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ABSTRACT 13 

Social interactions powerfully impact both the brain and the body, but high-resolution descriptions of these 14 

important physical interactions are lacking. Currently, most studies of social behavior rely on labor-intensive 15 

methods such as manual annotation of individual video frames. These methods are susceptible to experimenter 16 

bias and have limited throughput. To understand the neural circuits underlying social behavior, scalable and 17 

objective tracking methods are needed. We present a hardware/software system that combines 3D videography, 18 

deep learning, physical modeling and GPU-accelerated robust optimization. Our system is capable of fully 19 

automatic multi-animal tracking during naturalistic social interactions and allows for simultaneous electro-20 

physiological recordings. We capture the posture dynamics of multiple unmarked mice with high spatial (~2 21 

mm) and temporal precision (60 frames/s). This method is based on inexpensive consumer cameras and is 22 

implemented in python, making our method cheap and straightforward to adopt and customize for studies of 23 

neurobiology and animal behavior.  24 
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INTRODUCTION 25 

Objective quantification of natural social interactions is difficult. The majority of our knowledge about animal 26 

social behavior comes from hand-annotation of videos, yielding ethograms of discrete social behaviors such 27 

as ‘social following’, ‘mounting’, or ‘anogenital sniffing’1. It is widely appreciated that these methods are 28 

susceptible to experimenter bias and have limited throughput. There is an additional problem with these ap-29 

proaches, in that manual annotation of video frames yields no detailed information about movement kinemat-30 

ics and physical body postures. This shortcoming is especially critical for studies relating neural activity pat-31 

terns or other physiological signals to social behavior. For example, neural activity in many areas of the cer-32 

ebral cortex are strongly modulated by movement and posture2,3, and activity profiles in somatosensory re-33 

gions can be difficult to analyze without understanding the physics and high-resolution dynamics of touch. 34 

Important aspects of social behavior, from gestures to light touch and momentary glances can be transient and 35 

challenging to observe in most settings, but critical to capturing the details and changes to social relationships 36 

and networks4,5. Together the potential for false positives and false negatives can be high, and to date these 37 

issues have thwarted our understanding of the neural basis of somatic physiology and social behavior.  38 

 39 

The use of deep convolutional networks to recognize objects in images has revolutionized computer vision, 40 

and consequently, also led to major advances in behavioral analysis. Drawing upon these methodological 41 

advances, several recent publications have developed algorithms for tracking, such as ‘DeepLabCut’6, 42 

‘(S)LEAP’7 and ‘DeepPoseKit’8. These methods function by detection of key-points in 2D videos, and esti-43 

mation of 3D postures is not straightforward in interacting animals9. Spatiotemporal regularization is needed 44 

to ensure that tracking is stable and error-free, even when multiple animals are closely interacting. During 45 

mounting or allo-grooming, for example, interacting animals block each other from the camera view and 46 

tracking algorithms can fail. Having a large number of cameras film the animals from all sides can solve these 47 
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problems9,10, but this has required extensive financial resources for equipment, laboratory space and pro-48 

cessing power, which renders widespread use infeasible.  49 

 50 

In parallel, other studies have used depth-cameras for animal tracking, fitting a physical body-model of the 51 

animal to 3D data11,12. These methods are powerful because they explicitly model the 3D movement and poses 52 

of multiple animals. However, due to technical limitations of depth imaging hardware (frame rate, resolution, 53 

motion blur), it is to date only possible to extract partial posture information about small and fast-moving 54 

animals, such as lab mice. Consequently, when applied to mice, these methods are prone to tracking mistakes 55 

when interacting animals get close to each other and the tracking algorithms require continuous manual su-56 

pervision to detect and correct errors. This severely restricts throughput, making tracking across long time 57 

scales infeasible.  58 

 59 

Here we describe a novel system for multi-animal tracking that combines ideal features from both approaches. 60 

Our method fuses physical modeling of depth data and deep learning-based analysis of synchronized color 61 

video to estimate the body postures, enabling us to reliably track multiple mice during naturalistic social 62 

interactions. Our method is fully automatic (i.e., quantitative, scalable, and free of experimenter bias), is based 63 

on inexpensive consumer cameras, and is implemented in Python, a simple and widely used computing lan-64 

guage. Together, this makes our method inexpensive to adopt and easy to use and customize, paving a way 65 

for more widespread study of naturalistic social behavior in neuroscience and experimental biomedicine.  66 
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RESULTS 67 

Raw data acquisition  68 

We established an experimental setup that allowed us to capture synchronized color images and depth images 69 

from multiple angles, while simultaneously recording synchronized neural data (Fig. 1a). We used inexpen-70 

sive, state-of-the-art ‘depth cameras’ for computer vision and robotics. These cameras contain several imaging 71 

modules: one color sensor, two infrared sensors and an infrared laser projector (Fig. 1b). Imaging data pipe-72 

lines, as well as intrinsic and extrinsic sensor calibration parameters can be accessed over USB through a 73 

C/C++ SDK with Python bindings. We placed four depth cameras, as well as four synchronization LEDs 74 

around a transparent acrylic cylinder which served as our behavioral arena (Fig. 1c). 75 

 76 

Each depth camera projects a static dot pattern across the imaged scene, adding texture in the infrared spec-77 

trum to reflective surfaces (Fig. 1d). By imaging this highly-textured surface simultaneously with two infrared 78 

sensors per depth camera, it is possible to estimate the distance of each pixel in the infrared image to the depth 79 

camera by stereopsis (by locally estimating the binocular disparity between the textured images). Since the 80 

dot pattern is static and only serves to add texture, multiple cameras do not interfere with each other and it is 81 

possible to image the same scene from multiple angles. This is one key aspect of our method, not possible 82 

with depth imaging systems that rely on actively modulated light (such as the Microsoft Kinect system and 83 

earlier versions of the Intel Realsense cameras). 84 

 85 

Since mouse movement is fast13, it is vital to minimize motion blur in the infrared images and thus the final 86 

3D data (‘point-cloud’). To this end, our method relies on two key features. First, we use depth cameras where 87 

the infrared sensors have a global shutter (e.g., Intel D435) rather than a rolling shutter (e.g., Intel D415). 88 

Using a global shutter reduces motion blur in individual image frames, but also enables synchronized image 89 

capture across cameras. Without synchronization between cameras, depth images are taken at different times, 90 
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which adds blur to the composite point-cloud. We set custom firmware configurations in our recording pro-91 

gram, such that all infrared sensors on all four cameras are hardware-synchronized to each other by TTL-92 

pulses via custom-built, buffered synchronization cables (Fig. 1b). 93 

  94 

We wrote a custom multithreaded Python program with online compression, that allowed us to capture the 95 

following types of raw data from all four cameras simultaneously: 8-bit RGB images (320 x 210 pixels, 60 96 

frames/s), 16-bit depth images (320 x 240 pixels, 60 frames/s) and the 8-bit intensity trace of a blinking LED 97 

(60 samples/s, automatically extracted in real-time from the infrared images). Our program also captures 98 

camera meta-data, such as hardware time-stamps and frame numbers of each image, which allows us to iden-99 

tify and correct for possible dropped frames. On a standard desktop PC, the recording system had very few 100 

dropped frames and the video recording frame rate and the imaging and USB image transfer pipeline was 101 

stable (Fig. 1e,f). 102 

 103 

Temporal stability and temporal alignment  104 

In order to relate tracked behavioral data to neural recordings, we need precise temporal synchronization. 105 

Digital hardware clocks are generally stable but their internal speed can vary, introducing drift between clocks. 106 

Thus, even though all depth cameras provide hardware timestamps for each acquired image, for long-term 107 

recordings, across behavioral time scales (hours to days), a secondary synchronization method is required.  108 

 109 

For synchronization to neural data, our recording program uses a USB-controlled Arduino microprocessor to 110 

output a train of randomly-spaced voltage pulses during recording. These voltage pulses serve as TTL triggers 111 

for our neural acquisition system (sampled at 30 kHz) and drive LEDs, which are filmed by the depth cameras 112 

(Fig. 1a). The cameras sample an automatically detected ROI to sample the LED state at 60 frames/s, inte-113 

grating across a full infrared frame exposure (Fig. 1g). We use a combination of cross-correlation and robust 114 
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regression to automatically estimate and correct for shift and drift between the depth camera hardware clocks 115 

and the neural data. Since we use random pulse trains for synchronization, alignment is unambiguous and we 116 

can achieve super-frame-rate-precision. In a typical experiment, we estimated that the depth camera time 117 

stamps drifted with ~49 µs/min. We corrected for this drift to yield stable residuals between TTL flips and 118 

depth frame exposures (Fig. 1h). Note that the neural acquisition system is not required for synchronization 119 

and for a purely behavioral study, we can run the same LED-based protocol to correct for potential shift and 120 

drift between cameras by choosing one camera as a reference. 121 

 122 

Detection of body key-points by deep learning 123 

We preprocessed the raw image data to extract two types of information for the tracking algorithm: the loca-124 

tion in 3D in space of body key-points and the 3D point-cloud corresponding to the body surface of the 125 

animals. We used a deep convolutional neural network to detect key-points in the RGB images, and extracted 126 

the 3D point-cloud from the depth images (Fig. 2a). For key-point detection (nose, ears, base of tail, and 127 

neural implant for implanted animals), we used a ‘stacked hourglass network’14. This type of network archi-128 

tecture combines residuals across successive upsampling and downsampling steps to generate its output, and 129 

has been successfully applied to human pose estimation14 and limb tracking in immobilized flies15 (Fig. 2b, 130 

Supplementary Fig. 1). 131 

 132 

We used back-propagation to train the network to output four ‘target maps’, each indicating the pseudo-pos-133 

terior probability of each type of key-point, given the input image. The target maps were generated by manu-134 

ally labeling the key-points in training frames, followed by down-sampling and convolution with Gaussian 135 

kernels (Fig. 2c, ‘target maps’). We selected the training frames using image clustering to avoid redundant 136 

training on very similar frames8. The manual key-point labeling can be done with any labeling software. We 137 
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customized a version of the lightweight, open source labeling GUI from the ‘DeepPoseKit’ package8 for the 138 

four types of key-points, which we provide as supplementary software (Supplementary Fig. 2). 139 

  140 

In order to improve key-point detection, we used two additional strategies. First, we also trained the network 141 

to predict ‘affinity fields’16. We used ‘1D’ affinity fields8, generated by convolving the path between labeled 142 

body key-points that are anatomically connected in the animal. With our four key-points, we added seven 143 

affinity fields (‘nose-to-ears’, ‘nose-to-tail’, etc.), that together form a skeletal representation of each body 144 

(Fig. 2c, ‘affinity fields’). Thus, from three input channels (RGB pixels), the network predicts eleven output 145 

channels (Fig. 2d). As the stacked hourglass architecture involves intermediate prediction, which feeds back 146 

into subsequent hourglass blocks (repeated encoding and decoding, Fig 2b), prediction of affinity fields feeds 147 

into downstream predictions of body key-points. This leads to improvement of downstream key-point predic-148 

tions, because the affinity fields give the network access to holistic information about the body. The intuitive 149 

probabilistic interpretation is that instead of simply asking questions about the keypoints (e.g., ‘do these pixels 150 

look like an ear?’), we can increase predictive accuracy by considering the body context (e.g., ‘these pixels 151 

sort of look like an ear, and those pixels sort of look like a nose – but does this path between the pixels also 152 

look like the path from an ear to a nose?’). 153 

 154 

The second optimization approach was image data augmentation during training17. Instead of only training 155 

the network on manually-labeled images, we also trained the network on morphed and distorted versions of 156 

the labeled images (Supplementary Fig. 3). Training the network on morphed images (e.g., rotated or en-157 

larged), gives a similar effect to training on a much larger dataset of labeled images, because the network then 158 

learns to predict many artificially generated, slightly different views of the animals. Training the network on 159 

distorted images is thought to reduce overfitting on single pixels and reduce the effect of motion blur17. 160 

