 2016; Hunt and Hayden, 2017). For example, 

seasonal timescales could be generated through circuit reverberations evoked by important task 

events and top-down signals and thus could depend on the dynamics of interactions between 

neurons in the circuit. Therefore, independence of intrinsic and seasonal timescales within 

individual neurons challenges the idea that their cortical hierarchies occur due to successive 

processing of information (Hunt and Hayden, 2017; Yoo and Hayden, 2018) and points to the 

importance of the heterogeneity of local circuits to which a neuron belongs (Chaudhuri et al., 

2015). That is, a neuron could receive synaptic inputs with fast dynamics (e.g., due to short-term 

plasticity) but contributes to slow circuit reverberations that generate seasonal timescales, and 

vice versa.  

We found that choice- and reward-memory timescales selectively predict behavioral timescales 

related to behavioral integration of previous choice and reward outcomes, respectively and thus, 

are relevant to choice behavior. This indicates that these timescales are more likely to depend on 

long-term reward- and choice-dependent synaptic plasticity as presumed in different 

reinforcement learning models. Assuming Hebbian form of synaptic plasticity, one could predict 

that stronger response to reward feedback should result in stronger changes in synaptic plasticity 

and thus a shorter timescale for reward memory for a given neuron. However, we did not find 

any evidence for a relationship between these memory timescales and response selectivity to 

reward and choice outcomes on the current trial. This result could indicate the presence of 

significant heterogeneity in synaptic plasticity rules. In addition, reward and choice-memory 

timescales could be decorrelated because choice and reward are only weakly coupled during the 

game of matching pennies, but this might also reflect the fact that synaptic plasticity depends on 

activity and reward history (Abraham, 2008; Farashahi et al., 2017). More specifically, because 

synaptic plasticity changes with preceding neural activity and reward history, heterogeneity in 

both of these factors could make choice- and reward-memory decorrelated. Finally, the lack of 

correlation between intrinsic (and seasonal) timescales and reward- or choice-memory timescales 

could undermine the proposal that intrinsic dynamics directly contribute to reward-based and 

goal-directed behavior (Murray et al., 2014). Instead, we speculate that the independence of 
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different timescales within individual neurons could contribute to behavioral flexibility by 

allowing neurons to integrate different pieces of task-relevant information independently 

(Farashahi et al., 2019).   

Although we only investigated response dynamics of individual neurons, there are recent studies 

showing that population activity exhibits similar dynamics and reflect task-relevant information 

(Kobak et al., 2016; Cueva et al., 2019; Rossi-Pool et al., 2019). For example, Kobak and 

colleagues showed that after proper de-mixing and dimensionality reduction, population 

response reflects task parameters such as reward and choice, similar to response of single 

neurons (Kobak et al., 2016). In another study, Rossi-Pool and colleagues found that during a 

temporal pattern discrimination task, population activity in the dorsal premotor cortex exhibit 

temporal dynamics similar to those of single neurons, but these dynamics diminish during a non-

demanding task (Rossi-Pool et al., 2019). Future studies are needed to compare the timescales 

underlying response of individual neurons to those of populations of neurons, which could be 

important for understanding how corresponding dynamics are generated. 
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Methods 

Neural data. All experimental procedures followed the guidelines by the US National Institutes 

of Health and were approved by the University Committee on Animal Research (UCAR) at the 

University of Rochester and the Institutional Animal Care and Use Committee (IACUC) at Yale 

University. Experimental details for the data sets have been reported previously (Barraclough et 

al., 2004; Seo et al., 2009; Seo and Lee, 2007; Donahue et al., 2013). We used single-neuron 

spike train data that were recorded in macaque monkeys performing a competitive decision-

making task of matching pennies. In each trial, monkeys chose one of two color targets by 

shifting their gaze while the computer made its choice by simulating a rational opponent; the 

animal received reward if its choice matched that of the computer (Barraclough et al., 2004). We 

used spike counts in 50-msec time bins starting with reward feedback (post-feedback) and 

spanning into the following trial (there could be a maximum of 80 bins in a given trial). This 

choice of starting point was only for computational convenience. Data includes recordings from 

205 neurons in the lateral intraparietal area (LIP) from 1 female and 2 male monkeys (Seo et al., 

2009), 185 neurons in the dorsomedial prefrontal cortex (dmPFC) from 2 male monkeys 

(Donahue et al., 2013), 322 neurons in the dorsolateral prefrontal cortex (dlPFC) from 1 female 

and 4 male monkeys (Barraclough et al., 2004), and 154 neurons in the dorsal anterior cingulate 

cortex (ACC) from 2 male monkeys (Seo and Lee, 2007).   

