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Abstract The interactions of large groups of spiking neurons have been difficult to understand or visualise. Using10

simple geometric pictures, we here illustrate the spike-by-spike dynamics of networks based on efficient spike coding,11

and we highlight the conditions under which they can preserve their function against various perturbations. We show12

that their dynamics are confined to a small geometric object, a ’convex polytope’, in an abstract error space. Changes13

in network parameters (such as number of neurons, dimensionality of the inputs, firing thresholds, synaptic weights,14

or transmission delays) can all be understood as deformations of this polytope. Using these insights, we show that the15

core functionality of these network models, just like their biological counterparts, is preserved as long as perturbations16

do not destroy the shape of the geometric object. We suggest that this single principle—efficient spike coding—may17

be key to understanding the robustness of neural systems at the circuit level.18

19

Introduction20

The dynamics of neural networks are usually analysed and understood by focusing on neurons’ firing rates. The21

resulting network models have provided a host of intuitions about the types of computations that can be carried22

out with neural networks, from feedforward architectures to winner-take-all networks, associative memories, neural23

integrators, or working memory [1]. Despite these successes, it is not entirely clear that these network models are24

the ‘right’ way to explain the dynamics of neural circuits. Most neurons spike, and it has proven surprisingly difficult25

to translate results on rate networks into equivalent spiking neural networks when biological observations (such as26

irregular, asynchronous firing and low firing rates) are taken into account [2, 3].27

A key hurdle is that we lack intuitions on how to think about communication with spikes at the network level.28

Many ideas of how to compute with spikes on the single-neuron level have been developed [4–11], but making these29

ideas work on the network level, while staying within realistic biological regimes, has often proven challenging. A30

crucial step forward was the development of balanced networks, which highlighted the conditions under which neural31

networks generate irregular and asynchronous spike trains [3, 12–16], as well as correlated fluctuations [17, 18]. While32

balance was initially just an implementational constraint imposed on neural circuitry, it was recently given a functional33

explanation in terms of efficient coding [19–21]. In these networks, which have been called ‘spike coding networks’34

[2, 22], the dynamics of balancing were equated with self-correcting properties of the network. Interestingly, these35

networks showed themselves robust to perturbations such as neuron loss [19, 23].36

We here show that these networks lend themselves to a geometric description that provides a host of insights37
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about their spiking dynamics. In particular, the geometric view suggests a unifying principle for how neural circuits38

may have become robust to many perturbations encountered in nature (Figure 1). We use our geometric framework39

to study what happens when these systems are scaled up to realistic sizes (coding of hundreds of dimensions with40

thousands of neurons). We show how the geometric framework nicely illustrates what happens when neurons are41

destroyed, or when biophysical parameters such as synaptic strengths, spiking thresholds, or transmission delays,42

etc. are altered or perturbed from their optimal values. Finally, we illustrate how the framework can shed new light43

on optogenetic perturbation experiments, suggesting that neural circuits should be sensitive to small excitatory44

perturbations, yet insensitive to broad inhibitory perturbations.45

In doing so, we both reproduce some previous findings (e.g. robustness to neuron loss [23]) and report new46

findings (e.g. on noise, delays, and optogenetics). Our key contribution here is to provide a geometric interpretation47

of spike coding networks (SCNs) and their robustness. This geometric framework allows us to visualise both the48

network’s spiking dynamics and its various biophysical parameters in a lower-dimensional error space, thereby49

providing straightforward intuitions about how changes in the network’s parameters affect the dynamics.50

Results51

Spike coding networks are based on the hypothesis that neural populations compute with analog quantities, such as52

membrane currents and voltages, and that they fire spikes only to encode and decode the ‘signals’ resulting from53

these computations [19–22, 24]. Their function is best illustrated in a network whose sole purpose is to encode a54

given set of time-varying input signals x(t) =
(
x1(t), x2(t), ... , xM(t)

)
into spike trains, such that one can reconstruct55

the signals using a linear readout (Figure 2A). We will focus exclusively on this simple autoencoder-network in order56

to highlight the mechanisms that make the network robust. As SCNs are capable of implementing more complex57

computations, we will show in the discussion how to transfer these insights to more general networks. We here58

replicate the derivations outlined in Boerlin et al. [19] and Barrett et al. [23], with some minor variations, and we show59

how to construct a geometric explanation of the network’s spiking behavior.60

The error bounding box61

The architecture of spike coding networks is derived from two assumptions. The first assumption is that all signals62

can be decoded linearly from the network’s spike trains. In other words, rather than specifying how (input) signals63

are mapped onto spike trains, we specify how spike trains are mapped into (output) signals (Figure 2A). In the ’linear64

readout’ mapping, each spike train is convolved with an exponential filter, similar to the postsynaptic potentials65

generated in a single synapse. Then, the filtered spike trains are weighted and summed, similar to the passive66

summation in a dendritic tree. Formally, we write67

x̂(t) =
N∑

k=1

Dk rk(t), (1)

where rk(t) is the filtered spike train of the k-th neuron, N is the number of neurons, x̂(t) =
(
x̂1(t), x̂2(t), ... , x̂M(t)

)
68

is the vector of readouts, and Dk = (D1k ,D2k , ... ,DMk) is the decoding vector of the k-th neuron, whose individual69

elements contain the respective decoding weights.70

To illustrate the geometrical consequences of this decoding mechanism, we imagine a network of five neurons that71

is encoding two signals. At a given point in time, we can illustrate both the input signals x = (x1, x2) and the readout72

produced by the network x̂ = (x̂1, x̂2), as two points in signal space (Figure 2B). Now let us imagine that one of the73

neurons, say neuron i , spikes. When that happens, the spike causes a jump in its filtered output spike train. In turn,74

and according to equation 1, the vector of readouts x̂ jumps in the direction Di = (D1i ,D2i ), as illustrated in Figure 2B.75

Since the direction and magnitude of this jump are determined by the fixed readout weights, they are independent76

of the past spike history or the current values of the readouts. After this jump, and until another neuron fires, all77

components of the readout x̂ will decay. Geometrically, this decay corresponds to a movement of the readout towards78

the origin of the coordinate system.79

The second assumption of SCNs is that a neuron spikes only when its spike moves the readout closer to the desired80

signal x. For each neuron, this spike rule divides the whole signal space into two regions: a ‘spike’ half-space where81

the readout error decreases if the neuron spikes, and a ‘no-spike’ half-space where the readout error increases if the82
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Figure 1: Neural systems are robust against a variety of perturbations. (A) Biological neural networks operate under

multiple perturbations. (B) The degree of robustness of a system can fall into three regimes: 1. Catastrophic failure

(red), when small changes in the conditions lead to quick loss of function for the system. 2. Gradual degradation

(grey), when the system’s performance is gradually lost when departing from optimal conditions. 3. Robust operation

(black), when the network is able to maintain its function for a range of perturbations. (C) The output of a spike coding

network, designed to generate a two-dimensional oscillation, is robust to several cumulative perturbations, breaking

down only with the final introduction of synaptic delays. Top: Schematic of the various perturbations. Vertical lines
indicate when a new perturbation is added. The standard deviation of the injected voltage noise is more than 5% of

the neuronal threshold magnitude. The perturbation of all synaptic weights is random and limited to 5%. The synaptic

delays are changed by 1 ms. Middle: Two-dimensional output, as decoded from the network activity. Bottom: Raster
plot of the network’s spike trains.
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neuron spikes (Figure 2B). The boundary between these two half spaces is the neuron’s spiking threshold, as seen83

in signal space. Consequently, the neuron’s voltage Vi must be at threshold Ti , whenever the readout reaches this84

boundary, and the voltage must be below or above threshold on either side of it. We therefore identify the neuron’s85

voltage with the geometric projection of the readout error onto the decoding vector of the neuron,86

Vi = D>i (x− x̂), (2)

where, without loss of generality, we have assumed that Di has unit length (see Material and Methods). The effect87

of this definition is illustrated in Figure 2E, where the voltage increases or decreases with distance to the boundary.88

Accordingly, the voltage has a clear functional interpretation in terms of an error, given here by the distance of the89

readout to the neuron’s boundary.90

In addition to its functional interpretation, the voltage equation has a simple biophysical interpretation, as91

illustrated in Figure 2C. Here, the two input signals, x1 and x2, get weighted by two synaptic weights, D1i and D2i ,92

leading to two postsynaptic voltages that are then summed in the dendritic tree of neuron i . At the same time, the two93

readouts, x̂1 and x̂2, are fed back into the neuron via two exactly opposite synaptic weights, −D1i and −D2i , thereby94

giving rise to the required subtraction. As a consequence, the neuron’s voltage becomes the projection of the readout95

error, as prescribed above. When the neuron’s voltage reaches the voltage threshold Ti , the neuron fires a spike,96

which changes the readout x̂. In turn, this change is fed back into the neuron’s dendritic tree and leads to an effective97

reset of the voltage after a spike, as shown in Figure 2D. Given that the decoding vectors are of length one, the optimal98

size of the threshold is given by Ti = 1/2 (see Material and Methods).99

One neuron alone can only improve the readout along one specific direction in signal space and thus cannot correct100

the readout for all possible input signals (Figure 2D, arrow). In a network where each neuron contributes differently101

to the readout, the error will be corrected along different directions in signal space. A second neuron, say neuron j ,102

is added in Figure 2F–H. Following the logic above, its voltage is given by Vj = D>j (x− x̂), and the respective voltage103

isoclines are shown in Figure 2H. We see that the voltage of neuron j jumps when neuron i spikes. Mathematically, the104

size of this jump is simply given by the dot product of the two decoding vectors, D>j Di . Biophysically, such a jump105

could be caused by negative feedback through the readout units, but it could also arise through a direct synaptic106

connection between the two neurons, in which case Ωji = −D>j Di corresponds to the synaptic weight from neuron i107

to neuron j .108

Finally, if we add three more neurons, and give them different sets of decoding weights, the network as a whole109

can restrict the readout to a bounded region in signal space (a polygon in two dimensions), as shown in Figure 2I–K.110

We will call this bounded region the ‘error bounding box’ or simply the ‘bounding box.’ Its overall size determines111

the error tolerance of the network. To highlight the structure of this network, we can change Eq. 2 by inserting the112

definition of the readout, Eq. 1, to obtain113

Vi = D>i x−
N∑

k=1

D>i Dk rk . (3)

Here, the term Ωik = −D>i Dk can be interpreted as a lateral connection between neurons i and k in the network114

(Figure 2I). The diagonal elements of the respective connectivity matrix, Ωii , can be interpreted as the hyperpolarisation115

of the membrane voltage following a spike. Consequently, there is no need to compute the linear readout in a116

downstream layer, and then insert it via negative feedback back into the network. Rather, this negative feedback117

can be relayed through lateral connections and self-resets (Figure 2I; see also Material and Methods). While the118

connectivity of our network is symmetric, this assumption can be relaxed, as explained in the Material and Methods119