 161 
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Using a training set of 526 images, and by automatically adjusting learning rate during training, the network 162 

was well-trained (plateaued) within one hour of training on a standard desktop computer (Fig. 2e), yielding 163 

good predictions of both body key-points and affinity fields (Fig. 2f).  164 

 165 

Pre-processing of 3D video 166 

By aligning the color images to the depth images, and aligning the depth images in 3D space, we could assign 167 

three dimensional coordinates to the detected key-points. We pre-processed the depth data to accomplish two 168 

goals. First, we wanted to align the cameras to each other in space, so we could fuse their individual depth 169 

images to one single 3D point-cloud. Second, we wanted to extract only points corresponding to the animals’ 170 

body surfaces from this composite point-cloud. 171 

 172 

To align the cameras in space, we filmed the trajectory of a sphere that we moved around the behavioral 173 

arena. We then used a combination of motion filtering, color filtering, smoothing and thresholding to detect 174 

the location of the sphere in the color frame, extracted the partial 3D surface from the aligned depth data, 175 

and used a robust regression method to estimate the center coordinate (Fig. 3a). This procedure yielded a 176 

3D trajectory in the reference frame of each camera (Fig. 3b) that we could use to robustly estimate the 177 

transformation matrices needed to bring all trajectories into the same frame of reference (Fig. 3c). This ro-178 

bust alignment is a key aspect of our method, as errors can easily be introduced by moving the sphere too 179 

close to a depth camera or out of the field of view during recording (Fig. 3b,c, arrow). After alignment, the 180 

median camera-to-camera difference in the estimate of the center coordinate of the 40-mm-diameter sphere 181 

was only 2.6 mm across the entire behavioral arena (Fig. 3d,e). 182 

 183 

We used a similar robust regression method to automatically detect the base of the behavioral arena. We 184 

detected planes in composite point-cloud (Fig. 3f) and used the location and normal vector, estimated across 185 
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60 random frames (Fig. 3g), to transform the point-cloud such that the base of the behavioral arena laid in the 186 

xy-plane (Fig. 3h). To remove imaging artifacts stemming from light reflection and refraction due to the 187 

curved acrylic walls, we automatically detected the location and radius of the acrylic cylinder (Fig. 3i). With 188 

the location of both the arena base and the acrylic walls, we used simple logic filtering to remove all points 189 

associated with the base and walls, leaving only points inside the behavioral arena (Fig. 3j). Note that if there 190 

is no constraint on laboratory space, an elevated platform can be used as a behavioral arena, eliminating 191 

imaging artifacts associated with the acrylic cylinder.  192 

 193 

Loss function design 194 

The pre-processing pipeline described above takes color and depth images as inputs, and outputs two types 195 

of data: a point-cloud, corresponding to the surface of the two animals, and the 3D coordinates of detected 196 

body key-points (Fig. 4a, Supplementary Video 1). To track the body postures of interacting animals across 197 

space and time, we developed an algorithm that incorporates information from both data types. The basic idea 198 

of the tracking algorithm is that for every frame, we fit the mouse bodies by minimizing a loss function of 199 

both the point-cloud and key-points, subject to a set of spatiotemporal regularizations.  200 

 201 

For the loss function, we made a simple parametric model of the skeleton and body surface of a mouse. The 202 

body model consists of two prolate spheroids (the ‘hip ellipsoid’ and ‘head ellipsoid’), with dimensions based 203 

on an average adult mouse (Fig. 4b). The head ellipsoid is rigid, but the hip ellipsoid has a free parameter (s) 204 

modifying the major and minor axes to allow the hip ellipsoids to be longer and narrower (e.g., during stretch-205 

ing, running, or rearing) or shorter and wider (e.g., when still or self-grooming). The two ellipsoids are con-206 

nected by a joint that allows the head ellipsoid to turn left/right and up/down within a cone corresponding to 207 

the physical movement limits of the neck. 208 

 209 
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Keeping the number of degrees of freedom low is vital to make loss function minimization computationally 210 

feasible18. Due to the rotational symmetry of the ellipsoids, we could choose a parametrization with 8 degrees 211 

of freedom per mouse body: the central coordinate of the hip ellipsoid (x, y, z), the rotation of the major axis 212 

of the hip ellipsoid around the y- and z-axis (β, γ), the left/right and up/down rotation of the head ellipsoid (θ, 213 

φ), and the stretch of the hip ellipsoids (s). For the implanted animal, we added an additional sphere to the 214 

body model, approximating the surface of the head-mounted neural implant (Fig. 4b). The sphere is rigidly 215 

attached to the head ellipsoid and has one degree of freedom; a rotational angle (ψ) that allows the sphere to 216 

rotate around the head ellipsoid, capturing head tilt of the implanted animal. Thus, in total, the joint pose (the 217 

body poses of both mice) was parametrized by only 17 variables.  218 

 219 

To fit the body model, we adjusted these parameters to minimize a weighted sum of two loss terms: (i) The 220 

shortest distance from every point in the point-cloud to body model surface. (ii) The distance from detected 221 

key-points to their corresponding location on the body model surface (e.g., nose key-points near the tip of one 222 

of the head ellipsoids, tail key-points near the posterior end of a hip ellipsoid).  223 

 224 

We then used several different approaches for optimizing the tracking. First, for each of the thousands of point 225 

in the point-cloud, we needed to calculate the shortest distance to the body model ellipsoids. Calculating these 226 

distances exactly is not computationally feasible, as this requires solving a six-degree polynomial for every 227 

point19. As an approximation, we instead used the shortest distance to the surface, along a path that passes 228 

through the centroid (Supplementary Fig. 4a,b). Calculating this distance could be implemented as pure 229 

tensor algebra20, which could be executed efficiently on a GPU in parallel for all points simultaneously. Sec-230 

ond, to reduce the effect of imaging artifacts in the color and depth imaging (which can affect both the point-231 

cloud or the 3D coordinates of the key-points), we clipped distance losses at 3 cm, such that distant ‘outliers’ 232 
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do contribute and not skew the fit (Supplementary Fig. 4c). Third, because pixel density in the depth images 233 

depends on the distance from the depth camera, we weighed the contribution of each point in the point-cloud 234 

by the squared distance to the depth camera (Supplementary Fig. 4d).  Fourth, to ensure that the minimiza-235 

tion does not converge to unphysical joint postures (e.g., where the mouse bodies are overlapping), we added 236 

a penalty term to the loss function if the body models overlap. Calculating overlap between two ellipsoids is 237 

computationally expensive21, so we computed overlaps between implant sphere and spheres centered on the 238 

body ellipsoids with a radius equal to the minor axis (Supplementary Fig. 4f). Fifth, to ensure spatiotemporal 239 

continuity of body model estimates, we also added a penalty term to the loss function, penalizing overlap 240 

between the mouse body in the current frame, and other mouse bodies in the previous frame. This ensures 241 

that the bodies do not switch place, something that could otherwise happen if the mice are in joint poses with 242 

certain mirror symmetries (Supplementary Fig. 4g,h). 243 

 244 

GPU-accelerated robust optimization 245 

Minimizing the loss function requires solving three major challenges. The first challenge is computational 246 

speed. The number of key-points and body parts is relatively low (~tens), but the number of points in the 247 

point-cloud is large (~thousands), which makes the loss function computationally expensive. For minimiza-248 

tion, we need to evaluate the loss function multiple times per frame (at 60 frames/s). If loss function evaluation 249 

is not fast, tracking becomes unusably slow. The second challenge is that the minimizer has to properly ex-250 

plore the loss landscape within each frame and avoid local minima. In early stages of developing this algo-251 

rithm, we were only tracking interacting mice with no head implant (Supplementary Video 2). In that case, 252 

for the small frame-to-frame changes in body posture, the loss function landscape was nonlinear, but approx-253 

imately convex, so we could use a fast, derivative-based minimizer to track changes in body posture (geodesic 254 

Levenberg-Marquardt steps18). For use in neuroscience experiments, however, one or more mice might carry 255 

a neural implant for recording or stimulation. The implant is generally at a right angle and offset from the 256 
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‘hinge’ between the two hip and head ellipsoids, which makes the loss function highly non-convex22. The 257 

final challenge is robustness against local minima in state space. Even though a body posture minimizes the 258 

loss in a single frame, it might not be an optimal fit, given the context of other frames (e.g., spatiotemporal 259 

continuity, no unphysical movement of the bodies). 260 

 261 

To solve these three challenges – speed, state space exploration, and spatiotemporal robustness – we designed 262 

a custom GPU-accelerated minimization algorithm, which incorporates ideas from annealed particle filters23 263 

and online Bayesian filtering24. To maximize computational speed, the algorithm was implemented as pure 264 

tensor algebra in Pytorch, a high-performance GPU computing library25. Annealed particle filters are suited 265 

to explore highly non-convex loss surfaces23, which allowed us to avoid local minima within each frame. 266 

Between frames, we used online Bayesian filtering, to avoid being trapped in low-probability solutions given 267 

the preceding tracking. For every frame, we first proposed the state of the 17-parameters using kernel-recur-268 

sive least-squares tracking (‘KRLS-T’24) from a Bayesian filter bank based on preceding frames. After particle 269 

filter-based loss function minimization within a single frame, we updated the Bayesian filter bank, and pro-270 

posed a particle filter starting point for the next frame. This strategy has three major advantages. First, by 271 

proposing a solution, taking into account previous variables and their covariances, we often already started 272 

loss function minimization close to the new minimum. Second, if the Bayesian filter deems that the fit for a 273 

single frame is unlikely, based on the preceding frames, this fit will only weakly update the Bayesian filter 274 

bank, and thus only weakly perturb the upcoming tracking. This gave us a convenient way to balance the 275 

information provided by the fit of a single frame, and the ‘context’ provided by previous frames. Third, the 276 

Bayesian filter-based approach is only dependent on previously tracked frames, not future frames. This is in 277 

contrast to other approaches to incorporating context that rely on versions of backwards belief propaga-278 

tion5,15,26. Since our algorithm only uses past data, it is in principle possible to optimize our algorithm for real-279 

time use in closed-loop experiments. 280 
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 281 

For each frame, we explored the loss surface with 200 particles (Fig. 4b,c). We generated the particles by 282 

perturbing the proposed minimum, based on the previous frames, by quasi-random, low-discrepancy sam-283 

pling27 (Supplementary Fig. 5). We exploited the fact that the loss function structure allowed us to execute 284 

several key steps in parallel, across multiple independent dimensions, and implemented these calculations as 285 

vectorizes tensor operations. This allowed us to leverage the power of CUDA kernels for fast tensor algebra 286 

on the GPU25. Specifically, to efficiently calculate the point-cloud loss (shortest distance from a point in the 287 

point-cloud to the surface of a body model), we calculated the distance to all five body model spheroids for 288 

all points in the point-cloud and for all 200 particles, in parallel (Fig. 4c). We then applied fast minimization 289 

kernels across the two body models, to generate a smallest distance to either mouse, for all points in the 290 

pointcloud. Because the mouse body models are independent, we only had to apply a minimization kernel to 291 

calculate the smallest distance, for every point, to 40,000 (200 x 200) joint poses if the two mice. These 292 

parallel computation steps are a key aspect of our method, which allows our tracking algorithm to avoid the 293 

