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Abstract

Synaptic inhibition is the mechanistic backbone of a suite of cortical functions, not the least of which
is maintaining overall network stability as well as modulating neuronal gain. Past cortical models
have assumed simplified recurrent networks in which all inhibitory neurons are lumped into a single
effective pool. In such models the mechanics of inhibitory stabilization and gain control are tightly
linked in opposition to one another – meaning high gain coincides with low stability and vice versa.
This tethering of stability and response gain restricts the possible operative regimes of the network.
However, it is now well known that cortical inhibition is very diverse, with molecularly distinguished
cell classes having distinct positions within the cortical circuit. In this study, we analyze populations
of spiking neuron models and associated mean-field theories capturing circuits with pyramidal neurons
as well as parvalbumin (PV) and somatostatin (SOM) expressing interneurons. Our study outlines
arguments for a division of labor within the full cortical circuit where PV interneurons are ideally
positioned to stabilize network activity, whereas SOM interneurons serve to modulate pyramidal cell
gain. This segregation of inhibitory function supports stable cortical dynamics over a large range
of modulation states. Our study offers a blueprint for how to relate the circuit structure of cortical
networks with diverse cell types to the underlying population dynamics and stimulus response.

Introduction

A prominent feature of cortical neurons is that their responses to stimuli are quite malleable, depending
upon a host of factors. For instance, the global structure of a sensory scene activates surround receptive
fields, normalizing the response of cortical neurons to their preferred stimuli (Adesnik et al., 2012;
Carandini and Heeger, 2012; Reynolds and Heeger, 2009; Vinje and Gallant, 2000). Alternatively,
top-down projections can also mediate how cortical responses change with directed attention (Cohen
and Maunsell, 2009; Ruff et al., 2018), subject arousal (McGinley et al., 2015), or task engagement
(Downer et al., 2015). On the whole, these neuronal response shifts are reliably signaled by changes
in neuronal firing rates (Carandini and Heeger, 2012; Harris and Thiele, 2011; Niell and Stryker,
2010; Ruff et al., 2018), the spectral content of local field potentials (Harris and Thiele, 2011; Niell
and Stryker, 2010) as well as single neuron membrane potentials (Poulet and Petersen, 2008), and
finally the magnitude of spike train correlations across a population (Doiron et al., 2016). These
observations have prompted studies that focus on how inhibitory circuits are key mediators of cortical
state modulations. Indeed, inhibition has been implicated in the suppression of neuronal activity
(Adesnik, 2017; Adesnik et al., 2012; Haider et al., 2013; Kato et al., 2017), gain control of pyramidal
neuron firing rates (Ferguson and Cardin, 2020; Katzner et al., 2011; Phillips and Hasenstaub, 2016;
Silver, 2010) and correlated neuronal fluctuations (Okun and Lampl, 2008), rhythmic population
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activity (Atallah and Scanziani, 2009; Womelsdorf et al., 2014), and spike timing of pyramidal neurons
(Berman and Maler, 1998; Wehr and Zador, 2003). However, inhibition must also prevent runaway
cortical activity that would otherwise lead to pathological activity (Haider et al., 2013; Ozeki et al.,
2009; Veit et al., 2017), enforcing constraints on how inhibition can modulate pyramidal neuron
activity. In sum, using inhibitory interactions to expose the physiological and circuit basis for how
cortical activity changes depending upon processing or cognitive needs has been a longstanding and
popular avenue of study (Isaacson and Scanziani, 2011).

While inhibition has been long measured (Eccles et al., 1954; Hartline et al., 1956; Lloyd, 1946),
the past fifteen years have witnessed a newfound appreciation of its diversity. The invention and
widespread use of cell-specific labeling and optogenetic control (Fenno et al., 2011), combined with
the detailed genetic and physiological characterization of cortical interneurons (Jiang et al., 2015;
Markram et al., 2004) has painted a complex picture of a circuit that was previously considered
to be simpler (Douglas et al., 1989). The standard cortical circuit now includes (at a minimum)
somatostatin (SOM) and parvalbumin (PV) expressing interneuron classes, with distinct synaptic
interactions between these classes as well as with pyramidal neurons (Jiang et al., 2015; Kepecs and
Fishell, 2014; Pfeffer et al., 2013; Tremblay et al., 2016). This new circuit reality presents some clear
challenges (Cardin, 2018; Ferguson and Cardin, 2020; Urban-Ciecko and Barth, 2016; Wood et al.,
2017; Yavorska and Wehr, 2016), foremost being to uncover how state changes that were previously
associated with inhibition in a broad sense, should be distributed over these diverse interneuron
classes.

An attractive hypothesis is that SOM and PV interneurons are within-group functionally homo-
geneous, yet each class performs functions that are distinct from those of the other classes (Hattori
et al., 2017; Kepecs and Fishell, 2014; Wang et al., 2004). In line with this idea, early optogenetic
studies of PV and SOM neurons in the mouse visual cortex showed differential multiplicative and
subtractive modulations of excitatory neuron responses (Atallah et al., 2012; Wilson et al., 2012).
However, such tidy arithmetic of inhibitory modulation is likely an over-abstraction, and a detailed
analysis of data from the auditory cortex shows a mixed modulatory influence of both SOM and
PV interneurons (Seybold et al., 2015). Another popular functional distinction between interneuron
classes is their roles in disinhibitory cortical circuits (Fu et al., 2014; Large et al., 2018; Lee et al.,
2013; Pi et al., 2013; Wang and Yang, 2018), specifically when one interneuron class inhibits another
class and thereby releasing pyramidal neurons from a source of inhibition. Yet inhibition can be
complicated to dissect in the full cortical circuit. For instance, the SOM → E inhibitory pathway
competes with the SOM → PV → E disinhibitory pathway for pyramidal neuron (E) influence. This
competition could underlie differences in how SOM neurons suppress pyramidal neuron activity in
layer 2/3 of visual and auditory cortex (Adesnik, 2017; Adesnik et al., 2012; Kato et al., 2017) yet
increase activity in layer 4 of somatosensory cortex (Xu et al., 2013). These difficulties in interpreta-
tion likely arise from an incomplete analysis: selected feedforward sub motifs within the full recurrent
circuit are considered, yet with a tacit ignorance of the other pathways that will nevertheless still
contribute to the cortical response. A proper untangling of the complexity of a fully recurrent cortical
circuit requires a modeling framework where a rigorous analysis can be performed.

Cortical models with both excitatory and inhibitory pathways have a long history of study (Grif-
fith, 1963; Wilson and Cowan, 1972). Models with just a single inhibitory interneuron class have
successfully explained a wide range of cortical behavior; from contrast dependent nonlinearities in
cortical response (Ozeki et al., 2009; Rubin et al., 2015), to the genesis of irregular and variable spike
discharge (Brunel and Hakim, 1999; van Vreeswijk and Sompolinsky, 1996), and finally to the mech-
anisms underlying high-frequency cortical network rhythms (Bos et al., 2016; Wang, 2010). On the
surface, it may seem surprising that cortical models that ignore inhibitory diversity can nevertheless
account for such a range of cortical behavior. However, these models are often designed to capture
only a single aspect of cortical responses, and rarely do they account for how a set of neuronal cor-
relates (firing rates, response gain, neuronal correlations, etc.) shift with the cortical state. In truth,
perhaps the most compelling reason that theorists lag behind the reality of a diverse interneuron
cortical circuit is that there are serious complications in model analysis when multiple interneuron
classes are introduced. Indeed, the set of model parameters and the landscape of possible solutions
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both increase dramatically with the addition of new neuron classes. In total, there is a real need for
a cogent analysis of the behavior of multi-interneuron cortical circuits models.

We present a circuit theory for previously developed multi-interneuron cortical circuit models (del
Molino et al., 2017; Kuchibhotla et al., 2017; Litwin-Kumar et al., 2016; Mahrach et al., 2020; Veit
et al., 2017) with the goal of giving a mechanistic understanding of how diverse inhibitory interneurons
participate in the circuit level modulation of cortical responses. In particular, we consider modulatory
inputs to SOM neurons which aim to shift the operative state of the full E – PV – SOM neuron circuit.
We expose a circuit-based relationship between how SOM neuron modulations co-determine network
stability and response gain. More to the point, the underlying E – PV – SOM circuit supports a
division of labor (Wang et al., 2004), whereby PV neurons are well-positioned to provide network
stability, allowing SOM neurons the freedom to modulate response gain. Our theoretical framework
offers an attractive platform to probe how interneuron circuit structure determines gain and stability
which may generalize well beyond the sensory cortices where these interneuron circuits are currently
best characterized.

Results

The inhibitory and disinhibitory pathways of the E – PV – SOM circuit

There is strong in vivo evidence that SOM interneurons play a critical role in the modulation of
cortical response (Urban-Ciecko and Barth, 2016; Yavorska and Wehr, 2016). However, the complex
wiring between excitatory and inhibitory neurons (Jiang et al., 2015; Pfeffer et al., 2013; Tremblay
et al., 2016) presents a challenge when trying to expose the specific mechanisms by which SOM
neurons modulate cortical response. Two distinct inhibitory circuit pathways are often considered
when disentangling the impact of SOM inhibition on pyramidal neuron (E) response. We introduce
these pathways with a pair of studies that are emblematic of these circuit motifs.

