
/

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Object   manifold   geometry   across   the   mouse   cortical   visual  

hierarchy  
 

Emmanouil   Froudarakis 1,4,5* ,   Uri   Cohen 2 ,   Maria   Diamantaki 1 ,   Edgar   Y.   Walker 4-6 ,   Jacob   Reimer 4,5 ,   Philipp  

Berens 5-7 ,   Haim   Sompolinsky 2,3 ,   Andreas   S.   Tolias 4,5,8*  

 

1 Institute   of   Molecular   Biology   and   Biotechnology,   Foundation   for   Research   and   Technology   Hellas,  

Heraklion,   Greece  
2 Edmond   and   Lily   Safra   Center   for   Brain   Sciences,   Hebrew   University   of   Jerusalem,   Israel   
3 Center   for   Brain   Science,   Harvard   University,   Cambridge,   MA,   USA  
4 Department   of   Neuroscience,   Baylor   College   of   Medicine,   Houston,   TX,   USA  
5 Center   for   Neuroscience   and   Artificial   Intelligence,   Baylor   College   of   Medicine,   Houston,   TX,USA  
6 Institute   for   Ophthalmic   Research,   University   of   Tübingen,   Germany  
7 Department   of   Computer   Science,   University   of   Tübingen,   Germany  
8 Department   of   Electrical   and   Computer   Engineering,   Rice   University,   Houston,   TX,   USA  

 

*To   whom   correspondence   should   be   addressed;   E-mail:    frouman@imbb.forth.gr ,     astolias@bcm.edu  

 

 

Abstract  
 

Despite  variations  in  appearance  we  robustly  recognize  objects.  Neuronal  populations  responding  to  objects                          

presented  under  varying  conditions  form  object  manifolds  and  hierarchically  organized  visual  areas  are                          

thought  to  untangle  pixel  intensities  into  linearly  decodable  object  representations.  However,  the  associated                          

changes  in  the  geometry  of  object  manifolds  along  the  cortex  remain  unknown.  Using  home  cage  training  we                                  

showed  that  mice  are  capable  of  invariant  object  recognition.  We  simultaneously  recorded  the  responses  of                              

thousands  of  neurons  to  measure  the  information  about  object  identity  available  across  the  visual  cortex  and                                

found  that  lateral  visual  areas  LM,  LI  and  AL  carry  more  linearly  decodable  object  identity  information                                

compared  to  other  visual  areas.  We  applied  the  theory  of  linear  separability  of  manifolds,  and  found  that  the                                    

increase  in  classification  capacity  is  associated  with  a  decrease  in  the  dimension  and  radius  of  the  object                                  

manifold,   identifying   features   of   the   population   code   that   enable   invariant   object   coding.  
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Introduction  
Object  recognition  is  an  ethologically-relevant  task  for  many  animals.  This  is  a  challenging  problem                            

because  an  individual  object  can  elicit  myriads  of  images  on  the  retina  due  to  so-called  nuisance                                

transformations  such  as  changes  in  viewing  distance,  projection,  occlusion  and  illumination.  The  collection  of                            

neural  responses  associated  with  a  single  object  is  known  as  the  object  manifold.  A  prevailing  hypothesis  is                                  

that  along  the  visual  hierarchy,  object  manifolds  are  gradually  untangled  to  produce  increasingly  invariant                            

object  representations,  which  are  linearly  decodable  (DiCarlo  and  Cox,  2007).  This  hypothesis  is  primarily                            

based  on  work  in  non-human  primates,  which  is  a  powerful  model  to  study  object  recognition  especially  given                                  

the  similarities  in  visual  perception  among  primates.  These  studies  have  revealed  that  the  selectivity  for  object                                

identity  increases  as  visual  signals  are  conveyed  from  primary  visual  cortex  (V1)  to  inferotemporal  cortex                              