‘curse of dimensionality’, by not exploring a 17-dimensional space, but rather explore the intersection of two 294 

independent 8-dim and 9-dim subspaces in parallel.   295 

 296 

Tracking algorithm performance 297 

To ensure that the tracking algorithm did not get stuck in suboptimal solutions, we forced the particle filter to 298 

explore a large search space within every frame (Fig. 5a-c). In successive iterations, we gradually made per-299 

turbations to the particles smaller and smaller by annealing the filter23), to approach the minimum. At the end 300 

of each iteration, we ‘resampled’ the particles by picking the 200 joint poses with the lowest losses in the 200-301 

by-200 matrix of losses. This resampling strategy has two advantages. First, it can be done without fully 302 

sorting the matrix28, the most computationally expensive step in resampling29. Second, it provides a kind of 303 

quasi–‘importance sampling’. During resampling, some poses in the next iteration might be duplicates (picked 304 
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from the same row or column in the 200-by-200 loss matrix.), allowing particles in each subspace to collapse 305 

at different rates (if the particle filter is very certain about one body pose, but not the other, for example).  306 

 307 

By investigating the performance of the particle filter across iterations, we found that the filter generally 308 

converged within five iterations (Fig. 5d), providing good tracking across frames (Fig. 5e). In every frame, 309 

the particle filter fit yields a noisy estimate of the 3D location of the mouse bodies. The transformation from 310 

the joint pose parameters (e.g., rotation angles, spine scaling) to 3D space is highly nonlinear, so simple 311 

smoothing of the trajectory in pose parameter space would distort the trajectory in real space. Thus, we filtered 312 

the tracked trajectories by a combination of Kalman-filtering and maximum likelihood-based smoothing30,31 313 

and 3D rotation smoothing in quaternion space32 (Supplementary Fig. 6c-e, Supplementary Video 3). 314 

 315 

Representing the joint postures of the two animals with this parametrization was highly data efficient, reduc-316 

ing the memory footprint from ~3.7 GB/min for raw color/depth image data, to ~0.11 GB/min for pre-pro-317 

cessed point-cloud/key-point data to ~1 MB/min for tracked body model parameters. On a regular desktop 318 

computer with a single GPU, we could do key-point detection in color image data from all four cameras in 319 

~2x real time (i.e. it took 30 mins to process a 1 hr experimental session). Depth data processing (point-cloud 320 

merging and key-point deprojection) ran at ~0.7x real time, and the tracking algorithm ran at ~0.2x real time 321 

(if the filter uses 200 particles and 5 filter iterations per frame). Thus, for a typical experimental session (~ 322 

hours), we would run the tracking algorithm overnight, which is possible because the code is fully unsuper-323 

vised.  324 

 325 

Note that this version of the algorithm is written for active development, not pure speed. For example, a large 326 

part of the processing time is spent reading/writing data to disk, and – while convenient for modifying and 327 

experimenting with the code – it is not necessary to first process color, then depth and then run a tracking 328 
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algorithm step, for example. In its present form, the code is fast enough to be useful, but not optimized to the 329 

theoretical maximum speed. 330 

 331 

Error detection 332 

Error detection and correction is a critical component of behavioral tracking. Even if error rates are nominally 333 

low, errors are non-random, and errors often happen exactly during the behaviors in which we are most inter-334 

ested: interactions. In multi-animal tracking, two types of tracking error are particularly fatal as they com-335 

pound over time: identity errors and body orientation errors (Supplementary Fig. 7a). In conventional track-336 

ing approaches using only 2D videos, it is often difficult to correctly track identities when interacting mice 337 

are closely interacting, allo-grooming, or passing over and under each other. Although swapped identities can 338 

be corrected later once the mice are well-separated again, this still leaves individual behavior during the actual 339 

social interaction unresolved5,26. We found that our tracking algorithm was robust against both identity swaps 340 

(Supplementary Fig. 7b-e) and body direction swaps (Supplementary Fig. 8). This observation agrees with 341 

the fact that tracking in three-dimensional space (subject to our implemented spatiotemporal regularizations) 342 

a priori ought to allow better identity tracking; In full 3D space it is easier to determine who is rearing over 343 

whom during an interaction, for example.  344 

 345 

To test our algorithm for more subtle errors, we manually inspected 500 frames, randomly selected across an 346 

example 21 minute recording session. In these 500 frames, we detected one tracking mistake, corresponding 347 

to 99.8% correct tracking (Supplementary Fig. 9a). The identified tracking mistake was visible as a large, 348 

transient increase in the point-cloud loss function (Supplementary Fig. 9b). After the tracking mistake, the 349 

robust particle filter quickly recovered to correct tracking again (Supplementary Fig. 9c). By detecting such 350 

loss function anomalies, or by detecting ‘unphysical’ postures or movements in the body models, potential 351 

tracking mistakes can be automatically ‘flagged’ for inspection (Supplementary Fig. 9c,d). After inspection, 352 
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errors can be manually corrected or automatically corrected in many cases, for example by tracking the par-353 

ticle filter backwards in time after it has recovered. As the algorithm recovers after a tracking mistake, it is 354 

generally unnecessary to actively supervise the algorithm during tracking, and manual inspection for potential 355 

errors can be performed after running the algorithm overnight. 356 

 357 

Automated analysis of movement kinematics and social behavior 358 

Despite the high level of data compression (from raw images to pre-processed data to only 17 dimensions), a 359 

human observer can clearly distinguish social events in the tracked data (Fig. 5f). The major motivation be-360 

hind developing our method, however, was to eschew manual labeling especially for large-scale datasets on 361 

the order of days to months of video tracking of the same animals. As a validation of our tracking method, we 362 

demonstrate that out methods can automatically extract both movement kinematics and behavioral states 363 

(movement patterns, social events) during spontaneous social interactions. Moreover, data generated by our 364 

tracking method are compatible with two types of analyses: (i) Modern data-mining methods for unsupervised 365 

discovery of behavioral states (specifically, state space modeling) and (ii) Template-based analysis, detecting 366 

behaviors of interest based on prior knowledge. Template-based methods are better suited than unsupervised 367 

methods for detecting certain types of behaviors (see Discussion), so it is a major advantage that our data are 368 

amenable to both types of analysis. Both types of analysis are quantitative and fully automatic, solving two 369 

major issues with manual labeling (subjective experimenter bias and limited throughput). 370 

 371 

To demonstrate template-based analysis, we defined social behaviors of interest as templates and matched 372 

these templates to tracked data. We know that anogenital sniffing33 and nose-to-nose touch34 are prominent 373 

events in rodent social behavior, so we designed a template to detect these events. In this template, we ex-374 

ploited the fact that we could easily calculate both body postures and movement kinematics, in the reference 375 

frame of each animal’s own body. For every frame, we first extracted the 3D coordinates of the body model 376 
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skeleton (Supplementary Fig. 5). From these skeleton coordinates, we calculated the position (Fig. 6a) and 377 

a three-dimensional speed vector for each mouse (‘forward speed’, along the hip ellipsoid, ‘left speed’ per-378 

pendicular the body axis and ‘up speed’ along the z-axis; Fig. 6b, Supplementary Fig. 8). We also calculated 379 

three instantaneous ‘social distances’, defined as the 3D distance between the tip of each animal’s noses 380 

(‘nose-to-nose’; Fig. 6b), and from the tip of each animal’s nose to the posterior end of the conspecific’s hip 381 

ellipsoid (‘nose-to-tail’; Fig. 6b). From these social distances, we could automatically detect when the mouse 382 

bodies were in a nose-to-nose or a nose-to-tail configuration, and in a single 20 min experimental session, we 383 

observed multiple nose-to-nose and nose-to-tail events (Fig. 6c). It is straightforward to further subdivide 384 

these social events by body postures and kinematics, to, e.g., separate stationary nose-to-tail configurations 385 

(anogenital sniffing/grooming) and nose-to-tail configurations during locomotion (social following). 386 

 387 

To demonstrate unsupervised behavioral state discovery, we used GPU-accelerated probabilistic program-388 

ming35 and state space modeling to automatically detect and label movement states. To discover types loco-389 

motor behavior, we fitted a ‘sticky’ multivariate hidden Markov model36 to the two components of the speed 390 

vector that lie in the xy-plane (Supplementary Fig. 9a-h). With five hidden states, this model yielded inter-391 

pretable movement patterns that correspond to known mouse locomotor ‘syllables’: resting (no movement), 392 

turning left and right, and moving forward at slow and fast speeds (Fig. 6d). Fitting a similar model with three 393 

hidden states to the z-component of the speed vector (Supplementary Fig. 9i-n) yielded interpretable and 394 

known ‘rearing syllables’: rest, rearing up and ducking down (Fig. 6e). Using the maximum a posterior prob-395 

ability from these fitted models, we could automatically generate locomotor ethograms and rearing ethograms 396 

for the two mice (Fig. 6b).  397 

 398 

In line with previous observations, we found that movement bouts were short (medians, 399 

rest/left/right/fwd/ffwd: 0.83/0.50/0.52/0.45/0.68 s, a ‘sub-second’ timescale13). In the locomotion ethograms, 400 
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bouts of rest were longer than bouts of movement (all p < 0.05, Mann-Whitney U-test; Fig. 6f) and bouts of 401 

fast forward locomotion was longer than other types of locomotion (all p < 0.001, Mann-Whitney U-test; Fig. 402 

6f). In the rearing ethograms, the distribution of rests was very wide, consisting of both long (~seconds) and 403 

very short (~tenths of a second) periods of rest (Fig. 6g). As expected, by plotting the rearing height against 404 

the duration of rearing syllables, we found that short rests in rearing were associated with standing high on 405 

the hind legs (the mouse rears up, waits for a brief moment before ducking back down), while longer rests 406 

happened when the mouse was on the ground (ation of rearing syllabpearman rank; Fig. 6h). Like the move-407 

ment types and durations, the transition probabilities from the fitted hidden Markov models were also in 408 

agreement with known behavioral patterns. In the locomotion model, for example, the most likely transition 409 

from “rest” was to “slow forward”. From “slow forward”, the mouse was likely to transition to “turning left”, 410 

“fast forward” or “turning right”, it was unlikely to transition directly from “fast forward” to “rest” or from 411 

“turning left” to “turning right, and so on (Supplementary Fig. 9o,p). 412 

 413 

Finally, our method recovered the 3D head direction of both animals. The head direction of the implanted 414 

animal was given by the skeleton of the body model (the implant is fixed to the head). As mentioned above, 415 

we exploited the rotational symmetry of the body model of the conspecific to decrease the dimensionality of 416 

the search space during tracking (Fig. 4c). However, from the 3D coordinates of the detected key-points, we 417 

could still infer the 3D head direction (Supplementary Fig. 10) and it matched known mouse behavior (Sup-418 

plementary Fig. 11). This feature is of particular interest to social neuroscience, since – while rodents clearly 419 

respond to the behavior of conspecifics – we are still only beginning to discover how the rodent brain encodes 420 

the gaze direction and body postures of others37.   421 
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DISCUSSION 422 

We combined 3D videography, deep learning and GPU-accelerated robust optimization to estimate the posture 423 

dynamics of multiple freely-moving mice, engaging in naturalistic social interactions. Our method is cost-424 

effective (requiring only inexpensive consumer depth cameras and a GPU), has high spatiotemporal precision, 425 

is compatible with neural implants for continuous electrophysiological recordings, and tracks unmarked ani-426 

mals of the same coat color (e.g., enabling behavioral studies in transgenic mice). Our method is fully unsu-427 

pervised, which makes the method scalable across multiple PCs or GPUs. Unsupervised tracking allows us to 428 

investigate social behavior across long behavioral time scales – beyond what is feasible with manual annota-429 

tion – to elucidate developmental trajectories, dynamics of social learning, or individual differences among 430 

animals38,39, among other types of questions. Finally, our method uses no message-passing from future frames, 431 

but only relies on past data, which makes the method a promising starting point for real-time tracking. 432 