Model. Our goal here was to predict the spike counts as a non-stationary time series based on the 

preceding neural activity and task-relevant signals in order to simultaneously estimate various 

timescales in neural response and selectivity to task-relevant signals. A powerful method to 

capture non-stationarity of a time series due to factors with different timescales is the seasonal 

autoregressive with exogenous inputs (ARX) model, which commonly has been used in various 

fields (Seo and Lee, 2007; Seo et al., 2007, Hipel and McLeod, 1994; Hamzaçebi, 2008; Box et 

al., 2015). The autoregressive component of the ARX model aims to predict the output variable 

or response based on immediately preceding response, whereas the seasonal component allows 

the model to capture fluctuations or variations due to the periodic nature of the external factors. 

In the context of neural data of our experiments, the seasonal component refers to the 

relationship between neural response across trials due to the specific structure of the task (see 

below).  
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To predict neural response, we included two autoregressive components in our model, resulting 

in a seasonal 2D-ARX model that also includes two exponential memory traces for choice and 

reward. First, we assumed that neural response at any time point in a trial depends on earlier 

activity in the same trial (Murray et al., 2014). This dependence was captured by an 

autoregressive component that predicts spikes in a given 50-msec time bin based on spikes in the 

preceding F time bins (autoregressive model with order F). Therefore, this “intrinsic” 

autoregressive component (referred to as ARintrinsic) uses a weighted average of firing rates in the 

preceding bins in order to predict the current firing rate. Our preliminary results showed that 

there is more than one significant autoregression coefficient for most neurons. In order to assign 

a single intrinsic timescale (𝜏"#$%"#&"') for each neuron, we selected the longest timescale among 

the ARintrinsic coefficients (see Equations 1-3 below) because neural dynamics on smaller 

timescales would reach an asymptote and thus, are less important for the overall time course of 

neural response. We found that in addition to the longest timescales closely matching timescales 

based on autocorrelation (Supplementary Figure 5), the second longest timescales also exhibit 

a similar hierarchy but on a smaller range (data not shown). 

Second, because of the structured nature of the task with specific time epochs, we hypothesized 

that neural response on a given epoch could be influenced by the activity in the same epoch in 

the preceding trials. In other words, task epochs could provide a “seasonal” source of variability 

in neural response. Therefore, we included a seasonal autoregressive component (referred to as 

ARseasonal) in our model in order to predict response in the current time bin based on responses in 

the same time bins in the preceding G trials (autoregressive model with order G; Equation 1). 

The corresponding autoregression coefficients were used to estimate a seasonal memory 

timescale (𝜏&()&*#)+) for each neuron. Therefore, seasonal timescales capture how fluctuations of 

activity during a given epoch decay over trials (more precisely, time difference between the same 

epoch over successive trials).  

Third, we assumed that neural response at any time point in a trial depends on reward outcome 

(reward vs. no reward) and choice (left vs. right choice) in the preceding trials (Bernacchia et al., 

2011). These dependences relate spikes in a given time bin of the current trial to reward and 

choice outcomes in the preceding H trials. To capture these dependencies, we assumed two 

separate exponential memory-trace filters that are modulated by the average response in a given 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.955427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955427


 22 

epoch and previous reward or choice signals (see Equation 1 below). The corresponding 

exponential memory-trace coefficients were used to estimate a reward-memory timescale 

(𝜏%(,)%-) and a choice-memory timescale (𝜏'.*"'() for each neuron. Therefore, reward- and 

choice-memory timescales capture how the influence of reward and choice outcomes decays 

over time (time from the preceding reward feedback and choice, respectively).  

Finally, we also included various exogenous terms to capture selectivity in response to current 

choice (𝐶), current reward (𝑅), and their interaction (𝐶 × 𝑅). We did not include terms for 

previous choice and reward because effects of previous choice and reward are captured by 

choice- and reward-memory, respectively. The selectivity to task-relevant signals was captured 

using four boxcars relative to relevant events in the task. More specifically, we considered: a) 

three terms (regressors) for choice, one for [0,500] msec interval relative to the onset of choice 

targets (Choice 1), one for [0,500] msec interval relative to target fixation (Choice 2), and one 

for [0,500] msec interval relative to reward feedback (Choice 3); b) one term for reward for 

[0,500] msec interval relative to reward feedback; and c) one term for the interaction of choice 

and reward for [0,500] msec interval relative to reward feedback.  

Based on the description provided above, the model involves weighted average over 2D space of 

preceding time bins and trial firing rates (with order 𝐹 for time bins and 𝐺 for trials) in addition 

to two separate weighted averages over reward and choice outcomes on the preceding H trials. 

More formally, the spike counts in bin 𝑛 of trial 𝑘, 𝑦(𝑛, 𝑘) is given by the following equation: 

𝑦(𝑛, 𝑘) = 𝑦V(𝑛) + 𝑍 × [1, 𝑢] +\𝛼"#$%"#&"'+ × 𝑦(𝑛 − 𝑙, 𝑘)
_

+`?