(see also Brendel et al. [25]).120

As shown previously, the temporal derivative of the above equation yields a network of current-based, leaky121

integrate-and-fire neurons (see Material and Methods). We emphasize that there are two distinct situations that cause122

neurons to emit spikes. First, the readout always leaks towards the origin, and when it hits one of the boundaries, the123

appropriate neuron fires and resets the readout into the centre of the bounding box. Second, any change in the signal124

x causes a shift in the whole bounding box, since the signal is always at the centre of the box. A sudden shift may125

therefore cause the readout to fall outside of the box, in which case neurons whose boundaries have been crossed126

will fire to get the readout back into the box. We strongly encourage the reader to view Supplementary Video 1 for an127

animation of the operation of SCNs.128
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Figure 2: Spike coding networks (SCNs) operate by creating an error bounding box around the input signals. Here
we construct a toy example with two inputs and five neurons. (A) The task of the network is to encode two input

signals (black) into spike trains (coloured), such that the two signals can be reconstructed by filtering the spike trains

postsynaptically (with an exponential kernel), and weighting and summing them with a decoding weight matrix D. (B)

A neuron’s spike moves the readout in a direction determined by its vector of decoding weights. When the readout is

in the ’spike’ region, then a spike from the neuron decreases the signal reconstruction error. Outside of this region (’no

spike’ region), a spike would increase the error and therefore be detrimental. (continued on following page)
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Figure 2, continued: (C) Schematic diagram of one neuron. The neuron’s voltage measures the difference between

the weighted input signals and weighted readouts. (D) Simulation of one neuron tracking the inputs. As one neuron

can only monitor a single error direction, the reconstructed signal does not correctly track the full two-dimensional

signal (arrow). (E) Voltage of the neuron (green) and example trajectory of the readout (gray). The dashed green lines

correspond to points in space for which neuron i has the same voltage (voltage isoclines). The example trajectory

shows the decay of the readout until the threshold is reached (I), the jump caused by the firing of a spike (II), and

the subsequent decay (III). (F) Same as C, but considering two different neurons. (G) Voltages and spikes of the

two neurons. (H) Voltage of the orange neuron during the same example trajectory as in E. Note that the neuron’s

voltage jumps during the firing of the spike from the green neuron. (I) The negative feedback of the readout can be

equivalently implemented through lateral connectivity with a weight matrix Ω = −DTD. (J) Simulation of five neurons

tracking the inputs. Neurons coordinate their spiking such that the readout units can reconstruct the input signals up

to a precision given by the size of the error bounding box. (K) The network creates an error bounding box around

x. Whenever the network estimate x̂ hits an edge of the box, the corresponding neuron emits a spike pushing the

readout estimate back inside the box (coloured arrows).

The geometry of the bounding box in higher dimensions129

While the simple toy example in Figure 2 is useful to illustrate some of the key features of SCNs, biological neural130

networks, and especially cortical networks, consist of thousands of neurons that are thought to represent hundreds of131

signals simultaneously. To get closer to the biological reality, we therefore need to study larger and more powerful132

networks. Many of the biological features of larger SCNs depend crucially on how the shape of the bounding box133

changes with the number of neurons N , and the dimensionality of the input signalsM . For simplicity, we will assume134

that the decoding vectors of the neurons Di are of unit length, but otherwise random, and that the thresholds of all135

neurons are the same (see Material and Methods for details on the parameter choices).136

The number of input signals M determines the dimensionality of both the signal space and the corresponding137

bounding box. For a two-dimensional signal, the threshold of each neuron corresponds to a line, and the bounding138

box to a polygon, as illustrated in Figure 2 and Figure 3A, and in Supplementary Video 1. For a three-dimensional139

signal, the threshold of each neuron corresponds to a plane, and the bounding box consequently to a polyhedron140

(Figure 3A and Supplementary Video 1). For higher-dimensional signals, though hard to visualise, bounding boxes are141

convex polytopes.142

The number of neurons N corresponds to the number of sides of the bounding box, which are also known as143

‘faces’ in three or more dimensions. When we increase the number of neurons (or randomly oriented faces), we are144

adding faces to the bounding box, which thereby changes its shape. As we keep adding neurons, the corresponding145

bounding box eventually approaches a hypersphere (a circle in two dimensions and a sphere in three dimensions), as146

shown in Figure 3B, lower row. However, the number of neurons required to reach a decent approximation of the147

hypersphere grows exponentially with the number of dimensions, so that N ∼ 10M
. Given the number of neurons in148

the human brain (N ∼ 1011
), we could at most represent 11 signals under these circumstances.149

To be able to encode higher-dimensional signals, we therefore need to introduce sub-exponential scaling. For150

simplicity, we will scale the number of neurons linearly with the number of signal dimensions, N = ρM , where ρ151

defines the network redundancy. To characterize how the shape of the bounding boxes changes as we increase the152

dimensionality, we can compute the angles between neighbouring faces, γ = arccos(D>i Dj). Since we assume random153

(and uncorrelated ) decoding weights, their inner products, D>i Dj = −Ωij will reach zero as the signal dimensionality154

grows, and the angles will approach 90◦ (Figure 3D). Accordingly, bounding boxes in high-dimensional spaces are more155

similar to hypercubes than hyperspheres (Figure 3B–D).156

Although these results were obtained for random decoding vectors, the key insights hold for more structured157

decoding vectors as well. For instance, if we want to represent natural visual scenes, we may consider that the158

receptive fields of simple cells in V1 roughly correspond to the decoding vectors of our neurons [23, 26]. If we choose159

a set of (random) Gabor patches of size 13 × 13 for these decoding vectors, we again find that the corresponding160

bounding box is more similar to a hypercube than a hypersphere: for a given Gabor patch, almost all other Gabor161

patches are orthogonal, and only a select few are somewhat similar (Figure 3E).162

As we show below, these properties of high-dimensional spaces will have a strong influence on how SCNs respond163

6 of 33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.148338doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.148338
http://creativecommons.org/licenses/by-nc-nd/4.0/


redundancy = # neurons / # inputs

di
m

en
si

on
al

ity
 =

 #
 in

pu
ts

2

2
1

-1

1-1
10

10

20

20

100

100

hypercube
random bounding box
hypersphere

median angle of neighboring neurons

median radius of random bounding boxes

non-orthogonal
random patch (1/20)

non-orthogonal
random patch (1/20)

non-orthogonal
random patch (1/20)

example
13 x 13 patch quasi-orthogonal

random patches (18/80)

?

2 10 100
Redundancy

2

10

100

D
im

en
si

on
al

ity

30∘
45∘

60∘
70∘

80∘

0 ∘

30 ∘

45 ∘

60 ∘
70 ∘
80 ∘
90 ∘

2 10 100
Redundancy

2

10

100

D
im

en
si

on
al

ity

0.600

0.750

1.000

1.2501.500

0.50
0.60
0.75

1.00

1.25

1.50

1.75

E

D

C

B

A

Figure 3: The geometry of the bounding box changes with input dimensionality and redundancy. (A) In SCNs tracking
two-dimensional signals, the bounding box is geometrically depicted as a polygon with as many sides as the number of

neurons. For three dimensional systems, the bounding box corresponds to a polyhedron. For four or more dimensions,

the corresponding bounding boxes are mathematically described as convex polytopes, but their visualisation is hard.

(B) Example two-dimensional cuts of bounding boxes (orange) for a given network size and space dimensionality

(Material and Methods). Cuts for a hypersphere (green) and a hypercube (dashed blue) are shown for comparison. For

low dimensionality, high redundancy bounding boxes are similar to hyperspheres whereas for high dimensionality they

are more similar to hypercubes. (C) Median radius of bounding boxes as a function of dimensionality and redundancy.

The blue line illustrates the average radius of a hypercube (thresholds of individual neurons are here set at T=0.5). (D)

Median angle between neighbouring neurons, i.e., neurons that share an "edge" in the bounding box. Neighbouring

neurons in high dimensional signal spaces are almost orthogonal to each other (E) Random 13x13 Gabor Patches

representing the readout weights of neurons in a high dimensional space. Most Gabor patches are quasi-orthogonal to

each other (angles within 90± 5◦). Some neurons have overlapping receptive fields and non-orthogonal orientations.
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to perturbations.164

Baseline performance and spiking statistics165

Before studying the network’s response to perturbations, we will first establish several characteristics of the unper-166

turbed networks, which will act as a baseline. See Material and Methods for a detailed explanation of how we chose to167

scale the networks with signal dimensionality and number of neurons.168

The first characteristic is the performance. As explained above, the bounding box sets the limit of how far the169

output (or linear readout) is allowed to deviate from the inputs. To illustrate these limits in practice, we simulated a170

set of random, time-varying input signals, and then accumulated the decoding errors along each signal dimension171

into a large histogram, shown in Figure 4A. As expected, and by design, the decoding errors stay roughly within the172

same range. Beyond that, we see two more subtle effects. First, the decoding errors for higher-dimensional networks173

are smaller than the decoding errors for lower-dimensional networks (Figure 4B). Since the input signals are chosen174

randomly from Gaussian distributions, the number of weak signals grows with dimensionality, leading to the slight175

shift in the distribution. Second, the decoding errors for more redundant networks are slightly smaller than those176

for less redundant networks. Since more redundant networks are slightly closer to a hypersphere, they provide a177

somewhat tighter bound of the errors for fixed neuronal thresholds. We emphasize that these comparisons are done178

under the assumption that the length of the decoding vectors is normalised to one. Obviously, the performance of179

any bounding box can be adjusted to a desired level by simply changing this normalisation factor.180

The second characteristic are the firing rates. We find that if the network receives a constant stimulus, then the181

distribution of firing rates is long-tailed (and roughly log-normal, see Figure 4C), as has been observed in many brain182

areas [27], and can be found in randomly connected networks [28]. Beyond that, we see that the median firing rates183

of the networks drop with increasing redundancy (Figure 4D). Since an increase in redundancy corresponds to the184

addition of faces in the bounding box, the individual faces (or neurons) need to cover less overall space, and thereby185

get hit less often, so that overall firing rates decrease.186

The third characteristic that we will study are coefficients of variation (CVs) which serve to measure the irregularity187

of spike trains (seeMaterial andMethods). For lower redundancies, ρ < 4, we find low CVs, and for higher redundancies,188

ρ > 4, we find CVs close to one, which corresponds to random firing, similar to Poisson spike trains (Figure 4E,F). When189

the network has fewer neurons, it has less degeneracy and the number of spiking patterns, that can approximate the190

signal, decreases. As a consequence, the spike patterns of individual neurons become more predictable and more191

regular.192

Neural death and birth193

We will now use these geometric intuitions to study the robustness of SCNs to different types of perturbations. We will194

start with neuronal loss or death. Throughout an organism’s life, cells, including neurons, can undergo the process of195

cell death or apoptosis if they are damaged or unfit [29], a process that is usually promoted in diseased states [30–32].196