(Hung  et  al.,  2005;  Rust  and  DiCarlo,  2010) .  Despite  this  significant  progress,  the  underlying  changes  in  the                                  

geometry  of  the  object  manifolds  along  the  visual  cortical  hierarchy  that  leads  to  object  recognition  and  a                                  

circuit-level  mechanistic  understanding  of  how  they  are  generated  remain  largely  unknown.  The  mouse  animal                            

model  is  ideally  suited  to  dissect  circuit  mechanisms  due  to  its  genetic  tractability  and  the  numerous  methods                                  

available  to  perform  large  scale  recordings,  manipulations  and  anatomical  tracing  with  cell-type  precision                          

(Fenno  et  al.,  2015;  Sofroniew  et  al.,  2016) .  Therefore  developing  visually  guided  behaviors  in  rodents  is                                

important (Zoccolan  et  al.,  2009)  and  identifying  the  relevant  network  of  visual  areas  involved  in  object                                

recognition  analogous  to  the  ventral  stream  of  primates  is  critical.  In  this  direction,  we  developed  an                                

automatic  high-throughput  training  paradigm  and  demonstrated  that  mice  can  be  trained  to  perform  a                            

two-alternative  forced  choice  (2AFC)  object  classification  task,  which  is  typically  used  in  primates  to  test                              

object  identification.  While  visually-guided  operant  behavioral  tasks  have  been  used  previously  in  mice  (Hu  et                              

al.,  2018;  Leger  et  al.,  2013),  here  we  show  that  mice  can  also  learn  to  correctly  discriminate  objects  under  a                                        

2AFC  paradigm.  Critically,  this  capability  persisted  even  when  they  were  presented  with  previously-unseen                          

transformation   of   objects.   

We  simultaneously  recorded  the  activity  of  thousands  of  neurons  across  all  cortical  visual  areas  of  the                                

mouse:  primary  (V1),  anterolateral  (AL),  rostrolateral  (RL),  lateromedial  (LM),  lateral  intermediate  (LI),                        

posteromedial  (PM),  anteromedial  (AM),  posterior  (P),  postrhinal  (POR)  and  laterolateral  anterior  (LLA)                        

visual  areas,  while  presenting  images  of  moving  objects  undergoing  numerous  identity-preserving                      

transformations  such  as  rotation,  scale  and  translation  across  different  illumination  conditions.  By  decoding                          

the  identity  of  the  objects  from  the  recorded  neural  activity  using  a  linear  classifier  we  found  that  the  lateral                                      

extrastriate  visual  areas  (LM,  AL,  LI)  carried  more  linearly  decodable  information  about  objects  identity                            

compared  to  V1  and  all  other  higher  order  areas  we  studied,  consistent  with  results  in  rats  (Tafazoli  et  al.,                                      

2017).  We  used  the  recently  developed  theory  of  linear  separability  of  manifolds  and  found  that  in  areas  LM                                    

and  AL  the  increase  in  classification  capacity  is  associated  with  improved  manifold  geometry,  where  both  the                                

manifold  radii  and  dimensions  are  reduced  compared  to  other  visual  areas.  Additionally,  by  recording                            

simultaneously  from  many  visual  areas,  we  found  that  the  population  dynamics  differed  across  the  visual                              
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hierarchy,  where  information  about  object  identity  accumulated  faster  in  areas  which  are  more  object  selective                              

compared   to   V1.   

 

Results  
We  generated  rendered  movies  of  3D  objects  by  varying  their  location,  scale,  3D  pose  and  illumination  in  a                                    

continuous  manner  across  time  ( Fig.  1a ,  Supp.  Movie  1 ).  We  developed  a  2AFC  automatic  home  cage                                

training  system  in  which  water  restricted  mice  had  to  lick  a  left  or  a  right  port  depending  on  the  object  that                                          

was  shown  on  a  small  monitor  in  front  of  their  cage  ( Fig.  1b ).  Upon  a  correct  choice  animals  immediately                                      

received  a  small  amount  of  water  reward.  Naive  animals  initially  licked  the  left  and  right  probes  at  random,                                    

but  within  two  weeks  of  training  animals  learned  to  preferentially  lick  the  correct  port  matched  to  object                                  

identity  ( Fig.  1c )  and  trained  animals  maintained  consistent  performance  on  the  task  across  days  ( Fig.  1d ).                                