+\𝛼&()&*#)+
a × 𝑦(𝑛, 𝑘 − 𝑞)

c

a`?

	

+ 𝑦V(𝑛) × 𝐴%(,)%- ×\expi−
𝑡̃%(,)%-(𝑛, 𝑘 − 𝑞)

𝜏%(,)%-
l × 𝑅𝑒𝑤(𝑛, 𝑘 − 𝑞)

o

a`?

	

+ 𝑦V(𝑛) × 𝐴'.*"'( ×\expi−
𝑡̃'.*"'((𝑛, 𝑘 − 𝑞)

𝜏'.*"'(
l × 𝐶ℎ𝑜𝑖𝑐𝑒(𝑛, 𝑘 − 𝑞)

o

a`?

 

(Eq. 1) 

 where 𝑦V(𝑛) = 𝐸[𝑦(𝑛, 𝑘)]u is the average value of spike count in each bin over all trials, 

𝑍(1 × 6) is the vector of coefficients for the task-relevant component, and 𝑢 is a row vector of 5 

task-relevant inputs (three choice signals, reward, and interaction of choice and reward). 
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Autoregressive coefficients for intrinsic and seasonal fluctuations are denoted by 𝛼"#$%"#&"'u  and 

𝛼𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
u , respectively (|𝛼"#$%"#&"'u | < 1 and |𝛼𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

u | < 1). Reward- and choice-memory 

timescales are indicated by	𝜏%(,)%- and 𝜏'.*"'( whereas 𝐴%(,)%- and 𝐴'.*"'( are the amplitudes 

of reward- and choice-memory components, respectively. 𝑡̃%(,)%-(𝑛y, 𝑘y) and 𝑡̃'.*"'((𝑛y, 𝑘y) 

indicate the time difference between the time bin (with time resolution of 50 msec) at which 

reward or choice was occurred right before time bin (𝑛′) on trial (𝑘y) and current time. Finally, 

we used ARintrinsic and ARseasonal of order 5 (F = G = 5) and computed reward- and choice-

memory traces over the preceding 5 trials (H = 5).  

For an autoregressive model of order 1, AR(1), that only has one single autoregressive 

coefficient (𝑦(𝑡) = 	∅?𝑦(𝑡 − 1)), a single timescale can be defined equal to 𝜏|}(?) =– D𝑇
log(𝑎𝑏𝑠(∅1))

, 

where D𝑇 is the size of the time bin (time resolution). By extending the same logic, we defined a 

set of intrinsic (𝜏"#$%"#&"') and seasonal (𝜏𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙) timescales based on the AR components as 

follows: 

𝜏"#$%"#&"'u =	– u×D����������
����)�&(����������

� )�
,   𝜏&()&*#)+u =	– u×D���������

����)�&(���������
� )�

 (Eq. 2) 

Therefore, the timescales of the AR components depend on both autoregressive components and 

the length of time lags for bins (D𝑇"#$%"#&"' = 50	𝑚𝑠𝑒𝑐) and trials (D𝑇𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙: average trial 

length). Because the ARintrinsic and ARseasonal components provide multiple timescales, we used the 

longest timescale to assign a single intrinsic and seasonal timescales to each neuron: 

𝜏"#$%"#&"' = 𝑚𝑎𝑥�𝜏"#$%"#&"'u �,  𝜏&()&*#)+ = 𝑚𝑎x�𝜏&()&*#)+u � (Eq. 3) 

Note that we only considered AR coefficients that were statistically significant for computing the 

corresponding timescales.  

This is the most general model from which we constructed more specific models by turning on 

and off the autoregressive components, reward- and choice-memory traces, and task-relevant 

terms. These constructions resulted in 32 alternative models, consisting of all the possible 

combinations of the general model components (the list of all possible combinations of the 

models can be found in Supplementary Table 1). To select the best model for each neuron, we 

ran all 32 models and used cross-validation (see Model selection and parameters below).  
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Two special cases of our model could mimic the autocorrelation model of Murray et al. (2014) 

and the exponential memory-traces model of Bernacchia et al. (2011) using only the ARintrinsic  

and reward-memory components, respectively. To replicate the results of the two previous 

studies, we used their methods for profiling neural activity. More specifically, Murray et al. 

(2014) used spike counts in a period starting from fixation point to 500 msec after that (post-

fixation), and then split spikes in this post-fixation epoch into 10 time bins of 50 msec. 