In the first line of study, SOM neuron activity in layer 2/3 of the mouse visual cortex was recruited
by expanding the spatial scale of an orientated drifting grating visual stimulus (Adesnik, 2017; Adesnik
et al., 2012). This resulted in decreased activity of putative layer 2/3 E neurons whose spatial
receptive field was in the center of a visual image. The simplest interpretation is that the increased
SOM activity inhibited E neurons via direct SOM→ E connectivity. Similar suppression of E neuron
response from direct SOM inhibition has been implicated in other studies (Wang and Yang, 2018),
and a disinhibition of SOM → E projections is often mediated through vasoactive intestinal-peptide
(VIP) neurons projections to SOM neurons (Fu et al., 2014; Pi et al., 2013). In the second study,
layer 4 SOM neurons in mouse somatosensory cortex were optogenetically silenced (Xu et al., 2013).
This resulted in increased activity of PV neurons, and a subsequent decreased activity of E neurons.
The authors intuited a suppression of the disinhibitory pathway SOM → PV → E as the source of
reduced E neuron activity. Taken together, the pair of studies seem in opposition to one another,
with SOM neuron activity providing either a source or a relief of E neuron suppression. This response
dichotomy prompted us to consider what physiological and circuit properties of the E – PV – SOM
circuit are critical determinants of whether an increase in SOM neuron activity results in an increase
or a decrease in E neuron response.

An answer to this question requires consideration of the full recurrent connectivity within the E
– PV – SOM neuron circuit, as opposed to analysis restricted to just the SOM → E and SOM → PV
→ E sub motifs within the circuit. Fortunately, there is a detailed physiological characterization of
the specific connectivity patterns of inhibitory subtypes within the cortical circuit (Jiang et al., 2015;
Pfeffer et al., 2013; Tremblay et al., 2016). Briefly, PV neurons couple strongly to other PV neurons
as well as to E neurons, while SOM neurons connect strongly to PV and E neurons, but not to other
SOM neurons. Finally, both PV and SOM neurons receive inputs from E neurons. We incorporate
these circuit details in a network of leaky integrate-and-fire model neurons where the E, PV, and
SOM subclasses are represented (Fig. 1A; see Methods 1.1). The simplicity of the spiking dynamics
makes our model amenable to a mean-field reduction which captures the bulk spiking activity of each
subpopulation of neurons (where rE, rP, and rS denote the E, PV, and SOM populations respectively;
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see Methods 1.2), as has been done by similar studies of the E – PV – SOM cortical circuit (del Molino
et al., 2017; Kuchibhotla et al., 2017; Litwin-Kumar et al., 2016; Mahrach et al., 2020).
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Figure 1: Tradeoff between two inhibitory motifs in the E – PV – SOM cortical circuit.
A, Sketch of the network model with neuron class-specific connections motivated by (Pfeffer et al.,
2013). A modulatory input (black line) is applied to the SOM neurons. This input results in a
change in the SOM neuron population firing rate (δrS; green line), which in turn causes a change
of excitatory neuron activity (δrE; red line). Assuming a linear relation between δrS and δrE

allows δrE to be determined by summing over all possible pathways through the network by which
SOM activity can influence E activity (see Eq. (23)). B, The relation between δrS and δrE after
summing over all paths (see Eq. (26)). Sketches visualizes the tradeoff between the inhibitory and
disinhibitory pathways. Jκγ summarizes the number and strength of connections from population
γ to population κ (κ ,γ ∈ {E,P, S}, see Eq. (7)); βκ denotes the cellular gain of population κ
(see Eq. (16)), and WEP the effective connectivity matrix between the E and PV populations (see
Eq. (17)).

Using our model we ask how a modulation of the SOM neuron activity, resulting in rS → rS + δrS,
is transferred to a modulation of E neuron activity yielding rE → rE+δrE (Fig. 1A, green and red inset
timeseries). If δrS is sufficiently small we can linearize around a given dynamical state of the model
so that δrE = LESδrS, where LES is the transfer coefficient between SOM and E neuron modulations.
In principle LES depends on the synaptic matrix J that defines the coupling between neuron classes,
as well as the cellular gain, β, of all neurons classes (see Methods 1.3). Since the neuron transfer
is nonlinear (see Eq. (10)), the β values, and by extension LES, depend upon the operating point of
the network. While LES is straightforward to compute (del Molino et al., 2017; Litwin-Kumar et al.,
2016) it can be cumbersome, and extracting clear insight about how J and β influence modulation
can be difficult.

It is instructive to express LES as a sum over all possible synaptic pathways by which SOM
neuron activity can influence E neuron activity (Fig. 1A, right; see Eq. (23)). Fortunately, this sum
can be simplified so that just two network motifs determine the sign of LES (Fig. 1B; see Methods
1.3). These motifs reflect both the disinhibitory component of the network (the SOM → PV →
E connections, labeled pathway pI in Fig. 1B) and the inhibitory component (the PV → PV and
SOM → E connections, labeled pathway pII in Fig. 1B). Interestingly, these motifs corresponds to
the pathways evoked in our motivating pair of experimental studies (pI in (Xu et al., 2013) and pII

in (Adesnik et al., 2012)). The net pathway is a tradeoff between these two motifs, where pI vies for
disinhibition (LES > 0) while pII vies for inhibition (LES < 0).

Whether the full motif is inhibitory or disinhibitory depends (somewhat expectantly) on the
three connection strengths JEP, JPS, and JES (JEP is the synaptic strength of the PV → E neuron
pathway; the other connections have the same nomenclature). However, what is unexpected is that
it also depends on the recurrent strength between PV neurons, JPP (the βPJPP term in pathway pII).
Further, since βP depends on the operating point of the network then the tradeoff between the two
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pathways can be controlled by PV neuron modulation. In particular, since βP increases with rP then
LES can transition from effectively inhibitory for low PV activity (small βP) to effectively disinhibitory
for higher PV activity (large βP). However, this is only possible if the combined SOM → PV and
PV → E connections are stronger than the combined PV → PV and SOM → E connections. We
remark that other connections and the activity of the excitatory and SOM neurons only contribute
to the amplitude of the effective pathway (as reflected in the prefactor in Fig. 1B). Thus, changing
the activity of E and SOM neurons does not explicitly change the sign of LES.

Pfeffer et al. (Pfeffer et al., 2013) report that in L2/3 and L5 of the mouse visual cortex the SOM
→ E connection is stronger than the SOM → PV connection, while the connections from PV → E
neurons and PV → PV neurons are comparably strong. Given these facts, our analysis suggests that
the inhibitory pathway pII outweighs the disinhibitory pathway pI, so that LES < 0. This is consistent
with the SOM suppression of E neuron activity by large drifting gratings reported by Adesnik et al.
(Adesnik et al., 2012) in L2/3 of mouse visual cortex. Alternatively, Xu et al. (Xu et al., 2013) find
stronger SOM → PV than SOM → E connections in L4 mouse somatosensory cortex. However, since
the relative strength of the PV → E and PV → PV connection strengths are unknown, our analysis
cannot predict whether the effective pathway is inhibitory or disinhibitory.

In sum, while the full E – PV – SOM recurrent circuit invokes a multitude of polysynaptic
pathways, a tradeoff between the two central disynaptic pathways often appealed to in literature, pI

and pII, does indeed determine the modulatory influence of SOM neurons upon E neurons. Having
now identified the central role of these two pathways, in the following sections we investigate how
they control the stimulus – response gain of E neurons.

Comparison of gain modulation by the two inhibitory pathways

Gain modulation refers to changes in the sensitivity of neuron activity to changes in a driving input
(Ferguson and Cardin, 2020; Silver, 2010; Williford and Maunsell, 2006). Typically, the driving input
is a feature of a sensory scene and individual neuron responses show tuning to specific feature value.
In a later section we will consider gain modulation of tuned responses, but to begin we simply consider
a homogeneous input (Istim) that targets both E and PV neurons (Tremblay et al., 2016), and we
compute the E neuron network gain as the drE/dIstim (Eq. (27)). Here, network gain measures the
sensitivity of rE owing to the activity of the full recurrent circuit in response to a change in Istim. This
is opposed to the cellular gain βE which measures the sensitivity of rE to a change in the full input
current to E neurons due to both the external stimulus and internal interactions. Our circuit model
allows us to compare and contrast the effectiveness of network gain modulation via the disinhibitory
pathway from SOM → PV → E neurons (pI; Fig. 2Ai) to modulation via the direct SOM → E
pathway (pII; Fig. 2Bi). In what follows we explore the E – PV – SOM circuit with both simulations
of populations of integrate-and-fire model neurons (Methods 1.1) as well as an associated firing rate
model (Methods 1.2).

We first address modulation via the disinhibitory pathway pI with SOM neurons being depolarized
by a modulatory input (Imod > 0). Examples such a modulation include suppressed VIP inhibition
onto SOM neurons (Pi et al., 2013), activation of pyramidal cells located outside the circuit yet
preferentially projecting to SOM neurons (Adesnik et al., 2012), and direct cholinergic modulation of
SOM neurons (Kuchibhotla et al., 2017; Urban-Ciecko and Barth, 2016). Modulations that increase
SOM neurons activity (Fig. 2Aii, green) suppress the activity of PV neurons (Fig. 2Aii, blue), thereby
removing inhibition from E neurons and increasing their firing rates (Fig. 2Aii, red). For small
modulations (Imod < 15 Hz), the slight increase in E neuron firing rates causes an increase in E neuron
network gain by increasing cellular gain βE (Fig. 2Aiii, black). For larger modulations (Imod > 20
Hz), PV neuron firing rates increase due to increased excitatory feedback from E → PV neurons
which overcomes the feedforward inhibition of the SOM → PV neuron pathway. The switch from
suppressed PV activity to enhanced PV activity marks the transition of the E – PV sub-circuit from a
non-inhibition stabilized network (non-ISN) to an inhibition stabilized network (ISN) (Litwin-Kumar
et al., 2016; Ozeki et al., 2009; Tsodyks et al., 1997). In the ISN state, the recurrently coupled E
neurons are not stable by themselves but are stabilized by recurrent inhibition from PV neurons.
Our firing rate model predicts that increased recurrent inhibition also suppresses network response to
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input and can decrease E neuron network gain for sufficiently strong modulations (Fig. 2Aiii, black
curve). The maximum in response gain occurs after the network has transitioned to the ISN regime
(see Methods 1.4).

