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Abstract: 

Intracortical brain-computer interfaces (iBCIs) have the potential to restore hand grasping and 
object interaction to individuals with tetraplegia.  Optimal grasping and object interaction require 
simultaneous production of both force and grasp outputs.  However, since overlapping neural 
populations are modulated by both parameters, grasp type could affect how well forces are 
decoded from motor cortex in a closed-loop force iBCI. Therefore, this work quantified the 
neural representation and offline decoding performance of discrete hand grasps and force levels 
in two participants with tetraplegia.  Participants attempted to produce three discrete forces 
(light, medium, hard) using up to five hand grasp configurations.  A two-way Welch ANOVA was 
implemented on multiunit neural features to assess their modulation to force and grasp.  
Demixed principal component analysis was used to assess for population-level tuning to force 
and grasp and to predict these parameters from neural activity.  Three major findings emerged 
from this work:  1) Force information was neurally represented and could be decoded across 
multiple hand grasps (and, in one participant, across attempted elbow extension as well); 2) 
Grasp type affected force representation within multi-unit neural features and offline force 
classification accuracy; and 3) Grasp was classified more accurately and had greater 
population-level representation than force.  These findings suggest that force and grasp have 
both independent and interacting representations within cortex, and that incorporating force 
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control into real-time iBCI systems is feasible across multiple hand grasps if the decoder also 
accounts for grasp type. 

Significance Statement 

Intracortical brain-computer interfaces (iBCIs) have emerged as a promising technology to 
potentially restore hand grasping and object interaction in people with tetraplegia.  This study is 
among the first to quantify the degree to which hand grasp affects force-related – or kinetic – 
neural activity and decoding performance in individuals with tetraplegia.  The study results 
enhance our overall understanding of how the brain encodes kinetic parameters across varying 
kinematic behaviors -- and in particular, the degree to which these parameters have 
independent versus interacting neural representations.  Such investigations are a critical first 
step to incorporating force control into human-operated iBCI systems, which would move the 
technology towards restoring more functional and naturalistic tasks. 

 

Introduction 

Intracortical brain-computer interfaces (iBCIs) have emerged as a promising technology to 
restore upper limb function to individuals with paralysis.  Traditionally, iBCIs decode kinematic 
parameters from motor cortex to control the position and velocity of end effectors.  These iBCIs 
evolved from the seminal work of Georgopoulos and colleagues, who proposed that motor 
cortex encodes high-level kinematics, such as continuous movement directions and three-
dimensional hand positions, in a global coordinate frame (Georgopoulos et al., 1982; 
Georgopoulos et al., 1986).  Kinematic iBCIs have successfully achieved control of one- and 
two-dimensional computer cursors (Wolpaw et al., 2002; Leuthardt et al., 2004; Kubler et al., 
2005; Hochberg et al., 2006; Kim et al., 2008; Schalk et al., 2008; Hermes et al., 2011; Kim et 
al., 2011; Simeral et al., 2011);  prosthetic limbs (Hochberg et al., 2012; Collinger et al., 2013; 
Wodlinger et al., 2015); and paralyzed arm and hand muscles (Bouton et al., 2016; Ajiboye et 
al., 2017). 
 
While kinematic iBCIs can restore basic reaching and grasping movements, restoring the ability 
to grasp and interact with objects requires both kinematic and kinetic (force-related) information 
(Chib et al., 2009; Flint et al., 2014; Casadio et al., 2015).  Specifically, sufficient contact force is 
required to prevent object slippage; however, excessive force may cause mechanical damage 
to graspable objects (Westling and Johansson, 1984). Therefore, introducing force calibration 
capabilities during grasp control would enable iBCI users to perform more functional tasks. 
 
Early work by Evarts and others, which showed correlations between cortical activity and force 
output (Evarts, 1968; Humphrey, 1970; Fetz and Cheney, 1980; Evarts et al., 1983; Kalaska et 
al., 1989), and later work, which directly decoded muscle activations from neurons in primary 
motor cortex (M1) (Morrow and Miller, 2003; Sergio and Kalaska, 2003; Pohlmeyer et al., 2007; 
Oby et al., 2010), suggest that cortex encodes low-level dynamics of movement along with 
kinematics (Kakei et al., 1999; Carmena et al., 2003; Branco et al., 2019).  However, 
explorations of kinetic information as a control signal for iBCIs have only just begun.  The 
majority have characterized neural modulation to executed kinetic tasks in primates and able-
bodied humans (Filimon et al., 2007; Moritz et al., 2008; Pohlmeyer et al., 2009; Ethier et al., 
2012; Flint et al., 2012; Flint et al., 2014; Flint et al., 2017; Schwarz et al., 2018).  Small subsets 
of M1 neurons have been used to command muscle activations through FES to restore one-
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dimensional wrist control and whole-hand grasping in non-human primates with temporary 
motor paralysis (Moritz et al., 2008; Pohlmeyer et al., 2009; Ethier et al., 2012).  More recent 
intracortical studies demonstrated that force representation is preserved in individuals with 
chronic tetraplegia (Downey et al., 2018; Rastogi et al., 2020). 
 
Intended forces are usually produced in the context of task-related factors, including grasp 
postures used to generate forces (Murphy et al., 2016).  The representation and decoding of 
grasps – independent of forces – has been studied extensively in non-human primates (Stark 
and Abeles, 2007; Stark et al., 2007; Vargas-Irwin et al., 2010; Carpaneto et al., 2011; 
Townsend et al., 2011; Hao et al., 2014; Schaffelhofer et al., 2015) and humans (Pistohl et al., 
2012; Chestek et al., 2013; Bleichner et al., 2014; Klaes et al., 2015; Bleichner et al., 2016; Leo 
et al., 2016; Branco et al., 2017). Importantly, previous studies suggest that force and grasp are 
encoded by overlapping populations of neural activity (Sergio and Kalaska, 1998; Carmena et 
al., 2003; Sergio et al., 2005; Sburlea and Muller-Putz, 2018).  While some studies suggest that 
force is encoded at a high level independent of motion and grasp (Chib et al., 2009; Hendrix et 
al., 2009; Pistohl et al., 2012; Intveld et al., 2018), others suggest that it is encoded at a low 
level intertwined with grasp (Hepp-Reymond et al., 1999; Degenhart et al., 2011). Thus, the 
degree to which intended hand grasps and forces interact within the neural space, and how 
such interactions affect force decoding performance, remain unclear.  To our knowledge, these 
scientific questions have not been explored in individuals with tetraplegia, who constitute a 
target population for iBCI technologies. 
 
To answer these questions, we characterized the extent to which three discrete, attempted 
forces were neurally represented and offline-decoded across up to five hand grasp 
configurations in two individuals with tetraplegia.  Our results suggest that force has both grasp-
independent and grasp-dependent (interacting) representation in motor cortex.  Additionally, 
while this study demonstrates the feasibility of incorporating discrete force control into human-
operated iBCIs, these systems will likely need to incorporate grasp and other task parameters to 
achieve optimal performance. 
 
 

Materials and Methods 

Study permissions and participants: 

Study procedures were approved by the US Food and Drug Administration (Investigational 
Device Exemption #G090003) and the Institutional Review Boards of University Hospitals Case 
Medical Center (protocol #04-12-17), Stanford University (protocol #20804), and Massachusetts 
General Hospital (2011P001036). The present study collected neural recordings from 
participants enrolled in the BrainGate2 Pilot Clinical Trial (ClinicalTrials.gov number 
NCT00912041).  The current work utilized the recording opportunity afforded by the BrainGate2 
Pilot Clinical Trial but reports no clinical trial outcomes or endpoints.  Informed consent, 
including consent to publish, was obtained from the participants prior to their enrollment in the 
study. 

This present study includes data from two participants with chronic tetraplegia.  Both 
participants had two, 96-channel microelectrode intracortical arrays (1.5 mm electrode length, 
Blackrock Microsystems, Salt Lake City, UT) implanted in the hand and arm area (“hand knob”) 
(Yousry et al., 1997) of dominant motor cortex.  Participant T8 was a 53-year-old right-handed 
male with C4-level AIS-A spinal cord injury 8 years prior to implant; and T5 was a 63-year-old 
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right-handed male with C4-level AIS-C spinal cord injury.  More surgical details can be found at 
(Ajiboye et al., 2017) for T8 and (Pandarinath et al., 2017) for T5. 