Bernacchia et al. (2011) used two time periods, each spanning 1500 msec, that were further 

divided into 6 time bins of 250 msec each. The first period consisted of 6 successive, 250 msec 

bins starting from 1000 msec before target onset to 500 msec after that. The second period 

consisted of 6 successive, 250 msec bins starting from 500 msec before feedback period to 1000 

msec after that. 

Model selection and parameters. Model parameters for the autoregressive components were 

determined by finding the best model for each neuron based on their performance (using R-

squared measure). We performed a ten-fold cross-validation fitting process to calculate the 

overall performance for each model. Specifically, we generated each instance of training data by 

randomly sampling 90% of all data (bins) for each neuron and then calculated fitting 

performance based on R-squared in the remaining 10% of data (test data). This process was 

repeated 30 times, and the performance was computed based on the median of performance 

across these 30 instances. To identify the best fit for each instance of the training data, we ran the 

model 50 times from different initial parameter values and minimized the residual sum of 

squares to obtain the best model parameters. The median of model parameters over the 30 

instances was used to compute the best parameters for each model. In order to be able to 

compare parameters across different cross-validation instances, we z-scored all input and output 

vectors before fitting each instance.  

To remove the outlier model parameters in a given cortical area, we used 1.5´IQR method for 

each parameter (and not neuron). In order to determine the type of selectivity to task-relevant 

signals for each neuron, we first identified neurons for which the model with exogenous terms 

provided the better fit. Neurons with a significant parameter value for a given task-relevant 

signal (e.g., reward signal) were determined as the neurons with that type of task-relevant 

selectivity (e.g., reward-selective neurons).  
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Model recovery. In order to examine whether our method is able to identify the correct model, 

we measured the probability of finding the correct model in the simulated data. More 

specifically, we generated 500 sets of simulated neural data based on a given model and the 

actual activity profiles of recorded neurons, and then fit those data with all 32 models. We used 

the goodness-of-fit based on the AIC to determine the best model.   

More specifically, to generate alternative profiles of neural activity (neural profiles), we 

randomly selected 500 average neural response (divided into 50-msec time bins) from the 866 

available neurons in the four areas. We used the original neural profiles for 300 out of 500 

neurons and generated synthetic profiles from the remaining 200 profiles by permuting blocks of 

bins (5 bins in each block) of the original neural profiles. We then generated a set of 5000 values 

for the four types of timescales using the estimated range of timescales across all areas. For each 

neural profile, we used 10 randomly selected timescale values to produce spike counts in each 

bin. 

Correlation recovery simulations. To show that our method is sensitive enough to detect 

correlations between timescales of individual neurons within each cortical area, given such 

correlations exist, we performed the following simulations. First, we randomly selected 100 

activity profiles (i.e., mean neural response from individual neurons) from neurons in our 

dataset. We then assigned a random set of four timescales to each profile and tested whether a 

certain pair of timescales (e.g., 𝜏𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 and 𝜏𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙) are significantly correlated (with 0.05 ≤

𝑎𝑏𝑠(𝜌) ≤ 0.75) across the 100 profiles by chance. If so, we used our full ARMAX model to 

generate spike counts using the activity profiles and the chosen timescales. We repeated this 

procedure 60 times in order to generate 60 datasets of neural response for which there is a 

significant correlation between a given pair of timescales. We then used our full model to 

estimate timescales for neural response in each generated dataset and subsequently tested 

correlation between the estimated timescales.   

Estimation of behavioral timescales. In order to estimate behavioral timescales related to the 

influence of previous choice and reward outcomes we used a simple RL model with two sets of 

values functions that are updated according to reward outcomes and choice on every trial. More 
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specifically, the reward-dependent value functions for choosing target 𝑥 (Left or Right option) on 

trial t,	𝑄$(𝑥), is updated according to the following equation (Sutton and Barto, 1998) as follows: 

𝑄$�?(𝑥) = 𝑄$(𝑥) + 	𝛼[𝑟𝑒𝑤$ − 𝑄$(𝑥)] (Eq. 4) 

 

where 𝑟𝑒𝑤$ (equal to 1 or 0) is the reward received by the animal on trial 𝑡, and 𝛼 is the learning 

rate. This update rule can be rearranged as: 

𝑄$�?(𝑥) = (1 − 𝛼)𝑄$(𝑥) + 	𝛼𝑟𝑒𝑤$ (Eq. 5) 

 

to show that 𝜏%(, =
?
�
 can be used as the behavioral memory timescale of previous reward 

outcomes. We also considered a set of two choice-dependent value functions for capturing the 

effect of previous choices over time: 

𝐶$�?(𝑥) = (1 − 𝛾)𝐶$(𝑥) + 	𝛾𝑐ℎ𝑜𝑖𝑐𝑒$ (Eq. 6) 

 

where 𝐶$(𝑥) denotes the choice-dependent value function for target 𝑥	on trial 𝑡, 𝑐ℎ𝑜𝑖𝑐𝑒$ is the 

choice on trial 𝑡 (Left or Right) and 𝛾 is the decay rate. Similar to behavioral reward memory, 

𝜏'.*"'( =
?
�
 can be used as the behavioral memory timescale of previous choice outcomes. 