At high values of modulatory input (Imod > 30 Hz) there is a severe disagreement between the
firing rates and network gain obtained with the integrate-and-fire neuron simulations compared to
those from analysis of the firing rate model (Fig. 2Aiii, compare points to the curve). The firing rate
description assumes near Poisson spiking dynamics and negligible correlations between neuron spike
trains (Methods 1.2). Thus, the discrepancy between theory and simulations hints at a shift in the
spiking network dynamics away from the asynchronous irregular regime (Brunel, 2000; Renart et al.,
2010). Indeed, while the population spike times of the E neurons in the integrate-and-fire simulations
show irregular spiking for low modulation (Fig. 2Aiv, top), this gives way to more synchronous activity
when reaching maximal gain (Fig. 2Aiv, middle) and eventually pathologic synchronous population
bursts for large modulation (Fig. 2Aiv, bottom). Past modeling work has shown how fast recurrent
inhibition within a cortical circuit can maintain an asynchronous spiking dynamic (Huang et al., 2019;
Renart et al., 2010; Tetzlaff et al., 2012). Thus, it is to be expected that suppressing the normally
strong recurrent PV inhibition via pathway pI will lead to a breakdown of the asynchronous state
that is supported in the E – PV subcircuit. In total, modulation of E neuron network gain through
the disinhibitory pathway pI is restricted to only sufficiently weak modulations.

E
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E

S

+

Aii

Bii

Aiii

Biii

Aiv

BivBi

Ai

Figure 2: Comparison of two inhibitory pathways. Sketches of the model for disinhibition
via SOM → PV → E (pathway pI, Ai) and for inhibition via SOM → E (pathway pII, Bi). The
stimulus targets E and PV neurons and modulatory input targets SOM neurons. A, Disinhibition
via SOM→PV→E: ii) Stationary population firing rates of excitatory neurons (red), PV neurons
(blue) and SOM neurons (green) dependent on modulation of the SOM neurons. Dots correspond
to simulation results of populations of leaky-integrate-and-fire neurons (Methods 1.1). Solid lines
denote analytical predictions obtained from mean-field theory (Eq. (13)). iii) Gain of excitatory
neurons (black, Eq. (27)) depending on the modulation of SOM neurons. Simulation (dots) and
theoretical results (solid lines) in A and B are normalized separately to their maxima in B. iv)
Raster plots showing all spike times of the excitatory neurons in a 50 ms segment for three levels of
modulation (see markers in iii). B Inhibition via SOM → E: ii-iv) as in A. Parameters: pPS = 0.1

(I), pPS = 0 (II), pES = 0 (I), pES = 0.1 (II), pSE = 0 (I, II), pext,inh
S varies between 0.0225 and

0.00675 in (I) and between 0.01125 and 0.0225 in (II) (see also Eq. (8), pext,inh
E = 0.01 (I).

In the second pathway, pII, SOM neurons project directly to E neurons, so we consider modulations
that inhibit SOM neurons (Imod < 0) and result in net disinhibition of E neurons. Consequently, E
neurons increase their firing rates and then drive PV neurons to increased rates (Fig. 2Bii). Through-
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out the modulation E neuron network gain increases monotonically from low to high values (Fig. 2Biii).
Further, network dynamics remain in the asynchronous, irregular spiking regime (Fig. 2Biv). Indeed,
this asynchrony permits the firing rate model theory to match the integrate-and-fire simulations across
low and high gain values (Fig. 2Biii, compare points to the curve). Thus, in contrast to the mod-
ulation through inhibitory pathway pI, pathway pII supports a network gain increase that is robust
throughout the modulation range.

In summary, these initial examples show that inhibitory modulations via the indirect SOM→ PV
→ E and direct SOM → E pathways and are quite distinct. There is a clear need to establish a more
nuanced view on how diverse inhibition controls network gain and stability; this is the central goal of
our study. Towards this end, in the next section, we formalize the relations between gain and stability
in simple cortical networks with only one inhibitory class. This will provide us a platform to build a
broader theory in E – PV – SOM circuits, which will be the focus of the later sections.

Gain and stability modulation are opposed in E – PV circuits

In order to provide insight in how stability and network gain are co-affected by a modulation we first
consider a reduced E – PV circuit (Fig. 3B) where stimuli target both E and PV neurons Istim = (IE

stim,
IP

stim)T. For this circuit the network gain is (Methods 1.3):

gE ≡
drE

dIstim
= βE

(1 + βPJPP)IE
stim − βPJEPI

P
stim

det(1−W)
. (1)

The first term on the right-hand side (in the numerator) describes how E neuron response is amplified
by the network, while the second one describes response cancellation by PV neurons. Since the cellular
gains βE and βP depend upon the operating point from which the circuit dynamics is linearized, the
tradeoff between amplification and cancellation can be controlled through an external modulation
that shifts this point.

To compare network gain across different network states we consider a grid of possible firing rates
(rE, rP). A given network state is found by numerically determining the external input required to
position the network at that rate (see Eq. (9)). For each network state we linearize the network
dynamics (i.e. determine the βs) and compute the network gain via Eq. (1) (see heatmap in Fig. 3A).
It is immediately apparent that network gain is largest for high rE and low rP, and smallest vice versa.
Gain modulation is most effective when it connects two network states which are orthogonal to a line
of constant gain (gain isolines in Fig. 3A). Thus, for most network states the highest gain increase
occurs for modulations that increase E neuron rates while simultaneously decreasing PV neuron rates.

Unstable firing rate dynamics are typified by runaway activity, when recurrent excitation is not
stabilized by recurrent inhibition (Griffith, 1963; Ozeki et al., 2009; van Vreeswijk and Sompolin-
sky, 1996; Wilson and Cowan, 1972). In networks of spiking neurons, this instability can manifest
as network-wide synchronized, oscillatory dynamics (as observed in Fig. 2Aiv). To quantify these
frequency-dependent state transitions we use a stability measure defined as the minimal distance
(across oscillatory frequency) to the transition between stable and unstable oscillatory dynamics (see
Methods 1.5). As was done for network gain we consider how stability depends on network activity
(rE, rP) about which the network is linearized (color in Fig. 3C). Network dynamics are most stable
for large PV and low E neuron rates (the white region in Fig. 3C). For higher E rates the recruited PV
activity gives rise to larger amplitude network oscillations, and as a result the distance to instability
decreases (the orange region in Fig. 3C). Finally, for sufficiently large E and small PV rates, the
network transitions into fully unstable firing rate dynamics (black lines in Fig. 3A,C).

This analysis of gain and stability reveals an inverse relationship between these two network
features (compare Fig. 3A and C). This is evident by plotting a near constant gain for (rE, rP) ranging
over a stability isoline (Fig. 3D). Further, over a large region of (rE, rP) we observe that higher gain is
accompanied by lower stability (Fig. 3A,C). This connection arises because the recurrent E → PV →
E loop enforces both a dynamic cancellation required to stabilize network activity (Ozeki et al., 2009;
Renart et al., 2010; Tetzlaff et al., 2012) as well as a cancellation that attenuates E neuron response
to Istim (Stern et al., 2018; Sutherland et al., 2009). Thus, any modulation that increases network
gain in the E – PV circuit will necessarily result in a less stable network.
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A

E

B

DC

Figure 3: Gain and stability in a network of E and PV neurons. A, Every dot in the
heatmap is a fixed point of the population rate dynamics of coupled E and PV neurons (Eq. (9)).
Different fixed points correspond to different external inputs to the populations. The color denotes
the network gain (Eq. (1)) of the system at the given fixed point. Lines of constant gain are shown
in gray (from dark to light gray normalized gain 0.1 to 0.7 in steps of 0.1). The black line marks
where the deterministic rate dynamics become unstable. Parameter combinations for which no
fixed point could be found are set to maximum gain and minimum stability. B, Sketch of the model
containing E and PV neurons and a stimulus that targets both populations. C, Same as in A but
the color denotes how close the system operates to instability (Eq. (35)). The deterministic rate
dynamics becomes unstable at distance (dmin) zero. Stability isolines are plotted in gray (from dark
to light gray: dmin = 0.3, 0.5, 0.7, 0.9). D, Gain along stability isolines of dmin = 0.6, 0.7, 0.8, 0.9.
Parameters: pES = pPS = pSE = 0, pext

E and pext
P vary on each point of the grid in A and C.

These results prompt the question: can a cortical circuit be modulated through inhibition to
a higher gain regime without compromising network stability? In the next section, we investigate
whether direct modulation of SOM neurons can shift the E – PV –SOM circuit from a low to a high
gain state while stability is maintained.

Gain and stability are differentially mediated by SOM and PV neurons

Our initial exploration of the full E – PV – SOM circuit showed that while disinhibition through
pathway pI (SOM→ PV→ E) can modulate network gain it also destabilizes circuit activity. In con-
trast, disinhibition through pathway pII (SOM → E) ensured a stable asynchronous state throughout
modulation (Fig. 2). However, our analysis was restricted to a network with a single unmodulated
state, and it remains to show that this result is general over a wide range of network states.