Participant Task: 

The goal of this study was to measure the degree to which various hand grasps affect decoding 
of grasp force from motor cortical spiking activity.  To this end, participants T8 and T5 took part 
in several research sessions in which they attempted to produce three discrete forces (light, 
medium, hard) using one of four designated hand grasps (closed pinch, open pinch, ring pinch, 
power).  T8 completed six sessions between trial days 735-956 relative to the date of his 
microelectrode array placement surgery; and T5 completed one session on trial day 390.  
During Session 5, participant T8 completed five additional blocks in which he attempted to 
produce discrete forces during attempted elbow extension.  Table 1 lists all relevant sessions 
and their associated task parameters. 

Session 
No. 

Participant 
Post-Implant 
Day 

No. Blocks Per Grasp 
Closed 
Pinch 

Open 
Pinch 

Ring 
Pinch 

Power Elbow 

1 T8 Day 735 11   10  

2 T8 Day 771 5 5 5 5  

3 T8 Day 774 6 5 5 5  

4 T8 Day 788 5 5 5 5  

5 T8 Day 802 4 4 4 4 5 

6 T8 Day 956 4 4 4 4  

7 T5 Day 390 4 4 4 4  

Table 1. Session information.  Session information for participants T8 and T5, including the number of blocks per 
grasp type. 

Each research session consisted of multiple 4-minute data collection blocks, which were each 
assigned to a particular hand grasp, as illustrated in Figure 1B.  Blocks were presented in a 
pseudorandom order, in which hand grasps were assigned randomly to each set of two 
(Session 1), four (Sessions 2-4, 6-7), or five (Session 5) blocks.  This allowed for an equal 
number of blocks per hand grasp, distributed evenly across the entire research session. 

All blocks consisted of approximately 20 trials, which were presented in a pseudorandom order 
by repeatedly cycling through a complete, randomized set of force levels until the end of the 
block.  During each trial, participants used kinesthetic imagery (Stevens, 2005; Mizuguchi et al., 
2017) to internally emulate one of three discrete force levels, or rest, with the dominant hand. 
Participants received simultaneous audio and visual cues indicating which force to produce, 
when to produce it, and when to relax.  Participants were visually cued by observing a 
researcher squeeze one of nine graspable objects corresponding to light, medium, and hard 
forces (no object was squeezed during “rest” trials), as shown in Figure 1B.  The participants 
were asked to “follow along” and attempt the same movements that the researcher was 
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demonstrating. The graspable objects were grouped into three sets of three, corresponding to 
forces embodied using a power grasp (sponge = light, stress ball = medium, tennis ball = hard); 
a pincer grasp (cotton ball = light, nasal aspirator tip = medium, eraser = hard); or elbow 
extension (5-lb dumbbell = light, 10-lb dumbbell = medium, 15-lb dumbbell = hard).  During the 
prep phase, which lasted a pseudo-randomly determined period between 2.7 and 3.3 seconds 
to reduce confounding effects from anticipatory activity, the researcher presented an object 
indicating the force level to be attempted.  The researcher then squeezed the object (or lifted 
the object, in the case of elbow extension) during the go phase (3-5 seconds), and finally 
released the object at the beginning of the stop phase (5 seconds). 

Neural Recordings 

Pre-processing 

In both participants, each intracortical microelectrode array was attached to a percutaneous 
pedestal connector on the head.  Cables connected the pedestals to amplifiers (Blackrock 
Microsystems, Salt Lake City, UT) that bandpass filtered (0.3 Hz – 7.5 kHz) and digitized (30 
kHz) the neural signals from each channel on the microelectrode array.  These digitized signals 
were pre-processed in Simulink using the xPC real-time operating system (The Mathworks Inc., 
Natick, MA, US).  Each channel was bandpass filtered (250-5000 Hz), common average 
referenced (CAR), and down-sampled to 15 kHz in real time.  CAR was implemented by 
selecting 60 channels from each microelectrode array that exhibited the lowest variance, and 
then averaging these channels together to yield an array-specific common average reference.  
This reference signal was subtracted from the signals from all channels within each of the 
arrays. 

Extraction of Neural Features 

From each filtered, CAR channel, two neural features were extracted in real time using the xPC 
operating system unsorted threshold crossing (TC) and spike band power (SBP) features, from 
non-overlapping 20 millisecond time bins, as illustrated in Figure 1A.  TC features were defined 
as the number of times the voltage on each channel crossed a predefined noise threshold 
(Christie et al, 2015) within each time bin (-4.5 x root mean square voltage).  Root mean square 
(RMS) voltage was calculated from one minute of neural data recorded at the beginning of each 
research session.  SBP features were defined as the RMS of the signal in the spike band (250-
5000 Hz) of each channel, time-averaged within each time bin.  These calculations yielded 384 
neural features per participant, which were used for offline analysis without spike sorting 
(Trautmann et al., 2019).  All features were normalized by subtracting the block-specific mean 
activity of the features within each recording block, in order to minimize non-stationarities in the 
data. 

Unless otherwise stated, all subsequent offline analyses of neural data were performed using 
MATLAB software. 

Characterization of Individual Neural Feature Tuning 

The first goal of this study was to determine the degree to which force- and grasp-related 
information are represented within individual TC and SBP neural features. Specifically, neural 
activity resulting from three discrete forces and two (Session 1), four (Sessions 2-4, 6-7), or five 
(Session 5) grasps, resulted in 6, 12 or 15 conditions of interest per session.  See Table 1 for a 
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list of grasps included for each individual research session.  To visualize individual feature 
responses to force and grasp, each feature’s peristimulus time histogram (PSTH) was 
computed for each of these conditions by averaging the neural activity over go cue-aligned 
trials.  These trials were temporally smoothed with a Gaussian kernel (100-ms standard 
deviation) to aid in visualization. 

To determine how many of these individual features were tuned to force and/or grasp, statistical 
analyses were implemented in MATLAB and with the WRS2 library in the R programming 
language (Wilcox, 2017).  Briefly, features were pre-processed in MATLAB to compute each 
feature’s mean go-phase deviation from baseline during each trial.  Baseline activity was 
computed by averaging neural activity across multiple rest trials. 

In R, the distribution of go-phase neural deviations was found to be normal (analysis of Q-Q 
plots and Shapiro-Wilk tests, p < 0.05) but heteroskedastic (Levene’s test, p < 0.05), 
necessitating a 2-way Welch ANOVA analysis to determine neural tuning to force, grasp, and 
their interaction (p < 0.05).  Features exhibiting an interaction between force and grasp were 
further separated into individual grasp conditions (closed pinch, open pinch, ring pinch, power, 
elbow), within which one-way Welch-ANOVA tests were implemented to find interacting features 
that were tuned to force.  All p values were corrected for multiple comparisons using the 
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). 

Neural Population Analysis and Decoding 

The second goal of this study was to determine the degree to which force and grasp are 
represented within – and can be decoded from – the level of the neural population.  Here, the 
neural population was represented using both traditional and demixed principal component 
analysis (PCA). 

Visualizing Force Representation with PCA 

In order to visualize how consistently forces were represented across different grasps, neural 
activity collected during Sessions 5 and 7 were graphically represented within a low-dimensional 
space found using PCA.  Notably, during Session 5, participant T8 attempted to produce three 
discrete forces not only with several grasps, but also with an elbow extension movement.  
Therefore, two sets of PCA analyses were implemented on the data.  The first, which was 
applied to both sessions, performed PCA on all force and grasp conditions within the session.  
In the second analysis specific to Session 5 only, PCA was applied solely on power grasping 
and elbow extension trials in order to elucidate whether forces were represented in a consistent 
way across the entire upper limb.  For both analyses, the PCA algorithm was applied to neural 
feature activity that was averaged over multiple trials and across the go phase of the task.  