Biological tissue, including nervous tissue, is often resilient against this type of perturbation.197

Previous work has shown that SCNs are remarkably robust to the removal of neurons [23]. When too many198

neurons have died, SCNs cross a ‘recovery boundary’ after which functionality declines rapidly. By studying the199

network’s behavior through the lens of the bounding box, we can provide a simple and intuitive explanation for200

these results. Geometrically, the death of a neuron is equivalent to the removal of its corresponding face from the201

bounding box (Supplementary Video 2, Figure 5A). However, if the network is sufficiently redundant, then the removal202

of a single neuron has only a minor impact on the shape of the bounding box. Since this shape determines the203

network’s error tolerance, the network will continue to encode the input signals correctly, despite the loss of a neuron.204

Naturally, the higher the redundancy ρ, the higher the resilience of the network to random neural death. However,205

any SCN, independent of the redundancy, loses its functionality when the bounding box breaks open on one side206

(Supplementary Video 2, and Figure 5A, last panel). Such an opening occurs when a complete set of similarly tuned207

neurons has been eliminated.208

In addition to neural death, many neural circuits are subject to neural birth, i.e. neurogenesis, both in developing209

and adult animals. If we imagine that a single neuron is added to the network, and if we further imagine that its210

synapses have been properly adjusted (e.g. through silent learning with voltage-dependent plasticity [25]), then adding211

that neuron corresponds to adding an extra face to the bounding box (Figure 5B). Adding neurons thereby increases212
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Figure 4: Errors, firing rates, and CVs as a function of network redundancy and input dimensionality. (A, C and E) Four

different example networks were simulated with the same fixed input (and slow-varying input noise, see Material

and Methods) on multiple trials and its resulting distribution plotted. Colours match the dots in the subsequent

panels. (B, D and F) Median of these distributions as a function of redundancy and input dimensionality. Even for

small network sizes, CVs are already close to one, corresponding to Poisson spike trains.
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Figure 5: The effect of neural death or birth. Neuron death (birth) is geometrically equivalent to removing (adding) the

corresponding bounds on the bounding box. (A) Left, bounding box with four neurons highlighted. Middle, when

two of the highlighted neurons are eliminated, the bounding box remains closed, and the error remains bounded.

Right, when all four neurons are eliminated, the bounding box breaks open, and the error is no longer bounded in

the respective direction. (B) Bounding box, followed by the addition of random neurons. Additional neurons only

marginally reduce box size and, accordingly, the maximum coding error

the redundancy ρ of the system and improves the system’s robustness. In turn, subtracting neurons decreases213

redundancy ρ, and brings the system closer to the recovery boundary.214

The death or birth of random neurons therefore simply correspond to a change in the overall redundancy of215

the network. Consequently, to understand how network performance and statistics change, we can simply look at216

Figure 4B,D,F, and observe what happens when we change the redundancy. We observe that changing the redundancy217

over a broad range has negligible effects on the performance (Figure 4B). However, decreasing redundancy (neuron218

death) leads to higher firing rates (Figure 4D) and lower CVs (Figure 4F).219

Thresholds220

Biological systems should also be robust against the mistuning of any of their components. We will now show that221

many types of parameter mistuning can be understood as deformations of the bounding box. We order the exposition222

by the complexity of the effects, and start with the simplest effect, caused by perturbations in the neuronal spiking223

threshold. While the actual spiking threshold of a cell depends on both conductances and reversal potentials, we will224

treat it here as a simple parameter.225

Since a neuron’s voltage is a projection of the coding error, its spiking threshold sets its error tolerance (Figure 2B).226

Consequently, an increase of a neuron’s spiking threshold will push the corresponding face of the bounding box227

outwards, (Figure 6A, first panel). For a sufficiently redundant system, increasing the threshold of a single neuron will228

have a very minor effect on the shape of the bounding box. In fact, a large increase of the threshold eventually entails229

an effective loss of that neuron to the circuit, which we studied above (Figure 5). If all thresholds increase, then the230

bounding box becomes wider, which increases the error tolerance of the system.231

On the other hand, a decrease in a neuron’s spiking threshold will push the corresponding face inwards, thereby232

shrinking the bounding box from one side (Figure 6A, second panel). As a consequence, the corresponding neuron233

will take up the load of all of the neurons that are now hidden, firing more and more. Eventually, the neuron’s spikes234

may reset the readout beyond the boundary of the opposite side, thereby crossing the threshold(s) of one (or more)235

neurons on the opposite side, and causing them to spike. In turn, these double-threshold crossings can lead to fast236
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firing of oppositely tuned neurons (Figure 6A, third panel), which has previously been termed the ‘ping-pong’ effect237

[19]. While the system may remain functional in that case (the readout could still be correct), it will generate a lot more238

spikes than necessary. If the thresholds of many neurons are decreased, then the sudden surge of energetic needs239

could lead to system failure in real, biological systems. We will therefore generally assume that ping-pong denotes240

system failure.241

The onset of system failure will depend on the initial, ’default’ threshold values. Throughout this manuscript, we242

will therefore often consider two scenarios, a ‘narrow box’ with a threshold between T = 0.50 and T = 0.55 and a ‘wide243

box’ with a threshold between T = 0.7 and T = 1.5 (Figure 6–Figure Supplement 1). In addition to added protection244

against catastrophic failure, a wide box (e.g. with T = 1) can be mistuned in its threshold parameters by up to 50% of245

their value without affecting the network’s functionality. In contrast, in a narrow box (e.g. with T = 0.55), threshold246

parameters must be tuned to within 10% of their optimal value to keep the network in its functional range.247

Voltage noise248

Biological systems are constantly subject to noise at multiple levels, e.g. sensory transduction noise, ion channel noise249

[33] or ‘background’ synaptic activity [34, 35]. Here we study the impact of such noise by injecting small, random250

currents into each neuron. Due to the voltage leak, the white-noise current becomes (coloured) voltage noise, which251

we can add to the voltage equation, Equation 3. This voltage noise changes how close the voltage of a neuron is to its252

spiking threshold. With regard to spike generation, these voltage fluctuations are thus equivalent to fluctuations of253

the threshold (see Material and Methods). In the above section, we have already shown that changes to a neuron’s254

threshold correspond to movements of the corresponding face in the bounding box. Accordingly, fluctuations of the255

thresholds are equivalent to independent, random movements of all of the faces of the bounding box around their256

unperturbed positions (see Supplementary Video 2).257

For networks with low redundancy ρ, small voltage fluctuations cause only minor deformations of the bounding258

box – here, ’small’ is measured relative to a neuron’s operating regime, from reset to threshold. In turn, the error259

tolerance remains roughly the same, and network performance is not affected (Figure 6D). Even if voltage noise is very260

small, however, it can still have a dramatic effect on the spike trains of individual neurons. When trials are repeated,261

these spike trains can show high trial-to-trial variability (Figure 6F). Even small levels of voltage noise get therefore262

amplified at the level of spike trains, but not at the level of readouts, as previously observed in Boerlin et al. [19].263

For networks with high redundancy, ρ, small voltage fluctuations can cause a fatal collapse of the system. The key264

reason is that the effective size of the bounding box is not determined by the unperturbed positions of the thresholds,265

but by the position of the thresholds that have moved furthest into the box. As more and more neurons are added,266

the likelihood that some of them have very decreased thresholds increases, and the effective size of the bounding box267

shrinks (Figure 6B, left three panels). In turn, the probability that the network moves into an ‘epileptic seizure’ (due to268

the ‘ping-pong’ effect) increases as well. Ultimately, random movement of the bounds may cause a collapse of the269

box, in which case neurons fire uncontrollably (Figure 6C, second and third panels). While the readouts may still be270

contained under such ’epileptic seizures’ (Figure 6D), the excessive number of spikes fired (Figure 6E) come at high271

metabolic costs and would be detrimental to biological systems.272

To avoid this failure mode, one can simply increase the size of the bounding box for a fixed redundancy (Figure 6B,273

right panel). Such a ’wide box’ will be more resilient towards noise (Figure 6C, right panel, Figure 6D–F). However, no274

matter how wide the box, there will always be a level of redundancy at which the system collapses. In this system,275

more redundancy does therefore not necessarily lead to higher robustness.276

The described effects of noise on SCNs are independent of the signal dimensionality (Figure 6–Figure Supplement 1).277

Unsurprisingly, higher noise levels increase the variability of single neuron spiking, an effect which is amplified for278

larger networks (Figure 6–Figure Supplement 2). When these variable but long interspike intervals are mixed with279

rapid bursts of short-interval ping-pong spikes, the overall coefficient of variation strongly increases. (Figure 6–Figure280

Supplement 1).281

Resets282

Next, we will study perturbations of a neuron’s reset potential, i.e., the voltage reached directly after a spike. In SCNs,283

this voltage should ideally be Vi ,reset = Ti −D>i Di (see Material and Methods). A decrease of this default reset voltage284

can be interpreted as a quadratic cost on neural firing [19], which distributes spiking across similarly tuned neurons.285
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Figure 6: Voltage or threshold noise induces fluctuations of the bounding box shape. (A) (left) If a neuron’s threshold

increases beyond its default value, its respective boundary moves outwards. (centre left) If the threshold decreases

below its default value, the boundary moves inward (centre right). A shrunk box can trigger a spike that pushes

the readout beyond the boundary of an oppositely tuned neuron, leading to a compensatory spike. Fired in rapid

succession, a barrage of mutually opposed spikes may follow: the ’ping-pong’ effect. (right) If the default values of all

thresholds are increased, the box becomes wider and more robust against ping-pong. (continued on following page)

12 of 33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.148338doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.148338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6, continued: (B) Voltage noise can be visualised as jittery movement of all thresholds. Instead of a rigid box

defining a permanent, unambiguous boundary between the spike and no-spike zones, any point in signal space now

has a non-zero probability of falling outside the box, shown in colour. Black lines represent the thresholds of individual

neurons in the absence of noise. (left) At low redundancy, most points within the default box retain a low probability

of exclusion. (centre left, centre right) As redundancy increases, this low-probability volume disappears, increasing

the likelihood of ping-pong spikes. (right) Networks with an expanded bounding box retain a large low-probability

volume even at high redundancy. Dashed white lines show 6-neuron bounding box for comparison. (C) Raster plots

for the networks in (B) when tracking two oscillatory signals. See also Figure 6–Figure Supplement 2. Arrows highlight
examples of ping-pong spiking (left two panels). Ping-pong becomes dominant in the more redundant network in

the third panel, but is not highlighted. Ping-pong spiking can be eliminated by widening the box (fourth panel). (D)

When noise level increases, performance (relative to a network without noise, see Material and Methods) drops only

slightly. (E) The ping-pong effect causes numerous unnecessary spikes for higher levels of noise, with more redundant

networks affected more strongly. (F) CVs are largely unaffected by increases of the noise level. Note that an expanded

box with low noise level shows a bimodal distribution of single-neuron interspike intervals (intervals within an up state

and intervals between two up states – see (C)), leading to particularly large CVs. (D-F) In each case, networks with an

expanded box retain healthy dynamics until much higher noise levels. Lines show medians across random equidistant

networks, and outlines represent interquartile ranges. All colours as in (D). (A-F) Thresholds are 0.7 for the ’wide’ box

and 0.5 otherwise.