To simplify our analysis we neglect the E → SOM connections in the full E – PV – SOM circuit
(Fig. 4, left column). Consequently, SOM neuron modulation can only affect the stability and gain
of E neurons by changing the dynamical state of the E – PV subcircuit. Positive or negative input
modulations to SOM neurons increase or decrease their steady-state firing rate, which in turn affects
the steady-state rates of the E and PV neurons (Fig. 4Ai,ii). A specific modulation can be visual-
ized as a vector (∆rE,∆rP) in the previously introduced (rE, rP) firing rate grid (Fig. 4Aiii). The
direction of the vector indicates where the E – PV network state would move to if SOM neurons are
weakly modulated. We remark that the modulation (∆rE,∆rP) not only depends on the feedforward
SOM projections to E and PV neurons, but also on the dynamical regime (i.e linearization) of the
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unmodulated state (rE, rP).
To build intuition we first consider only the SOM → PV connection and set the SOM → E

connection to zero, thereby isolating pathway pI (Fig. 2Ai). A depolarizing modulation to SOM
neurons is applied (Imod > 0), ultimately causing ∆rE > 0 through PV neuron disinhibition. If the
unmodulated network state has low rE and high rP then the modulation vector field shows a transition
from non-ISN to ISN dynamics, indicated by ∆rP < 0 for low rE yet shifting to ∆rP > 0 for larger rE

(Fig. 4Bi,ii). In this regime, the modulation vectors cross the gain isolines, and network gain robustly
increases over a wide range of initial (rE, rP) network states (Fig. 4Bii). However, the vectors also
cross the stability isolines, showing that the modulation compromises network stability (Fig. 4Bi).
If we extend our analysis by including weak SOM → E connectivity (Fig. 4Ci,ii), the SOM → PV
connection continues to dominate and maintains a disinhibitory effect on E neurons. The vector field
changes so that the modulation now strongly increases gain but also shifts the circuit more directly
into the unstable region. Note also that the response reversal of the PV neurons at the transition from
non-ISN to ISN has vanished. In total, disinhibition through pathway pI has the general property
that increased gain comes at the cost of decreased stability.

We next consider the modulation of E neuron activity via removal of direct SOM mediated inhibi-
tion through pathway pII. To begin we set the SOM → PV connection to zero (Fig. 4C) and consider
an external hyperpolarizing modulation of SOM neurons (Imod < 0). This results in ∆rE > 0, which
in turn gives ∆rP > 0 through the E → PV connection (Fig. 4Di,ii). The vector field crosses gain
isolines at low rE values, but aligns with a them at high rE (Fig. 4Dii). That means that a modulation
yields gain increases for low network activity but loses its effectiveness at high activity. However, the
vector field also shows how the modulation aligns with the stability isolines at high rE, indicating
that stability is not comprised by modulation. Finally, including the SOM → PV connection shows
that the arrow field aligns with a lower stability isoline (Fig. 4Ei). The high gain state is, therefore,
more stable, but at the price of a smaller overall gain increase (Fig. 4Eii).

In sum, our analysis shows that if PV neurons stabilize E neuron activity then increasing the gain
of E neurons by inhibiting PV neurons drives the network dynamics towards instability. By contrast,
shifting the network to a high gain state by removing SOM inhibition from the E neurons yields
rate increases of both the E and PV neurons and a stable high gain state. The network stability is
improved if SOM neurons project to both E and PV neurons. In total, our analysis supports the
simple idea that interneurons that stabilize network activity should not be involved in the modulation
of network gain.

Recurrent feedback from E to SOM neurons amplifies gain modulation

Neglecting the E → SOM connection in the E – PV –SOM circuit makes SOM activity simply an
intermediate step in a feedforward modulation of the E – PV subcircuit. In this section, we consider
how the recurrent E ↔ SOM interactions determine how an external modulation to SOM neurons
affects E neuron gain.

First, in the absence of E → SOM coupling, we consider the network in three conditions: non-
stimulated (NSt), stimulated (St), or modulated and stimulated (M+St). In the NSt condition E
and PV neuron activity is low (Fig. 5Ai,ii; left bars), while SOM neurons are moderately activity
(Fig. 5Aiii; left bar). In the St condition a depolarizing stimulus (Istim > 0) is given to the E and PV
neurons and their activity naturally increases (Fig. 5Ai,ii; middle bars). However, since E neurons
do not project to SOM neurons then SOM activity in the S condition remains the same as in the
NS condition (Fig. 5Aiii; middle bar). Finally, in the M+St condition a hyperpolarizing modulation
(Imod < 0) is applied to the SOM neurons in conjunction with Istim > 0 to both E and PV neurons. In
this case, the E and PV neurons rise their activity further compared to the St condition (Fig. 5Ai,ii;
right bars) because of disinhibition via SOM neuron suppression (Fig. 5Aiii; right bar).
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Figure 4: How modulation of SOM neurons affect network gain and stability. A, Sketches
illustrating how the vector fields in panels B-E are obtained. Modulation of SOM neurons yields a
steady-state rate change of SOM (i), which yields altered steady-state rates of E and PV neurons
(ii). The arrows indicate in which direction a fixed point of the rate dynamics is changed by the
modulation (iii). B-E Heatmaps as in Fig. 3 for network stability (i) and gain (ii). Arrow fields
as defined in panel A. SOM neurons do not receive recurrent feedback from excitatory neurons
(pSE = 0). B: SOM neurons receive positive modulation and connect only to PV neurons (pES = 0,
pPS = 0.1). C: SOM neurons receive positive modulation and connect to both PV and E neurons
(pES = 0.07, pPS = 0.1). D: SOM neurons receive negative modulation and connect only to E
neurons (pES = 0.1, pPS = 0). E: SOM neurons receive negative modulation and connect to both
PV and E neurons (pES = 0.1, pPS = 0.07) .
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The above analysis ignored E → SOM coupling; we now compare it to the case when E → SOM
projections are intact. There is little difference in the NSt condition since E neuron activity is low and
hence the influence of E neurons upon SOM neurons is small (Fig. 5Bi,ii,iii; left bars). The same is
true for the M+St condition since the modulation continues to suppress SOM neuron activity despite
the E projections to SOM (Fig. 5Bi,ii,iii; right bars). However, in the St condition the E → SOM
coupling increases SOM activity (Fig. 5Biii; right bars), which in turn lowers the E response (and
by extension the PV response) compared to the case when E → SOM coupling is absent (Fig. 5Bi,ii;
right bars). The above analysis provides an important observation: when we compare the St and
M+St cases, the relative increase in E neuron rates with SOM modulation is greater when E→ SOM
connections are present (Fig. 5 Ai vs Fig. 5Bi).

Ai Aii Aiii

Bi Bii Biii

Ci Cii

E

S

Figure 5: Feedback from E to SOM cells enhances gain modulation. A, Network without
feedback from E to SOM neurons (JSE = 0). Firing rates of E (i), PV (ii), and SOM (iii) neurons
without stimulus (NSt), with stimulus (St) and with stimulus and (negative) modulation (M+St).
B, Same as panel A but with feedback from E to SOM neurons. C, Ratio between the network gain
modulation for networks with and without recurrent feedback from E to SOM neurons, αrec/αff .
The ratio increases with the initial firing rate of the SOM neurons (i) and the relative coupling
strength between E to SOM neurons and E to PV neurons (ii). The curves correspond to three
different initial conditions of the rates (rE, rP) (black: (2 Hz, 3 Hz), gray: (2 Hz, 2 Hz), light gray:
(2 Hz, 1.5 Hz)).

To show that this result is robust we employ our linearized rate description to give a general
theory for how E – SOM recurrence increases E neuron gain control via SOM neuron modulation.
To this end we consider the ratio of network gains in the modulated (m) and unmodulated (u)
circuits: α = gm/gu (recall that g = drE/dIstim). We do this for feedforward (ff) and recurrent (rec)
networks which either lack or preserve E → SOM coupling, respectively. To simplify our analysis we
assume that the modulation (Imod < 0) completely silences SOM activity. With this simplification the
gain modulation in the recurrent network, αrec, is related to the gain modulation in the feedforward
network, αff , as follows (see Eq. (45)):

αrec = αff
(

1− βSJSE
drE

drS

)
. (2)

In circuits where SOM neurons effectively inhibit E neurons (i.e pII > pI, see Fig. 1) we always have
that drE/drS < 0. Consequently, Eq. (2) shows that the gain modulation in the recurrent system
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is then always larger than the modulation in the feedforward system. Indeed, αrec/αff > 1 over a
large range of both unmodulated SOM neuron activity (Fig. 5Ci) and the strength of the E → SOM
connection (Fig. 5Cii). In sum, the theory which produced Eq. (2) generalizes the results of our
specific network example (Fig. 5A and B).

Modulation of SOM neurons has additive and multiplicative effects on tuning
curves

In the previous sections, we measured network gain as the increase of E neuron activity in response
to a small increase in stimulus intensity. We now extend our gain modulation analysis to E – PV –
SOM circuits with distributed responses, whereby individual neurons are tuned to a particular value
of a stimulus (i.e the preferred orientation of a bar in a visual scene or the frequency of an acoustic
tone). In what follows the stimulus θ is parametrized with an angle ranging from 0◦ to 180◦.