An  important  property  of  object  recognition  is  the  ability  to  generalize  across  views  of  objects  that  have  never                                    

been  seen  before.  After  the  animals  learned  to  discriminate  objects  from  the  movie  clips  -  which  contained  a                                    

specific  set  of  object  transformations,  new  movie  clips  with  unique  parameters  across  translation,  scale,  pose                              

and  illumination,  were  presented  to  the  animals.  We  could  not  detect  any  differences  in  performance  between                                

the  previously  seen  object  transformations  ( Fig.1e ,  familiar  transformations)  and  novel  object  transformations                        

( Fig.1e ,  novel  transformations).  This  ability  to  generalize  across  identity-preserving  transformations  indicated                      

that  mice  learned  an  internal  object-based  model  and  did  not  rely  simply  on  low-level  features  of  the  rendered                                    

movies   they   observed   during   training.  

If  mice  were  capable  of  discriminating  between  objects,  there  should  exist  a  set  of  areas  along  their                                  

visual  processing  hierarchy  that  can  extract  this  information.  It  has  been  suggested  that  one  way  of  extracting                                  

the  object  information  irrespective  of  its  transformations  is  to  have  neural  representations  for  each  object  that                                

are  untangled,  i.e.  can  be  read-out  using  a  linear  decoder (DiCarlo  and  Cox,  2007) .  To  test  this  idea,  we  used                                        

transgenic  mice  expressing  GCamp6  in  pyramidal  neurons  and  recorded  the  activity  from  hundreds  of  neurons                              

in  each  visual  areas  separately  or  from  thousands  of  neurons  across  the  whole  visual  cortical  hierarchy  of  the                                    

mouse  using  a  large  field  of  view  microscope (Sofroniew  et  al.,  2016 ,  Fig.  1f,  g ),  while  the  animals  passively                                      

viewed  the  moving  objects  ( Fig.  1a ).  We  identified  the  borders  between  visual  areas  using  wide-field                              

retinotopic  mapping  as  previously  described (Fahey  et  al.,  2019;  Garrett  et  al.,  2014;  Wang  and  Burkhalter,                                

2007)  ( Fig.  1f ).  Neurons  in  all  of  the  identified  visual  areas  showed  significantly  more  reliable  responses                                

when  compared  to  neurons  that  were  not  assigned  to  any  visual  area,  based  on  the  area  segmentation  ( Supp.                                    

Fig.   1a ).   
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Figure  1:  Experimental  procedure  for  behavioral  training  and  two-photon  imaging.  (a)  Single  frames  from  movies  with  the                                  

objects  that  were  presented  to  the  animals.  (b)  Behavioral  training  sequence.  (c)  Probability  of  licking  either  probe  during  the  early                                        

training  period  (upper  barplot)  and  later  training  period  (lower  barplot)  for  1  animal.  Error  bars  represent  S.E.M.  Student  t-test  *  p  <                                            

0.05  (d)  Performance  as  a  function  of  training  time,  N  =  8  animals.  (e)  Performance  across  repetitions  of  previously  seen  (gray)  and                                            

previously  unseen  (red)  object  trajectories  during  one  session.  N  =  6  animals.  For  both  (d)  and  (e)  shaded  areas  represent  S.E.M.  (f)                                            