Figure 6–Figure supplement 1. Robustness to noise for different signal dimensionalities.

Figure 6–Figure supplement 2. Spike trains and decoded signals with voltage noise.

Biophysically, when the neuron resets to a voltage above (below) this ideal reset potential, then its post-spike voltage286

is temporarily closer (further) from threshold. In terms of the neuron’s spiking output, a change in its reset voltage is287

therefore equivalent to a (temporary) change in its threshold. As before, we can therefore illustrate perturbations of288

the voltage resets by their equivalent effect on the thresholds (and thereby the bounding box) of the network.289

The effect on the bounding box is shown in Figure 7A. Here, we see that a reset voltage below the optimal reset290

will initially lead to a push of the neuron’s threshold outwards. However, because of the voltage leak, the threshold291

will then decay back to its normal position. The opposite effect holds for a reset voltage above the optimal reset.292

Supplementary Video 2 illustrates this effect in a system with a two-dimensional input.293

Synaptic noise294

Synapses have been shown to have multiple sources of variability [33], such as a variable number of neurotransmitters295

in a vesicle or the diffusion process of vesicles in the synaptic cleft. Such noise sources can lead to spontaneous or296

variable postsynaptic currents during synaptic transmission. In order to study these perturbations, we will first study297

the mistuning of a single synapse from its optimal value, Ωij = −D>i Dj . If the respective synapse becomes too small,298

then the induced voltage jump in the postsynaptic neuron will be too small. For an inhibitory synapse, the postsynaptic299

neuron will therefore remain closer to threshold than it should have. As before, we can illustrate this perturbation as300

an inward move of the respective threshold (Figure 7B). Accordingly, each mistuning of a synapse causes a temporary301

change in the threshold of the postsynaptic neuron whenever a presynaptic spike arrives. When all synapses in the302

network are randomly mistuned, then each spike fired will cause a random, but transient deformation of the bounding303

box (see Supplementary Video 2).304

Given these geometric insights, we see that small, but random perturbations of all the synapses in the network305

have a similar effect to the voltage noise we studied above, albeit on short time scales. If perturbations target only306

inhibitory or excitatory synapses, however, the deformations of the bounding box are no longer random. Specifically,307

strengthening inhibitory synapses or weakening excitatory synapses leads to a temporary widening of the box after a308

spike (Figure 7C), whereas weakening inhibitory synapses or strengthening excitatory synapses leads to a temporary309

shrinking of the box after a spike (Figure 7D).310

In biological systems, we would furthermore expect that the size of possible perturbations scales with the strength311

of the synapses [33], so that weak synapses, e.g., can only be perturbed by small amounts. In other words, synaptic312

noise should be multiplicative and not additive. Accordingly, perturbations of stronger synapses lead to greater box313
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deformations. These stronger synapses are precisely the ones connecting neurons with similar (opposite) readout314

weights, since closely (oppositely) aligned neurons have stronger inhibitory (excitatory) synapses. In contrast, weak315

synapses, which happen between neurons with approximately orthogonal readout weights, are less impacted by316

such synaptic perturbations. Therefore, SCNs encoding higher dimensional signals, for which readout weights tend317

to be orthogonal (Figure 3C), are in principle more robust to random synaptic weights scaling. However, for fixed318

redundancy and increasing dimensionality, SCNs have linearly increasing neurons, and quadratically more synapses.319

Overall we found that these two opposite effects, i.e., signal dimensionality and number of neurons, cancel out320

and thus conclude that signal dimensionality does not qualitatively change the network response to such synaptic321

perturbations (Figure 7E,F). On the other hand, when signal dimensionality is fixed and network size is increased, the322

system becomes more susceptible to synaptic mistuning: similar to the impact of voltage noise in the performance323

of SCNs, the most mistuned synapses will dominate the dynamics, and lead to a collapse of the bounding box324

(Figure 7G,H). We note that if the size of the bounding box is increased, this effect can be alleviated and the network325

becomes more resilient to synaptic mistuning (Figure 7G,H).326

We also considered other types of synaptic perturbations (Figure 7–Figure Supplement 1) such as time-varying327

synaptic noise, sparsification of the connectivity matrix, and temporary synaptic failure (see Material and Methods).328

Despite minor differences in their response properties as a function of signal dimensionality, we found a strong329

agreement on how SCNs respond to all types of synaptic perturbations as a function of redundancy. In these cases330

and as before, networks with more neurons (and consequently more synapses) are typically more vulnerable to these331

perturbations.332

Synaptic delays333

While the propagation of an action potential within a neuron and the subsequent synaptic transmission are fast, they334

are not instantaneous. Rather, lateral excitation and inhibition in biological neural networks may incur delays on the335

order of milliseconds. Like many other network models, SCNs do not by default take these delays into account, and336

instead assume nearly instantaneous exchange of information (within one simulation time step).337

When we relax this assumption, the voltages of the neurons no longer reflect an accurate estimate of the collective338

coding error, but instead an imperfect estimate based on outdated information. When different neurons have identical339

decoding vectors, delays can lead to the firing of uninformed spikes that decrease the coding error erroneously340

(Figure 8A,B). With multiple identically tuned neurons, the delayed arrival of lateral inhibition from a single spike can341

enable many uninformed spikes at once. Once the resulting lateral excitation arrives at neurons with opposite tuning342

to those originally spiking, they may then react with a similar ’ping-pong’ barrage of compensatory spikes, all but the343

first of which will be uninformed [36, 37]. We note that the only effect of refractory periods, rather than compensating344

for synaptic delays, is to cap the maximum number of uninformed spikes by limiting the firing rate of each neuron.345

The picture becomes more complicated when neurons are not identically tuned (Figure 8C–F). Figure 8C shows the346

dynamics surrounding a single spike fired in a network with delayed synaptic transmission. When a neuron fires, it347

resets its own voltage immediately, but neither a hypothetical readout unit, nor the other neurons in the network are348

aware of the spike. From the point of view of the network, the voltage of the firing neuron is therefore temporarily349

too low (or its threshold temporarily too high), which we can visualise as an outward jump of its boundary (Figure 8C,350

second and third panels). When the spike finally arrives, the readout and voltages of all affected neurons are updated,351

and the voltage of the firing neuron agrees again with the network state, which we can visualise as the boundary352

coming back to its default position (Figure 8C, fourth panel).353

Whether such a delayed spike is detrimental to network performance depends on the shape of the bounding box.354

In Figure 8C, the delayed spike is not harmful, since the firing neuron is almost orthogonally tuned to its neighbouring355

neurons. The situation is different when the firing neuron is more similarly tuned to a neighbouring neuron (Figure 8D).356

In this case, during the delay from the firing of a spike to its arrival to postsynaptic neurons, a second neuron might357

cross its threshold, so that its boundary also retracts from its default position (Figure 8D, third panel). Eventually, the358

two spikes reach their postsynaptic neurons, the readout is updated, and the bounding box retracts to its original359

shape (Figure 8D, fourth panel). The readout can then overshoot and cross an opposite boundary, triggering further360

compensatory spikes, which again leads to ’ping-pong’ spiking. In highly redundant networks, this scenario is essentially361

unavoidable.362

To understand how the dimensionality of the bounding box interacts with synaptic delays, we first note that the363
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Figure 7: Resilience of networks to mistuning of resets or synaptic scaling. (A) Temporary bounding box deformation

caused by a mistuned reset. The deformation appears after a spike of the affected neuron and decays away with

the time constant of the voltage leak. (B) Temporary bounding box deformation caused by a mistuned synapse. The

deformation appears after a spike of the presynaptic neuron and decays away with the same time constant. (C)

Weakening excitatory synapses and potentiating inhibitory synapses cause a temporary expansion of the box after a

spike, thus making the system less prone to firing instabilities. (D) The converse manipulations cause a temporary

contraction of the box, potentially leading to uncontrolled firing. (E-F) Networks tracking higher-dimensional signals

withstand slightly stronger synaptic mistuning before entering ’ping-pong’ (F), but SCN performance (relative to an
unperturbed SCN, see Material and Methods) degrades similarly across dimensionality (E). (G-H) Higher redundancy
networks are more sensitive to synaptic mistuning. This extra sensitivity can be counteracted when the box is made

wider.

Figure 7–Figure supplement 1. Robustness of SCNs for different types of synaptic noise.
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angles of neighbouring neurons become more and more orthogonal as the number of signal dimensions is increased364

(Figure 3D). Accordingly, as we increase dimensionality, we should find ourselves more often in the scenario of365

Figure 3C. Numerically, we find that, for very short delays (<0.1 msec), SCNs retain good performance since uninformed366

spikes are rare and ping-pong mostly absent (Figure 8G). With biologically plausible delays (1msec), however, SCNs367

suffer from drastic reductions in performance due to ubiquitous ping-pong. Accordingly, the bounding boxes are too368

tight to observe any beneficial effects of dimensionality.369

As in the above described scenario of a noisy network (Figure 6A, fourth panel), widening the box can prevent370

networks from showing ping-pong (Figure 8E). Therefore, we determined the minimum box size required to avoid371

ping-pong for any given combination of dimensionality and redundancy (Supplementary Algorithm 3, Figure 8–Figure372

Supplement 2A). However, given the potentially large number of neurons participating in the initial ’ping’, delayed373

networks require significantly larger boxes to avoid ping-pong. While they prevent ping-pong, wider boxes automatically374

reduce coding accuracy, even when the readout is rescaled (Figure 8G; Figure 8–Figure Supplement 1).375

An alternative to simply widening the box is to eliminate excitatory connections between direct and near antipodes.376

In this case, the bounds of a neuron’s disconnected antipodes expand whenever it fires a spike, and only temporarily377

(Figure 8F). Just as wide boxes, these networks are less likely to initiate ping-pong. However, since their widening is local378

and only temporary, their performance is less affected and almost reaches baseline for higher-dimensional systems379

(Figure 8H), even for biologically plausible delays (1-2 msec). The rapid increase in firing due to the concomitant380

ping-pong effect can thus be avoided as well (see also Figure 8–Figure Supplement 1).381