Importantly, overall value of selecting target x on trial t, 𝑉$(𝑥),  is a linear sum of the two value 

functions: 

𝑉$�?(𝑥) = 𝑄$(𝑥) + w	𝐶$(𝑥) (Eq. 7) 

 

where w determines the relative contribution of choice-dependent component. Finally, the 

probability that the animal chooses the rightward target on trial 𝑡, 𝑃$(𝑅), was determined using a 

softmax function of the overall values: 

𝑃$(𝑅) =
exp�𝛽𝑉$(𝑅)�

exp�𝛽𝑉$(𝐿)� + exp�𝛽𝑉$(𝐿)�
 

(Eq. 8) 

 

We used this model to fit choice data in each recording session of the experiment to estimate 

model parameters (𝛼, 𝛾,w	, 𝛽) using a maximum likelihood procedure. 
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Model # Model components 
1 average response only 
2 exogenous terms only 
3 intrinsic autoregressive only 
4 exogenous terms and intrinsic autoregressive 
5 seasonal autoregressive only 

6 exogenous terms and seasonal autoregressive 

7 intrinsic and seasonal autoregressive 
8 exogenous terms, intrinsic and seasonal autoregressive 

9 reward-memory trace only 
10 exogenous terms and reward-memory trace 
11 intrinsic autoregressive and reward-memory trace 
12 exogenous terms, intrinsic autoregressive and reward-memory trace 
13 seasonal autoregressive and reward-memory trace 
14 exogenous terms, seasonal autoregressive and reward-memory trace 
15 intrinsic and seasonal autoregressive plus reward-memory trace 
16 exogenous terms, intrinsic and seasonal autoregressive plus reward-memory trace 
17 choice-memory trace only 
18 exogenous terms and choice-memory trace 
19 intrinsic autoregressive and choice-memory trace 
20 exogenous terms, intrinsic autoregressive and choice-memory trace 

21 seasonal autoregressive and choice-memory trace 
22 exogenous terms, seasonal autoregressive and choice-memory trace 

23 intrinsic and seasonal autoregressive plus choice-memory trace 

24 exogenous terms, intrinsic and seasonal autoregressive plus choice-memory traces 

25 reward- and choice-memory traces 

26 exogenous terms plus reward- and choice-memory traces 
27 intrinsic autoregressive plus reward- and choice-memory traces 
28 exogenous terms, intrinsic autoregressive plus reward- and choice-memory traces 
29 seasonal autoregressive plus reward- and choice-memory traces 
30 exogenous terms, seasonal autoregressive plus reward- and choice-memory traces 
31 intrinsic and seasonal autoregressive plus reward- and choice-memory traces 
32 exogenous terms, intrinsic and seasonal autoregressive plus reward- and choice-memory traces 

Supplementary Table 1. List of all possible combinations of the models used to fit neural 
response and their main components. Exogenous terms refer to regressors included in the model 
to capture the effects of task-relevant signals on neural response. 
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Timescales Cortical 
area p-value Cohen’s d d.f. #task-

relevant 
#non task-
relevant 

Intrinsic 
timescales 

LIP 0.88 0.01 111.29 124 68 
dmPFC 0.07 0.14 91.67 120 56 
dlPFC 0.55 0.03 226.84 170 131 
ACC 0.90 0.01 113.51 80 62 
All 0.07 0.09 654.39 494 317 

Seasonal 
timescales 

LIP 0.58 0.08 36.86 21 21 
dmPFC 0.16 0.16 49.41 48 30 
dlPFC 0.73 0.04 74.82 38 39 
ACC 0.57 0.07 59.66 31 31 
All 0.28 0.07 246.26 138 121 

Reward-
memory 

timescales 

LIP 0.43 0.06 108.32 92 58 
dmPFC 0.97 0.003 64.32 74 41 
dlPFC 0.02 0.15 193.79 125 89 
ACC 0.88 0.01 102.09 69 50 
All 0.18 0.05 595.12 360 238 

Choice-
memory 

timescales 

LIP 0.88 0.01 115.94 83 52 
dmPFC 0.12 0.14 98.10 85 34 
dlPFC 0.50 0.05 97.63 112 89 
ACC 0.06 0.22 32.92 41 31 
All 0.52 0.03 510.35 321 206 

 