Example  large  field  of  view  recording  (green)  with  area  boundaries  overlaid.  Scale  bar  represents  1mm.  A  small  inset  depicts  the                                        

two-photon  average  image  for  a  small  segment  of  the  large  field  of  view  captured  with  the  mesoscope.  (g)  Example  responses  of  all                                            

neurons  to  moving  objects  (shown  on  top)  from  the  recording  shown  in  (f).  Each  clip  is  presented  for  3-5  seconds  before  a  short  pause                                                

switches   to   a   new   clip   that   might   be   the   same   or   a   different   object   identity.  
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To  measure  how  linearly  discriminable  the  responses  to  the  different  objects  were,  we  used                            

cross-validated  logistic  regression  to  classify  the  object  identity  from  the  responses  of  neurons  in  each  visual                                

area.  As  expected,  discriminability  increased  as  a  function  of  the  number  of  neurons  sampled  ( Fig.  2a ),  but                                  

only  the  higher  visual  areas,  LM,  LI  and  AL,  showed  consistently  higher  discriminability  levels  compared  to                                

V1  responses  ( Fig.  2a,  b,  c ).  In  contrast,  areas  RL,  AM,  P,  POR  and  LLA  had  significantly  lower                                    

discriminability  levels  when  compared  to  V1  ( Fig.  2b ).  The  differences  in  decoding  between  these  areas                              

persisted   at   the   single   neuron   as   well   ( Fig.   2d,   Supp.   Fig.   2a ).    

Figure  2:  Object  identity  decoding  across  the  visual  hierarchy. (a)  Discriminability  of  object  identity  as  a  function  of  the  number  of                                          

neurons  sampled.  Each  line  represents  the  average  across  all  recorded  sites.  (b)  Scatter  plot  of  the  discriminability  of  different  areas                                        

with  a  64  population  of  neurons  compared  to  V1  for  all  the  recording  sites.  Insert  histogram  represents  the  difference  between  the                                          

discriminability  of  each  area  and  V1.  Red  line  and  number  indicate  the  mean  difference.  Diamonds  represent  the  results  with  2  objects                                          

whereas  circles  represent  the  results  with  4  objects.  Outliers  have  been  omitted  for  better  visualization.  Wilcoxon  signed  rank  test  ***                                        

p  <  0.001,  **  p  <0.01,  *  p  <  0.05.  (c)  Average  discriminability  of  all  visual  areas  with  a  128  population  of  neurons.  The  number  below                                                    

each  area  represents  the  recording  sites  sampled.  (d)  Same  as  in  (c)  but  when  using  a  single  neuron  at  a  time  to  decode  the  object                                                  

identity.  The  number  below  each  area  represents  the  cells  sampled.  (e)  Low-dimensional  representation  of  the  128-dimensional  neural                                  

activity  space,  illustrating  the  separation  of  the  responses  to  four  different  objects  for  three  example  areas.  Each  dot  represents  the                                        

average  of  the  activity  in  one  500msec  bin.  The  side  histograms  represent  the  distances  of  the  data  projected  onto  each  of  the  four                                              

object   category   axes   for   the   same-class   (colored)   and   different-class   (gray).   Each   insert   represents   the   confusion   matrix   after   decoding.   
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We  performed  several  control  analyses:  first,  our  results  might  be  due  to  differences  in  the  retinotopic                                

coverage  across  areas.  As  has  been  reported  before  (Garrett  et  al.,  2014),  the  coverage  of  the  visual  field  is                                      

different  between  visual  areas.  To  control  for  this,  in  some  experiments  we  also  mapped  the  receptive  fields                                  

(RFs)  of  all  recorded  neurons  using  a  dot  stimulus  (see  methods)  and  repeated  our  decoding  analysis  using                                  

only  neurons  from  each  area  with  RF  centers  within  the  same  ~20  degree  area  of  visual  space.  When  we                                      

restricted  our  analysis  in  this  way,  areas  LM,  LI  and  AL  still  showed  significantly  higher  discriminability                                