Predictions on optogenetic perturbations382

Finally, we investigate the effects that optogenetic perturbations would have on SCNs. We simulate optogenetic383

perturbations of SCNs with an extra current term on the perturbed neurons (see Material and Methods). The effect of384

these currents can again be understood as a change in the voltage threshold of each perturbed neuron: an inhibitory385

current injection leads to an increase of the voltage threshold, and an excitatory current injection to a threshold386

decrease. Geometrically, this is equivalent to a targeted movement of the perturbed bounds: inhibitory currents shift387

the respective bounds away from the centre of the box (Figure 9A), whereas excitatory currents have the opposite388

effect (Figure 9B).389

It is plausible to assume that excitation and inhibition of a given neural system should have opposite effects,390

e.g. unilateral excitation of motor areas can lead to biases toward contralateral movements whereas inhibiting the391

same area would cause an ipsilateral bias [38]. In SCNs, though inhibition and excitation induce an opposite movement392

of the bound, the network response is not necessarily opposite. Indeed, in high redundancy SCNs, partial network393

inhibition is in general a silent perturbation and leads to no change in the readout, as unperturbed neurons can394

compensate for the perturbation by increasing their firing rates (Figure 9A). However, partial excitation almost always395

induces a bias on the readout, with excited neurons deforming the bounding box (Figure 9B). As the redundancy396

of the networks decreases, this effect becomes less pronounced. We note that in some conditions (e.g. for SCNs397

operating with a tight box) partial excitation does not induce a bias in the readout, but instead drives the system into398

the ping-pong regime (Figure 9–Figure Supplement 1A,B).399

We furthermore predict an apparent paradoxical effect observed in electrophysiological recordings [39], where400

directly inhibited neurons may in fact become more active during the perturbation. While such an effect can be401

attributed to some type of disinhibition, the bounding box adds a geometric perspective: some of the inhibited402

neurons may have their bounds contribute with a larger surface of the box during the perturbation (Figure 9–Figure403

Supplement 1C), and thus have higher firing rates (Figure 9–Figure Supplement 1D).404

Discussion405

In this study, we characterise the functioning of spike coding networks under normal conditions and under a diversity406

of perturbations, using a simple, geometric visualisation, the bounding box. The bounding box delimits the error that407

an SCN tolerates in approximating a set of input signals, and its geometry is found to be largely determined by the408

properties of downstream decoders. The bounding box allows us to visualise and thus understand the dynamics409

of a spike coding network, including the firing of every single spike. We showed how various perturbations of the410

network, including neuron loss, changes in threshold or resets potentials, changes in synaptic weights, or increases in411

synaptic delays, can be mapped onto shape deformations of this bounding box. As long as the box stays intact, the412
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Figure 8: Synaptic transmission delays cause uninformed spikes, but high-dimensional low-excitation networks are less

affected. (A) In an undelayed SCN, when membrane potentials V1 and V2 of two identically tuned neurons approach

firing threshold (dashed), the first neuron to cross it will spike and instantly inhibit the second.

(continued on following page)
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Figure 8, continued: (B) If recurrent connections are instead withheld for a delay θ, the second neuron may reach its

own threshold before receiving this inhibition, emitting an ’uninformed’ spike. (C) Readout dynamics in a delayed SCN

that encodes a two-dimensional input. After the spike of the orange neuron, but before its postsynaptic arrival, the

bounding box temporarily expands due to the retraction of the bound of the spiking neuron. (D) For less orthogonal

pairs of neurons, the retraction of the boundary of a spiking neuron may expose the boundary of a similarly tuned

neuron, leading to a suboptimally fired spike, and increasing the likelihood of ’ping-pong’. (E) Wider boxes or (F)

removing excitation between nearly opposite decoders are two effective strategies to avoid ’ping-pong’. (C-F) Readout

shown as grey circles and arrows, bounds of spiking neurons as coloured lines, and the resulting shift of other bounds

as coloured arrows. (G) Redundancy ρ = 10. In default SCNs, performance (relative to the undelayed default network,
see Material and Methods) drops sharply as delays increase (left). Preventing ’ping-pong’ by either widening the box

(centre) or removing the largest excitatory connections (right) restores robustness to biologically plausible delays, but

performance remains lower at high redundancy. (H) Synaptic delay θ = 1msec. The detrimental effects of delays are

eliminated in higher-dimensional SCNs when the box is widened (centre) or when the largest excitatory connections
are removed (right). (G,H) Note the exponential scaling of the y axis. Left panel of (H) shows lower redundancies than

elsewhere; more redundant SCNs have lower performance.
Figure 8–Figure supplement 1. Single trials with normal or wide boxes, and full or reduced connectivity (20 dimensions).

Figure 8–Figure supplement 2. Box size and reduced excitation to avoid ping-pong in delayed SCNs.

network’s performance is essentially unaffected, in that downstream readouts of the network’s outputs will not notice413

the perturbation. Our study therefore sheds light into the remarkable robustness of SCNs and provides potential links414

to the observed robustness of biological neural networks.415

Robustness of spike coding networks416

Robustness, i.e., the ability to maintain functionality despite perturbations, is a key property of biological systems,417

ranging from molecular signalling pathways to whole ecosystems. Several overarching principles have been identified418

that allow systems to be robust [40–43]. These include (1) negative feedback, to correct perturbations and recover419

functionality; (2) heterogeneity of components, to avoid common modes of failure; and (3) modularity or ’bow-tie’420

architectures, to create alternative pathways or solutions in the case of a perturbation. (4) Furthermore, making a421

system robust against certain perturbations almost always involves a tradeoff, in that the system becomes fragile422

against other perturbations.423

These core themes can also be found in SCNs. (1) Negative feedback exists through extensive lateral connectivity (or,424

alternatively, through actual feedback of the readout, as in Figure 2F), and is precisely tuned such that it automatically425

corrects any perturbations. (2) Individual neurons are heterogeneous and thereby allow the system (as visualised by426

the bounding box) to be more robust against the loss of components than if neurons were simply duplicated. (3) Since427

neuron space is always larger than signal space, there are many alternative neural codes (’alternative pathways’) that428

give rise to the same linear readout, thus embodying a bow-tie architecture whose core is the signalling space. (4)429

Furthermore, the networks are fragile against any perturbation that leads to a shrinking of the box. Paradoxically,430

this fragility may become more relevant if a system becomes more redundant. These four themes may relate the431

robustness of the networks studied here to the more general topic of tissue robustness [41].432

Given these properties, SCNs act like robust modules, in that they self-correct perturbations instead of passing433

them on, so that downstream networks remain unaffected. These observations remain correct even if we move434

beyond the simple autoencoder networks that we have studied here. Indeed, if we embed the networks with a set of435

slower connections to perform linear or non-linear computations [19, 44, 45], the robustness remains the same, as436

illustrated in Figure 1, which relies on slow connections to generate the oscillations. These extensions work because437

the mechanisms underlying the encoding of the signals into spike trains are decoupled from the mechanisms that438

generate the dynamics of the signals (or readouts).439

Fragility of spike coding networks440

Despite their strong robustness, SCNs are also surprisingly fragile against any perturbations that cause an effective441

shrinking of the box, and thereby lead to a ping-pong effect. These problems can be ameliorated by widening the box,442
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Figure 9: Predictions of SCNs response to optogenetic perturbations. (A) (Upper) Box deformation caused by inhibitory
perturbation. Inhibited neurons move their bounds away from the centre of the box. (centre) Signal (black), linear

readout (gray), and decoding error (green). Periods of inhibitory perturbations are highlighted in blue. A partial

inhibitory perturbation does not induce any coding error. (Lower) Spike raster of the network. Arrows indicate the

perturbed neurons. (B) (Upper) Box deformation caused by excitatory perturbation. Activated neurons move their

bounds closer to the centre of the box. (centre) Signal (black), linear readout (gray), and decoding error (green). Periods

of excitatory perturbations are highlighted in red. During both perturbation periods, the excitatory perturbations

cause a readout error. (Lower) Spike raster of the network. Arrows indicate the perturbed neurons. Note that for

both simulations in (A) and (B), we perturb the same neurons, at the same times and injecting a similar (but opposite)

current. (Threshold T = 1.55)

Figure 9–Figure supplement 1. Simulations of random partial inhibition and excitation with tighter box (thresholds of 0.55), and

paradoxical effect of optogenetic inhibition.
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but this ’ad hoc’ fix does not truly eliminate the underlying problem, which can re-appear, e.g., with higher redundancy443

(Figure 6). We believe that this shortcoming may point to a crucial mismatch between SCNs and real neural circuits.444

Interestingly, the ping-pong effect can be eliminated by cutting some excitatory connections which effectively ’opens’445

the bounding box temporarily in certain directions (Figure 8F). The elimination of excitatory connections breaks the446

symmetric treatment of excitatory and inhibitory connections that is otherwise a given in SCNs. Indeed, this symmetric447

treatment leads to neurons that both excite and inhibit their neighbors, thereby violating Dale’s law. Future work will448

need to reconsider these issues which seem to be tightly connected. (We note that Boerlin et al. [19] developed SCNs449

that obey Dale’s law, but did so without fixing the issue of the ping-pong effect.)450

Structural robustness of neural networks451

Historically, the study of robustness in neural networks has received relatively little attention, perhaps because classical452

models of neural networks can show a diversity of dynamics and functions, making it hard to define general principles453

of robustness. A key focus has been the robustness of attractors of the network dynamics, defined as the ability454

of a system to remain in the same attractor landscape despite perturbations. For instance, several neural systems455

seem to work like continuous attractors, such as the oculomotor integrator and the head direction system, which456

show patterns of activity at a continuum of levels and with long timescales [46, 47]. Such continuous attractors are457

structurally unstable, in that even small perturbations of the parameters or small amounts of noise lead to rapid458

dynamic drifts [46, 47]. Paradoxically, this fragility to perturbations is not observed in biological neural networks.459

In order to achieve the required robustness, several biophysical mechanisms have been proposed to enhance460

continuous attractors models, e.g. bistability at the somatic level [48] or dendritic level [49]. More recent work461

proposed network-level mechanisms based on derivative feedback, in order to solve the problem of robustness for462

continuous attractor networks [50]. In our work, the problem disappears in some sense, because perturbations such463

as neuron loss, noise, or tuning of synapses are compensated on the level of spiking, as mediated by the fast, lateral464

connections. In turn, attractor dynamics can be implemented with a second, slower set of synaptic connections [19, 45],465

which effectively act on the level of the underlying estimated signals or readouts. Consequently, only perturbations466

that disturb the linear readout can impact the attractor dynamics. Interestingly, SCNs that implement continuous467

attractors are mathematically very similar to those that use derivative feedback [19, 50].468