 433 

Reasons to study naturalistic social interactions in 3D  434 

Social dysfunctions can be devastating symptoms in a multitude of mental conditions, including autism spec-435 

trum disorders, social anxiety, depression, and personality disorders40. Social interactions also powerfully 436 

impact somatic physiology, and social interactions are emerging as a promising protective and therapeutic 437 

element in somatic conditions, such as inflammation41 and chronic pain42. These disorders have high incidence 438 

but generally lack effective treatment options, largely because even the neurobiological basis of ‘healthy’ 439 

social behavior is poorly understood.  440 

 441 

In neuroscience and experimental biomedicine, there has been major technical progress in recording tech-442 

niques for freely moving animals, with high-density electrodes43,44, and head-mounted multi-photon micro-443 

scopes45,46. Moreover, newer methods are being developed for tracking complex patterns of animal behav-444 
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ior47,48. Here we provide a new method to complement these approaches for feasible, quantitative, and auto-445 

mated behavioral analysis. A major next step for future work is to apply such algorithms to animal behavior 446 

in different conditions. For example, the algorithm can easily be adapted to track other animal body shapes 447 

such as juvenile mice or other species, or movable, deformable objects that might be important for foraging 448 

or other behaviors in complex environments. 449 

 450 

What is the advantage of a body model? 451 

In automated analysis of behavioral states, there are three main approaches: nonlinear clustering7,49–55, 452 

probabilistic state space modeling13,56–59 and template matching5,11,26. In nonlinear clustering, tracked body 453 

coordinates (and derived quantities, such as time derivatives or spectral components) are segmented into dis-454 

crete behaviors by density-based clustering, typically after nonlinear projection down to a low-dimensional 455 

2D space7,49–53,55 or 3D space60. Density-based clusters are manually inspected and curated, such that clusters 456 

judged as similar are merged and clusters are assigned names (e.g., ‘locomotion’, ’grooming’, etc.). This 457 

approach is simple and robust, but still flexible enough to discover behavioral changes due to interactions 458 

with conspecifics52,53. A limitation of this approach, however, is that nonlinear clustering directly on the 459 

tracked kinematic features does not allow explicit modeling of history dependence or hierarchical structure.  460 

 461 

In principle, state space models are highly expressive, allowing for complex nested structures of hidden states, 462 

observational models, covariance structures and temporal dependencies, e.g., autoregressive terms13, linear 463 

dynamics61, and hierarchies39. In practice, however, state space models are not easily fit to data. Complex 464 

models quickly become prohibitively computationally expensive and approximate fitting strategies, such as 465 

variational inference, show poor convergence for complex models62. Finally, and most importantly, model 466 

comparison is still an unsolved problem and methods guaranteed to discover a ‘true’ latent structure from data 467 

(e.g., number of states or transition graph structure) do not exist36,63.  468 
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 469 

Neither state space modeling nor nonlinear clustering requires an explicit body model of the animal. In prin-470 

ciple, any tracked points on the body can be used, as long as their statistics differ enough between distinct 471 

behaviors that they still form significantly different clusters. What is the advantage of an actual body model? 472 

First, even though in principle, any tracked points on an animal can be used for unsupervised behavioral 473 

analysis – body posture features based on the actual body geometry are often both more powerful and more 474 

interpretable in practice64. For example, a body model lets us specify appropriate generative models for state 475 

space modeling. Specifying appropriate probability distributions over variables with unknown densities and 476 

covariances is not straightforward, but specifying priors over the parameters of an understandable body model 477 

with known physical constraints is an advantage for this type of analysis.  478 

 479 

Second, unsupervised methods are not well-suited for the discovery of behaviors that happen rarely or are 480 

kinematically similar to other behaviors. In order for rare or kindred behaviors to form identifiable clusters, 481 

it may be necessary to collect extremely large datasets, beyond what is realistic to collect in typical neurosci-482 

ence experiments, and beyond what it is computationally feasible to analyze. These complications get even 483 

worse when considering the joint statistics of multiple animals. A physical model of the bodies allows us to 484 

overcome these problems by simple template matching and we can easily specify templates that flag social 485 

poses (nose-to-nose and nose-to-tail touch, in our example). Moreover, of particular interest to neural record-486 

ings, a body model lets us regress out proprioceptive and movement-related signals, known to align to an 487 

egocentric, body-centered reference frame3,65–67.  488 

 489 
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The tracking algorithm is easy to update  490 

Our data acquisition pipeline and tracking algorithm is open source and implemented in Python, a widely 491 

used programming language in machine learning. This makes it easy to update the algorithm with methodo-492 

logical advances in the field. Deep learning in 3D is still thought to be in its infancy68, but along with technical 493 

developments in depth imaging hardware (for video games, self-driving cars and other industrial applications), 494 

there are exciting developments in analysis, including deep leaning methods for detection of deformable ob-495 

jects from image69–71 and point-cloud72,73 data, geometric and graph-based tricks for GPU-accelerated analysis 496 

of 3D data74–76, and methods for physical modeling of deformable bodies77–79.  497 

 498 

Our pre-processing pipeline generates a highly compressed data representation, consisting of a 3D point-cloud 499 

and key-points, sampled at 60 fps. Storing and sharing the raw depth and color video frames from multiple 500 

cameras, across long behavioral time scales (hours to days) is not feasible, but storing and sharing the com-501 

pressed, pre-processed data format is possible. This is a major advantage for two reasons. First, as deep learn-502 

ing methods for 3D data improve, old datasets can be re-analyzed and mined for new insights. Second, abun-503 

dantly available 3D datasets of animal behavior let machine learning researchers test and benchmark new 504 

methods on experimental data. This enables a development cycle for improving behavioral analysis, by which 505 

adoption of 3D-videography-based behavioral tracking in biology can contribute positively to future method-506 

ological developments in the machine learning community.   507 

 508 

Moving towards real-time tracking 509 

Our algorithm is unsupervised, does not use any message-passing from future frames, and robustly recovers 510 

from tracking mistakes. Since the algorithm relies purely on past data, it is in principle possible to run the 511 

algorithm in real-time. Currently, the processing time per frame is higher than the camera frame rate (60 512 

frames/s). However, our algorithm is not fully optimized and there are multiple speed improvements, which 513 
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are straightforward to implement. For example, in the current version of the algorithm, we first record the 514 

images to disk, and then read and pre-process the images later. This is convenient for algorithm development 515 

and exploration, but writing and reading the images to disk, and moving them onto and off a GPU are time-516 

intensive steps. During pre-processing, it is possible to increase the speed and precision of key-point detection 517 

by implementing peak detection as a convolutional layer8 and it  may be possible to perform key-point detec-518 

tion directly on the 1-channel infrared images instead of the 3-channel color images. Grayscale infrared im-519 

ages are faster to process and we would be able to perform experiments in visual darkness, which is less 520 

stressful and more appropriate for nocturnal mice. As shown in Figure 1d, the infrared images are ‘contami-521 

nated’ with a dotted grid of points from the infrared laser projector, but – as evidenced by the usefulness of 522 

pixel dropout in image data augmentation17 (Supplementary Fig. 3) – it should be possible to train a network 523 

to ‘disregard’ the dotted grid during key-point detection. We may also be able to reduce the number of required 524 

particle filtering steps between frames. For example, we could force a network to learn to draw particle sam-525 

ples more intelligently, based on learned covariance patterns in natural mouse movement. Additionally, we 526 

could try to combine our particle filter with gradient-based optimization methods (start with a particle filter 527 

step to search for loss function basins and then use fast, parallel Levenberg-Marquardt steps18 to quickly move 528 

particles to the bottom of the basins, for example). 529 

 530 

Beyond these optimizations, tracking at a lower frame rate would allow more data processing time per frame. 531 

Our robust, particle-filter-based tracker with online forecasting is an ideal candidate for this task. Going for-532 

ward, we will investigate the performance of the algorithm at lower frame rates and explore ways to increase 533 

tracking robustness further, by implementing other recently described tracking algorithm tricks, such as using 534 

the optical flow between video frames to link key-points together in multi-animal tracking (‘SLEAP’7,80), 535 

real-time painting-in of depth artifacts81 and even better online trajectory forecasting, for example using deep 536 
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Gaussian processes82 or a neural network trained to propose trajectories based on mouse behavior. Experi-537 

mentation and optimization is clearly needed, but our fully unsupervised algorithm – requiring data transfer 538 

from only a few cameras, with deep convolutional networks, physical modeling and particle filter tracking 539 

implemented as tensor algebra on the same GPU – is a promising starting point for the development of real-540 

time, multi-animal 3D tracking.  541 
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FIGURES 725 

 726 

Figure 1. Raw data acquisition, temporal alignment and recording stability. a, Schematic of recording 727 

setup, showing flow of synchronization pulses and raw data. We use a custom Python program to record RGB 728 

images, depth images, and state (on/off) of synchronization LEDs from all four cameras. Neural data and TTL 729 

state of LEDs are recorded with a standard electrophysiology recording system. We use a custom Python 730 

program to record video frames over USB (60 frames/s) and automatically deliver LED synchronization 731 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109629


 
 

Page 32 of 51 

pulses with randomized delays via Arduino microcontroller. b, Close-up images of the depth cameras, show-732 

ing the two infrared sensors, color sensor, and cables for data transfer and synchronization. c, Photograph of 733 

recording setup, showing the four depth cameras, synchronization LEDs, and circular behavioral arena (trans-734 

parent acrylic, 12” diameter). d, Example raw data images (top left: single infrared image with visible infrared 735 

laser dots; top right: corresponding automatically-generated mask image for recording LED synchronization 736 

state (arrow, LED location); bottom left: corresponding depth image, estimated from binocular disparity be-737 

tween two infrared images; bottom right: corresponding color image). e, Inter-frame-interval from four cam-738 

eras (21 min of recording). Vertical ticks indicate 16.66 ms (corresponding to 60 frames/s), individual cameras 739 

are colored and vertically offset. Frame rate is very stable (jitter across all cameras: ±26 µs). Arrow, example 740 

dropped frame. f, Number of dropped frames across the example 21 min recording. g, Top row, LED state 741 

(on/off) as captured by one camera (the 8-bit value of central pixel of LED ROI mask), at start of recording 742 

and after 20 minutes of recording. Bottom row, aligned LED trace, as recorded by electrophysiology recording 743 

system. h, Temporal residuals between recorded camera LED trace (g, top) and recorded TTL LED trace (g, 744 

bottom) are stable, but drift slightly (49 μs/min, left panel). We can automatically detect and correct for this 745 

small drift (right panel).  746 

 747 
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748 

Figure 2. Detection of body key-points with a deep convolutional neural network. a, Workflow for pre-749 

processing of raw image data. b, Example training data for the deep convolutional neural network. The net-750 

work is trained to output four types of body key-points (Implant, Ears, Noses, Tails) and seven 1-D affinity 751 

fields, connecting key-points within each body. c, Example of full training target tensor. d, The ‘stacked hour-752 

glass’ convolutional network architecture. Each ‘hourglass’ block of the network uses pooling and upsampling 753 

to incorporate both fine (high-resolution) and large-scale (low-resolution) information in the target prediction. 754 

The hourglass and scoring blocks are repeated seven times (seven ‘stacks’), such that intermediate key-point 755 

and affinity field predictions feed into subsequent hourglass blocks. Both the intermediate and final target 756 

maps contribute to the training loss, but only the final output map is used for prediction. e, Convergence plot 757 

of example training set. Top, loss function for each mini-batch of the training set (526 images) and validation 758 

set (50 images). Bottom, learning rate. Network loss is trained (plateaued) after ~ 60 minutes. f, Network 759 

performance as function of training epoch for two example images in the validation set. Left, input images; 760 

right, final output maps for key-points and affinity fields.  761 
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 762 