( Supp.  Fig.  2b ).  Another  potential  confound  might  be  differences  in  receptive  field  sizes  across  areas (Murgas                                

et  al.,  2020;  Wang  and  Burkhalter,  2007) . An  area  with  larger  receptive  fields  might  be  better  at  representing                                    

objects  simply  because  more  neurons  are  responding  to  the  object  at  any  moment.  Indeed,  when  we  examined                                  

decoding  performance  conditioned  on  the  object  size,  we  observed  an  increase  in  discriminability  for  all                              

visual  areas  as  a  function  of  object  size  ( Supp.  Fig.  3a ),  in  agreement  with  the  increased  performance  we                                    

found  when  sampling  from  more  neurons  ( Fig.  2a ).  However,  if  changes  in  receptive  field  size  alone  result  in                                    

an  increase  in  object  discriminability  we  would  expect  that  area  PM  that  has  very  large  receptive  fields                                  

(Murgas  et  al.,  2020)  would  also  have  high  object  discriminability  which  was  not  the  case  in  our  data  ( Fig.  2 ).                                        

To  further  investigate  the  influence  of  receptive  field  size  on  discriminability,  we  modeled  the  effect  of                                

changing  receptive  field  (RF)  size  in  a  simulated  population  of  neurons  with  filters  learned  by  a  sparse  coding                                    

model.  Increasing  the  size  of  the  receptive  fields  by  either  scaling  or  pairwise  linearly  combining  them  ( Supp.                                  

Fig.  4a , see  Methods )  led  to  either  a  decrease  in  discriminability  or  had  no  significant  effect  respectively                                  

( Supp.  Fig.  4b ).  These  results  argue  that  our in  vivo  results  cannot  be  trivially  explained  by  differences  in  the                                      

receptive  field  sizes  across  visual  areas.  Additionally,  higher  visual  areas  have  been  reported  to  have  different                                

temporal  frequency  selectivities (Andermann  et  al.,  2011;  Han  et  al.,  2018;  Marshel  et  al.,  2011) .  To  determine                                  

whether  the  range  of  speeds  that  objects  were  moving  in  the  movies  that  we  showed  influenced  our  results,  we                                      

computed  the  decoding  performance  for  each  area  as  a  function  of  the  object  speed,  but  did  not  find  any                                      

significant  differences  ( Supp.  Fig.  3b ).  Therefore,  we  interpret  the  increase  in  discriminability  in  AL,  LI,  and                                

LM  indicating  that  these  visual  areas  are  specialized  for  the  processing  of  visual  object  information  with                                

neural   representations   that   are   easier   to   decode   ( Fig.   2e ).   
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Figure  3:  Generalization  performance  across  background  noise  and  identity-preserving  transformations. (a)  Generalization  test                          

across  background  noise.  The  decoder  was  trained  on  the  responses  to  objects  without  background  and  tested  on  the  responses  to                                        

objects  that  contained  background  noise.  Low-dimensional  representation  of  the  responses  to  the  object  w/  background  are  shown  on                                    

the  right  similar  to  Figure  2e.  Each  insert  represents  the  confusion  matrix  after  decoding.  (b)  Average  discriminability  of  all  visual                                        

areas  for  objects  w/o  and  w/  background,  on  the  same  recorded  sites.  (c)  Barplot  indicating  the  difference  in  discriminability  between                                        

all  visual  areas  and  V1  on  the  responses  to  objects  w/  background.  Kruskal-Wallis  with  multiple  comparisons  test  *p  <  0.001.  (d)                                          

Example  parameter  space  of  the  four  nuisance  classes:  Translation  (x/y),  Scale,  Pose  (tilt/rotation)  and  Light  (four  light  sources).  The                                      

decoder  was  tested  on  a  parameter  space  of  each  of  the  four  nuisance  variables  that  had  not  been  part  of  the  training  set.  (e)  Bar  plot                                                    

indicating  the  performance  when  testing  on  untrained  parameter  space,  compared  to  the  performance  of  the  random  sampling  across  all                                      

classes.   Lines   indicate   p   <   0.05   Kruskal-Wallis   with   multiple   comparisons   test.   