Models of neural networks implementing point attractors, such as the Hopfield model [51], are typically considered469

structurally robust, meaning that perturbations up to certain magnitudes of their parameters and the introduction of470

dynamics noise do not disrupt the attractor. We note, however, that perturbations in these networks lead to changes471

in neurons’ firing rates, which may still cause changes in putative downstream linear readouts. From the point-of-view472

of linear readouts, perturbations are therefore not really compensated within attractor networks. This picture changes473

only when the readout is taken to be a classifier; only the combined system of attractor network and classifier readout474

can then be seen as a ’robust module’, i.e., a module that keeps problems to itself, rather than spreading them to all475

who listen.476

Similar observations apply to studies of the robustness of deep networks against various perturbations such as477

the loss of neurons [52, 53]. In these cases, the network’s robustness is evaluated with respect to the output of a478

final classification step, such as the identification of an object. Indeed, a lot of work has been dedicated to make479

this final output robust to small perturbations, especially perturbations applied to the inputs [25, 54–56]. Based on480

the arguments above, we similarly expect that the problem of making a graded output robust will be harder and481

fundamentally different.482

Robustness in the brain483

The advent of optogenetic methods has led to a recent surge of perturbation studies, and a renewed interest in the484

robustness of brain circuits and possible compensatory mechanisms [57]. A few recent studies have found examples485

of instantaneous compensation against perturbations. For instance, the dynamics of premotor cortex activity in486

mice has been shown to be robust to unilateral (but not bilateral) silencing, suggesting a mechanism of redundancy487

across hemispheres that ensures such robustness [58]. The hippocampus has been shown to be robust against488

the elimination of place cells, through an immediate compensation in the remaining circuitry [59]. In monkey area489

MT, optogenetic inhibition had only a small and transient effect on the psychophysical performance in a motion490
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discrimination task [39]. Whether these observations can or cannot be explained with the mechanisms that we491

propose remains to be explored.492

Of course, mechanisms of robustness exist at many levels, and we have only addressed the network level in our493

work. A canonical example of robustness through cellular mechanisms can be found in the crustacean stomatogastric494

system which is robust to temperature fluctuations [60, 61]. Here, the activity-dependent regulation of channel495

expression at the single cell level has been proposed as a mechanism to ensure the conservation of the firing patterns496

of the respective neurons and the proper network functioning under temperature perturbations [60].497

Insights on spiking networks498

Apart from these insights on robustness, our work also provides a framework to understand a large class of spiking499

networks. Spiking networks have traditionally been quite hard to understand, except for special cases [3, 62, 63].500

Classical work on spiking networks has largely focused on understanding the dynamics of spiking networks, either501

in synchronous [64–67] or asynchronous regimes [12–15, 68], while paying less attention to functional implications.502

When a functional neural network is required, the default fallback have been neural networks based on firing rate503

units, as in the recent deep learning boom. In turn, functionality in spiking networks is usually imposed by transferring504

insights from rate networks. This strategy has led to spiking networks with neurons that fire regularly [69] or to spiking505

networks in which irregular firing is considered non-coding noise [e.g. 70].506

Here, we have studied networks based on efficient spike coding, and we have shown how their dynamics can be507

understood within a lower-dimensional signal space, which is tightly linked to linear readouts. Since (low-dimensional)508

linear readouts are a ubiquitous finding in recordings from neural populations, we may speculate that our signal space509

is roughly equivalent to the latent subspaces discovered by linear projections of neural activities, as, e.g., obtained510

through dimensionality reduction methods [71]. This link between a space of neural activities and a space of (latent)511

signals is common to all network models based on low-rank connectivities [19, 46, 69, 72]. We believe that the link we512

made here—which visualises the spiking activity inside the signal space in a direct way—may provide useful insights513

into the functioning of spiking networks in the brain, and may well be expanded beyond the confines of the current514

study.515

Methods and Materials516

Spike coding networks and bounding box517

Mathematically, SCNs can be derived from a single objective function that quantifies coding accuracy. Step-by-step518

derivation for the autoencoder networks can be found in Barrett et al. [23]; networks that additionally involve a set of519

slow connections are derived in Boerlin et al. [19]. Here, we focus on the autoencoder networks which contain all the520

crucial elements needed to understand the spiking dynamics of the networks. Instead of starting with an objective521

function, we take a slightly different perspective in our derivation here. This perspective ties more directly into our522

geometric interpretations, and also allows us to include the more general class of spike coding networks found after523

learning the recurrent connections [25].524

In short, we assume that a network of N neurons encodes anM-dimensional input signal x(t), in its spike trains

s(t), such that the signal can be read out from the filtered spike trains,

x̂(t) = Dr(t) (4)

ṙ(t) = −λr(t) + s(t). (5)

Here, x(t) is the linear readout or signal estimate, theM×N matrixD contains the decoding weights (and each column525

corresponds to a decoding vector Di ), the filtered spike trains are represented by r(t), and λ determines the filtering526

time constant.527

The key idea of SCNs is to derive a spiking rule that bounds the difference between the input signal x, and the linear528

readout x̂,529

‖x− x̂‖ < T , (6)

where ‖ · ‖ denotes the Euclidean distance or L2 norm and T determines the maximally allowed difference. In SCNs,530

we approximate this bound (which defines a hypersphere) by a set of linear bounds or inequalities, one for each531
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neuron i ,532

DT
i (x− x̂) < T . (7)

For simplicity, we assume that the decoding vectors Di have unit norm. Each inequality defines a half-space of533

solutions for the readout x̂. For properly chosen Di , the intersection of all of these half-spaces is non-empty534

and bounded, and thus forms the interior of the bounding box. Geometrically, the equations define a polytope535

B = {x̂ ∈ RM |DT (x− x̂) < T}. If the thresholds are chosen sufficiently large, then crossing a bound and firing a spike536

keeps the readout inside the bounding box.537

The dynamics of the autoencoder SCNs are obtained by identifying the left-hand side of the above equation with538

the neuron’s voltage, Vi , and then taking the temporal derivative [19, 23]. If we also add some noise to the resulting539

equations, we obtain,540

V̇ = −λV + DT(λx(t) + ẋ(t))−DTDs(t) + σV η(t), (8)

which describes a network of leaky integrate-and-fire neurons. The first term on the right-hand side is the leak, the541

second term corresponds to the feedforward input signals to the network, the third term captures the fast recurrent542

connectivity, with synaptic weights Ωij = −DT
i Dj , and the fourth term is added white current noise with standard543

deviation σV . When the voltage Vi reaches the threshold T , the self-connection Ωii = −DT
i Di causes a reset of the544

voltage to Vreset = T + Ωii . For biological plausibility, we also consider a small refractory period of τref = 2ms for each545

neuron. We implemented this refractory period by simply omitting any spikes coming from the saturated neuron546

during this period.547

Generalisation of the bounding box548

There are two straightforward generalisations of the bounding box, as described so far. One generalisation is to allow549

neurons to have different thresholds, in which case, the bounding box can take more elliptical shapes. The second550

generalisation consists in decoupling the orientation of a neuron’s face from the direction of the readout jump, which551

can be achieved by choosing a voltage Vi = Fi (x− x̂), where Fi denotes the norm vector of a bounding box face. In552

contrast, the readout jumps in the direction Di , and a non-orthogonal jump with respect to the face requires Di 6= Fi .553

Indeed, for elliptically shaped bounding boxes, non-orthogonal jumps of the readout can sometimes be advantageous.554

The more general dynamical equation for SCNs is then given by555

V̇ = −λV + F(λx(t) + ẋ(t))− FDs(t) + σVη(t), (9)

and was first described in Brendel et al. [25]. As shown here, this generalisation has a bounding box interpretation as556

well. For simplicity, however, we have chosen to present the bounding box with symmetric connectivities in the main557

text.558

Readout biases and corrections559

When one of the neurons fires, its spike changes the readout, which jumps into the bounding box. In previous work,560

these jumps were generally taken to reach the opposing face of the bounding box, because the neurons’ thresholds561

were linked with the length of the jumps through the equation Ti = ‖Di‖2/2 [19, 23]. This setting creates a tight error562

bounding box around x, and guarantees that the average readout matches the input signal.563

When the jumps are significantly shorter than the average bounding box width, the average readout will be biased564

away from the input signal. However, this bias can be corrected by rescaling the readout.565

x̂ =

(
〈‖Dr‖〉+ T − 1

2

〈‖Dr‖〉

)
Dr, (10)

where the angular brackets denote the time-averaged estimate strength. Note that this new scaling factor was566

analytically derived for SCNs shaped like hyperspheres (i.e. in the limit of an infinite number of neurons N) and567

assuming a constant stimulus. In cases where both of these assumptions are violated, we empirically found that we568

can apply a correction to the readout using a similar scaling as in Equation 10 where 〈‖Dr‖〉 ≈ Dr(t). We use this569

correction in all our simulations that involve increased thresholds (T > 0.5).570

22 of 33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.148338doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.148338
http://creativecommons.org/licenses/by-nc-nd/4.0/


In Figure 1, we used networks that involve an extra set of slow recurrent connections [19]. In this case, we are571

additionally required to scale the slow recurrent connectivity matrix Ωslow with the same scaling factor as the corrected572

readout in Equation 10:573

Ωslow =

(
〈‖Dr‖〉+ T − 1

2

〈‖Dr‖〉

)
DT (A + λI) D. (11)

Geometry of high-dimensional bounding boxes574

The dimensionality of the bounding box is determined by the dimensionality M of the input signal. Throughout

the illustrations in the Results section, we mostly used two-dimensional bounding boxes for graphical convenience.

In order to illustrate some properties of higher-dimensional error bounding boxes (Figure 3), we compared their
behaviour against that of hyperspheres and hypercubes. We defined the equivalent hypersphere as

{p ∈ RM : ‖p‖2 ≤ T},

and the equivalent hypercube as

{p ∈ RM : ‖p‖∞ ≤ T},

where ‖p‖2 =
√

p2
1 + ... + p2

n and ‖p‖∞ = maxi |pi |. In practice, we chose the smallest box size, T = 0.5 (Figure 3).575

For a first comparison, we took the intersection between the border of the M-dimensional polytope B and a

random two-dimensional plane containing the centre of the polytope. We computed such intersections numerically by

first choosing two random and orthogonal directions u and v in the full space defining the two-dimensional plane.

Then for each θ ∈ [0, 2π] , we defined a ray in the two-dimensional plane, w(ρ) = ρ cos(θ)u + ρ sin(θ)v , and then plotted

ρ(θ) = arg max
ρ>0,w(ρ)∈B

w(ρ).