Figure 3. Depth data alignment and pre-processing. a, Calibration ball detection pipeline. We use a com-763 

bination of motion filtering, color filtering, and smoothing filters to detect and extract 3D ball surface. We 764 

estimate 3D location of the ball by fitting a sphere to the extracted surface. b, Estimated 3D trajectories of 765 

calibration ball as seen by the four cameras. One trajectory has an error (arrow) where ball trajectory was out 766 

of view. c, Overlay of trajectories after alignment in time and space. Our alignment pipeline uses a robust 767 

regression method and is insensitive to errors (arrow) in the calibration ball trajectory. d, Distribution of 768 

residuals, using cam 0 as reference. e, Estimated trajectory in 3D space, before and after alignment of camera 769 

data. f, Example frame used in automatic detection of the behavioral arena location. Show are pixels from the 770 
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four cameras, after alignment (green), estimated normal vectors to the behavioral platform floor (red), the 771 

estimated rotation vector (blue), and the reference vector (unit vector along z-axis, black). g, Estimated loca-772 

tion (left) and normal vector (right) to the behavioral platform floor, across 60 random frames. h, Example 773 

frame, after rotating the platform into the xy-plane, and removing pixels below and outside the arena. Inferred 774 

camera locations are indicated with stick and ball. i, Automatic detection of behavioral arena location. j, Ex-775 

ample 3D frame, showing merged data from four cameras, after automatic removal of the arena floor and 776 

imaging artifacts induced by the acrylic cylinder. Colors, which camera captured the pixels.  777 
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778 

Figure 4. Mouse body model and fully vectorized, GPU-executable tracking algorithm. a, Full assembly 779 

pipeline for a single pre-processed data frame, going from raw RGB and depth images (left columns) to as-780 

sembled 3D point-cloud (black dots, right) and body key-point positions in 3D space (colored dots, right). b, 781 

Schematic depiction of mouse body model (grey, deformable ellipsoids) and implant model (grey sphere), fit 782 

to point-cloud (black dots) and body key-points (colored dots). The loss function assigns loss to distance from 783 

the point-cloud to the body model surface (black arrows) and from key-point locations to landmark locations 784 

on the body model (e.g., from nose key-points to the tip of the nose ellipsoids; colored arrows). c, Schematic 785 

of loss function calculation and tracking algorithm. All operations implemented as GPU-accelerated tensor 786 

algebra. 787 

788 
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789 

Figure 5. Particle filter convergence and examples of tracked behavioral data. a, Tracking algorithm is 790 

initialized by manual clicking of approximate locations of the two animals (light green dots, lines) on a top-791 

down view of the behavioral arena (dark green dots, shade indicates z-coordinate). b, 3D view of initialized 792 

body model (top) and fitted body model (bottom) after running tracking algorithm on the frame. Black 793 

wireframe model, implanted mouse; brown wireframe model, partner animal. c, Particle filter state across 9 794 

iterations of the fitting algorithm. After iteration 2, we shrink (‘anneal’) the exploration space with each step. 795 

d, Loss function values and size of filter search space across filter iterations. e, Tracked data (light green) and 796 

running adaptive estimate (dark green) across 600 frames (10 s). f, Data and fitted joint posture model, across 797 

10 seconds of behavior. Trailing lines, location of hip ellipsoid center in last 10 seconds.   798 
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 799 

Figure 6. Automatic classification of movement patterns and behavioral states during social interac-800 

tions. a, Tracked position of both mice, across an example 21 min recording. b, Extracted behavioral fea-801 

tures: three speed components (forward, left and up in the mice’s egocentric reference frames), and three 802 
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‘social distances’ (nose-to-nose distance and two nose-to-tail distances). Colors indicate ethograms of auto-803 

matically detected behavioral states. c, Examples of identified social events: nose-to-nose-touch, and ano-804 

genital nose-contacts. e, Mean and covariance (3 standard deviations indicated by ellipsoids) for each latent 805 

state for the forward/leftward running (dots indicate a subsample of tracked speeds, colored by their most 806 

likely latent state) e, Mean and variance of latent states in the z-plane (shaded color) as well as distribution 807 

of tracked data assigned to those latent states (histograms) f, Distribution of the duration of the five behav-808 

ioral states in the xy-plane. Periods of rest (blue) are the longest (p < 0.05, Mann-Whitney U-test) and bouts 809 

of fast forward movement (green) are to be longer other movement bouts (p < 0.001, Mann-Whitney U-810 

test). g, Distribution of duration of the three behavioral states in the z-plane. Periods of rest (light blue) are 811 

either very short or very long. h, Plot of body elevation against behavior duration. Short periods of rest hap-812 

pen when the z-coordinate is high (the mouse rears up, waits for a brief moment before ducking back down), 813 

whereas long periods of rest happen when the z-coordinate is low (when the mouse is resting or moving 814 

around the arena, ρ = –0.47, p < 0.001, Spearman rank).  815 
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METHODS 816 
 817 
Hardware 818 
 819 
Necessary hardware: 820 
 821 

Item Recommendation Price  
(USD) N Total 

(USD) 

Depth cameras Intel RealSense D435 179.00 4 716.00 

Camera stands Etubby 26” gooseneck webcam 
stand 24.96 4 99.84 

PCIe card with 4 independent USB 3.0 
controllers Startech 4-port superspeed 83.54 1 83.54 

Active, repeating USB 3.0 cables UGREEN, USB 3.0 Active Re-
peater Cable 18.89 4 75.56 

Arduino with USB cable Arduino Uno R3 13.98 1 13.98 

Pytorch-compatible GPU Any NVIDIA card with CUDA 
support 500.00 1 500.00 

Behavioral arena (acrylic cylinder or  
elevated platform) 

12”-diameter, 5/32” thick acrylic 
cylinder 71.20 1 71.20 

Depth camera GPIO pin connector 
(jumper) JST ASSHSSH28K305 0.54 8 4.32 

Depth camera GPIO pin connector  
(jumper housing) JST SHR-09V-S 0.19 4 0.76 

Colored ping-pong balls (for calibration) Stiga 40 mm ITTF Regulation 
size 6.64 1 6.64 

Total    1571.84 
 822 
General lab electronics (tape, wire, soldering equipment, etc.) and: 823 
 824 
Item N 
Infrared or red LEDs 4 
0.1” pin headers or jumper wires 2 
20 kOhm resistors 4 
22 nF capacitors 4 
200 Ohm resistor (or same order of magnitude) 1 
Stick (for moving ping-pong ball during calibration) 1 
 825 
 826 
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Software 827 

Our system uses the following software: Linux (tested on Ubuntu 16.04 LTE, but should work on others, 828 

https://ubuntu.com/), Intel Realsense SDK (https://github.com/IntelRealSense/librealsense), Python (tested 829 

on Python 3.6, we recommend Anaconda, https://www.anaconda.com/distribution/). Required Python pack-830 

ages will be installed with PIP or conda (script in supplementary software). All required software is free and 831 

open source. 832 

 833 

Animal welfare 834 

All experimental procedures were performed according to animal welfare laws under the supervision of lo-835 

cal ethics committees. Animals were kept on a 12hr/12hr light cycle with ad libitum access to food and wa-836 

ter. Mice presented as partner animals were housed socially in same-sex cages, and post-surgery implanted 837 

animals were housed in single animal cages. Neural recordings electrodes were implanted on the dorsal 838 

skull under isoflurane anesthesia, with a 3D-printed electrode drive and a hand-built mesh housing. All pro-839 

cedures were approved under NYU School of Medicine IACUC protocols.  840 

 841 

Recording data structure 842 

The Python program is set to pull raw images at 640 x 480 (color) and 640 x 480 (depth), but only saves 320 843 

x 210 (color) and 320 x 240 (depth). We do this to reduce noise (multi-pixel averaging), save disk space and 844 

reduce processing time. Our software also works for saving images up to 848 x 480 (color) and 848 x 480 845 

(depth) at 60 frames/s, in case the system is to be used for a bigger arena, or to detect smaller body parts (eyes, 846 

paws, etc). Images were transferred from the cameras with the python bindings for the Intel Realsense SDK 847 

(https://github.com/IntelRealSense/librealsense), and saved as 8-bit, 3-channel PNG files with opencv (for 848 

color images) or as 16-bit binary files (for depth images). 849 

 850 
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3D data structure 851 

For efficient access and storage of the large datasets, we save all pre-processed data to hdf5 files. Because the 852 

number of data points (point-cloud and key-points) per frame varies, we save every frame as a jagged array. 853 

To this end, we pack all pre-processed data to a single array. If we detect N points in the point-cloud and M 854 

key-points in the color images, we save a stack of the 3D coordinates of the points in the point-cloud (Nx3, 855 

raveled to 3N), the weights (N), the 3D coordinates of the key-points (Mx3, raveled to 3M), their pseudo-856 

posterior (M), an index indicating key-point type (M), and the number of key-points (1). Functions to pack 857 

and unpack the pre-processed data from a single line (‘pack_to_jagged’ and ‘unpack_from_jagged’) are pro-858 

vided. 859 

 860 

Temporal synchronization 861 

LED blinks were generated with voltage pulses from an Arduino (on digital pin 12), controlled over USB 862 

with a python interface for the Firmata protocol (https://github.com/tino/pyFirmata). To receive the Firmata 863 

messages, the Arduino was flashed with the ‘StandardFirmata’ example, that comes with the standard Arduino 864 

IDE. TTL pulses were 150 ms long and spaced by ~U(150,350) ms.. We recorded the emitted voltage pulses 865 

in both the infrared images (used to calculate the depth image) and on a TTL input on an Open Ephys Acqui-866 

sition System (https://open-ephys.org/). We detected LED blinks and TTL flips by threshold crossing and 867 

roughly aligned the two signals by the first detected blink/flip. We first refined the alignment by cross corre-868 

lation in 10 ms steps, and then identified pairs of blinks/flips by detecting the closest blink, subject to a cutoff 869 

(zscore < 2, compared to all blink-to-flip time differences) to remove blinks missed by the camera (because 870 

an experimenter moved an arm in front of a camera to place a mouse in the arena, for example). The final 871 

shift and drift was estimated by a robust regression (Theil-Sen estimator) on the pairs of blinks/links.    872 

 873 

Deep neural network 874 
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We used a stacked hourglass network14 implemented in Pytorch25 (https://github.com/pytorch/pytorch). The 875 

network architecture code is from the implementation in ‘PyTorch-Pose’ 876 

(https://github.com/bearpaw/pytorch-pose). The full network architecture is shown in Supplementary Fig 1. 877 

The Image augmentation during training was done with the ‘imgaug’ library (https://github.com/aleju/im-878 

gaug). Our augmentation pipeline in shown in Supplementary Fig. 3. The network was trained by RMSProp 879 

(α = 0.99, ε = 10-8) with an initial learning rate of 0.00025. During training, the learning rate was automatically 880 

reduced by a factor of 10 if the training loss decreased by less than 0.1% for five successive steps (using the 881 

built-in learning rate scheduler in Pytorch). After training, we used the final output map of the network for 882 

key-point detection, and used a maximum filter to detect key-point locations as local maxima in network 883 

output images with a posterior pseudo-probability of at least 0.5.  884 

 885 

Image labeling and target maps 886 

For training the network to recognize body parts, we need to generate labeled frames by manual annotation. 887 

For each frame, 1-5 body parts are labeled on the implanted animal and 1-4 body parts on the partner animal. 888 

This can be done with any annotation software; we used a modified version of the free ‘DeepPoseKit-Anno-889 

tator’8 (https://github.com/jgraving/DeepPoseKit-Annotator/) included in the supplementary code. This soft-890 

ware allows easy labeling of the necessary points, and pre-packages training data for use in our training pipe-891 

line. Body parts are indexed by i/p for implanted/partner animal (‘nose_p’ is the nose of the partner animal, 892 

for example). Target maps were generated by adding a Gaussian function (σ = 3 px for implant, σ = 1 px for 893 

other body parts, scaled to peak value = 1) to an array of zeros (at 1/4th the resolution of the input color image) 894 

at the location of every labeled body key-point. 1D part affinity maps were created by connecting labeled key-895 

points in an array of zeros with a 1 px wide line (clipped to max value = 1), and blurring the resulting image 896 

with a Gaussian filter (σ = 3 px).  897 

 898 
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Aligning depth and color data 899 