The results of each decomposition were plotted in a low-dimensional space defined by the first 
two principal components.  The force axis within this space, given by Equation 1, was estimated 
by applying multi-class linear discriminant analysis (LDA) (Juric, 2020) to the centered, force-
labelled PCA data, and then using the largest LDA eigenvector as the multi-dimensional slope 
m of the force axis.  Here, PCscore is the principal component score or representation of the 
neural data in PCA space and f is the intended force level.  A consistent force axis across 
multiple grasps within PCA space would suggest that forces are represented in an abstract (and 
thus grasp-independent) manner.   
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𝑷𝑪𝒔𝒄𝒐𝒓𝒆 ൌ 𝒎𝑓    ሺ1ሻ 

 

Demixed Principal Component Analysis  

The remainder of population-level analysis was implemented using demixed principal 
component analysis (dPCA).  dPCA is dimensionality reduction technique that, similarly to 
traditional PCA, decomposes neural population activity into a few components that capture the 
majority of variance in the source data (Kobak et al., 2016).  Unlike traditional PCA, which yields 
principal components (PCs) that capture signal variance due to multiple parameters of interest, 
dPCA performs an ANOVA-like decomposition of data into task-dependent dimensions of neural 
activity.  Briefly, the matrix X of neural data is decomposed into trial-averaged neural activity 
explained by time (t), various task parameters (T8, T5), their interaction (T8T5), and noise, 
according to Equation 2.  Next, dPCA finds separate decoder (D) and encoder (E) matrices for 
each marginalization M by minimizing the loss function L exhibited in Equation 3. 

𝑿 ൌ 𝑿𝒕 ൅ 𝑿𝒑𝟏 ൅ 𝑿𝒑𝟐 ൅ 𝑿𝒑𝟏𝒑𝟐 ൅ 𝑿𝒏𝒐𝒊𝒔𝒆 ൌ෍𝑿𝑴 ൅ 𝑿𝒏𝒐𝒊𝒔𝒆
ெ

 ሺ2ሻ 

𝐿 ൌ෍‖𝑿𝑴 െ 𝑬𝑴𝑫𝑴𝑿‖𝟐

𝑴

 ሺ3ሻ 

The resulting demixed principal components (dPCs), obtained by multiplying the neural data X 
by the rows of each decoder matrix DM, are, in theory, de-mixed, in that the variance explained 
by each component is due to a single, specific task parameter M.  These dimensions of neural 
activity not only reveal population-level trends in neural data, but they can also be used to 
decode task parameters of interest (Kobak et al., 2016). 

Single dPCA Component Implementation 

In the present study, the task parameters of interest were force and grasp.  Here, one goal was 
to use variance as a metric to quantify the degree to which force and grasp were represented 
within the neural population as a whole. Therefore, for each research session listed in Table 1, 
the neural data X was temporally smoothed using a Gaussian filter (100 millisecond standard 
deviation) and decomposed into neural activity that varied with four marginalizations XM, as per 
Equation 2:  time (condition independent), force, grasp, and an interaction between force and 
grasp.  The variance that each marginalization accounted for was computed as the sum of 
squares of the mean-centered neural data contained within the marginalization. 

An additional goal was to isolate neural components that contained useful information about 
force and grasp, i.e., components that would enable discrimination between individual force 
levels and grasp types.  First, dPCA was used to reduce each of the four, 384-dimensional, 
mean-centered marginalizations XM into 20 dPCs, as described by Equation 3.  This yielded 80 
dPCs across all four marginalizations.  Second, the variances accounted for by each of the 80 
components were computed as the sum of squares.  Third, the top 20 out of 80 components 
with the highest variance were selected as representing the majority of variance in the neural 
dataset and were assembled into a decoder matrix D.  Finally, each of these top 20 components 
was assigned to one of the four marginalizations of interest according to the marginalization 
from which it was extracted.  For example, dPCs that were extracted from the force 
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marginalization Xforce were deemed as force-tuned dPCs; those extracted from the grasp 
marginalization Xgrasp were deemed as grasp tuned dPCs; and those extracted from the 
marginalization XF/G representing an interaction between force and grasp were deemed as 
interacting dPCs. 

Each dPC’s information content was further quantified in two ways.  First, in order to assess the 
degree to which dPCs were demixed, each dPC’s variance was subdivided into four sources of 
variance corresponding to each of the four marginalizations of interest, as per Equation 2.  
Second, the decoder axis associated with each dPC was used as a linear classifier to decode 
intended parameters of interest.  Specifically, each force-tuned dPC was used to decode force 
at every time point of the behavioral task, while each grasp-tuned dPC was used to decode 
grasp, but not force.  Likewise, components that exhibited an interaction between force and 
grasp were used to decode force-grasp pairs.  Condition-independent dPCs, which were tuned 
to time, were not used to decode force or grasp from the neural activity. 

Linear classification was implemented using 100 iterations of stratified Monte Carlo leave-group-
out cross-validation (Kobak et al., 2016).  During each iteration, one random group of F x G test 
“pseudo-trials,” each corresponding to one of the several force-grasp conditions, was set aside 
during each time point (F = number of intended forces, G = number of intended grasps).  Next, 
dPCA was implemented on the remaining trials, and the decoder axes of the resulting dPCs 
were used to predict the intended forces or intended grasps indicated by the test set of pseudo-
trials at each time point.  This was accomplished by first computing mean dPC values for each 
force-grasp condition, separately for each time point; projecting the F x G “pseudo-trials” onto 
the decoder axes of the dPCs at each time point; and then classifying the pseudo-trials 
according to the closest class mean (Kobak et al., 2016).  The proportion of F x G pseudo-trials 
correctly classified across 100 iterations at each time point constituted a time-dependent 
classification accuracy.  Chance performance was computed by performing 100 shuffles of all 
available trials, randomly assigning force or grasp conditions to the shuffled data, and then 
performing the same cross-validated classification procedure within each of the 100 shuffles.  
Classification accuracies that exceeded the upper range of chance performance were deemed 
significant. 

Force and Grasp Decoding Using Multiple dPCs 

Two additional goals of this study were to determine whether intended forces could be 
accurately predicted from neural population data and whether these predictions depended on 
hand grasp configuration.  To this end, dPCs that were tuned to force, grasp, and an interaction 
between force and grasp were used to construct multi-dimensional force and grasp decoders 
within each session.  Specifically, the force decoder was constructed by combining the decoding 
axes of force-tuned and interacting components into a single, multi-dimensional decoder DF; 
likewise, the grasp decoder DG was constructed by combining the decoding axes of grasp-tuned 
and interacting components. 

Each of these decoders was used to perform 40 runs of linear force and grasp classification for 
each of S research sessions per participant, implemented using the aforementioned stratified 
Monte Carlo leave-group-out cross-validation procedure (S = 6 for T8; S = 1 for T5).  As in the 
single component implementation (Kobak et al., 2016), each run was accomplished in multiple 
steps.  First, the mean values of all dPCs included within the multi-dimensional decoder were 
computed for each force-grasp condition, separately for each time point.  Second, at each time 
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point, the F x G “pseudo-trials” were projected onto the multi-dimensional decoder axis and 
classified according to the closest class mean.  The proportion of test trials correctly classified at 
each time point over 100 iterations constituted a time-dependent force or grasp classification 
accuracy. 

The aforementioned computations yielded 40 x S time-dependent force and grasp classification 
accuracies per participant.  Session-averaged, time-dependent force and grasp classification 
accuracies were computed by averaging the performance over 240 session-runs for participant 
T8 (40 runs x 6 sessions) and 40 session-runs for participant T5 (40 runs x 1 session).  These 
averages were compared to chance performance, which was computed by performing 100 
shuffles of all trials, randomly assigning force or grasp conditions to the shuffled data, and then 
performing force and grasp classification on each of the shuffled datasets using the 
multidimensional decoders DF and DG.  Time points in which force or grasp classification 
exceeded the upper bound of chance were deemed to contain significant force-related or grasp-
related information. 

To visualize the degree to which individual forces and grasps could be discriminated, confusion 
matrices were computed over go-phase time windows during which the neural population 
contained significant force- and grasp-related information.  The time window began when 
session-averaged, time-dependent classification accuracy exceeded 90% of maximum achieved 
performance within the go phase, and ended at the end of the go phase.  First, classification 
accuracies for each of the S x 40 session-runs were approximated by averaging classification 
performance across the pre-specified go-phase time window.  These time-averaged accuracies, 
which are henceforth referred to as mean force and grasp accuracies, were next averaged over 
all S x 40 session-runs to yield confusion matrix data.  In this way, confusion matrices were 
computed to visualize force-related discriminability across all trials, force-related discriminability 
within individual grasp types, and grasp-related discriminability across all trials. 