For a second comparison, we found the distribution of angles between neighbouring neurons by first randomly576

choosing one neuron, and then moving along the surface of theM-polytope in a random direction, until we found a577

point that belongs to the face of a different neuron. We then computed the angle between the decoding weights of578

those two neurons.579

Finally, we illustrated a high-dimensional bounding box with a set of Gabor patches. These were defined as580

g(x , y ;λ, θ,σ, γ) = exp

(
− x̃2 + γ2ỹ 2

2σ2

)
cos

(
2π

x̃

λ
+
π

2

)
, (12)

where x̃ = x cos θ + y sin θ and ỹ = −x sin θ + y cos θ. For our purposes, we randomly chose the Gabor parameters: λ,581

the wavelength of the sinusoidal stripe pattern, was sampled uniformly from {3, 5, 10} Hz; θ, the orientation of the582

stripes, was sampled uniformly in [0, 2π]; σ, the standard deviation of the Gaussian envelope, was sampled uniformly583

from {1, 1.5}; γ, the spatial aspect ratio, was sampled uniformly from {1, 1.5}.584

Finally we randomly centred the resulting Gabor patch in one of 9 different locations on the 13 × 13 grid. We585

computed the angle (in the 169-dimensional space) between the Gabor patches and found that roughly 80% of the586

neurons are quasi-orthogonal (their angle falls between 85 and 95 degrees) to a given example patch.587

Parameter choices588

Spike coding networks depend on several parameters:589

1. The number of neurons in the network, N .590

2. The number of signals fed into the network,M , also called the dimensionality of the signal.591

3. TheM × N matrix of decoding weights, Dik , where each column Dk , corresponds to the decoding weights of one592

neuron.593

4. The inverse time constant of the exponential decay of the readout, λ.594

5. The threshold (or error tolerances) of the neurons, T .595

6. The refractory period, τref.596

7. The current noise, σV .597
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Table 1. SCN parameter values.

Variable (Unit) baseline value value range

N network size [2, 5000]

M signal dimensions [1, 100]

ρ network redundancy
N
M

[2, 50]

‖Di‖2 decoder norms 1

1
λ

decoder time constant (ms) 10

Ti threshold (a.u.) 0.55 [0.5, 1.55*]

tmax trial duration (s) 5

∆t simulation time step (ms) 0.1 [0.01 0.1]

σx standard deviation of each signal component 3

ηx signal noise 0.5

τref refractory period (ms) 2 [0, 10]

Vi ,reset reset (a.u.) 1.014 [1, 1.5]

σV current noise (a.u.) 0.5 [0, 3]

δΩ synaptic scaling/noise 0 [0, 0.2]

ps sparsity factor 0 [0, 0.4]

pf synaptic failure 0 [0, 0.1]

θ recurrent delay (ms) 0 [0, 2]

popto optogenetic inhibition 0 [-0.05, 0]

popto optogenetic excitation 0 [0, 0.05]

*To counteract synaptic delays as in Figure 8, thresholds T > 1.55 were also used (Figure 8–Figure Supplement 2).

These parameters fully define both the dynamics and architecture – in terms of feedforward and recurrent connectivity598

– of SCNs, as well as the geometry of the bounding box. We did a parameter sweep to narrow down the range of599

parameters that matches key observational constraints, such as low median firing rates, as found in cortex [27, 73]600

(Figure 4C), and coefficients of variation of interspike intervals close to one for each neuron, corresponding to Poisson-601

like spike statistics (Figure 4E). Table 1 displays the range of parameters used to simulate baseline and perturbed602

networks.603

Input signal604

We used two different types of inputs throughout our simulations. The results shown in Figure 1C, Figure 6C and605

Figure 9 are for a circular, 2-dimensional signal,606

x(t) = (a sin(ωt), a cos(ωt))T , (13)

with constant amplitude a and constant frequency ω.607

For all other figure panels, the input signal is smooth but random: for each trial, we sample a single point in input608

space from anM-dimensional Gaussian distribution,609

x0 ∼ N
(

0,σ2
x I
)

. (14)

The input signal ramps linearly from zero to this point x0 during the first 400ms. For the rest of the trial, the input to610

the neurons is set to slowly vary around this chosen value for each dimension of x: to generate the slow variability, we611

sample from an M-dimensional Gaussian distribution as many times as time steps in the rest of the trial; we then612

twice-filter the samples with a moving average window of 1s for each dimension of x, and for each dimension of x and613

across time, we normalise the individual slow variabilities to not exceed ηx = 0.5 in magnitude. This procedure was614

supposed to mimic experimental trial-to-trial noise.615

Metrics and network benchmarking616

To compare the behaviour of SCNs under baseline conditions to those under the different perturbations, we need617

reliable measures of both coding accuracy and firing statistics. Below, we describe the measures used in this study.618

24 of 33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.148338doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.148338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Random seeds619

For each simulated trial, we generate a new SCN with a different random distribution of decoding weights, random620

input signal, and random voltage noise. We initialise the random number generator with a different seed before each621

trial. If a single trial with a perturbation is compared to a single unperturbed trial (see Network Performance), each622

such pair shares a seed and thus has identical decoders, connectivity, input and noise unless explicitly affected by the623

perturbation.624

Distributions of firing rates and coefficients of variation625

We measured the time-averaged firing rate for a given neuron by dividing the total number of spikes by the total626

duration of a trial. The coefficient of variation (CV) of a single spike train is computed as the ratio of the standard627

deviation of the interspike intervals (ISI) to their mean628

CV =
σISI
µISI

. (15)

We recorded the full distributions of both the firing rates and CVs for a given network, pooling across neurons and629

different trials.630

Network Performance631

We defined coding error as the mismatch between the encoded signal x(t) and spike-based reconstruction x̂(t). Note632

that this quantity is computed at every time step t, and separately for each dimension m of signal space.633

ε (t,m) = |xm(t)− x̂m(t)| , m ∈ [1,M]. (16)

One straightforward approach when calculating the error is computing its L2 (or euclidean) norm at every time step.634

However, since this quantity scales with the signal dimensionalityM , it is not suited for analysing how the distribution635

of the errors incurred by SCNs varies across different signal dimensionalities. Therefore, in Figure 4, we pool over all636

dimensions and all time steps of all trials and obtain a characteristic distribution of errors for each network.637

When our aim was to simply compare the relative network performance with and without the different perturba-638

tions, we opted to use the most straightforward error metric, i.e. the average (in time) of the L2 norm of the coding639

error640

Etrial = 〈‖x(t)− x̂(t)‖〉t . (17)

This value was then compared to the error of a dead network (i.e. where x̂(t) = 0) and a reference one using the641

formula642

P =
Etrial − Edead

Ereference − Edead
, (18)

where the reference network is the one without any perturbation, and Edead = 〈‖x(t)‖〉t .643

Benchmarking644

To fully compare the behaviour of SCNs under baseline conditions to those under the different perturbations, we645

adopt the following benchmarking procedure: each trial with a perturbation is compared to an otherwise identical646

trial without perturbation. For each such pair of trials, N random decoding weights are drawn from anM-dimensional647

standard normal distribution,648

Dj ∼ N (0, I), (19)

and then normalised,649

Dj ← Dj/‖Dj‖2. (20)

such that each neuronal decoding vector is of length 1. We then apply ourM-dimensional input signal x as described650

above. Coding error and spike statistics are recorded for each trial.651

This procedure is repeated multiple times (Ntrials ≥ 20), each repetition with a different random seed, resulting652

in different network connectivity, inputs (with the exception of Figure 4A,C,E, where a single network and input are653

used), and injected current noise. Then, for each perturbed trial, we use the same trial seed to control for the trial654

randomisation.655
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We choose this benchmarking procedure to sample input space in an unbiased way. Even though the rate of656

change of the input is constrained to be small on the time scale of a single trial, we sample a large part of the input657

space from trial to trial. This ensures that network performance is not accidentally dominated by a perfect match, or658

mismatch, between the fixed decoding weights and a given random input. Particularly bad mismatches may still lead659

to high decoding errors, but because our error measure considers the median response, these extremes do not bias660

our benchmarking procedure.661

Number of simulations662

Figure 1C shows a single trial. The distributions in Figure 4 are across 820 trials of 100s (500 trials for M = 5 and663

ρ = 5, 200 for M = 5 and ρ = 50, 100 for M = 100 and ρ = 5 and 20 for M = 100 and ρ = 50). Figure 4B,D,F each664

show a total of 29,400 trials. Figure 6D-F show 16,830 pairs of trials, Figure 6–Figure Supplement 1 shows 4,996665

pairs, and Figure 6–Figure Supplement 2 shows 1 perturbed trial per row. Each data panel of both Figure 7 and666

Figure 7–Figure Supplement 1 consists of 840 trials. Figure 8G-H show 18,000 pairs of trials, or 200 pairs per data667

point, and Figure 8–Figure Supplement 1 shows 1 perturbed trial per row. Figure 9 and Figure 9–Figure Supplement 1668

show 1 perturbed trial per row.669

Perturbations670

Here, we formalise all the perturbations addressed in this study.671

Voltage noise672

We implement voltage noise as an extra random current on the voltage dynamics. This term could be added to the673

voltage itself, but since an SCN is a type of leaky integrate-and-fire network, spike generation depends only on the674

difference between voltage and threshold,675

Vj(t) ≥ Tj . (21)

As we focus on spike times instead of subthreshold activity, we can thus move the voltage noise term from one side of676

Equation 21 to the other, and include it in the definition of the threshold instead. In either case, the extra current677

follows a Wiener process scaled by σV which denotes the standard deviation of the noise process with Gaussian678

increments (see Equation 8). In the absence of recurrence,679

dVj(t) = −λVj(t) dt + ν(t)
√
dt, ν ∼ NM(0,σV ). (22)

SCNs leaky integration with time constant λ biases the random walk of the thresholds back towards their default680

values, so for stationary input, the thresholds follow an Ornstein-Uhlenbeck process. Note that if we had instead681

applied noise to the voltages themselves, these would perform a random walk biased towards their equilibrium682

potential.683

Synaptic perturbations684

In this study, we investigated four different ways to induce perturbations at the synaptic level.685

1. Synaptic scaling (Figure 7): we perturb synapses between different neurons (i 6= j ) by a multiplicative noise term686

Ωi ,j ← Ωi ,j ∗ (1− δΩ)ui ,j , (23)

where ui ,j ∼ U(−1, 1). Here, the parameter δΩ is the maximum weight change in percentage of each synapse.687

2. Synaptic noise (Figure 7–Figure Supplement 1): we add a time-varying multiplicative noise term to all synapses688

between different neurons689

Ωi ,j(t)← Ωi ,j ∗ (1− δΩ)ui ,j , (24)

where ui ,j ∼ U(−1, 1), is drawn at every time step. Note that we opted for a multiplicative noise term to avoid a690

single synapse to undergo the biologically unrealistic change from inhibitory to excitatory.691

3. Sparsity (Figure 7–Figure Supplement 1): we remove synapses between neurons by setting their connection692

weights to 0. We specifically target the fraction ps of synapses that are weakest in absolute value.693

4. Synaptic failure (Figure 7–Figure Supplement 1): all synapses have their original value but fail with probability pf ,694

independently of each other.695
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Synaptic delays696

We implement delayed recurrent connections with the same constant delay length θ ≥ 0 for all pairs of neurons.697

Regardless of whether or not lateral excitation and inhibition are delayed in this way, the self-reset of a neuron onto698

itself remains instantaneous. Equation 3 thus becomes699

Vi = D>i x−
N∑

k=1

D>i Dk (rk(t) · (1− δik) + rk(t − θ) · δik) , (25)

where δik is Kronecker’s delta. We assume that the decoder readout is equally delayed.700

Optogenetic perturbations701

We simulate optogenetic perturbations in SCNs by incorporating an external additive current p(t) in their voltage702

dynamics703

V̇ = −λV + DT(ẋ + λx) + p, (26)

where p(t) is a vector function of size N capturing the temporal evolution of the perturbation for each neuron. In our704

simulations, we used simple square functions and set pi (t) = popto for the duration of the perturbation, and pi (t) = 0705

otherwise. For the unperturbed neurons, we set pi (t) = 0 for the entirety of the simulation.706