The camera intrinsics (focal lengths, f, optical centers, p, depth scale, dscale) and extrinsics (rotation matrices, 900 

R, translation vectors, 𝑡𝑡̅) for both the color and depth sensors can be accessed over the SDK. Depth and color 901 

images were aligned to each other using a pinhole camera model. For example, the z coordinate of a single 902 

depth pixel with indices (𝑖𝑖𝑐𝑐, 𝑖𝑖𝑑𝑑) and 16-bit depth value, dij, is given by: 903 

𝑧𝑧𝑑𝑑 =  𝑑𝑑𝑖𝑖𝑖𝑖 ⋅ 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 904 

And the x and y coordinates are given by: 905 

�
𝑥𝑥𝑑𝑑
𝑦𝑦𝑑𝑑� =

�𝑗𝑗𝑑𝑑 − 𝑝𝑝𝑥𝑥,𝑑𝑑� ⋅ 𝑧𝑧𝑑𝑑/𝑓𝑓𝑥𝑥,𝑑𝑑

�𝑖𝑖𝑑𝑑 − 𝑝𝑝𝑦𝑦,𝑑𝑑� ⋅ 𝑧𝑧𝑑𝑑/𝑓𝑓𝑦𝑦,𝑑𝑑
 906 

Using the extrinsics between the depth and color sensors, we can move the coordinate to the reference frame 907 

of the color sensor: 908 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
𝑐𝑐

= R𝑑𝑑→𝑐𝑐 �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
𝑑𝑑

+ 𝑡𝑡𝑑̅𝑑→𝑐𝑐 909 

Using the focal length and optical center, we can project the pixel onto the color image: 910 

�𝑖𝑖𝑐𝑐𝑗𝑗𝑐𝑐
� =

𝑓𝑓𝑦𝑦,𝑐𝑐 ⋅ 𝑦𝑦𝑐𝑐/𝑧𝑧𝑐𝑐 + 𝑝𝑝𝑦𝑦,𝑐𝑐 
𝑓𝑓𝑥𝑥,𝑐𝑐 ⋅ 𝑥𝑥𝑐𝑐/𝑧𝑧𝑐𝑐 + 𝑝𝑝𝑥𝑥,𝑐𝑐

 911 

For assigning color pixel values to depth pixels, we simply rounded the color pixel indices (𝑖𝑖𝑐𝑐, 𝑖𝑖𝑑𝑑) to the 912 

nearest integer and cloned the value. More computationally intensive methods based on ray-tracking exist 913 

(‘rs2_project_color_pixel_to_depth_pixel’ in the Librealsense SDK, for example), but the simple pinhole 914 

camera approximation yielded good results (small jitter average out across multiple key-points) which al-915 

lowed us to skip the substantial computational overhead of ray tracing for our data pre-processing. 916 

 917 

3D calibration and alignment 918 

To align the cameras in space, we first mounted a blue ping-pong ball on a stick and moved it around the 919 

behavioral arena while recording both color and depth video. For each camera, we used a combination of 920 
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motion filtering, color filtering, smoothing and thresholding to detect the location of the ping-pong ball in the 921 

color frame (details in code). We then aligned the color frames to depth frames and extracted the correspond-922 

ing depth pixels, yielding a partial 3D surface of the ping-pong ball. By fitting a sphere to this partial surface, 923 

we could estimate the 3D coordinate of the center of the ping-pong ball (Fig. 3a). This procedure yielded a 924 

3D trajectory of the ping-pong ball in the reference frame of each camera (Fig. 3b). We used a robust regres-925 

sion method (RANSAC routines to fit a sphere with a fixed radius of 40 mm, modified from routines in 926 

https://github.com/daavoo/pyntcloud), insensitive to errors in the calibration ball trajectory to estimate the 927 

transformation matrices needed to bring all trajectories into the same frame of reference (Fig. 3c). 928 

 929 

Body model 930 

We model each mouse at two prolate ellipsoids. The model is specified by the 3D coordinate of the center of 931 

the hip ellipsoid, 𝑐𝑐ℎ̅𝑖𝑖𝑖𝑖 = [𝑥𝑥,𝑦𝑦, 𝑧𝑧], and the major and minor axis of the ellipsoids are scaled by a coordinate, 932 

𝑠𝑠 ∈ [0,1] that can morph the ellipsoid from long and narrow to short and fat: 933 

𝑎𝑎ℎ𝑖𝑖𝑖𝑖 = 𝑎𝑎ℎ𝑖𝑖𝑖𝑖,0 + 𝑎𝑎ℎ𝑖𝑖𝑖𝑖,Δ ⋅ 𝑠𝑠 934 

𝑏𝑏ℎ𝑖𝑖𝑖𝑖 = 𝑏𝑏ℎ𝑖𝑖𝑖𝑖,0 + 𝑏𝑏ℎ𝑖𝑖𝑖𝑖,Δ ⋅ (1 − 𝑠𝑠) 935 

The ‘neck’ (the joint of rotation between the hip and nose ellipsoid) is sitting a distance, 𝑑𝑑ℎ𝑖𝑖𝑖𝑖 = 0.75 ⋅ 𝑎𝑎ℎ𝑖𝑖𝑖𝑖, 936 

along the central axis of the hip ellipsoid. In the frame of reference of the mouse body (taking 𝑐𝑐ℎ̅𝑖𝑖𝑖𝑖 as the 937 

origin, with the major axis of the hip ellipsoid along the x-axis), a unit vector pointing to of the nose ellipsoid, 938 

from the ‘neck’ to the center of the nose ellipsoid along it’s major axis is: 939 

𝑒̅𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �
cos 𝜃𝜃

sin𝜃𝜃 cos𝜙𝜙
sin𝜃𝜃 sin𝜙𝜙

� 940 

In the frame of reference of the laboratory (‘world coordinates’), we allow the hip ellipsoid to rotate around 941 

the z-axis (‘left’/’right’) and around the y-axis (‘up’/’down’, in the frame of reference of the mouse). We 942 
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define R�𝛼𝛼𝑥𝑥,𝛼𝛼𝑦𝑦,𝛼𝛼𝑧𝑧� as a 3D rotation matrix specifying the rotation by an angle 𝛼𝛼 around the three axes, and 943 

R(𝑣̅𝑣1, 𝑣̅𝑣2) as a 3D rotation matrix that rotates the vector 𝑣̅𝑣1 onto 𝑣̅𝑣2. The we can define: 944 

𝐑𝐑ℎ𝑖𝑖𝑖𝑖 = 𝐑𝐑(0,𝛽𝛽, 𝛾𝛾) 945 

𝐑𝐑ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐑𝐑(𝑒̅𝑒𝑥𝑥, 𝑒̅𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 946 

, where 𝑒̅𝑒𝑥𝑥 is a unit vector along the x-axis. In the frame of reference of the mouse body, the center of the nose 947 

ellipsoid is:  948 

𝑐𝑐𝑛̅𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐑𝐑ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

0
0

� + �
𝑑𝑑ℎ𝑖𝑖𝑖𝑖

0
0
� 949 

So, in world coordinates, the center is:  950 

𝑐𝑐𝑛̅𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐑𝐑ℎ𝑖𝑖𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑐𝑐ℎ̅𝑖𝑖𝑖𝑖 951 

The center of the neural implant if offset from the center of the nose ellipsoid by a distance 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along the 952 

major axis of the nose ellipsoid, and a distance 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 orthogonal to the major axis. We allow the implant to 953 

rotate around the nose ellipsoid by an angle, 𝜓𝜓. Thus, in the frame of reference of the mouse body, the center 954 

of the ellipsoid is: 955 

𝑐𝑐𝑖̅𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐑𝐑ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ cos𝜓𝜓
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ sin𝜓𝜓

� + �
𝑑𝑑ℎ𝑖𝑖𝑖𝑖

0
0
� 956 

And in world coordinates, same as the center of the nose ellipsoid: 957 

𝑐𝑐𝑖̅𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑐𝑐ℎ̅𝑖𝑖𝑖𝑖 958 

We calculated other skeleton points (tip of the nose ellipsoid, etc.) in a similar method. We can use the rotation 959 

matrices for the hip and the nose ellipsoids to calculate the characteristic ellipsoid matrices: 960 

𝐐𝐐ℎ𝑖𝑖𝑖𝑖 = 𝐑𝐑ℎ𝑖𝑖𝑖𝑖 �
1/𝑎𝑎ℎ𝑖𝑖𝑖𝑖2   0 0

0 1/𝑏𝑏ℎ𝑖𝑖𝑖𝑖2 0
0 0 1/𝑏𝑏ℎ𝑖𝑖𝑖𝑖2

� �𝐑𝐑ℎ𝑖𝑖𝑖𝑖�
𝑇𝑇
 961 
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𝐐𝐐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐑𝐑ℎ𝑖𝑖𝑖𝑖𝐑𝐑ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �
1/𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 0 0

0 1/𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 0
0 0 1/𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2

� �𝐑𝐑ℎ𝑖𝑖𝑖𝑖𝐑𝐑ℎ𝑒𝑒𝑒𝑒𝑒𝑒�
𝑇𝑇
 962 

Calculating the shortest distance from a point to the surface of an 3D ellipsoid in 3 dimensions requires solving 963 

a computationally-expensive polynomial19. Doing this for each of the thousands of points in the point-cloud, 964 

multiplied by four body ellipsoids, multiplied by 200 particles pr. fitting step is not computationally tractable. 965 

Instead, we use the shortest distance to the surface,  𝑑̃𝑑, along a path that passes through the centroid (Supple-966 

mentary Fig. 4a-b). This is a good approximation to d (especially when averaged over many points), and the 967 

calculation of 𝑑̃𝑑 can be implemented as pure vectorized linear algebra, which can be calculated very effi-968 

ciently on GPU20. Specifically, to calculate the distance from any point 𝑝̅𝑝 in the point-cloud, we just center 969 

the points on the center of an ellipsoid, and – for example – calculate: 970 

𝑝̅𝑝′ = 𝑝̅𝑝 − 𝑐𝑐ℎ̅𝑖𝑖𝑖𝑖 971 

𝑑̃𝑑 = �1 − ‖𝑝̅𝑝′‖𝑄𝑄ℎ𝑖𝑖𝑖𝑖
−1 � ⋅ ‖𝑝̅𝑝′‖   where  ‖𝑝̅𝑝′‖𝑄𝑄ℎ𝑖𝑖𝑖𝑖 = �〈𝑝̅𝑝′, 𝑝̅𝑝′〉𝑄𝑄ℎ𝑖𝑖𝑖𝑖 = �(𝑝̅𝑝′)T𝑄𝑄ℎ𝑖𝑖𝑖𝑖 𝑝̅𝑝′ 972 

In fitting the model, we used the following constants.  973 

 974 

Loss function evaluation and tracking 975 

Joint position of the two mice is represented as a particle in 17-dimensional space. For each data frame, we 976 

start with a proposal particle (leftmost green block, based on previous frames), from which we generate 200 977 

particles by pseudo-random perturbation within a search space (next green block). For each proposal particle, 978 

we calculate three types of weighted loss contributions: loss associated with the distance from the point-cloud 979 

to the surface of the mouse body models (top path, green color), loss associated with body key-points (middle 980 

path, key-point colors as in and loss associated with overlap of the two mouse body models (bottom path, 981 

purple color). We broadcast the results in a way, which allows us to consider all 200x200 = 40.000 possible 982 

joint postures of the two mice. After calculation, we pick the top 200 joint postures with the lowest overall 983 
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loss, and anneal the search space, or – if converged – continue to the next frame. When we continue to a new 984 

frame, we add the fitted frame to a KRLS-T filter bank (online adaptive filter for prediction), which proposes 985 

the next position of the particle for the next frame, based on previous frame. All loss function calculations, 986 

and KRLS-T predictions as pure tensor algebra, that can be fully vectorized and executed on a GPU.   987 