 

An  important  property  of  visual  areas  that  extract  information  about  object  identity  is  robustness  to                              

background  clutter  in  the  visual  scene.  To  assess  the  effect  of  background-clutter,  we  first  trained  a  logistic                                  

regression  decoder  on  responses  to  objects  with  a  gray  background  as  we  used  previously.  We  then  evaluated                                  

the  performance  of  the  decoder  on  the  responses  to  movies  in  which  we  embedded  the  objects  on  top  of                                      

background  clutter  ( Fig.  3a , Supp.  Movie  2 ).  While  the  discriminability  decreased  for  all  visual  areas  when                                

compared  to  noise-free  stimuli  ( Fig.  3b ),  areas  LM  and  AL  maintained  significantly  higher  discriminability                            
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compared  to  V1  and  all  other  visual  areas  ( Fig.  3a , b,c ),  indicating  that  in  addition  to  being  highly  invariant  to                                      

changes  in  the  appearance  of  the  object,  the  object  representation  in  these  areas  is  also  more  robust  than  in  V1                                        

and  other  visual  areas  to  clutter.  We  also  studied  the  relationship  between  discriminability  and  reliability  of  the                                  

neural  responses.  Although  the  decoding  performance  of  the  objects  without  the  background  correlated  well                            

with  the  reliability  of  the  responses  for  both  V1  and  the  lateral  visual  areas,  when  background  noise  was                                    

introduced   this   relationship   broke   down   for   V1   but   not   for   the   lateral   visual   areas    Supp.   Fig.   1b ).  

Neurons  in  an  area  that  is  specialized  for  representing  objects  should  depend  less  on  object  parameters                                

that  preserve  the  identity  such  as  position,  scale,  pose  and  illumination  conditions (DiCarlo  and  Cox,  2007;                                

Hénaff  et  al.,  2019;  Rust  and  DiCarlo,  2010;  Tafazoli  et  al.,  2017) .  As  a  result,  an  object  decoder  built  on  a                                          

subset  of  the  nuisance  parameter  space  (for  example  a  limited  range  of  translations,  sizes,  and  rotations)                                

should  generalize  across  nuisance  parameters.  To  test  this  we  split  the  data  into  four  non-overlapping  bins  for                                  

each  of  the  nine  continuously-varying  parameters  that  defined  the  object  stimulus  (for  example  for  the  size                                

object  parameter,  very  small,  small,  medium,  and  large  objects; Fig.  3d ),  while  the  remaining  parameters  were                                

randomly  sampled.  For  each  parameter,  we  then  used  data  from  three  of  the  bins  to  train  the  decoder,  and                                      

tested  the  prediction  performance  on  the  held-out  bin  of  the  data.  We  compared  this  performance  to  a  baseline                                    

discriminability  using  a  4-fold  cross  validation,  when  the  values  for  each  parameter  were  randomized  before                              

binning  so  that  the  training  and  test  set  both  spanned  the  same  parameter  range.  Comparing  the  out-of-training                                  

set  performance  to  this  baseline  allowed  us  to  assess  the  ability  of  the  decoder  to  generalize,  and  thus  assess                                      

the  invariance  of  the  representation  in  each  area  ( Supp.  Fig.  5 ,  Fig.  3e; negative  values).  Areas  AL,  LM  and                                      

LI  consistently  showed  the  best  generalization  performance  (smallest  reduction  in  performance  for                        

out-of-training-set  condition  vs  baseline),  when  changing  the  scale,  pose,  light  but  not  translation  ( Fig.  3e ).                              

The  larger  receptive  field  sizes  of  areas  PM  and  AM (Murgas  et  al.,  2020;  Wang  and  Burkhalter,  2007)  might                                      

contribute   to   the   improved   translation   invariance   that   we   observed   relative   to   the   other   parameters.   