Note that adding a current p(t) to the voltage dynamics is equivalent to a transient change in the neuronal707

thresholds, similar to our previous transfer of voltage noise to the thresholds:708

V̇ = −λV + DT(ẋ + λx) + p

V ≤ T
⇔

V̇ = −λV + DT(ẋ + λx)

V ≤ T− h ∗ p with h(t) = Θ(t)e−λt .
(27)

Table 1 includes the range of perturbations used throughout this manuscript.709

Numerical implementation of SCNs710

We numerically solve the differential equations (Equation 8) describing the temporal evolution of membrane voltage711

by the forward Euler-Maruyama method. We implemented this method in both MATLAB and Python, and both sets of712

code can be used interchangeably. We will make all our code for simulation, analysis and figure generation, as well as713

sample data files, available after publication.714

MATLAB code was tested under version R2018b. It only requires the core software without any of the optional715

MATLAB toolboxes. PYTHON scripts are written with Jupyter Notebook and sped up by Numba.716

Simultaneous crossing of multiple bounds717

SCN neurons are integrate-and-fire neurons that spike whenever their voltage exceeds their threshold, Vk ≥ Tk .718

In our geometric perspective, this happens whenever the readout is located on or outside one or several of the719

bounds representing these thresholds. Whether by perturbations or because of finite simulation time steps, more720

than one bound may be crossed during the same step, and more than one neuron may thus be eligible to spike.721

Therefore, we have devised an algorithm to simulate SCNs without time step dependence, while preserving the effect722

of perturbations (Supplementary Algorithm 1).723

Note that when considering finite delays θ, delayed lateral recurrence arrives only at the end of each time step724

(Supplementary Algorithm 2).725

Iterative adaptation of parameters to avoid ping-pong726

In SCNs with delays, we can avoid ping-pong either by increasing box size or by removing a number of strongest727

excitatory connections. In both cases, we compute the minimum required value offline using an iterative procedure728

(Supplementary Algorithm 3). Note that trials must be sufficiently long to avoid false-negative reports of ping-pong.729

Movie visualisation730

All movies were produced in Python, with the exception of the three-dimensional visualisation of a polytope, for which731

we used the bensolve toolbox for MATLAB [74].732
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Supplementary material865

K ← {k | k ∈ N : 1 ≤ k ≤ N} // all neurons
initialise Vk(0) ∀ k ∈ K

for t = 0 to tmax in steps ∆t do

R ←
{
k | k ∈ K : t − argmax

t′<t

(
sk(t′) = 1

)
< τref

}
// in refraction

C ← {k | k ∈ K\R : Vk(t) > Tk(t)} // spike candidates
while C 6= ∅ do

w ← argmax
k∈C

(
Vk(t)− Tk(t)

)
// furthest above threshold

sw (t)← 1 // spike
V(t)← V(t)−DTDw // instant recurrence
R ← R ∪ {w} // refraction
C ← {k | k ∈ K\R : Vk(t) > Tk(t)} // spike candidates

end

sample η(t) ∼ N (0,σV I)

V(t + ∆t)← V(t) + ∆t (−λV(t) + λDx(t)) +
√

∆t η(t)

end

Supplementary Algorithm 1: Numerical implementation of a general SCN with voltage noise σV and refractory

period τref.
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K ← {k | k ∈ N : 1 ≤ k ≤ N} // all neurons
initialise Vk(0) ∀ k ∈ K

Ω = DTD // standard recurrent matrix
if θ > 0 then

Ωf = diag(Ω) // instant self-reset vector
Ωθ = Ω− diag(Ωf ) // delayed recurrence matrix

end

for t = 0 to tmax in steps ∆t do

sample Ω∗(t)← Ω + ∆Ω(t) // synaptic noise
if θ > 0 then

Ωf = diag(Ω∗(t)) // instant self-reset vector
Ωθ = Ω∗(t)− diag(Ωf ) // delayed recurrence matrix

end

R ←
{
k | k ∈ K : t − argmax

t′<t

(
sk(t′) = 1

)
< τref

}
// in refraction

C ← {k | k ∈ K\R : Vk(t) > Tk(t)} // spike candidates
while C 6= ∅ do

w ← argmax
k∈C

(
Vk(t)− Tk(t)

)
// furthest above threshold

sw (t)← 1 // spike
if θ > 0 then

Vw (t)← Vw (t)−Ωf
w // instant self-reset

else

V(t)← V(t)−Ω∗w // instant recurrence
end

R ← R ∪ {w} // refraction
C ← {k | k ∈ K\R : Vk(t) > Tk(t)} // spike candidates

end

∆V = ∆t
(
−λV(t) + λDx(t)

)
// normal dynamics

sample η(t) ∼ N (0,σV I)

∆V← ∆V +
√

∆t η(t) // current noise
∆V← ∆V + ∆t p(t) // optogenetic currents
if θ > 0 then

∆V← ∆V −Ωθs(t + ∆t − θ) // delayed recurrence
end

V(t + ∆t)← V(t) + ∆V

end

Supplementary Algorithm 2: Numerical implementation of a general SCN with finite delays θ, refractory period τref,
current noise σV , time-varying synaptic noise ∆Ω(t) and time-varying optogenetic currents p(t).
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initialise T ← Tmin > 0 // current box width
initialise T ∗ ← 0 // best box width so far
initialise k ← 0 // trial counter
while k < K do

k ← k + 1

simulate SCN with N neurons and box width T

for 1 < j ≤ N do

Θj ← {t | sj(t) = 1} // spike times
Sj ←

{
t − t′ | t, t′ ∈ Θj ∧ t = arg min

x
(x > t′)

}
// intervals

end

S ←
⋃N

j=1 Sj // pool interspike intervals
A← {a ∈ S | 2θ − ε < a < 2θ + ε} // SISIs near double-delay
P ← |A|

|S| > γ // Boolean: ping-pong present?

if P then

if w∗ > 0 then

w ← T ∗ // use previous estimate...
k ← K // ...and quit

else

T ← αT // increase box size
k ← 0 // restart trial counter

end

else if k = N then

T ∗ ← w // update best estimate
T ← βT // slightly decrease box size
k ← 0 // restart trial counter

end

end

Supplementary Algorithm 3: Numerical search for the "safe width" of a bounding box, avoiding ping-pong. Typical

parameters are Tmin= 0.55, α= 1.5, β= 0.95, γ= 0.1, ε= 0.05 · 2θ, N = 100. In each trial, all neurons j have the same

threshold Tj , and the box is thus widened or narrowed symmetrically.
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Figure 6–Figure supplement 1. Robustness to noise for different signal dimensionalities. Comparison of SCN’s

robustness to noise for different signal dimensionalities (M = 5, 10, 20, and 50). Network performance relative to

an identical reference network without noise (left), population firing rate (middle), and the average (across neurons)

coefficient of variation of the interspike intervals (right). Overall, dimensionality does not qualitatively affect robustness

to noise. ρ is the redundancy, with ρ ∈ {3, 10, 50}. Threshold is T = 0.55 by default, unless labelled ‘wide’, which

corresponds to an expanded threshold of T = 1.0. Lines show medians, and shaded regions indicate interquartile

ranges.
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Figure 6–Figure supplement 2. Impact of voltage noise on spike trains and decoded (two-dimensional) signals for

networks of different size and box width, as shown in Figure 6C. For the sake of clarity, almost uniformly distributed

decoders were chosen, as in Figure 6A-C. (A-B) redundancy ρ=3 and minimal box width, (C-D) redundancy ρ=10 and

minimal box width T =0.5, (E-F) redundancy ρ=20 and minimal box width, (G-H) redundancy ρ=50 and a 40% wider

box T =0.7. (A,C,E,G) Readout (green lines) and readout target (thin grey lines). Each sinusoid represents one of the

two signal dimensions. (B,D,F,H) Spike raster plots for all neurons in the network, sorted by decoding weights, from

first to last recruited (left). On the right are the firing rates of individual neurons in the same order (centre), as well as

sorted from largest to smallest (right).
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Figure 7–Figure supplement 1. Robustness of SCNs for different types of synaptic noise. (A-D) Network robustness
for time-varying synaptic noise. Here, the synaptic noise factor defines the standard deviation of the multiplicative

noise term (see Material and Methods). (E-H) Network robustness when varying the sparsity factor. A sparsity

factor of 0.2means that the 20% weakest synapses are truncated at 0. (I-L) Network robustness when varying the

probability of synaptic failure. Synaptic failure probability of 0.05means that 5% of spikes passing through a synapse

are ignored. (A,E,I) Network performance for different dimensionalities. (B,F,J) Additional spikes per neuron for

different dimensionalities. In (A,B,E,F), redundancy ρ is 50 and in (I-J) redundancy is 5. (C,G,K) Network performance

due to the synaptic manipulation for different redundancies and error tolerances (dimensionality M = 50). (D,H,L)

Additional spikes per neuron due to the synaptic manipulation for different redundancies (dimensionality 50).
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Figure 8–Figure supplement 1. Single trials of delayed SCNs at medium dimensions (2-dimensional circular signal
in 20 dimensions, redundancy 5). (A,B) Undelayed fully connected network with a default box of T = 0.55, (C,D)

delayed fully connected network with a default box, (E,F) delayed fully connected network with optimally widened

box (see Figure Supplement 2A), (G,H) delayed network with default box and optimally reduced excitation (see Figure
Supplement 2B). (C-H) Delay is θ=1ms. Panels (A,C,E,G) show the readout in each of the first four signal dimensions

as a separate line. Dimensions 5 to 20 are hidden to avoid clutter. Panels (B,D,F,H) show corresponding spike-time

raster plots (left) and trial-averaged single-neuron firing rates (centre), as well as the same rates ordered from largest

to smallest (right).
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Figure 8–Figure supplement 2. Empirically learned changes needed to avoid ping-pong in delayed SCNs with synaptic
delays of θ=1ms. (A) Minimum box size. (B) Minimum fraction of pairwise excitatory connections to remove, in the

order of increasing scalar product between the connected decoders (i.e., beginning with the strongest antipode and

gradually including other neurons neighbouring the largest antipode).
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Figure 9–Figure supplement 1. Simulations of random partial inhibition and excitation with tighter box (thresholds of

0.55), and paradoxical effect of optogenetic inhibition. (A,B) Simulation of SCNs response to random partial optogenetic
perturbations with a tight box (T = 0.55). In this case we observe no coding bias but a strong network response

(ping-pong) for the excitatory perturbation. (C) Inhibited neurons may have their bounds contribute with a larger

surface of the box (in green) and thus potentially have higher firing rates. (D) Fractional change in firing rate for an

example simulation. Note that most neurons decrease their firing rate but a small subset increase their activity despite

being inhibited.
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