Classification performances for individual forces and individual grasps were statistically 
compared using parametric tests implemented on mean force and grasp accuracies.  
Specifically, for each participant, mean classification accuracies for light, medium, and hard 
forces were compared by implementing one-way ANOVA across mean force accuracies from all 
S x 40 session runs.  The resulting p values were corrected for multiple comparisons using the 
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).  Likewise, mean classification 
accuracies for closed pinch, open pinch, ring pinch, power, and elbow “grasps” were compared 
by implementing one-way ANOVA across all mean grasp accuracies.  These comparisons were 
implemented to determine whether offline force and grasp decoding yielded similar versus 
different classification results across multiple forces and multiple grasps. 

Statistical analysis was also used to determine the degree to which grasp affected force 
decoding accuracy.  This was achieved by implementing two-way ANOVA on mean force 
accuracies that were labelled with the grasps that were used to emulate these forces.  The 
results of the two-way ANOVA showed a statistically significant interaction between force and 
grasp.  Therefore, the presence of simple main effects was assessed within each force level 
and within each grasp type.  Specifically, one-way ANOVA was implemented on mean 
accuracies within individual force levels to determine whether light forces, for example, were 
classified with similar degrees of accuracies across all grasp types.  Similarly, one-way ANOVA 
was implemented on mean accuracies within individual grasps to see whether intended forces 
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affected grasp classification accuracy.  P values resulting from these analyses were corrected 
for multiple comparisons using the Benjamini-Hochberg procedure. 

Finally, this study evaluated how well dPCA force decoders could generalize to novel grasp 
datasets in T8 Session 5 and T5 Session 7.  Specifically, within each session, a multi-
dimensional force decoder DF was trained on neural data generated during all but one grasp 
type, and then its performance was evaluated on the attempted forces emulated using the left-
out “novel” grasp.  To establish the generalizability of force decoding performance across many 
novel grasps, this analysis cycled through all available grasps attempted during Session 5 
(closed pinch, open pinch, ring pinch, power, elbow extension) and Session 7 (closed pinch, 
open pinch, ring pinch, power).  For each novel grasp, the trained decoder DF was used to 
perform 40 runs of stratified Monte Carlo leave-group-out cross-validated linear force 
classification on two sets of test data:  the “initial grasp” dataset, which originated from the 
grasps on which the force decoder was trained; the “novel grasp” dataset, which originated from 
the leave-out test grasp.  The resulting time-dependent, “initial grasp” and “novel grasp” 
decoding performances from the go-phase time window during above-90% classification 
accuracy were averaged over 40 runs and then compared using a standard T test.  P values 
resulting from the statistical analysis were corrected for multiple comparisons across forces and 
test grasps using the Benjamini-Hochberg procedure. 

Results 

Characterization of Individual Neural Features 

Figure 2 shows the activity of four exemplary features from session 5 chosen to illustrate tuning 
to force, grasp, both force and grasp independently, and an interaction between force and 
grasp, as evaluated with 2-way Welch-ANOVA (corrected p < 0.05, Benjamini-Hochberg 
procedure).  These features demonstrate neural modulation to forces that T8 attempted to 
produce using all five grasp conditions:  closed pinch, open pinch, ring pinch, power grasp, and 
elbow extension.  Figure 2-1 shows the activity of four additional features from participant T5.  
TC features are labelled from 1-192 according to the recording electrodes from which they were 
extracted.  Corresponding SBP features are labelled from 193-384. 

For each feature, column 1 shows neural activity that was averaged across grasp types (within 
force levels), resulting in trial-averaged feature traces whose differences in modulation were due 
to force alone.  Similarly, Column 2 shows neural activity averaged within individual hand 
grasps.  Here, SBP feature 302 exhibits modulation to force only (row 1), as indicated by 
statistically significant go-phase differentiation in activity across multiple force levels, but not 
across multiple grasp levels.  This force-only tuning is what might be expected for a “high-level” 
coding of force that is independent of grasp type. In contrast, TC feature 190 is statistically 
tuned to grasp only, in that it exhibits go-phase differentiation across multiple grasps, but not 
across multiple forces.  SBP feature 201, in which multiple forces and multiple grasps are 
statistically discriminable, is tuned to both force and grasp. 

Column 3 of Figure 2 displays a graphical representation of the simple main effects of the 2-way 
Welch-ANOVA analysis, as shown by mean go-phase neural deviations from baseline feature 
activity during the production of each individual force level using each individual grasp type.  
Here, SBP features 302 and 201, which were both tuned to force independent of grasp, showed 
similar patterns in modulation to light, medium, and hard forces within individual grasp types.  In 
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contrast, TC feature 83 was tuned to an interaction between force and grasp; accordingly, its 
modulation to light, medium, and hard forces varied according which grasp type the participant 
used to emulate these forces. This type of interaction is what might be expected for a more 
“motoric” encoding of force and grasp type. If each grasp requires a different set of muscles and 
joints to be active, then a motoric encoding of joint or muscle motion would end up representing 
force differently depending on the grasp.  

Figure 3 summarizes the tuning properties of all 384 TC and SBP neural features in participants 
T8 and T5, as evaluated with robust 2-way Welch-ANOVA.  Specifically, Figure 3A shows the 
fraction of neural features tuned to force, grasp, both force and grasp, and an interaction 
between force and grasp.  Features belonging to the former three groups (i.e., those that 
exhibited no interactions between force and grasp tuning) were deemed as independently tuned 
to force and/or grasp.  As shown in row 1, the proportion of features belonging to each of these 
groups varied considerably across experimental sessions.  However, during all sessions in both 
participants, a substantial proportion of features (ranging from 15.4-54.7% of the feature 
population across sessions) were tuned to force, independent of grasp.  In other words, a 
substantial portion of the measured neural population represented force and grasp 
independently. 

A smaller subset of features exhibited an interaction between force and grasp in both T8 (5.2 +/- 
4.2%) and T5 (13.8%).  Row 2 of Figure 3 further separates these interacting features into those 
that exhibited force tuning within each individual grasp type, as evaluated by one-way Welch-
ANOVA (corrected p < 0.05).  Here, the proportion of interacting features tuned to force 
appeared to depend on grasp type, particularly during sessions 2, 4, 5, 6, and 7, in a session-
specific manner.  In other words, within a small contingent of the neural feature population, force 
representation showed some dependence on intended grasp.  Taken together, Figure 3 
suggests that force and grasp are represented both independently and dependently within 
motor cortex at the level of individual neural features. 
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Figure 1A. Experimental setup (Reproduced from (Rastogi et al., 2020)). Participants had two 96-channel 
microelectrode arrays placed chronically in motor cortex, which recorded neural activity while participants completed 
a force task. Threshold crossing (TC) and spike band power (SBP) features were extracted from these recordings. B. 
Research session architecture. Each session consisted of 12-21 blocks, each of which contained ~20 trials (see 
Table 1). In each trial, participants attempted to generate one of three visually-cued forces with one of four grasps:  
power, closed pincer (c-pinch), open pinch (o-pinch), ring pinch (r-pinch).  During session 5, participant T8 also 
attempted force production using elbow extension.  Each trial contained a preparatory (prep) phase, a go phase 
where forces were actively embodied, and a stop phase where neural activity was allowed to return to baseline. 
Participants were prompted with both audio and visual cues, in which a researcher squeezed or lifted an object 
associated with each force level. 
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Figure 2. Exemplary threshold crossing (TC) and spike band power (SBP) features tuned to task parameters of 
interest in participant T8.  (TC and SBP features in participant T5 are illustrated in Figure 2-1.)  Rows indicate 
average per-condition activity (PSTH) of four exemplary features tuned to force, grasp, both factors, and an 
interaction between force and grasp, recorded during session 5 from participant T8 (2-way Welch-ANOVA, corrected 
p < 0.05, Benjamini-Hochberg method).  Neural activity was normalized by subtracting block-specific mean feature 
activity within each recording block, and then smoothed with a 100-millisecond Gaussian kernel to aid in visualization.  
Column 1 contains PSTHs averaged within individual force levels (across multiple grasps), such that observable 
differences between data traces are due to force alone.  Similarly, column 2 shows PSTHs averaged within individual 
grasps (across multiple forces).  Column 3 shows a graphical representation of the simple main effects as normalized 
mean neural deviations from baseline activity during force trials within each of the five grasps.  Mean neural 
deviations were computed over the go phase of each trial and subsequently averaged within each force-grasp pair.  
Error bars indicate 95% confidence intervals.   
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Figure 3. Summary of neural feature population tuning to force and grasp.  Row 1:  fraction of neural features 
significantly tuned to force, grasp, both force and grasp, and an interaction between force and grasp in participants 
T8 and T5 (2-way Welch-ANOVA, corrected p < 0.05).  Row 2:  Fraction of neural features significantly tuned to an 
interaction between force and grasp, subdivided into force-tuned features within each individual grasp (c-pinch = 
closed pinch, o-pinch = open pinch, r-pinch = ring pinch).  Note that the number of grasp types differed between 
sessions (see Table 1). 