 988 

State space filtering of raw tracking data 989 

After tracking, the coordinates of the skeleton points (𝑐𝑐ℎ𝑖𝑖𝑖𝑖, 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, etc.) were smoothed with a 3D kinematic 990 

Kalman filter tracking both the 3D position (p), velocity (v) and (constant) acceleration (a). For example, for 991 

the center of the hip coordinate: 992 

𝑥̅𝑥 = �𝑝𝑝𝑥𝑥, 𝑣𝑣𝑥𝑥,𝑎𝑎𝑥𝑥,𝑝𝑝𝑦𝑦, 𝑣𝑣𝑦𝑦,𝑎𝑎𝑦𝑦,𝑝𝑝𝑧𝑧 ,𝑣𝑣𝑧𝑧 ,𝑎𝑎𝑧𝑧� 993 

𝑧𝑧̅ = �𝑐𝑐ℎ𝑖𝑖𝑖𝑖,𝑥𝑥, 𝑐𝑐ℎ𝑖𝑖𝑖𝑖,𝑦𝑦, 𝑐𝑐ℎ𝑖𝑖𝑖𝑖,𝑧𝑧� 994 

F = �
𝐅𝐅′ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐅𝐅′ 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐅𝐅′

� , where  𝐅𝐅′ = �
1 𝑑𝑑𝑑𝑑 1

2
𝑑𝑑𝑡𝑡2 

0 1 𝑑𝑑𝑑𝑑
0 0 1

�  995 

𝐇𝐇 = �
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

� 996 

𝐏𝐏 = 𝟏𝟏9×9 ⋅ σ𝑐𝑐𝑐𝑐𝑐𝑐2  997 

𝐑𝐑 = 𝐈𝐈3×3 ⋅ 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2  998 

𝐐𝐐 =  �
𝐐𝐐′ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐐𝐐′ 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐐𝐐′

� ⋅ 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2    999 

where Q’ is the Q matrix for a discrete constant white noise model 𝐐𝐐′ =

⎣
⎢
⎢
⎢
⎡
1
4
𝑑𝑑𝑡𝑡4 1

2
𝑑𝑑𝑡𝑡3 1
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𝑑𝑑𝑡𝑡2

1
2
𝑑𝑑𝑡𝑡3 𝑑𝑑𝑡𝑡2 𝑑𝑑𝑑𝑑

1
2
𝑑𝑑𝑡𝑡2 𝑑𝑑𝑑𝑑 1 ⎦

⎥
⎥
⎥
⎤
  and 1000 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.015 m,𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.01 m,𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 = 0.0011 m2. The 𝜎𝜎’s were the same for all points, ex-1001 

cept the slightly more noisy estimate of the center of the implant, where we used. 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =1002 
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0.02 m,𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.01 m,𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 = 0.0011 m2 From the frame rate (60 fps), 𝑑𝑑𝑑𝑑 = 1
60

 s. The maximum-like-1003 

lihood trajectory was estimated with the Rauch-Tung-Striebel method30 with a fixed lag of 16 frames. The 1004 

filter and smoother was implemented using the ‘filterpy’ package (https://github.com/rlabbe/filterpy). The 1005 

spine scaling, s, was smoothed with a similar filter in 1D, except that we did not model acceleration, only s 1006 

and a (constant) s ‘velocity’, with 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.3,𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.05 m,𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 = 0.0011.  1007 

After filtering the trajectories of the skeleton points, we recalculated the 3D rotation matrices of the hip and 1008 

head ellipsoid by the vectors pointing from 𝑐𝑐ℎ𝑖𝑖𝑖𝑖 to 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 (from the middle of the hip ellipsoid to the neck joint), 1009 

and from 𝑐𝑐ℎ𝑖𝑖𝑖𝑖 to 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (from the neck joint to the middle of the nose ellipsoid). We then converted the 3D 1010 

rotation matrixes to unit quaternions, and smoothed the 3D rotations by smoothing the quaternions with an 1011 

10-frame boxcar filter, essentially averaging the quaternions by finding the largest eigenvalue of a matrix 1012 

composed of the quaternions within the boxcar 32. After smoothing the ellipsoid rotations, we re-calculated 1013 

the coordinates of the tip of the nose ellipsoid (𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡) and the posterior end of the hip ellipsoid (𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) from the 1014 

smoothed central coordinates, rotations, and – for 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 – the smoothed spine scaling. A walkthrough of the 1015 

state space filtering pipeline is shown in Supplementary Fig. 6. 1016 

 1017 

Template matching 1018 

To detect social events, we calculated three social distances, from three instantaneous ‘social distances’, de-1019 

fined as the 3D distance between the tip of each animal’s noses (‘nose-to-nose’), and from the tip of each 1020 

animal’s nose to the posterior end of the conspecific’s hip ellipsoid (‘nose-to-tail’; Fig. 6c). From these social 1021 

distances, we could automatically detect when the mouse bodies were in a nose-to-nose (if the nose-to-nose 1022 

distance was < 2 cm and the nose-to-tail distance was > 6 cm) and in a nose-to-tail configuration (if the nose-1023 

to-nose distance was > 6 cm and the nose-to-tail distance was > 2 cm). The events were detected by the logic 1024 

conditions, and then single threshold crossings due to noise were removed by binary opening with a 3-frame 1025 

kernel, followed by binary closing with a 30-frame kernel. 1026 
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 1027 

State space modeling of mouse behavior 1028 

State space modeling of the locomotion behavior was performed in Pyro35 a GPU-accelerated probabilistic 1029 

programming language built on top of Pytorch25. We modeled the (centered and whitened) locomotion be-1030 

havior as a hidden Markov model with discrete latent states, z, and and associated transition matrix, T. 1031 

𝑧𝑧(𝑡𝑡 + 1) = Categorical(𝑒𝑒𝑧𝑧(𝑡𝑡)
𝑇𝑇 ⋅ 𝐓𝐓) 1032 

𝐓𝐓 = �
𝑝𝑝𝑖𝑖𝑖𝑖 ⋯
⋮ ⋱� 1033 

To make the model ‘sticky’ (discourage fast switching between latent states) we draw the transition probabil-1034 

ities, 𝑝𝑝𝑖𝑖𝑖𝑖 from a Dirichlet prior with a high mass near the ‘edges’ and initialize 𝐓𝐓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝜂𝜂)𝐈𝐈 + η/𝑛𝑛states 1035 

where 𝜂𝜂 = 0.05. 1036 

𝑝𝑝~Diriclet(0.5) 1037 

Each state emits a forward speed and a left speed, drawn from a two-dimensional gaussian distribution with 1038 

a full covariance matrix. 1039 

�
𝑣𝑣fwd
𝑣𝑣left �~MVNormal(𝜇𝜇, 𝐒𝐒) 1040 

We draw the mean of the states from a normal distribution and use a LKJ Cholesky prior for the covariance: 1041 

𝜇𝜇~Normal(0,1) 1042 

𝐒𝐒 = �𝜎𝜎fwd 0
0 𝜎𝜎left

� 𝐋𝐋 �𝜎𝜎fwd 0
0 𝜎𝜎left

� 1043 

𝜎𝜎~LogNormal(−1,1) 1044 

𝐋𝐋~LKJcorr(2) 1045 

The up speed was modeled in a similar way, except that the latent states were just a one-dimensional normal 1046 

distribution. The means and variances for the latent states was initialized by kmeans clustering of the loco-1047 

motion speeds. The model was fit in parallel to 600-frame snippets of a subset of the data by stochastic vari-1048 

ational inference62. We used an automatic delta guide function (‘AutoDelta’) and an evidence lower bound 1049 
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(ELBO) loss function. The model was fitted by stochastic gradient descent with a learning rate of 0.0005. 1050 

After model fitting, we generated the ethograms by assigning latent states by maximum a posteriori probabil-1051 

ity with a Viterbi algorithm. 1052 

 1053 

3D head direction estimation 1054 

We use the 3D position of the ear key-points to determine the 3d head direction of the partner animal. We 1055 

assign the ear key-points to a mouse body model by calculating the distance from each key-point to the center 1056 

of the nose ellipsoid of both animals (cutoff: closest to one mouse and < 3cm from the center of the head 1057 

ellipsoid, Supplementary Fig 10a). To estimate the 3D head direction, we calculate the unit rejection (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟) 1058 

between a unit vector along the nose ellipsoid (𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) and a unit vector from the neck joint (𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚) to the 1059 

average 3D position of the ear key-points that are associated with that mouse (v_ear_direction, Supplementary 1060 

Fig. 10b). If no ear key-points were detected in a frame, we linearly interpolate the average 3D position. To 1061 

average out jitter, the estimates of the average ear coordinates and the center of the nose coordinate were 1062 

smoothed with a Gaussian (𝜎𝜎 = 3 frames). The final head direction vector was also smoothed with a Gaussian 1063 

(𝜎𝜎 = 10 frames).  1064 
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SUPPLEMENTARY FIGURES 12 

 13 

 14 

Supplementary Figure 1. Deep convolutional neural network architecture. a, Schematic of flow of ten-15 

sors through deep convolutional neural network. Convolutional blocks show kernel shapes and input/output 16 

dimensions of feature dimension, starting from 3 (RGB image), expanding to 256 during hourglass blocks, 17 

and ending in 11 for intermediate and final outputs (4 body point targets, 7 part affinity fields). Full imple-18 

mentation details (e.g., including stride, padding, bias, etc.) are included in supplementary code. b, Schematic 19 

of a single residual block. c, Schematic of a single hourglass block. Upsampling (green, nearest neighbor) and 20 

downsampling (orange, by max pooling, both a factor of 2) happens along 2D image space (height/width). d, 21 

Shapes of tensors flowing through hourglass block. Along bottom path, feature dimension stays constant, but 22 

image dimensions (height/width) are increasingly downsampled, and then upsampled again. After each up-23 

sample, tensors are merged with skip connections (paths above). e, The hourglass-like shape that gives name 24 

to the network architecture.  25 
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 26 

 27 

Supplementary Figure 2. GUI for labeling of training data for the neural network. a, For training the 28 

network to recognize body parts, we must generate labeled frames by manual annotation. For each frame, 1-29 

5 body parts are labeled on the implanted animal and 1-4 body parts on the partner animal. This can be done 30 

with any annotation software; we used a modified version of the free ‘DeepPoseKit-Annotator’ (Graving et 31 

al., 2019) (https://github.com/jgraving/DeepPoseKit-Annotator/) included in the supplementary code. This 32 

software allows easy labeling of the necessary points, and pre-packages training data for use in our training 33 

pipeline. Body parts are indexed by i/p for implanted/partner animal (‘nose_p’ is the nose of the partner animal, 34 

for example).  35 
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 36 

 37 

Supplementary Figure 3. Augmentation pipeline for network training. a, Flowchart of augmentation 38 

pipeline used to generate distorted frames during network training. b, Examples of distorted labeling frames 39 

generated by augmentation pipeline, as well as corresponding body part targets and affinity fields used during 40 

training.    41 
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 42 

Supplementary Figure 4. Loss function calculation details. a, Shortest distance to surface of an ellipsoid,  43 

𝑑𝑑, and our approximation, 𝑑̃𝑑. b, 𝑑̃𝑑 is a good approximation to 𝑑𝑑. Color map, value of 𝑑𝑑/𝑑̃𝑑. White line, ellip-44 

soid surface. c, The loss function, ρ, associated with the pointcloud is the mean absolute error of the distance 45 

estimate, truncated at +/- 3.0 cm d, Pixel density of the point-cloud depends on distance to the fixed-resolution 46 

depth cameras. e, Pixel density is inversely proportional to the square of the distance to depth camera. f, 47 