We begin by giving all E and PV neurons feedforward input µff(θ) which is tuned to θ = 90◦ with a
Gaussian profile (see Eq. (47) and Fig. 6Ai). This homogeneous input to all E and PV neurons ensures
that neurons have similar tuning curves, and thus it suffices to consider the population average tuning
curve, r(θ) = [rE(θ), rP(θ), rS(θ)]. The slope of the input tuning dµff/dθ (Eq. (47)) is translated to
response gain dr/dθ via (Eq. (49) and see Methods 1.8):

drκ
dθ

=
∑

γ∈{E,P}

Pκγβγ︸ ︷︷ ︸
:=gκ

dµff

dθ
, where P = (1−W)−1, κ ∈ {E,P, S}. (3)

Here W is the effective connectivity matrix for the E – PV – SOM circuit (Wκγ = βκJκγ).
We have written Eq. (3) in a compact form where the mapping from input gain to response gain

for population κ is given by drκ/dθ = gκdµ
ff/dθ, where gκ is the gain coefficient. The coefficient gκ

has a complicated dependence on the cellular gain β; explicitly through the products Pκγβγ as well
as through the matrix P’s dependence on the effective connectivity W. If the neuronal transfer is
truly linear, so that β is independent of the operating point, then g cannot be changed by an applied
modulation. Consequently, any circuit modulation evokes only an additive (or subtractive) shift of
response tuning. By similar logic, a nonlinear neuronal transfer would cause the cellular gain β to
change under any modulation that shifts the network operating point. In this case, gE will now also
depend on the modulation (unless the circuit W and cellular transfer function are very finely tuned),
and thus the modulation cannot result in a purely additive tuning curve shift and rather will show
some multiplicative (or divisive) component.

To explore how SOM neuron modulation mediates multiplicative gain control of tuning curves we
first set the unstimulated state of the model to have a low firing rate ( ∼ 0.1 Hz) for both E and PV
neurons. Applying stimuli with varying θ shows that all populations are tuned (Fig. 6Bi,ii,iii). This is
expected since both E and PV neurons receive tuned feedforward input and SOM neurons receive input
from E neurons which all have the same preferred angle. When the network is modulated through
a suppression of SOM neuron activity (Imod < 0) SOM tuning is both subtractively and divisively
modulated (Fig. 6Biii), while the tuning of E and PV neurons undergo both additive and multiplicative
changes (Fig. 6Bi,ii). The additive or subtractive shift reflects the overall rate increase of E and PV
neurons and decrease of SOM neurons, respectively. Similarly, the multiplicative or divisive shift arises
from an increase in the transfer coefficient g for E and PV neurons and a decrease in gS SOM neuron
suppression. Indeed, ∆gκ = gm

κ − gu
κ is positive for all θ for the E and P populations (Fig. 6Ci,ii) and

negative for all θ for the S population (Fig. 6Ciii), showing the respective multiplicative and divisive
nature of the modulation on the circuit tuning.

It is currently under debate whether tuning in mouse V1 is imposed by tuned input or a combi-
nation of weakly tuned input and recurrent connections. Theoretical studies showed that balanced
networks extract the weakly tuned component by subtracting the large untuned input component
that is supplied to every neuron through recurrent inhibition (Hansel and van Vreeswijk, 2012; Sadeh
and Rotter, 2015) and therefore produce sparse and selective responses (Pehlevan and Sompolinsky,
2014). We test whether SOM mediated gain amplification extends to a network where E and PV
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Figure 6: SOM activity modulates tuning curves of E and PV neurons. A, Sketch of
all neurons receiving input tuned to the same (i) and different (ii) preferred θ. B, All E and PV
neurons receive tuned feedforward input with a preferred θ of 90◦. Modulatory input suppresses
the activity of SOM neurons. Population tuning curves of E (i), PV (iii), and SOM neurons
(iii) without (light color) and with modulation (dark color). C, Difference of gain coefficients
∆gκ = gm

κ − gu
κ for the modulated (m) and unmodulated (m) networks. ∆gi is only shown for

angles θ at which the input µff(θ) is larger than 1% of its peak value. D-F, Same as in panel B,
but individual neurons receive tuned feedforward input with different preferred θ. Panels show
tuning curves of three example neurons (i-iii) within the E (D), PV (E), and SOM (F) populations.

Parameters: pext
E = 0.0185, pext

P = 0.0175, pext
S = 0.0445 pext,inh

S = 0.0125 without modulation,

pext,inh
S = 0.0175 with modulation.

neurons have heterogeneous tuning curves. We supply E and PV neurons differently tuned input so
that their θ preference is now distributed (Fig. 6D-F show the tuning curves of three representative
E and PV neurons). Suppression of SOM activity yields both additive and multiplicative shifts of the
tuning curves of E and PV neurons (Fig. 6D-F, solid vs faded curves). Further, since SOM neurons
receive convergent input from E neurons with different preferred frequencies, then they are not tuned
themselves (Fig. 6F). Thus, SOM neurons can regulate the network gain of E neurons to stimuli of
different directions without having direct access to the stimulus information through tuned E input.
The gain of individual E neurons is amplified once inhibition by SOM neurons that target all E
neurons and suppress responses of highly active neurons is reduced.

E – PV – SOM circuitry promotes a division of labor between PV and SOM
neurons.

One central conclusion from our study is that modulations of SOM neurons in the E – PV – SOM
cortical circuit can segregate the mechanics of gain control and network stability. We established
this by comparing and contrasting the modulatory influence of the direct SOM → E pathway (pII)
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to that of the indirect SOM → PV → E pathway (pI). However, perhaps the most salient circuit
distinction between SOM and PV interneurons is the strong PV → PV connectivity in comparison
to the complete lack of SOM → SOM coupling, at least as reported in the mouse sensory neocortex
(Pfeffer et al., 2013; Tremblay et al., 2016; Urban-Ciecko and Barth, 2016). In this concluding section,
we investigate how gain control and stability are affected by self-inhibition (or lack thereof) within
the E – PV – SOM cortical circuit.

A B C
E

S

E

S

E

S

Figure 7: How inhibitory to inhibitory coupling affects rate and stability. A, Rate of
E neurons depending on the modulation of SOM neurons for different values of SOM → SOM
coupling. B, Stability of the circuit depending on the modulation of SOM neurons for different
values of PV→ PV coupling. The external input is chosen such that the rates at zero modulation
are the same as in panel A for all values of pII. C, Stability of the circuit depending on the
modulation of SOM neurons for different values of SOM → PV coupling. The external input is
chosen such that the rates at zero modulation are the same as in panel A for all values of pIS.
Parameters: pext

E = 0.0527, pext,inh
S = 0.0225, A: pIS = 0.1, pext

P = 0.0403, pext
S = 0.0408, B:

pIS = 0.1, pext
S = 0.041, pext

P = 0.0288 (pII = 0.07), pext
P = 0.0403 (pII = 0.1), pext

P = 0.0529
(pII = 0.13), C: pext

S = 0.041, pext
P = 0.0374 (pIS = 0.0), pext

P = 0.0394 (pIS = 0.07).

We consider the full circuit with connectivity parameters where a depolarizing SOM modulation
(Imod > 0) leads to a reduction in E neuron firing rate rE (i.e pII > pI; Fig 7A, light green curve). As
a first exercise, we modify the circuit to include SOM → SOM neuron coupling (pSS > 0). A clear
consequence is that modulatory recruitment of SOM activity is less effective at suppressing E neuron
activity with stronger SOM self-inhibition (Fig 7A, medium and dark green curves). The intuition for
this is straightforward. Recurrent inhibition is a well known form of divisive gain control (Sadeh et al.,
2014; Stern et al., 2018; Sutherland et al., 2009). In our circuit, SOM neurons act as an intermediate
stage in a modulatory path to E neurons. Thus, SOM → SOM coupling will ultimately reduce the
efficacy (or gain) of Imod to enact a change in E neuron activity. In other words, SOM self-inhibition
would act to counter the modulatory influence of the Imod → SOM → E pathway. This provides a
functional benefit for the observed lack of SOM → SOM coupling in cortical networks. While SOM
neurons lack self-inhibition (as a group), PV neurons connect strongly to other PV neurons (Pfeffer
et al., 2013). In our circuit PV neurons stabilize network dynamics, counteracting the large E →
E recurrence which if left unchecked would cause an explosion of network activity. In order to best
quench runaway excitation, PV neurons must dynamically track E neuron activity so as to provide
inhibition which effectively cancels recurrent excitation (Ozeki et al., 2009; Tsodyks et al., 1997; van
Vreeswijk and Sompolinsky, 1996). This is best accomplished when PV neurons receive the same
synaptic inputs as E neurons. Thus, the strong PV → E pathway necessitates a comparable PV
→ PV pathway. Indeed, over a large range of modulatory states network stability is increased with
stronger PV → PV activity (Fig 7B). Along similar lines, the strong SOM → E pathway needed for
effective network modulation should be matched by a strong SOM→ PV pathway so that PV neurons
are subject to the same SOM inhibition that E neurons receive. This allows PV neurons to better
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stabilize overall network activity (Fig 7C).
In total, a division of labor within the PV – SOM sub-circuit, whereby SOM neurons mediate

modulations of network response and PV neurons are responsible for network stability, is supported
by the known synaptic interactions between the PV and SOM neurons.

Discussion

Cortical inhibition is quite diverse, with molecularly distinguished cell classes having distinct place-
ment within the cortical circuit (Jiang et al., 2015; Markram et al., 2004; Pfeffer et al., 2013; Tremblay
et al., 2016). Cell specific optogenetic perturbations are a critical probe used to relate circuit wiring
to cortical function. In many cases, a preliminary analysis of these new optogenetic datasets involves
building circuit intuition only from the dominant direct synaptic pathways while neglecting indirect
or disynaptic pathways. This is understandable given the newly realized complexity of the circuit;
however, this is precisely the situation where a more formal modeling approach can be very fruitful.
Toward this end, recent modelling efforts both at the large (Billeh et al., 2020) and smaller (del Molino
et al., 2017; Kuchibhotla et al., 2017; Litwin-Kumar et al., 2016; Mahrach et al., 2020; Veit et al.,
2017) scales have incorporated key aspects of interneuron diversity. These studies typically explore
which aspects of cellular or circuit diversity are required to replicate a specific experimental finding.