 

Neural Population Analysis and Decoding 

Simulated Force Encoding Models 

The goal of this study was to clarify the degree to which hand grasps affect neural force 
representation and decoding performance, in light of conflicting evidence of grasp-independent 
(Chib et al., 2009; Hendrix et al., 2009; Pistohl et al., 2012; Intveld et al., 2018) versus grasp-
dependent (Hepp-Reymond et al., 1999; Degenhart et al., 2011) force representation in the 
literature.  Prior to visualizing population-level representation of force, we first illustrate these 
differing hypotheses with a toy example of expected grasp-independent versus grasp-
dependent (interacting) representations of force within the neural space.  Figure 4 simulates 
grasp-independent force encoding with an additive model, given by Equation 4, and grasp-
dependent force encoding with a scalar model, given by Equation 5. 

𝒙𝒊𝒋 ൌ 𝒈𝒊 ൅ 𝒇𝑠௝     ሺ4ሻ 

𝒙𝒊𝒋 ൌ 𝑠௝𝒈𝒊    ሺ5ሻ 

In these equations, xij is a vector of trial-averaged activity from 100 simulated neural features, 
generated during a particular grasp i and force j.  Here, gi is a 100 x 1 vector of normalized 
baseline feature activity during the grasp i, f is a 100 x 1 vector of normalized baseline neural 
feature activity during force generation, and sj is a discrete, scalar force level (1, 2 or 5).  The 
vectors gi and f contained values drawn from the standard normal distribution. 

Within the additive model in Equation 4, the overall neural activity xij is represented as a 
summation of independent force- and grasp-related contributions.  Thus, Equation 4 models 
independent neural force representation, in which force is represented at a high level 
independent of grasp.  In contrast, the scalar encoding model in Equation 5 models the neural 
activity xij as resulting from a multiplication of the force level sj and the baseline grasping activity 
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gi.  Such an effect might be expected if force were encoded as low-level tuning to muscle 
activity. In this case, different force levels would result in the same pattern of muscle activity 
being activated to a lesser or greater degree, thus scaling the neural activity associated with 
that grasp, resulting in a coupling between force and grasp.  Therefore, Equation 5 models an 
interacting (grasp-dependent) neural force representation. 

Row 2 of Figure 4 shows simulated neural activity resulting from the independent and 
interacting encoding models within two-dimensional PCA space.  In the independent model, 
force is represented in a consistent way across multiple simulated grasps, as indicated by the 
force axis.  In contrast, within the interacting model, force representation differs according 
grasp.  These differences are further highlighted in Row 3 of Figure 4, in which dPCA was 
applied to the simulated neural data (over 20 simulated trials) resulting from each model.  While 
the additive model exhibited no interaction-related neural variance, the scalar model yielded a 
substantial proportion of force, grasp, and interaction-related variance.  Note that within these 
toy models, the simulated neural activity did not vary over its time course and, thus, exhibited no 
condition-independent (time-related) variance. 

 

 

Figure 4. Simulated models of independent and interacting (grasp-dependent) neural representations of force.  Row 
1:  Equations corresponding to the independent and interacting models of force representation.  Here, xij represents 
neural feature activity generated during a particular grasp i and force j, gi represents baseline feature activity during 
grasp i, f represents force-related neural feature activity, and sj is a discrete force level.  Row 2:  Simulated 
population neural activity projected into a two-dimensional PCA space.  Estimated force axes within the low-
dimensional spaces are shown as blue lines.  Row 3:  Summary of variances accounted for by the top 20 demixed 
principal components extracted from the simulated neural data from each model.  Here, the variance of each 
individual component is separated by marginalization (force, grasp, and interaction between force and grasp).  Pie 
charts indicate the percentage of total signal variance due to these marginalizations.   
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Neural Population Analysis 
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Figure 5. Neural population-level activity patterns.  A.  Demixed principal components (dPCs) isolated from all force-
grasp conditions from T8 Session 5, all force-grasp conditions from T5 Session 7, and power versus elbow conditions 
from T8 Session 5 neural data.  (Additional sessions are shown in Figure 5-1). For columns 1 and 2, dPCs were 
tuned to four marginalizations of interest:  time (condition-independent tuning), force, grasp, and an interaction 
between force and grasp (f/grasp tuning).  For column 3, dPCs were tuned to time, force, movement, and an 
interaction between force and movement (f/movement tuning). dPCs that account for the highest amount of variance 
in the per-marginalization neural activity are shown here.  These variances are included in brackets next to each 
component number.  Vertical bars indicate the start and end of the go phase.  Horizontal bars indicate time points at 
which the decoder axes of the pictured components classified forces (row 2), grasps/movements (row 3), or force-
grasp/force-movement pairs (row 4) significantly above chance.  B.  Summary of variances accounted for by the top 
20 dPCs and PCs from each session.  Here, the variance accounted for by the dPCs approaches the variance 
accounted for by traditional PCs.  Horizontal dashed lines indicate total signal variance, excluding noise.  Row 2 
shows the variance of each individual component, separated by marginalization C.  Go-phase activity within a two-
dimensional PCA space.  Estimated force axes within the low-dimensional PCA spaces are shown as blue lines. 

 

Figure 5 shows neural population-level activity patterns during two sessions from participants T8 
and T5.  In the first two columns, dPCA and traditional PCA were applied to all force-grasp 
conditions in both participants.  In the third column, these dimensionality reduction techniques 
were applied solely to force trials attempted using the power grasping and elbow extension, in 
order to further quantify force representation across the entire upper limb. 

The twelve dPCs shown in Figure 5A explain the highest amount of variance within each of the 
four marginalizations of interest, for each participant.  For example, participant T8’s Component 
#4 (row 2, column 1) is the largest force-tuned component in the dataset and explains 3.3% of 
the neural data’s overall variance.  Similarly, T8’s Component #2 (row 3, column 1), which 
captures grasp-related activity, explains 8.1% of neural variance.  Horizontal black bars on each 
panel indicate time points at which individual dPC decoding axes predict intended forces (row 
2), grasps (row 3), and force-grasp pairs (row 4) more accurately than chance performance.  In 
both participants, single components were able to offline-decode intended forces at above-
chance levels solely during the active “go” phase of the trial, indicated by the vertical gray lines.  
However, grasp-tuned components were able to accurately predict intended grasps at nearly all 
time points during the trial, including the prep and stop phases.  These trends were observed 
when dPCA was applied across all force-grasp conditions (Columns 1 and 2) and across solely 
power and elbow trials in participant T8 (Column 3). 

Figure 5B summarizes the variance accounted for by the entire set of dPCs extracted from each 
dataset.  Specifically, the first row shows the cumulative variance captured by the dPCs (red), 
as compared to components extracted with traditional PCA (black). Here, dPCs extracted from 
different marginalizations were not necessarily orthogonal, and accounted for less cumulative 
variance than traditional PCs because the axes were optimized for demixing in addition to just 
capturing maximum variance.  However, the cumulative dPC variance approached total signal 
variance, as indicated by the dashed horizontal lines in each panel, and were thus deemed as a 
faithful representation of the neural population data. 

The second row of Figure 5B further subdivides the variances of individual dPCs into per-
marginalization variances.  Here, most of the variance in each extracted component can be 
attributed to one primary marginalization, indicating that the extracted components are fairly well 
demixed.  Pie charts indicate the percentage of total signal variance (excluding noise) due to 
force, grasp, force/grasp interactions, and condition-independent signal components.  In both 
participants, condition-independent components accounted for the highest amount of neural 
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signal variance, followed by grasp, then force, then force-grasp interactions.  In other words, 
more variance could be attributed to putative grasp representation than force representation at 
the level of the neural population.  Additionally, force-grasp and force-movement interactions 
only accounted for a small amount of neural variance, even when dPCA was applied solely 
across power grasping and elbow extension trials (Column 3).  Similar results were found when 
analyzing additional sessions, as shown in Figure 5-1. 