Supplementary Table 2. Dependence of timescales on overall selectivity to task-relevant 
(reward outcome and choice) signals. Reported are p-values (two-sided Wilcoxon ranksum test) 
and effect sizes for the difference in timescales between neurons selective to task-relevant 
signals and those not selective to task-relevant signals in a given cortical area, and all areas 
combined. There was no significant difference between estimated timescales of the two types of 
neurons (𝑃 > G.G1

AG
= 0.0025).  
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Timescales Cortical area p-value Cohen’s d d.f. #reward-
selective #others 

Intrinsic 
timescales 

LIP 0.50 0.05 143.80 104 77 
dmPFC 0.67 0.03 149.82 93 75 
dlPFC 0.72 0.02 269.34 127 153 
ACC 0.94 0.006 111.33 70 62 
All 0.03 0.08 803.44 394 367 

Seasonal 
timescales 

LIP 0.88 0.03 25.75 15 16 
dmPFC 0.42 0.09 49.46 42 28 
dlPFC 0.72 0.05 52.53 25 31 
ACC 0.83 0.03 43.71 29 23 
All 0.67 0.03 249.90 111 98 

Reward-
memory 

timescales 

LIP 0.57 0.05 112.34 75 64 
dmPFC 0.38 0.08 95.56 58 49 
dlPFC 0.004 0.20 128.02 96 97 
ACC 0.99 0.0002 100.93 62 47 
All 0.22 0.05 556.72 291 257 

Choice-
memory 

timescales 

LIP 0.94 0.006 94.50 71 53 
dmPFC 0.54 0.06 47.31 66 45 
dlPFC 0.32 0.07 121.31 78 102 
ACC 0.07 0.23 20.08 35 27 
All 0.04 0.09 409.71 250 227 

 

Supplementary Table 3. Comparisons of timescales between neurons with selectivity to reward 
and those with other types of selectivity. Reported are p-values (two-sided Wilcoxon ranksum 
test) and effect sizes for the difference in estimated timescales between reward and non-reward 
selective (i.e., those selective to choice or interaction of reward and choice) neurons, separately 
for each cortical area and across all areas. There was no significant difference between neurons 
selective to reward and the non-reward signals in a given area or across all areas (𝑃 > G.G1

AG
=

0.0025).  
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Timescales Cortical area p-value Cohen’s d d.f. #choice-
selective #others 

Intrinsic 
timescales 

LIP 0.32 0.07 148.25 106 75 
dmPFC 0.01 0.20 119.82 105 63 
dlPFC 0.18 0.08 266.59 146 134 
ACC 0.17 0.12 43.89 28 104 
All 0.004 0.21 800.19 385 376 

Seasonal 
timescales 

LIP 0.53 0.11 28.81 18 13 
dmPFC 0.19 0.16 44.50 43 27 
dlPFC 0.87 0.02 55.31 29 27 
ACC 0.32 0.14 4.83 5 47 
All 0.09 0.10 254.68 95 114 

Reward-
memory 

timescales 

LIP 0.54 0.05 104.27 81 58 
dmPFC 0.96 0.005 80.48 64 43 
dlPFC 0.02 0.17 160.20 106 87 
ACC 0.69 0.04 24.37 21 88 
All 0.0007 0.14 464.38 272 276 

Choice-
memory 

timescales 

LIP 0.27 0.10 83.44 68 56 
dmPFC 0.19 0.12 38.62 73 38 
dlPFC 0.46 0.05 92.22 98 82 
ACC 0.93 0.01 57.25 12 50 
All 0.21 0.05 409.97 251 226 

 

Supplementary Table 4. Comparisons of timescales between neurons with selectivity to choice 
and those with other types of selectivity. Reported are p-values (two-sided Wilcoxon ranksum 
test) and effect sizes for the difference in estimated timescales between choice and non-choice 
selective (i.e., those selective to reward or interaction of reward and choice) neurons, separately 
for each cortical area and across all areas. Orange shading indicates a significant effect. There 
was only a significant difference between reward-memory timescales for neurons selective to 
choice and the non-choice signals across all areas (𝑃 < G.G1