In our study, we provide a general theoretical framework that dissects the full E – PV – SOM into
interacting sub-circuits. We then identify how specific inhibitory sub-circuits support both network
stability and E neuron gain control; two ubiquitous functions often associated with inhibition (Fer-
guson and Cardin, 2020; Haider et al., 2013; Isaacson and Scanziani, 2011; Ozeki et al., 2009; Veit
et al., 2017). In this way, our approach gives an expanded view of the mechanics of cortical function
when compared to more classical results that focus only on how circuit structure supports a single
feature of cortical dynamics. The theoretical framework we develop can be adopted to investigate
other structure - function relationships in complicated multi-class cortical circuits.

Division of labor between PV and SOM interneurons

Compelling theories for both network stability (Griffith, 1963; Ozeki et al., 2009; van Vreeswijk and
Sompolinsky, 1996) and gain control (Stern et al., 2018; Sutherland et al., 2009) have been developed
using simple cortical models having only one inhibitory neuron class. Thus, stability and gain control
do not necessarily require cortical circuits with diverse inhibition. What our study points out is that
for a cortical circuit to perform gain modulation robustly through disinhibition yet remaining in a
regime where the activity is stable, segregating the circuits responsible for gain control and stability
has significant advantages.

If we accept this division of inhibitory labor hypothesis, then a natural question arises: Why
would PV neurons be assigned to stabilization while SOM neurons assigned to E neuron modulation?
In fact, there is evidence for the reverse labor assignment, namely that optogenetic perturbation
of PV neurons can shift E neuron response gain (Atallah et al., 2012; Seybold et al., 2015; Wilson
et al., 2012), and SOM neurons can suppress E neuron firing which in principle would also quench
runaway E neuron activity (Adesnik, 2017; Adesnik et al., 2012). However, the interpretation of
optogenetic perturbations can be fraught with subtle but important difficulties (Ferguson and Cardin,
2020; Phillips and Hasenstaub, 2016); in this case, the activation of PV neurons without concomitant
E neuron activation is somewhat artificial. Further, while it is true that SOM neurons can mediate
suppression, this is distinct from conferring stability since stable networks can allow E neurons to
have high (but not runaway) activity. Our approach was not to infer a specific division of labor
assignment from a synthesis of varied experimental results, yet base our conclusions from the known
circuit structure of the E – PV – SOM circuit.

Two key circuit features support our division of labor breakdown. Firstly, E neurons and PV
neurons experience very similar synaptic environments. Both receive excitatory drive from upstream
areas (Tremblay et al., 2016), and both receive strong recurrent excitation, as well as PV- and SOM-
mediated inhibition (Pfeffer et al., 2013). This symmetry in the synaptic input to E and PV neurons
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allow PV neurons to dynamically track E neuron activity. Consequently, any spurious increase in
excitatory drive to E neurons, that could cause a cascade of E population activity due to recurrent
E → E connections, is quickly countered by an associated increase in PV inhibition. Secondly, SOM
neurons famously do not connect to other SOM neurons (Jiang et al., 2015; Pfeffer et al., 2013; Urban-
Ciecko et al., 2015). Since SOM neurons do provide strong inhibition to E neurons this lack of input
symmetry makes them less fit to stabilize E neuron activity than PV neurons. However, it is precisely
the lack of SOM neuron self inhibition which allows a high gain for any top-down modulatory signal
to induce a change in E neuron response. A large component of the analysis in our manuscript is
devoted to establishing this circuit based view of a division of inhibitory labor in E – PV – SOM
cortical circuits.

There are circuit and cellular distinctions between PV and SOM neurons that were not considered
in our study, but could nonetheless still contribute to a division of labor between network stability
and modulation. Pyramidal neurons have widespread dendritic arborizations, while by comparison
PV neurons have restricted dendritic trees (Markram et al., 2004). Thus, the dendritic filtering of
synaptic inputs that target distal E neurons dendrites would be quite distinct from that of the same
inputs onto PV neurons. Fortunately, PV neurons target both the cell bodies and proximal dendrites
of both PV and E neurons (Di Cristo et al., 2004; Markram et al., 2004; Tremblay et al., 2016), so
that the symmetry of PV inhibition onto PV and E neurons as viewed by action potential initiation
is maintained. In stark contrast, SOM neurons inhibit the distal dendrites of E neurons (Markram
et al., 2004). Dendritic inhibition has been shown to gate burst responses in pyramdial neurons
greatly reducing cellular gain (Larkum et al., 2004; Mehaffey et al., 2005), and recent theoretical
work shows how such gating allows for a richer, multiplexed spike train code (Naud and Sprekeler,
2018). Further, dendritic inhibition is localized near the synaptic site for E → E coupling, and recent
modelling (Yang et al., 2016) and experimental (Adler et al., 2019) work shows how such dendritic
inhibition can control E synapse plasticity. This implies that SOM neurons may be an important
modulator not only of cortical response but also of learning.

The E – PV – SOM cortical circuit is best characterized in superficial layers of sensory neocortex
(Pfeffer et al., 2013; Tremblay et al., 2016; Urban-Ciecko and Barth, 2016), and the wiring of our
model network relied heavily on that literature. However, cell densities and connectivity patterns of
interneuron populations change across the brain (Kim et al., 2017) and across cortical layers (Jiang
et al., 2015; Tremblay et al., 2016). Our circuit based division of labor thus predicts that any differences
in inhibitory connectivity compared to the one we studied will be reflected in changes of the roles
that interneurons play in distinct cortical functions.

Feedback from E to SOM neurons expands range of gain modulation

Our initial analysis of the E – PV – SOM circuit neglects E → SOM cell coupling (Figs 2 and
4). While this permits a simplified analysis, a consequence is that SOM activity serves only as a
feedforward input to the recurrent E – PV circuit. This restriction constrains the range over which
the gain of E neurons can be varied through disinhibition of E and PV neurons. Including the E →
SOM connection recruits strong SOM-mediated inhibitory feedback which suppresses the E neuron
response to stimuli. Subsequent suppression of SOM neuron activity (through VIP inhibition, for
instance) releases E neurons from SOM inhibition so that stimuli now drove high activity (Fig. 5). In
effect, removing SOM inhibition when it controls E neuron responses through a recurrent E – SOM
circuit has a far greater effect than simply removing feedforward SOM → E inhibition. This result
is in line with previous findings that recurrent inhibition is more effective at gain modulation than
feedforward inhibition (Sadeh et al., 2014; Stern et al., 2018; Sutherland et al., 2009).

To study SOM-mediated gain control, we simply include or remove the E → SOM coupling in
the E – PV – SOM circuit. In truth, the E → SOM synaptic coupling is malleable and dependent
upon E neuron activity. Short term synaptic dynamics in cortical circuits often show net depression
(Zucker and Regehr, 2002), however, the E → SOM connection famously facilitates with increasing
pre-synaptic activity (Beierlein et al., 2003; Reyes et al., 1998; Thomson, 1997; Tremblay et al.,
2016; Urban-Ciecko and Barth, 2016; Yavorska and Wehr, 2016). Indeed, prolonged activation of E
neurons recruits SOM activity through this facilitation (Beierlein et al., 2003). Thus, this enhanced
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gain control would require a strong and long lasting drive to E neurons to facilitate the E → SOM
synapses. Further work incorporating short term plasticity models (Tsodyks et al., 1998) into the E –
PV – SOM model circuit will be required to fully explore how evoked E activity shapes the modulation
of E neurons via SOM disinhibition.

Impact of SOM neuron modulation on tuning curves

Neuronal gain control has a long history of investigation (Ferguson and Cardin, 2020; Salinas and
Thier, 2000; Williford and Maunsell, 2006), with mechanisms that are both bottom-up (Schwartz
and Simoncelli, 2001) and top-down (Reynolds and Heeger, 2009; Ruff et al., 2018) mediated. A
vast majority of early studies focused on single neuron mechanisms; examples include the role of spike
frequency adaptation (Ermentrout, 1998), interactions between fluctuating synaptic conductances and
spike generation mechanics (Chance et al., 2002), and dendritic-dependent burst responses (Larkum
et al., 2004; Mehaffey et al., 2005). These studies often dichotomized gain modulations into a simple
arithmetic where they are classified as either additive (subtractive) or multiplicative (divisive) (Silver,
2010; Williford and Maunsell, 2006). More recently, this arithmetic has been used to dissect the
modulations imposed by SOM and PV neuron activity onto E neuron tuning (Atallah et al., 2012;
Lee et al., 2014; Wilson et al., 2012). Initially, the studies framed a debate about how subtractive
and divisive gain control should be assigned to PV and SOM neuron activation. However, a pair of
studies in the auditory cortex gave a sobering account whereby activation and inactivation of PV and
SOM neurons had both additive and multiplicative effects on tuning curves (Phillips and Hasenstaub,
2016; Seybold et al., 2015), challenging the tidy assignment of modulation arithmetic into interneuron
class.