Finally, Figure 5C visualizes the trial-averaged, go-phase-averaged neural activity from each 
dataset within two-dimensional PCA space.  Within these plots, each data point represents the 
average neural activity corresponding to an individual force-grasp condition.  In all panels, light, 
medium, and hard forces, represented as different shapes within PCA space, aligned to a 
consistent force axis (shown in blue) across multiple grasps – and also across power grasping 
and elbow extension movements. 

The findings exhibited within Figures 5B and 5C closely resemble the simulation results from the 
additive force encoding model (Figure 4, Equation 4), which would be expected for grasp-
independent force representation.  However, these results differ slightly from those expected 
from the abstract model, in that some amount of interaction-related variance was present in 
Figure 5B, and that the force activity patterns in Figure 5C deviated to a small degree from the 
force axis.  These small deviations somewhat resemble the scalar encoding model (Figure 4, 
Equation 5), which would be expected for interacting force and grasp representations. 

Time-Dependent Decoding Performance 

Figure 6 summarizes the degree to which intended forces and grasps could be predicted from 
the neural activity using the aforementioned dPCs.  Here, offline force decoding accuracies 
were computed by using a force decoder DF – created by assembling the decoding axes of 
multiple force-tuned and interacting components – to classify light, medium, and hard forces 
over multiple session-runs of a 100-fold, stratified, leave-group-out Monte Carlo cross-validation 
scheme, as described in the Methods.  Similarly, grasp decoding accuracies in row 3 were 
computed using a grasp decoder DG, created by assembling the decoding axes of grasp-tuned 
and interacting dPCs.  Row 1 of Figure 6 shows time-dependent force decoding results, 
averaged over S x 40 session-runs in participants T8 (S = 6) and T5 (S = 1).  Row 2 further 
subdivides the results of Row 1 into force decoding accuracies achieved during individual hand 
grasps.  Finally, Row 3, shows time-dependent grasp decoding results for both participants. 

Here, intended forces were decoded at levels exceeding the upper bound of chance solely 
during the go phase, regardless of the grasp used to emulate the force.  The exception to this 
trend occurred during elbow extension trials, in which intended forces were decoded above 
chance during the stop phase.  In contrast, intended grasps were decoded above chance during 
all trial phases, regardless of the number of grasps from which the decoder discriminated 
(Figure 6-2) – though go-phase grasp decoding accuracies tended to exceed those achieved 
during other trial phases.  In summary, both intended forces and grasps were decoded above 
chance during time periods when participants intended to produce these forces and grasps – 
and in some cases, during preparatory and stop periods.  Time dependent decoding accuracies 
for individual force levels and individual grasp types are displayed in Figure 6-1. 
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Figure 6. Time-dependent classification accuracies for force (rows 1-2) and grasp (row 3).  Data traces were 
smoothed with a 100 millisecond boxcar filter to aid in visualization.  Shaded areas surrounding each data trace 
indicate the standard deviation across 240 session-runs for most trials in participant T8, 40 session-runs for elbow 
extension trials in participant T8, and 40 session-runs in participant T5.  Gray shaded areas indicate the upper and 
lower bounds of chance performance over S x 100 shuffles of trial data, where S is the number of sessions per 
participant.  Time points at which force or grasp is decoded above the upper bound of chance are deemed to contain 
significant force- or grasp-related information.  Blue shaded regions indicate the time points used to compute go-
phase confusion matrices in Figure 7. 

Time-dependent classification accuracies for individual force levels and grasp types are shown in Figure 6-1.  Grasp 
classification accuracies, separated by number of attempted grasp types, are presented in Figure 6-2. 

 

Go-Phase Decoding Performance 

Figure 7 summarizes go-phase force and grasp decoding accuracies as confusion matrices.  
Here, time-dependent classification accuracies for each force level and each grasp type were 
averaged over go-phase time windows (see Figure 6) that commenced when overall 
classification performance exceeded 90% of their maximum, and ended with the end of the go 
phase.  This time period was selected in order to exclude the rise time in classification accuracy 
at the beginning of the go phase, so that the resulting mean trial accuracies reflected stable 
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values.  The mean trial accuracies were then averaged over all session-runs in each participant 
to yield confusion matrices of true versus predicted forces and grasps.  Figure 7B further 
subdivides overall three-force classification accuracies into force classification accuracies 
achieved during each individual grasp type (columns) in both participants (rows).  The confusion 
matrices in Figure 7 represent cumulative data across multiple sessions in participant T8, and 
one session in participant T5.  Figures 7-1, 7-2 and 7-3 statistically compare decoding 
accuracies between individual force levels and grasp types within each individual session. 

In Figures 6A, 7A, and 6-1, overall three-force classification accuracies exceeded the upper limit 
of chance in both participants.  However, the decoding accuracies of individual force levels were 
statistically different.  For almost all sessions, hard forces were classified more accurately than 
light forces (with the exception of Session 4, during which light and hard force classification 
accuracy was statistically similar); and both light and hard forces were always classified more 
accurately than medium forces.  More specifically, hard and light forces were decoded above 
chance across all sessions, while medium force classification accuracies often failed to exceed 
chance in both participants. 

In contrast, both overall and individual grasp decoding accuracies always exceeded the upper 
limit of chance.  According to Figures 7A and 7-1B, certain grasps were decoded more 
accurately than others.  Specifically, in participant T8, the power and ring pincer grasps were 
often classified more accurately than the open and closed pincer grasps across multiple 
sessions (corrected p << 0.05, one-way ANOVA).  Elbow extension, which required the 
participants to attempt force production in the upper limb in addition to the hand, was classified 
more accurately than any of the grasping forces during Session 5 (corrected p << 0.05). In 
participant T5, grasp classification accuracies, in order from greatest to least, were ring pincer > 
open pincer > power > closed pincer.  Regardless, grasp decoding performance always 
exceeded force decoding performance in both participants, as seen in Figures 6 and 7. 

In Figures 7 and 7-3, overall and individual force classification accuracies varied depending on 
the hand grasps used to attempt these forces.  Specifically, classification accuracies for forces 
attempted with different grasps were, with few exceptions, statistically different (corrected p << 
0.05, one-way ANOVA).  For example, in Figures 7B and 7-3, hard forces attempted using the 
open pincer grasp were always classified more accurately than hard forces attempted using the 
ring pincer grasp in both participants.  In other words, grasp type affected how accurately forces 
were decoded. 

Finally, Figure 8 summarizes how well force decoders trained on one set of grasps generalize to 
novel grasp types in T8 Session 5 (row 1) and T5 Session 7 (row 2).  A force decoder was used 
to discriminate forces amongst a set of grasps used for training (“left-in”, gray bars) or a leave-
out “novel” grasp (white bars).  Here, the force decoding performance between the leave-in and 
leave-out grasps was significantly different in 7 out of 9 comparisons, suggesting that grasp 
affects how well forces are decoded from neural activity.  However, for all sets of grasps, force 
decoding performance always exceeded chance.  This was even true when, during T8 Session 
5, the force decoder was trained on four hand grasps and evaluated on elbow extension data.  
This is consistent with the previous population-level analyses that show that components of 
force representation in motor cortex are conserved across grasps and even arm movements. 
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Figure 7. Go-phase confusion matrices.  A.  Time-dependent classification accuracies (shown in Figure 6) were 
averaged over go-phase time windows that commenced when performance exceeded 90% of maximum, and ended 
with the end of the go phase.  These yielded mean trial accuracies, which were then averaged over all session-runs 
in each participant.  Overall force and grasp classification accuracies are indicated above each confusion matrix.  
Standard deviations across multiple session-runs are indicated next to mean accuracies (cp = closed pinch, op = 
open pinch, rp = ring pinch, pow = power, elb = elbow extension).  Statistical comparisons between the achieved 
classification accuracies are shown in Figure 7-1.  B.  Confusion matrices now separated by the grasps that 
participants T8 (row 1) and T5 (row 2) used to attempt producing forces.  Statistical comparisons between the 
achieved force accuracies are shown in Figures 7-2 and 7-3. 
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Figure 8. Go-phase force classification accuracy for novel (test) grasps.  Within each session (rows), dPCA force 
decoders were trained on neural data generated during all grasps, excluding a single leave-out grasp type (columns).  
The force decoder was then evaluated over the set of training grasps (gray bars), as well as the novel leave-out 
grasp type (white bars).  The horizontal dotted line in each panel indicates upper bound of the empirical chance 
distribution for force classification. 