Chung  and  colleagues  ( Chung  et  al.,2018)  recently  developed  the  theory  of  linear  separability  of                              

manifolds  and  defined  a  measure  called  the  classification  capacity  which  quantifies  how  well  a  neural                              

population  supports  object  classification.  The  classification  capacity  measures  the  ratio  between  the  number                          

of  objects  and  the  size  of  the  neuronal  population  that  is  required  for  reliable  binary  classification  of  the                                    

objects,  and  is  tightly  related  to  the  geometry  of  a  neuronal  population  responding  to  an  object  presented                                  

under  varying  conditions  (object  manifold).  In  deep  neural  networks  trained  on  object  classification  tasks,  it                              

has  been  shown  that  the  classification  capacity  improves  along  the  network’s  processing  stages (Cohen  et  al.,                                

2020) .  Our  data,  consisting  of  responses  of  large  neuronal  populations  in  different  visual  areas  to  objects                                

under  various  transformations,  are  well  suited  for  applying  this  method  to  characterize  the  object  manifolds  in                                

different  visual  areas.  We  used  the  neuronal  responses  of  64  simultaneously  recorded  neurons  from  each                              

visual  area  to  four  objects  under  the  identity-preserving  transformations  introduced  earlier  (object  position,                          

scale,  pose  and  illumination  conditions,  with  and  without  background  noise).  In  agreement  with  our  decoding                              

results,  we  found  that  the  classification  capacity  increased  in  higher  visual  areas  AL  and  LM  compared  to  V1,                                    

but  decreased  in  the  rest  of  the  areas  ( Fig.  4a,b ).  The  theory  of  linear  separability  of  manifolds  (Chung  et  al.,                                        
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2018) also  enabled  us  to  characterize  the  associated  changes  in  the  geometry  of  the  object  manifolds  to                                  

understand  how  object  invariant  representations  arise  along  a  processing  hierarchy (Cohen  et  al.,  2020) (i.e.                              

relate  the  manifolds’  classification  ability  to  the  geometry  of  object  manifolds).  In  particular,  classification                            

capacity  depends  on  the  overall  extent  of  variability  across  the  encoding  dimensions,  the  radius  of  the                                

manifold,  but  also  the  number  of  directions  in  which  this  variability  is  spread,  the  dimension  of  the  manifold.                                    

These  geometric  measures  influence  the  ability  to  linearly  separate  the  manifolds  ( Fig.  4c ). In  our  results,  we                                  

find  that  the  increase  in  classification  capacity  can  be  traced  to  changes  in  the  manifolds’  geometry,  both  as  a                                      

decrease   of   the   dimension   and   radius   of   object   manifolds   ( Fig.   4d ).    

Figure  4:  Classification  capacity  and  geometry  of  manifolds  across  the  visual  hierarchy.  (a)  Scatter  plot  of  the  classification                                    

capacity  of  different  areas  compared  to  V1  for  4  objects.  Insert  histogram  represents  the  difference  between  the  classification  capacity                                      

of  each  area  and  V1.  Red  line  and  number  indicate  the  mean  difference.  Wilcoxon  signed  rank  test  ***  p  <  0.001,  **  p  <0.01,  *  p  <                                                      

0.05.  (b)  Average  classification  capacity  of  all  visual  areas  with  a  64  population  of  neurons.  The  number  below  each  area  represents                                          

the  recording  sites  sampled.  (c)  Illustration  of  low  dimensional  representations  of  object  manifolds  for  two  visual  areas.  Left:  each                                      

point  in  an  object  manifold  corresponds  to  neural  responses  to  an  object  under  certain  identity-preserving  transformations.  Right:                                  

demonstration  of  two  possible  changes  in  the  manifold  geometry  in  a  higher  order  area,  reduction  of  the  radius  of  one  manifold                                          