Past modelling efforts have specifically considered how tuned or untuned SOM and PV projections
combine with nonlinear E neuron spike responses to produce subtractive or divisive gain changes
(Litwin-Kumar et al., 2016; Seybold et al., 2015). However, the insights in these studies were primarily
restricted to feedforward SOM and PV projections to E neurons, and ignored E neuron recurrence
within the circuit. In our study we explicitly consider the role of recurrent wiring through how the
effective connectivity matrix W will change with network state. We derived that changes in W scale E
neuron gain in a multiplicative (or divisive) fashion (see Eq. (3) and (Sadeh et al., 2014)). By contrast,
additive (or subtractive) gain changes can occur through feedforward inhibition and a roughly linear
E neuron transfer (βE does not change). The combination of these observations prompts a testable
prediction. The large heterogeneity of subtractive and divisive gain control reported in various studies
(Atallah et al., 2012; Lee et al., 2014; Natan et al., 2017; Seybold et al., 2015; Wilson et al., 2012) may
not reflect differences in SOM vs PV projections to a specific E neuron, yet rather how embedded
that recorded E neuron and the activated interneurons are in the full recurrent cortical circuit.
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github.com/hannahbos/disinhibitory_pathways
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1 Methods

1.1 Population model

E, PV and SOM neurons are modeled as leaky-integrate-and-fire (LIF) neurons connected with ex-
ponentially decaying synapses

τm
dVi
dt

= −(Vi − EL) +RIi (4)

τs
dIi
dt

= −Ii + τs

∑
j

wij
∑
n

δ(t− tnj ). (5)

Here Vi describes the membrane potential of the i-th neuron and Ii its synaptic current. R denotes
the resistance of the membrane, EL the resting potential, τm the membrane time constant, τs the
synaptic time constant, wij weight of the synapse from neurons j to neuron i and tnj the time of the
n-th spike of neuron j. When the membrane potential of a neurons exceeds its threshold (Vth), it is
reset to its resting potential (Vr), where it is clipped for the refractory period (τref). All weights are
drawn from a Gaussian distribution with mean w and standard deviation 0.1w. All parameters are
given in Table 1. The dynamics are simulated with NEST (Kunkel et al., 2017).

Neurons are subdivided into NE excitatory (E), NP Parvalbumin-positive (PV) neurons, and NS

Somatostatin-positive (SOM) neurons. We assume that 20% of all neurons are inhibitory (η = 1/4)
and that the ratio of PV and SST densities is given by ρ = NS/NP = 0.83 (Pfeffer et al., 2013), the
population sizes are given by

NE = N, NP =
η

1 + ρ
N = ηPN, NS = ρηPN. (6)

Pairs of neurons are connected randomly with pκγ being the probability of a connection from a
neuron in population γ to a neuron in population κ (κ, γ ∈ {E, , S}). Thus the connectivity between
populations is described by

J = w̃N

pEE −gpEPηP −gpESρηP

pPE −gpPPηP −gpPSρηP

pSE −gpSPηP −gpSSρηP

 =

JEE −JEP −JES

JPE −JPP −JPS

JSE −JSP −JSS

 , (7)

where the inhibitory connection strength is amplified by g = 4 and the effective weight is given by
w̃ = τsRw. Each neuron in population κ receives additional input from external Poisson sources
with connection strength w̃Npext

κ and firing rate rext = 8 Hz. In matrix representation the external
connection strength is given by Jext = w̃Ndiag(pext

E , pext
P , pext

S ). In some cases, populations receive

input from inhibitory external Poisson sources with connection strength −gw̃Npext,inh
κ which could

represent, for example, VIP neurons. External input due to stimulus or modulation is given the same
connection strength. Modulatory input is given by

Jmod = −gw̃Ndiag(0, 0, pext,inh
S ), (8)

such that Imod = pext,inh
S rext.

1.2 Theoretical description of the population dynamics

The population rate dynamics of E, PV and SOM neurons (r = (rE, rP, rS)) are described by a firing
rate model (Wilson and Cowan, 1972)

τ
dr

dt
= −r + f(r,q), with f(r,q) = Φ(µ(r,q), σ(r,q)), (9)

where q denotes the firing rate of external input due to a stimulus or modulation. The static transfer
function Φ is given by the inverse of the mean first-passage time of the membrane potential of the
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neurons. It follows from diffusion approximation of the membrane potentials of the neurons within
one population, assuming that all neurons are uncorrelated (Fourcaud and Brunel, 2002)

Φ(µ, σ) =
(
τm

√
π

∫ (Ṽth−µ)/σ

(Ṽr−µ)/σ
es

2
(1 + erf(s))ds

)−1
, (10)

with

Ṽr = Vr + σ
α

2

√
τs

τm
, Ṽth = Vth + σ

α

2

√
τs

τm
, α =

1√
2

∣∣∣ζ(1

2

)∣∣∣, (11)

with the Riemann zeta function ζ. The mean and variance of the input current to the neurons are
given by

µ(r,q) = Jr + Jextq and σ2(r,q) =
w̃√
N

Jσr +
w̃√
N

Jextq, (12)

with JσiE = JiE, JσiP = gJiP and JσiS = gJiS.

In the steady-state the population averaged rates are given by the self-consistent equation

r(q) = f(r,q). (13)

Noisy rate dynamics induced by the finite-size of the network can be described be the following
dynamical variable (Grytskyy, 2013):

y = r + x, τ
dr

dt
= −r + f(y,q), (14)

where x is a vector of white noise terms xκ with variance rκ/Nκ.

1.3 Network gain

Changes of the steady-state rates induced by small changes in the external rate can be described by
linearization around the fixed point (del Molino et al., 2017; Litwin-Kumar et al., 2016)

dr

dq
=
dΦ

dµ

dµ(r,q)

dq
= B

(
J
dr

dq
+ Jext

)
, (15)

with
B = diag(βE, βP, βS) and βi = dΦ(µi, σi)/dµi (16)

yielding
dr

dq
=
(
1−W

)−1
Wext, with W = BJ and Wext = BJext. (17)

Here 1 denotes the identity matrix. Note that we omitted changes in the fixed point due to the rate
dependence of the variance of the input since it is small compared to changes in the mean input. Thus
the change of population rates δr induced by a change in the external rate δq is given by

δr =
dr

dq
δq. (18)

and the matrix dr
dq has been termed a response matrix (del Molino et al., 2017). If all eigenvalues of

W are smaller than 1 the response matrix can be written as:

dr

dq
=

∞∑
i=0

WiWext. (19)
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and the response of the excitatory neurons to modulation of the SOM neurons gives

drE

dqS
= βSJ

ext
S

∞∑
i=0

W i
13 (20)

= βSJ
ext
S

(
βEJES − β2

EJEEJES + βEβPJEPJPS (21)

+(βPJEPJPE + βSJESJSE − βEJ
2
EE)β2

EJES (22)

+(βEJEEJEP − βPJEPJPP)βEβPJPS + ...) . (23)

Here W i
13 denotes the element in the first row and third column of the matrix. Our expression shows

that the response matrix describes the summed effect of all possible pathways through the network
whereby an externally applied signal could influence population E rates.

Assuming that modulation only targets SOM neurons δq = (0, 0, Imod), the rate change of excita-
tory neurons induced by modulation is given by

δrE =
drE

dImod
βSĨmod =

βEJEPβPJPS − (1 + βPJPP)βEJES

det(1−W)
βSĨmod (24)

with Ĩmod = Jext
S Imod and the rate change of SOM neurons by

δrS =
det(1−WEP)

det(1−W)
βSĨmod with WEP =

(
WEE WEP

WPE WPP

)
. (25)

Thus the rate change of the excitatory neurons can be expressed as a function of the rate change of
SOM neurons as

δrE = βE
JEPβPJPS − (1 + βPJPP)JES

det(1−WEP)
δrS. (26)

Network gain is defined as the rate change of neurons in response to a stimulus, assuming that stimuli
target E and PV neurons δq = Istim = (IE

stim, I
P
stim, 0), E neuron network gain is given by

gE =
drE

dIstim
= βE

(1 + βPJPP)ĨE
stim − βPJEPĨ

P
stim

det(1−W)
with ĨE,P

stim = Jext
E,PI

E,P
stim. (27)

1.4 Paradoxical responses and gain maximum

The response of the PV neurons to SOM modulation is given by

drP

dImod
= −βP

βEJESJPE + (1− βEJEE)JPS

det(1−W)
= −βP

JPS + βE(JESJPE − JEEJPS)

det(1−W)
(28)

When SOM neurons only project to PV neurons (JES = 0), the rate of PV neurons decreases if the
E – PV circuit is in the non-ISN regime (βEJEE < 1) and increases otherwise. The latter case has
been termed paradoxical response (Tsodyks et al., 1997). If SOM neurons also project to E neurons,
PV neurons get additional negative drive from the lack of E feedback yielding decreased PV rates
even in the ISN regime. Hence we only expect paradoxical responses if the product of connection
strength JEEJPS is large. Thus the observation of paradoxical responses of PV neurons in response to
suppression via SOM neurons cannot disclose whether the E neurons operate in the ISN or non-ISN
regime if SOM neurons also suppress the activity of E neurons.

Modulation controls the firing rates and cellular gains (βs) of E and PV population, and network
gain (g) explicitly depends on the latter. Differentiating Eq. (27) with respect to βE we have:

dgE
dβE

=
1 + βPJPP

det(1−W)2

(
ĨE

stim + βP(JPPĨ
E
stim − JEPĨ

P
stim)

)
. (29)
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We see that dgE
dβE

increases if PV → PV coupling is strong and PV neurons are not driven strongly by
the stimulus.

Differentiating Eq. (27) with respect to βP gives:

dgE
dβP

=
βEJEP

det(1−W)2

(
− ĨE

stim + βE(JEEĨ
P
stim − JPEĨ

E
stim)

)
+ JSEA, (30)

with

A =
β2

EJEPβS

det(1−W)2

(
JPSĨ

E
stim − JESĨ

P
stim

)
. (31)

Here we see that when βP increases then gE decreases if E→ E coupling is not too strong, PV neurons
are not driven strongly by the stimulus, and SOM neurons project in a feedforward manner to both
E and PV neurons.

When increasing gE via the disinhibitory pathway SOM → PV → E neurons in the ISN regime,
the rate of E and PV neurons increases. Assuming that the circuit operates below the saturating
regime of the transfer function, the cellular gains βE and βP therefore also increase. The increased E
rate then increases gE , but the increased PV rate decreases gE , which explains the maximum at gE .
(Fig. 2Biii).