 

Discussion 

The current study sought to determine how human motor cortex encodes hand grasps and 
discrete forces, the degree to which these representations overlapped and interacted, and how 
well forces and grasps could be decoded.  Three major findings emerged from this work.  First, 
force information was present in – and could be decoded from – intracortical neural activity in a 
consistent way across multiple hand grasps. This suggests that force is, to some extent, 
represented at a high level, independent of motion and grasp.  However, as a second finding, 
grasp affected force representation and classification accuracy. This suggests that there is a 
simultaneous, low-level, motoric representation of force.  Finally, hand grasps were classified 
more accurately and explained more neural variance than forces.  These three findings and 
their implications for future online force decoding efforts are discussed here. 

Force and Grasp Representation in Motor Cortex 

Force information persists across multiple hand grasps in individuals with 
tetraplegia. 

Overall Force Representation 

Force was represented in a consistent way across multiple hand grasps within the neural 
activity.  In particular, a substantial contingent of neural features was tuned to force independent 
of grasp (Figure 3); force-tuned components explained more population-level variance than 
components tuned to force-grasp interactions (Figure 5); intended forces were accurately 
predicted from population-level activity across multiple grasps (Figures 6-7); and force decoding 
performance generalized to novel grasps (Figure 8).  The study results suggest that, to a large 
extent, force is represented at a high level within motor cortex, distinct from grasp, in 
accordance with the independent force encoding model described by Equation 4 (Figure 4).  
This conclusion agrees with previous motor control studies (Mason et al., 2004; Chib et al., 
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2009; Casadio et al., 2015), which suggest that at the macroscopic level, force and motion may 
be represented independently.  In particular, Chib and colleagues showed that descending 
commands pertaining to force and motion could be independently disrupted via TMS, and that 
these commands obeyed simple linear superposition laws when force and motion tasks were 
combined. 

Furthermore, intracortical non-human primate studies (Mason et al., 2006; Hendrix et al., 2009; 
Intveld et al., 2018) suggest that forces are encoded largely independently of the grasps used to 
produce them.  However, in those studies and within the present work, the hand grasps used to 
produce forces likely recruited overlapping sets of muscle activations.  Thus, the relatively low 
degree of interactions observed here and in the literature could actually be due to overlapping 
muscle activations rather than truly grasp-independent force representation.  For this reason, 
participant T8 emulated forces using elbow extension in addition to the other hand grasps 
during Session 5.  In Column 3 of Figure 5, dPCA was implemented solely on force trials 
emulated using elbow extension and power grasping, which involved sets of muscles that 
operated relatively independently.  The resulting dPCA composition yielded a slightly larger 
amount of variance due to interaction (4%) that was nonetheless smaller than that attributed to 
force (~12%) or grasp (~35%).  Furthermore, discrete force data, when represented within two-
dimensional PCA space, aligned closely with a force axis that was conserved over both power 
grasping and elbow extension movements.  These data provide further evidence that force may 
be encoded independently of movements and grasps. 

Representation of Discrete Forces 

While overall force accuracies exceeded chance performance (Figure 6), hard and light forces 
were classified more accurately than medium forces across all hand grasps, sessions and 
participants.  In fact, medium forces often failed to exceed chance classification performance 
(Figures 7A, 6-1B). 

Notably, classification performance likely depended on the participants’ ability to kinesthetically 
attempt various force levels and grasps without feedback, despite having tetraplegia for several 
years prior to study enrollment.  Anecdotally, participant T8 reported that light and hard forces 
were easier to attempt than medium forces, because they fell at the extremes of the force 
spectrum and could thus be reproduced consistently.  Though his confidence with reproducing 
all forces improved with training, it is conceivable that, without sensory feedback, medium forces 
were simply more difficult to emulate cognitively, and thus yielded neural activity patterns that 
were more inconsistent and difficult to discriminate.   

Additionally, this and prior studies suggest that neural activity increases monotonically with 
increasing force magnitude (Evarts, 1969; Thach, 1978; Cheney and Fetz, 1980; Wannier et al., 
1991; Ashe, 1997; Cramer et al., 2002).  As a result, medium forces, by virtue of being 
intermediate to light and hard forces, may be represented intermediate to light and hard forces 
in the neural space, and may thus be more easily confused with other forces during 
classification.  In the present work, population-level activity associated with medium and light 
forces appeared similar (Figures 5, 5-1).  Likewise, medium forces were most often confused 
with light forces during offline force classification (Figure 7).  The decoding results are 
consistent with previous studies (Murphy et al., 2016; Downey et al., 2018), in which 
intermediate force levels were more difficult to discriminate than forces at the extremes of the 
range evaluated. 
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Hand posture affects force representation and force classification accuracy. 

Single-Feature Versus Population Interactions between Force and Grasp 

As previously stated, force information was neurally represented, and could be decoded, across 
multiple hand grasps (Figures 3, 5-8).  However, hand grasp also appears to influence how 
force information is represented within and decoded from motor cortex.  For example, grasp 
affected how accurately light, medium, and hard forces were predicted from neural activity 
(Figures 7B, 7-3).  Furthermore, despite small force-grasp interaction population-level variance 
(Figures 5B, 5-1B), as many as 12.0% and 13.8% of neural features exhibited tuning to these 
interaction effects in participants T8 and T5, respectively (Figure 3), providing further evidence 
that the force and grasp representation are not entirely independent. 

When considering the relatively large number of interacting features and the small population-
level interaction variance, one might initially conclude that a discrepancy exists between feature- 
and population-level representation of forces and grasps.  However, we note that the amount of 
variance explained by a parameter of interest does not always correspond directly to the 
percentage of features tuned to this parameter.  Here, the interaction effects detected within 
individual features likely reached statistical significance with small effect size.  In other words, 
while real interaction effects were present, as shown in the feature data (Figure 3), the overall 
effect was small, as exhibited within the population activity (Figure 5).  From this perspective, 
the seemingly incongruous feature- and population-level results actually complement one 
another and inform our understanding of how forces are represented in motor cortex. 

Force and Grasp Have Both Abstract (Independent) and Motoric (Interacting) 
Representations in Cortex 

Thus far, studies of force versus grasp representation have largely fallen into two opposing 
groups.  The first proposes that motor parameters are represented independently (Carmena et 
al., 2003; Mason et al., 2006; Hendrix et al., 2009; Intveld et al., 2018).  Such representation 
implies that the motor cortex encodes an action separately from its intensity, then combines 
these two events downstream in order to compute the EMG patterns necessary to realize 
actions in physical space. 

In contrast, the second group suggests that force, grasp, and other motor parameters interact 
within the neural space (Hepp-Reymond et al., 1999; Degenhart et al., 2011).  They propose 
that motor parameters cannot be fully de-coupled (Kalaska, 2009; Branco et al., 2019), and that 
it may be more effective to utilize the entire motor output to develop a comprehensive 
mechanical model, rather than trying to extract single parameters such as force and grasp 
(Ebner et al., 2009). 

The current study presents evidence supporting both independent and interacting 
representations of force and grasp.  These seemingly contradictory results actually agree with a 
previous non-human primate study that recorded from motor areas during six combinations of 
forces and grasps (Intveld et al., 2018).  Intveld and colleagues found that, while force-grasp 
interactions explained only 0-3% of population variance, roughly 10-20% of recorded neurons 
exhibited such interactions.  These results are highly consistent those outlined in the present 
study (Figures 3, 5).  Thus, the neural space could consist of two contingents:  one that encodes 
force at a high level independent of grasp and motion, and another that encodes force as low-
level tuning to muscle activity, resulting in interactions between force and grasp.  The second 
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contingent, however small, significantly impacts how accurately forces and grasps are decoded 
(Figures 7B, 7-3), and should thus not be discounted. 

Hand grasp is represented to a greater degree than force at the level of the neural 
population. 

Go-Phase Grasp Representation 

In the present datasets, grasps were decoded more accurately (Figures 6-7, 6-1B) and 
explained more signal variance (Figures 5B, 5-1B) than forces.  This suggests that within the 
sampled region of motor cortex, grasp is represented to a greater degree than force, which 
agrees with prior literature (Hendrix et al., 2009; Intveld et al., 2018). 