AG
= 0.0025).  
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Supplementary Figure 1. Model recovery. Our method is able to identify the correct model. 
The value of each cell reports the percentage of instances that a model used to generate the data 
(shown on the x-axis) was best fit by another model (fitting model, shown on the y-axis). The 
model corresponding to each number is provided in Supplementary Table 1. The model with 
the minimum AIC was assigned as the best model. The probability for assigning the best model 
by chance is ~3% and thus, values above 25% on the diagonal indicate that in most cases the 
correct model was identified. For these simulations, we generated 500 sets of simulated neural 
data based on a given model and actual activity profile of recorded neurons, and then fit those 
data with all the models in order to calculate the AIC and determine the best model.  
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Supplementary Figure 2. Response of most neurons was best captured using the model with 
three or more AR or memory components (component with associated timescales). Plots show 
the fractions of neurons whose activity was best fit by a given model, separately in each of the 
four cortical areas. Different types of models include: Exo-only, models with only exogenous 
component and no timescale; I, models with intrinsic timescale; S, models with seasonal 
timescale; R, models with reward-memory timescale; and C, models with choice-memory 
timescale. Overall, the models with three or more timescales were able to capture the response of 
most neurons in all cortical areas (LIP: 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛¤K = 0.67, 𝜒A = 15.42, 𝑝 = 5.46 × 10>1; 
dmPFC: 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛¤K = 0.70, 𝜒A = 21.85, 𝑝 = 3.98 × 10>N; dlPFC:	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛¤K = 0.66, 𝜒A =
10.32, 𝑝 = 4.28 × 10>@; ACC: 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛¤K = 0.70, 𝜒A = 12.70, 𝑝 = 7.37 × 10>@). 
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Supplementary Figure 3.  Best model for individual neurons can predict neural response 
significantly better than the second-best models and models with exogenous component only. 
Plots show R-squared values for the second-best model vs. those of the best models (a–d) and R-
squared values for the model with exogenous component only vs. those of the best models (e–h), 
separately for different cortical areas indicated on the top. Neurons for which the goodness-of-fit 
for the best model was significantly better than that of the second-based model (or the model 
with exogenous component only) are shown in black. The insets in the top row show the 
distributions of the R-squared values for the best models. By definition, R-squared values and the 
difference in R-squared between the best and second-best models are positive. The differences 
between the medians of R-squared values for the best model and the model with exogenous 
component only were significantly different form zero in all cortical areas (two-sided Wilcoxon 
ranksum test;	LIP: 𝑝 = 0.002; dmPFC: 𝑝 = 0.002; dlPFC: 𝑝 = 0.003; ACC: 𝑝 = 0.001). 
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Supplementary Figure 4. The best model for capturing neural response includes the intrinsic 
AR component in almost all neurons. Plots show the fractions of different components in the best 
model across all neurons (I: intrinsic autoregressive; S: seasonal autoregressive; R: reward-
memory; C: choice-memory), separately for each cortical area. Reward- and choice-memory 
components were the second and third most prevalent components of the best models. 
Nonetheless, the best model of about 50% of neurons also included a seasonal AR component. 
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Supplementary Figure 5. Hierarchy of intrinsic timescales across cortex using activity during 
the fixation period based on autocorrelation, and lack of evidence for the dependence of intrinsic 
timescales on the overall selectivity to task-relevant signals. (a) Plot (blue symbols) shows the 
medians of the estimated intrinsic timescales in four cortical areas using autocorrelation function 
(ACF). Error bars indicate s.e.m. For comparison, the gray symbols show the medians of 
intrinsic timescales estimated by our method using activity during the fixation period. (b) No 
evidence for the dependence of intrinsic timescales on the overall selectivity to task-relevant 
(reward outcome and choice) signals based on autocorrelation. Plot shows the median of the 
estimated intrinsic timescales based on autocorrelation in four cortical areas, separately for 
neurons with (gold) and without (purple) any type of selectivity to task-relevant signals. There 
was no significant difference between intrinsic timescales of neurons with and without any task-
relevant signals. 
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Supplementary Figure 6. Our method can recover existing correlations between pairs of 
timescales without any systematic bias. (a–f) Plots show estimated vs actual correlations 
coefficients between a pair of timescales (indicated on the top) across 100 individual neurons in 
60 simulated datasets (N = 60). Red and blue dots correspond to significant (p < 0.05) and non-
significant estimated correlations coefficients, respectively (all actual correlation coefficients are 
significant by design). Insets show the fractions of significant and non-significant estimated 
correlations. (g–l) Plots show the distributions of the difference between actual and estimated 
correlation coefficients for each pair of timescales indicated on the top. Solid lines indicate the 
median of each distribution and reported p-values are for the test of median being different from 
0 (two-sided Wilcoxon ranksum test). The medians of error in estimated correlation coefficients 
are not significantly different from zero for any pairs of correlation (p < 0.05), indicating no bias.  
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Supplementary Figure 7.  Lack of relationship between the two behavioral timescales and 
intrinsic and seasonal timescales. (a–d) Plots show behavioral reward timescales vs intrinsic 
timescales of individual neurons recorded during the same sessions, separately for different 
cortical areas as indicated on the top. Reported are the Spearman correlation coefficients and 
corresponding p-values and the solid lines represent the regression line that was fit to log values. 
(e–h) The same as in a–d but show behavioral choice timescales vs intrinsic timescales. (i–p) 
The same as in a–h but show behavioral timescales vs seasonal timescales. There was no 
significant correlation between behavioral and neural timescales in any cortical area (𝑃 > G.G1