Overlap barrier spheres (implant sphere and spheres centered on the body ellipsoids with a radius equal to the 48 

minor axis). g, Example of mirror symmetric body position (side-by-side, facing same direction), resulting in 49 

ambiguity in animal identity if only one frame is considered. h, To include the context of previous frames, we 50 
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add an overlap loss penalty (similar to f) between each mouse and the position of the interaction partner in 51 

the previous frame. In panel g, right, we would add a penalty term to the particle representing joint body pose. 52 

In contrast, in panel g, left, this penalty is zero as there is no overlap with the position of the conspecific in 53 

the previous frame.   54 
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 55 

Supplementary Figure 5. Quasi-random particle filter exploration strategy. a, Left, 3D plot. Middle, 2D 56 

projection plots of three random variables, drawn from independent uniform distributions. Points in 3D space 57 

do not fill space well; in the 2D projections, there are squares (i.e., full rows, columns and pipes) of the 3D 58 

space not sampled at all (dashed lines). Right, partitioning space in 20%-cubes (green lines), only 76.8 % of 59 

cubes are occupied. b, Same as a, but variables are drawn from quasi-random Sobol sequence (Sobol, 1967). 60 

Points are more evenly dispersed in space, and 90.4% of all 20%-cubes are sampled. c, Mean discrepancy as 61 

function of sample number, for 3-dimensional (like panels a,b) uniform random sequence and a Sobol se-62 

quence, calculated across 100 random sequences. The Sobol sequences have a lower discrepancy, i.e. sample 63 

more regions of space. d, Same as c, but for 17-dimensional variables (like our joint body posture particles).   64 
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 65 

Supplementary Figure 6. State space filtering of tracked body models. a, Estimated 3D locations of body 66 

model surfaces (wireframes, left) and skeletons (dots and lines, right) for an example frame. b, Fitted joint 67 

pose parameters for the two mouse body models (left, 100 s snippet) and corresponding 3D coordinates of the 68 

body skeleton points, and the spine scaling, s, for the implanted mouse (right, same 100 s). c, Raw 3D rotation 69 

angle of the nose ellipsoid of the implanted animal (axis-angle representation), recalculated 3D rotation angles 70 
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from the filtered skeleton points, and final 3D rotation angles after quaternion smoothing (note the smoothing 71 

our of noise, indicated by arrow). d, Recalculated c_nose and c_tail from the smoothed 3D rotations and 72 

smoothed spine scaling. e, Example frame before (left) and after state space filtering of the tracked data (right).    73 
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 74 

Supplementary Figure 7. Implant-to-nose distance demonstrates that there are no swapped identities. 75 

a, Schematic showing two common errors in tracking algorithms: Swapped identities and swapped directions. 76 

When the mice approach each other, their point clouds will merge. Because resolution and frame rates are 77 

limited, it can be hard to estimate body postures in this configuration. For example, if the tracking algorithm 78 

is not properly spatiotemporally regularized, the algorithm might mistakenly swap mouse identities, such that 79 

the mice appear to be running backwards (shown in bottom row). Direction swaps and identity swaps can also 80 

happen independently. For example, when mice are allogrooming, or passing over/under each other, identities 81 

might swap, but both mice can still appear to run normally with no apparent errors. Conversely, when a mouse 82 

is self-grooming, their point-cloud essentially resembles a ball, and when they start moving again, it may not 83 

be clear if they are ‘really’ moving forward or backwards. b, For all frames, we calculated the distance be-84 

tween implant key-points and the centroid of both nose ellipsoids. c, If there is an identity swap of the mice, 85 
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this is will be evident in the distance between the implant key-points and the head of both mice. In correct 86 

tracking (top row), implant body model always follows the same mouse. In tracking with mistakes (bottom 87 

row), implant will switch from being close to one mouse, to being close to the other mouse. d, The head-to-88 

head (nose-centroid-to-nose-centroid) distance for the two mice, across the session. The mice often closely 89 

interact (low head-to-head distance), allowing for potential identity swaps. e, Distance between implant key-90 

points and the nose centroid for both mice, across the session. The implant key-points are always near mouse0 91 

and there are no identity swaps. f, The actual implant-key-point to implant-skeleton-point distance for mouse 92 

0, across the session, is lower than the distance to the centroid of the nose ellipsoid.  93 
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 94 

Supplementary Figure 8. Calculation of movement speed in egocentric coordinates. a, Running behav-95 

ior of the two mice (centroid of the hip ellipsoid) across the behavioral session, shown in 2D (top-down 96 

view) and 3D. b, Running speed decomposed into two components, ‘forward speed’ (v_fwd, projected onto 97 

the orientation of the hip ellipsoid) and ‘left speed’ (v_orthog, the orthogonal component). c, In correct 98 

tracking (top row), running bouts will have positive forward speed. If there is a mistake in the tracking (bot-99 

tom row), such that the mouse body model has switched direction, the mouse will appear to be ‘running 100 
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backwards’. d, Top to bottom: The x,y,z-coordinates of the position (c_hip) of the mouse at each tracked 101 

frame, the change in position between frames, the forward speed, and the left speed. The four rows are re-102 

peated for both mice. There are no direction swap mistakes, and across the whole session, both mice only 103 

displayed bouts of forward running (confirmed by visual inspection of raw video).  104 
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 105 
Supplementary Figure 9. Manual error checking. a, By manual inspection of 500 frames, we detected one 106 

tracking error. b, Median point-cloud residual (top) and number of point-cloud points with a residual larger 107 

than the cutoff (bottom, cut = 0.03 m) across an example 21 min recording. These traces show two anomalies: 108 

One tracking error (around frame 17000, the error we also detected by manual inspection of the 500 frames) 109 

and one depth camera artifact (tracking was fine, but a ghostly artifact showed up in the point-cloud for few 110 
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a seconds. Due to the of the robust loss function, tracking was not distorted by the artifact). c, Ten example 111 

frames showing the tracking error (0.5 s between frames, indicated by vertical lines in panel b). Note that 112 

after the error, the particle filter quickly recovers to correct tracking again. d, Ten example frames showing 113 

the depth camera artifact.  114 
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 115 

Supplementary Figure 10. Bayesian modeling and automatic classification of behavioral states. a, Gen-116 

erative model fit to the running behavior to automatically classify behavioral states. The model is a hidden 117 

Markov model with discrete latent states (circles), and each state emits a forward speed and a left speed, 118 

drawn from a two-dimensional gaussian distribution with a full covariance matrix. b, The generative model 119 

expressed as equations, showing Bayesian priors for estimating the parameters. c, Joint distribution (on a log-120 

scale) of the forward speed and left speed, for both mice, across an entire behavioral session. d, Initial position 121 
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for the variation inference, for the model of forward and left speed. Crosses, cluster centers and standard 122 

deviations (calculated independently for fwd/left speed) for clusters assigned by k-means clustering into 5 123 

clusters. Dots, individual samples of fwd/left speed (colors indicate clusters, every 50th sample is show). e, 124 

Bayesian model was fitted to a subset of the data (5 mins), split and run in parallel on 10-s sequences. The 125 

plot shows example 10-s sequences. f, Joint distribution (on a log-scale) of the forward speed and left speed, 126 

for the training data, overlayed with the cluster centers and standard deviations from all data (i.e., from d). 127 

Training data cover same velocity space as the whole session (compare with a). g, Convergence plot showing 128 

the decrease in model loss (increased evidence lower bound) across iterations for the training data. h, Loca-129 

tions and covariance ellipsoids (indicating three standard deviations) for the gaussian emission distributions 130 

associated with the five latent states, after model fitting. The five clusters are easily interpretable, and the 131 

labels are shown on the right. j, Initial position for the variation inference for the up speed. Distribution of the 132 

up speed (grey bars), as well as the center and standard deviation of three clusters (colored bars and dots), 133 

assigned by k-means clustering. i, Automatically assigned states (by maximum a posterior probability) to an 134 

example sequence of forward and left speed. k,l,m,n, same as e,g,h,i, but for the model fitting of the emission 135 

gaussians (in one dimension) of the up speed. o, Transition probabilities between latent states, for both for-136 

ward/left speed and up speed models. The sample rate is 60 frames/s, so – since behavioral states are longer 137 

than that – the self-transition probabilities (diagonals) are very high. p, As o, but without showing the self-138 

transition probabilities (the diagonals, crossed out). These matrices have understandable structure. For exam-139 

ple, in the left matrix, the most likely transition from “rest” is to “slow forward”. From “slow forward”, the 140 

mouse is likely to transition to “turning left”, “fast forward” or “turning right”. It is very unlikely to transition 141 

directly from “fast forward” to “rest” or from “turning left” to “turning right”. From the right matrix, we can 142 

see that it is unlikely to transition directly from “rear up” to “rear down”, it is more probable to have a period 143 

of “rest” in between.  144 
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 145 

Supplementary Figure 11. Estimation of 3D heading direction in the partner animal, part I. a, We use 146 

the 3D position of the ear keypoints to determine the 3d head direction of the partner animal. We assign the 147 

ear keypoints to a mouse body model by caculating the distance from each keypoint to the center of the nose 148 

ellipsoid of both animals. b, To estimate the 3D head direction, we calculate the unit rejection (v_rej) between 149 

a unit vector along the nose ellipsoid (v_nose) and a unit vector from the neck joint (c_mid) to the average 150 

3D position of the ear keypoints that are associated with that mouse (v_ear_direction). c, The distance from 151 

all ear keypoints to the center of the nose ellpsoid, for both mice, for an example portion of the recording 152 

session. d, The distance from ear keypoints to the center of the nose ellpsoid, only showing the keypoints that 153 

we estimate to be associated with each mouse. e, Estimated mean 3D position of the ear keypoints associated 154 

with the partner animal (‘Mouse 1’).Top to bottom: Raw 3D position of all keypoints, mean position using 155 

linear interpolation, smoothed with a Gaussian kernel (\sigma = XX frames). f, The z-component of v_ear_di-156 

rection and v_rej. The z-component is high, indicating that the ears are on the dorsal side of the head ellipsoid. 157 
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When the mouse is running on the groung, both v_ear_direction and v_rej have high z-components (marked 158 

with rightmost arrow), but when the mouse is rearing and tilting the head backwards, v_rej will be more in 159 

the xy-plane, and have a low z-component (marked with leftmost arrow). g, The 3D body positions, of the 160 

frames indicated by arrows in panel f.  161 
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 162 

Supplementary Figure 12. Estimation of 3D heading direction in the partner animal, part II. a, The joint 163 

distributions of the components of v_rej (Supplementary Fig. 9b) shows that mouse mostly keeps the ears 164 

horizontal, rarely tilting the head more than 17 degrees towards the left or right. As also shown in Supple-165 

mentary Fig 9f-g, the z-component is mostly close to 1 (pointing straight up), but sometimes smaller, closer 166 

to 0 (meaning that the nose is pointing up towards the sky). b, We can dig in to the details of the 3D head 167 

direction behavior. For example, we can decide to only look at the head direction, when the z-coordinate of 168 

the neck (z_mid) is high (i.e. when the mouse is rearing). Here we find a clear negative correlation between 169 

the z-component of v_rej and z_mid, which matches the visual inspection of the videos: When the mouse 170 

rears up or climbs up against the walls of the transparent social arena, the head tilts back to extend the nose 171 

upwards.  172 
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SUPPLEMENTARY VIDEOS 173 

 174 
Supplementary Video 1. Pre-processing pipeline. 175 
 176 

 177 
Supplementary Video 2. Particle filter behavior. 178 
 179 

 180 
Supplementary Video 3. State-space filtering. 181 
 182 

 183 
Supplementary Video 4. Social events. 184 
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