Previous studies suggest several reasons why force may be represented to a lesser degree 
than grasp in the current work.  First, force information may have stronger representation in 
caudal M1, particularly on the banks of the central sulcus (Kalaska and Hyde, 1985; Sergio et 
al., 2005; Hendrix et al., 2009).  Second, force-tuned neurons in motor cortex respond more to 
the direction of applied force rather its magnitude (Kalaska and Hyde, 1985; Kalaska et al., 
1989; Taira et al., 1996).  Finally, intracortical non-human primate studies (Georgopoulos et al., 
1983; Georgopoulos et al., 1992) and fMRI studies in humans (Branco et al., 2019) suggest that 
motor cortical neurons respond more to the dynamics of force than to static force tasks.  The 
present work, which recorded from rostral motor cortex and studied the representation of static, 
non-directional forces, may therefore have detected weaker force-related representation than 
would have been possible from more caudally-placed recording arrays during a dynamic, 
functional force task. 

Additionally, both study participants were paralyzed and deafferented and received no sensory 
feedback regarding the forces and grasps they attempted.  Previous work suggests that in 
individuals with tetraplegia, discrepancies exist between the representation of kinematic 
parameters such as grasp – which remain relatively intact due to their reliance on visual 
feedback – and kinetic parameters such as force (Rastogi et al., 2020).  Specifically, since 
force-related representation relies heavily on proprioceptive and tactile feedback (Tan et al., 
2014; Tabot et al., 2015; Schiefer et al., 2018), whose neural pathways are altered during 
tetraplegia (Solstrand Dahlberg et al., 2018), the current study may have yielded weaker force-
related representation than if this feedback had been included. Therefore, further investigations 
of force representation are needed in individuals with tetraplegia during naturalistic, dynamic 
tasks that incorporate sensory feedback – either from intact sensation or from intracortical 
microstimulation (Flesher et al., 2016) – in order to determine the full extent of motor cortical 
force representation and to maximize force decoding performance. 

Grasp Representation During Prep and Stop Phases 

Unlike forces, which were represented primarily during the active “go” phase of the trial, grasps 
were represented throughout the entire task (Figures 5-6), even during the preparatory and stop 
phases.  The ubiquitous representation of grasp observed here could be partially explained by 
the behavioral task.  As described in the Methods, research sessions consisted of multiple data 
collection blocks, each of which was assigned to a particular hand grasp, and cycled through 
three attempted force levels within each block (Figure 1B).  Thus, while attempted force varied 
from trial to trial, attempted hand grasps were constant over each block and known by 
participants in advance.  When individuals have prior knowledge of one task parameter, but not 
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another other, information about the known parameter can appear within the baseline activity 
(Vargas-Irwin et al., 2018).  Therefore, grasp-related information may have been represented 
within the neural space during non-active phases of the trial, simply by virtue of being known in 
advance. 

Additionally, the placement of the recording arrays could have influenced grasp representation 
in this study.  As described in the Methods, two microelectrode arrays were placed within the 
“hand knob” of motor cortex in each participant (Yousry et al., 1997).  These arrays may have 
recorded from “visuomotor neurons,” which modulate both to grasp execution and to the 
presence of graspable objects prior to active grasp (Carpaneto et al., 2011), or from neurons 
that are involved with motor planning of grasp (Schaffelhofer et al., 2015).  These neurons have 
typically been attributed to area F5, a homologue of premotor cortex in non-human primates.  
Indeed, recent literature in a human participant indicates that the precentral gyrus, rather than 
belonging to primary motor cortex, is actually part of premotor cortex (Willett et al., 2020).  Thus, 
then the arrays in this study likely recorded from premotor neurons, which modulate to grasp 
during both visuomotor planning and grasp execution, as was observed here. 

Implications for Force Decoding 

Hand Grasp Affects Force Decoding Performance 

Our decoding results demonstrate that, in individuals with tetraplegia, forces can be decoded 
offline from neural activity across multiple hand grasps (Figures 6-8).  These results agree with 
the largely independent force and grasp representation of force within single features (Figure 3) 
and the neural population (Figure 5).  From a functional standpoint, this supports the feasibility 
of incorporating force control into real-time iBCI applications.  On the other hand, grasp affects 
how accurately discrete forces are predicted from neural data (Figures 7B, 7-3).  Therefore, 
future robust force decoders may need to account for additional motor parameters, including 
hand grasp, in order to maximize performance. 

Decoding Motor Parameters with Dynamic Neural Representation 

The present study decoded intended forces from population activity at multiple time points, with 
the hope that force representation and decoding performance would be preserved throughout 
the go phase of the task.  We found that force-related activity at the single feature (Figures 2, 2-
1) and population levels (Figures 5, 5-1) exhibited both tonic and dynamic characteristics.  That 
is, when study participants attempted to produce static forces, neural modulation to force varied 
with time to some degree. 

The observed dynamic characteristics are consistent with previous results in humans (Murphy 
et al., 2016; Downey et al., 2018; Rastogi et al., 2020).  In particular, Downey and colleagues 
found that force decoding during a virtual, open-loop, grasp-and-transport task was above 
chance during the grasp phase of the task, but no greater than chance during static attempted 
force production during the transport phase.  These results support the idea that motor cortex 
encodes changes in force, rather than (or in addition to) discrete force levels themselves (Smith 
et al., 1975; Georgopoulos et al., 1983; Wannier et al., 1991; Georgopoulos et al., 1992; Picard 
and Smith, 1992; Boudreau and Smith, 2001; Paek et al., 2015).  

However, the presence of tonic elements agrees with intracortical studies (Smith et al., 1975; 
Wannier et al., 1991), which demonstrated both tonic and dynamic neural responses to 
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executed forces; and fMRI studies (Branco et al, 2019), which demonstrated a monotonic 
relationship between the BOLD response and static force magnitudes.  Moreover, despite the 
presence of dynamic response elements, offline force classification performance remained 
relatively stable throughout the go phase (Figures 6, 6-1), suggesting that the tonic elements 
could allow for adequate real-time force decoding using linear techniques alone.  This may be 
especially true when decoding forces during dynamic functional tasks, which have been shown 
to elicit stronger, more consistent neural responses within motor cortex (Georgopoulos et al., 
1983; Georgopoulos et al., 1992; Branco et al., 2019). 

Nonetheless, real-time force decoding would likely benefit from an exploration of a wider range 
of encoding models.  For example, the exploration of a force derivative model, and its 
implementation within an online iBCI decoder, would be of potential utility. 

Decoding of Discrete Versus Continuous Forces 

The present work continues previous efforts to characterize discrete force representation in 
individuals with paralysis (Cramer et al., 2005; Downey et al., 2018; Rastogi et al., 2020) by 
accurately classifying these forces across multiple hand grasps – especially when performing 
light versus hard force classification (Figure 7).  This supports the feasibility of enabling discrete 
(“state”) control of force magnitudes across multiple grasps within iBCI systems, which would 
allow the end iBCI user to perform functional grasping tasks requiring varied yet precise force 
outputs.  Perhaps because discrete force control alone would enhance iBCI functionality, 
relatively few studies have attempted to predict forces along a continuous range of magnitudes.  
Thus far, continuous force control has been achieved in non-human primates (Carmena et al., 
2003) and able-bodied humans (Pistohl et al., 2012; Chen et al., 2014; Flint et al., 2014), but not 
in individuals with tetraplegia.  If successfully implemented, continuous force control could 
restore more nuanced grasping and object interaction capabilities to individuals with motor 
disabilities.  

However, during the present work (Figures 7, 6-1) and additional discrete force studies (Downey 
et al, 2018; Murphy et al, 2016), intermediate force levels were often confused with their 
neighbors, and thus more difficult to decode.  Therefore, implementing continuous force control 
may pose challenges in individuals with tetraplegia.  Possibly, enhancing force-related 
representation in these individuals via aforementioned techniques – including the introduction of 
dynamic force tasks, closed loop sensory feedback, and derivative force encoding models – 
may boost overall performance to a sufficient degree to enable continuous force decoding 
capabilities.  Regardless, more investigations are needed to determine the extent to which 
continuous force control is possible in iBCI systems for individuals with tetraplegia. 

Concluding Remarks 

This study found that, while force information was neurally represented and could be decoded 
across multiple hand grasps in a consistent way, grasp type had a significant impact on force 
classification accuracy.  From a neuroscientific standpoint, these results suggest that force has 
both grasp-independent and grasp-dependent (interacting) representations within motor cortex 
in individuals with tetraplegia.  From a functional standpoint, they imply that in order to 
incorporate force as a control signal in human iBCIs, closed-loop force decoders should ideally 
account for interactions between force and other motor parameters to maximize performance.   
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