1.5 Quantifying network stability

Let us consider the linearized deterministic rate dynamics stemming from Eq. (9):

τ
dr

dt
= −r + W(r + q). (32)

Stability can be inferred from the eigenvalues of the Jacobian W−1 (where 1 is the identity matrix).
The steady-state rate dynamics become unstable if one of the eigenvalues of W has a real part that is
larger than one. Going beyond this binary view of stability (stable vs unstable) we use a measure of
distance to instability which can inform us whether the system becomes more or less stable with state
changes. A frequency-dependent proximity to instability can be inferred from the Nyquist plot of the
transfer function of the rate dynamics (Doyle et al., 2009). For simplicity, consider the dynamics of
the least stable mode associated to the eigenvalue λ of W:

τ ṙ = −r + λ(r + q), (33)

where r and q denote the rate r and input q projected onto the least stable mode, respectively. We
remark that we consider q to be time-dependent with Laplace transform Q(ω). Solving the equation
above in the Laplace domain gives the following relation between input and output

R(ω) =
λ(ω)

1− λ(ω)
Q(ω) with λ(ω) =

λ

1 + iωτ
. (34)

The term 1/(1 − λ(ω)) is referred to as sensitivity function in control theory (Doyle et al., 2009)
and its inverse measures the distance of the Nyquist curve to the critical point, which is here given
by <(λ) = 1. The curve generated by λ(ω) provides a distance measure of the rate dynamics to
instabilities for ω > 0 (Fig. 8). Thus, it is natural to measure the proximity of the rate dynamics to
instability via:

dmin = min
ωτ
|1− λ(ω)|. (35)

Since λ(ω) converges to zero for large frequencies dmin is upper bounded by one.
The same distance measure quantifies how easily the dynamics are destabilized by internally

generated noise, which is amplified by the circuit as

Y (ω) =
1

1− λ(ω)
X(ω). (36)
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Figure 8: Measure of distance to instability. Sketch of Nyquist plots corresponding to the
system at rest (λ1(ω)) and the modulated system (λ2(ω)). Only the mode closest to instability
is shown. Modulation increases the imaginary part of the eigenvalue but leaves the real part
unaltered. dmin is defined as the minimal distance of λ(ω) to the critical value <(λ) = 1.

Here, we simplified the dynamic transfer function as a first-order low pass filter. A more rigorous
mapping of the frequency-dependent input-output relation between the rate and the spiking model can
be achieved by applying linear response theory when deriving the transfer function from the Fokker-
Planck equation (Brunel and Hakim, 1999; Lindner and Schimansky-Geier, 2001). For LIF-neurons
in the balanced regime, this results in small modifications of the Nyquist plots from first-order low
pass filters (Bos et al., 2016).

1.6 Stability of the E – PV sub-circuit

Considering the circuit composed of E and PV neurons, the eigenvalues of the Jacobian (WEP − 1)
are given by

λ1,2 =
βEJEE − βPJPP − 2

2
±
√

(βEJEE − βPJPP − 2)2

4
+ βEJEPβPJPE. (37)

Thus the real part of the largest eigenvalue fulfills

<(λmax) ≥ βEJEE − βPJPP − 2

2
. (38)

Hence if there is no coupling between the PV neurons JPP = 0, the activity of excitatory neurons
cannot be dynamically stabilized and the susceptibility at which the dynamics become unstable is
given by

βcritical
E = 2/JEE. (39)

1.7 Gain amplification

The E neuron network gain in the unmodulated system with feedforward inhibition by SOM neurons
is given by:

gff
u ≡

drE

dIstim
=
βE(1 + βPJPP)IE − βEβPJEPIP

det(1−W)
:=

f(βE, βP)

h(βE, βP)
. (40)

Modulating the circuit by removing inhibition from SOM neurons shifts E and PV neurons to a new
fixed point with cellular gains β∗E and β∗P, respectively. Similarly, the network gain in the modulated
state is:

gff
m =

f(β∗E, β
∗
P)

h(β∗E, β
∗
P)
. (41)

Modulation then amplifies gain by the factor αff = gff
m/g

ff
u .
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Starting from the same fixed point as in the feedforward system, the gain in the unmodulated
circuit with recurrently connected SOM neurons is then:

grec
u =

f(βE, βP)

h(βE, βP)− u(βE, βP, βS)
, (42)

with

u(βE, βP, βS) = (βEβPJEPJPS − βE(1 + βPJPP)JES)βSJSE = h(βE, βP)βSJSE
drE

drS
(43)

and drE/drS for the corresponding feedforward circuit. Assuming that modulation silences SOM
neurons, the circuit is shifted to the same fixed point as in the feedforward case and therefore

grec
m =

f(β∗E, β
∗
P)

h(β∗E, β
∗
P)

= gff
m. (44)

The gain amplification in the circuit with recurrently connected SOM neurons is hence given by

αrec =
grec

m

grec
u

= αff
(

1− βSJSE
drE

drS

)
. (45)

Since drE/drS is always negative for the circuit that supports gain modulation by removing SOM ac-
tivity, the gain amplification in the recurrent system is always larger than in the feedforward system.

1.8 Gain modulation in tuned populations

We first assume that the E, PV and SOM population each has a stable tuning curve with respect
to some stimuli θ ∈ (0◦, 180◦); we denote the population tuning curve as r(θ) = (rE(θ), rP(θ), rS(θ)).
In equilibrium (i.e neglecting transients) the change of the tuning curves with respect to the angle is
given by

dr

dθ
=

d

dθ
f(µrec(θ),µff(θ)), (46)

with the static transfer function f (Eq. (9) and Eq. (10)) and the mean input from recurrent and
feedforward connections µrec and µff (Eq. (12)). We assume that the feedforward input is tuned with
a Gaussian profile and that it only targets E and PV neurons:

µff(θ) = w̃Npθe
−(θ−θp)2/σ2

θ

1

1

0

 , (47)

with the preferred angle θp = 90◦. Analyzing the sensitivity of firing rates to changes in preferred
orientation (analogously to changes in the input intensity as analyzed in Methods 1.3) gives the
stimulus gain mapping from feedforward input to firing rate output:

dr

dθ
= (1−W)−1Ĩ(θ), Ĩκ = βκ

dµff
κ

dθ
, (48)

where κ ∈ {E,P, S}. Since E and PV receive the same amount of feedforward input we can drop the
index of µff

κ and write the slope of the population tuning curves as

drκ
dθ

=
∑

γ∈{E,P}

Pκγβγ︸ ︷︷ ︸
:=gκ

dµff

dθ
, where P = (1−W)−1, α ∈ {E,P, S}, (49)

showing that the slope of the input tuning curve of population κ is effectively multiplied by the factor
gκ.
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We can extend the analysis to networks where individual E and PV neurons receive differently
tuned input (i.e distributed tuning). In that case the response sensitivity dr/dθ and the mean inputs
µrec, µff are of dimension N (the number of neurons). The input to the ith neuron of population κ is
given by:

µff
iκ(θ) = w̃Npθe

−(θ−θpiκ)2/σ2
θ , (50)

with the preferred angle θpiκ = 180i/Nκ. Thus the input vector for each θ is sparse and the response of
the balanced network is also sparse and selective (Pehlevan and Sompolinsky, 2014). The amplification
of sparse input vectors can be understood as the projection of the input onto the eigenvectors of the
N × N dimensional Jacobian (1 −WN×N ) weighted by the inverse of the associated eigenvalues
(Sadeh et al., 2014). Since some eigenvalues of the random connectivity matrix WN×N are close to
one, their modes get amplified. When the activity of SOM neurons is removed the product of the
population eigenvalues (det(1 −W)) becomes smaller which subsequently increases gain. Since the
eigenvectors of population eigenvalues affect all neurons in one population equally, the tuning curve
slopes of individual neurons is increased (Fig. 6D-F).

In particular, if SOM neurons only project feedforward to the E and PV neurons, the population
response scaling (det(1−W)−1 = det(1−WEP)−1) is determined by the changes of cellular gains of
the E and PV neurons alone. In contrast, if SOM neurons are part of the recurrent circuit (JSE 6= 0),
removing their activity directly affects the population response scaling (det(1 −W)−1 = (det(1 −
WEP)− βE(pI − pII)βSJSE)−1) resulting in stronger multiplicative scaling.
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Parameter Value Description

τm 10 ms membrane time constant

R 40 MΩ membrane resistance

EL -65 mV resting potential

Vth -50 mV threshold potential

Vr -65 mV reset potential

τs 0.5 ms synaptic time constant

τref 2 ms absolute refractory period

N 4136 number of excitatory neurons

pEE 0.03 connection probability between excitatory neurons

pPE 0.05 connection probability between E and PV neurons

pSE 0.05 connection probability between E and SOM neurons

pEP 0.1 connection probability between PV and E neurons

pPP 0.1 connection probability between PV neurons

pSP 0.0 connection probability between PV and SOM neurons

pES 0.1 connection probability between SOM and E neurons

pPS 0.07 connection probability between SOM and PV neurons

pSS 0.0 connection probability between SOM neurons

pext
E 0.055 connection probability of external input to E neurons

pext
P 0.05 connection probability of external input to PV neurons

pext
S 0.05 connection probability of inhibitory external input to SOM neurons

pext,inh
E 0 connection probability of inhibitory external input to E neurons

pext,inh
P 0 connection probability of inhibitory external input to PV neurons

pext,inh
S 0.025 connection probability of external inhibitory input to SOM neurons

w = wiE 610.56 pA synaptic strength of excitatory connection

wiP, wiS −gw synaptic strength of inhibitory connection

pθ 0.025 connection probability of tuned input to E neurons

σθ 20◦ standard deviation of input tuning

Table 1: Default model parameter. Deviations are specified in the text or caption of
figures.
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