H
=

0.00625). 
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Supplementary Figure 8. Similar fractions of neurons encode reward outcome across the four 
cortical areas, whereas the fraction of neurons selective to choice decreases from LIP to ACC. 
(a) Fraction of neurons with selectivity to reward outcome and to choice (in different epochs of 
the task as indicated in the legend) across the four cortical areas, estimated using the best model 
for individual neurons. Values on the top indicate the percentage of neurons that exhibit a 
combination of selectivity in a given area. Overall, about half of neurons in all cortical areas 
encode reward outcome with no evidence for change in the fraction of reward-selective neurons 
across cortex (𝜒A(3) = 3.49, 𝑝 = 0.062). In contrast, fraction of neurons with choice selectivity 
decreases from LIP to ACC (𝜒A(3) = 23.6, 𝑝 = 1.2 × 10>N for Choice 3). ACC exhibited the 
smallest fraction of choice-selective neurons (LIP vs. ACC, 𝑝 = 1.3 × 10>1; dmPFC vs. ACC, 
𝑝 = 1.8 × 10>N; dlPFC vs. ACC, 𝑝 = 1.4 × 10>@). (b) The same as in panel a but using the 
model that only includes the exogenous term and no timescales.  
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Supplementary Figure 9. Independence between timescales and the selectivity to reward vs. 
other task-relevant (choice and interaction of choice and reward) signals. Plots show the median 
of the estimated intrinsic (a), seasonal (b), reward-memory (c), and choice-memory (d) 
timescales in four cortical areas, separately for neurons selective to reward outcome (purple) and 
neurons not selective to reward outcome (i.e., those selective to choice or interaction of reward 
and choice; gold). The dashed lines show the median across all four areas. Error bars indicate 
s.e.m., and asterisks mark a significant difference between the medians of two types of neurons 
in a given area or across all areas (two-sided Wilcoxon ranksum test, 𝑃 < G.G1

AG
= 0.0025; see 

Supplementary Table 3 for detailed statistics). Bar graphs show the fractions of neurons 
selective to reward and neurons selective to non-reward signals in each area. In this analysis, we 
only included neurons that exhibited selectivity to task-relevant signals. 
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Supplementary Figure 10. Relationship between timescales and the selectivity to choice vs. 
other task-relevant (reward and interaction of choice and reward) signals. Plots show the median 
of the estimated intrinsic (a), seasonal (b), reward-memory (c), and choice-memory (d) 
timescales in four cortical areas, separately for neurons selective to choice (purple) and neurons 
not selective to choice (i.e., those selective to reward or interaction of reward and choice; gold). 
The dashed lines show the median across all four areas. Error bars indicate s.e.m., and asterisks 
mark a significant difference between the medians of two types of neurons in a given area or 
across all areas (two-sided Wilcoxon ranksum test, 𝑃 < G.G1

AG
= 0.0025; see Supplementary 

Table 4 for detailed statistics). Bar graphs show the fractions of neurons selective to choice and 
neurons selective to non-choice signals in each area. In this analysis, we only included neurons 
that exhibited selectivity to task-relevant signals. 
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Supplementary Figure 11.  Independence between different types of choice- and reward-
memory timescales and magnitudes of response to different task-relevant signals. (a–d) Plots 
show the estimated reward-memory timescales vs. absolute standardized magnitude of reward 
regressor (as a measure of the selectivity strength) within individual neurons, separately for 
different cortical areas indicated on the top. Reported are the Spearman correlation coefficients 
and corresponding p-values, and the number of neurons with a significant value of a given 
timescale. The solid lines represent the regression line that was fit to log values. (e–h) The same 
as in a–d but plotting the estimated choice-memory timescales vs. absolute standardized 
magnitude of choice regressor. (i–p) Plots show the estimated choice- (i–l) and reward-memory 
(m–p) timescales vs. absolute standardized magnitude of interaction between reward and choice 
regressors within individual neurons. There was no significant correlation between 
corresponding memory timescales and exogenous signal magnitude in any of the cortical areas 
(𝑃 > G.G1

?N
= 0.0031).  
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Supplementary Figure 12. Independence between different types of timescales and firing rates 
within individual neurons. Panels show scatterplots of estimated intrinsic (a-d), seasonal (e-h), 
reward- (i-l), and choice- (m-p) memory timescales vs. mean firing rates of individual neurons, 
separately for different cortical areas indicated on the top. Reported are the Spearman correlation 
coefficients and corresponding p-values, and the number of neurons with a significant value of a 
given timescale. The solid lines represent the regression line that was fit to log values. There was 
no significant correlation between timescales and firing rates in any of the cortical area (𝑃 >
G.G1
?N

= 0.0031). 
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