through  reduction  of  its  extent  in  all  directions  (top)  and  reduction  of  the  dimension  of  one  manifold  by  concentrating  variability  at                                          

certain  elongated  axis,  reducing  the  spread  along  other  axes.  Such  changes  have  predictable  effects  on  the  ability  to  perform  linear                                        

classification  of  those  objects.  (d)  Box  plots  of  the  manifold  radius  (left),  and  manifold  dimension  (right)  of  all  areas,  sorted  in                                          

ascending   order   of   the   median   value.   
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One  question  that  arises  is  how  these  visual  areas  are  able  to  form  invariant  representations  that  can                                  

generalize  across  background  noise  or  nuisance  parameters.  One  way  for  these  areas  to  optimize  the                              

representations  is  by  taking  advantage  of  the  temporal  continuity  that  exists  for  natural  objects  by  integrating                                

information  over  time (DiCarlo  et  al.,  2012;  Orlov  and  Zohary,  2018) .  We  analyzed  the  temporal  dynamics  of                                  

the  decoding  performance  of  50  simultaneously  recorded  neurons  for  objects  overlaid  on  background  noise.                            

From  one  trial  to  the  next  the  nuisance  parameters  varied  continously  but  the  object  identity  was  preserved                                  

(cis  trials)  or  switched  (trans  trials)  ( Fig.  1g ).  When  we  compared  the  discriminability  as  a  function  of  time  for                                      

cis/trans  trials,  we  found  that  indeed  in  the  trials  in  which  the  identity  of  the  object  was  switched  (trans  trials),                                        

discriminability  was  overall  lower  across  all  visual  areas  in  the  early  phase  of  the  trials  compared  to  the  late                                      

phase  of  the  trials,  providing  evidence  for  temporal  integration  during  a  trial  ( Supp.  Fig.  6 ).  In  the  late  period                                      

discriminability  in  area  AL  was  significantly  closer  to  the  discriminability  levels  of  the  cis  trials  than  all  the                                    

rest  of  the  visual  areas,  suggesting  that  activity  in  AL  more  quickly  evolved  to  more  disentangled                                

representations   ( Supp.     Fig.   6b,    Early/Late).   

A  natural  question  is  what  are  the  dependencies  between  the  representations  of  objects  across  multiple                              

visual  areas.  If  information  about  object  identity  propagates  across  areas,  then  we  expect  to  see  consistent                                

temporal  relationships  in  the  evolution  of  object  discriminability  across  these  areas.  We  estimated  each  area’s                              

confidence  about  the  identity  of  the  object  at  each  time  point,  as  the  distance  of  the  population  activity  from                                      

the  decision  boundary  ( Fig.  5a ),  and  we  examined  the  evolution  of  this  metric  across  time  in  each  area.                                    

Specifically,  we  estimated  the  distance  to  the  decision  boundary  at  different  moments  within  the  trial  for  the                                  

class  that  was  presented.  This  decision  boundary  was  a  linear  hyperplane  in  the  128  dimensional  neural                                

activity  space  ( Fig.  5a ).  We  then  computed  the  correlation  between  the  resulting  temporal  vectors  of  the  score                                  

values  across  all  simultaneously  recorded  visual  areas  ( Fig.  5b ,  Score  Correlation).  The  highest  correlations  in                              

this   moment-to-moment   discriminability   score   were   between   AL,   LM,   RL   and   V1   ( Fig.   5c ).   

Given  that  activities  of  neurons  across  areas  can  co-fluctuate  because  of  global  brain  states,  these                              

score  correlations  could  just  be  the  result  of  raw  activity  correlations  across  areas.  To  test  this  we  computed                                    

the  activity  correlations  between  the  responses  of  pairs  of  neurons  across  visual  areas.  We  observed  a  different                                  

correlation  pattern  that  was  distinct  from  the  structure  of  the  score  correlation  ( Fig.  5b ,  Score  correlations  vs                                  

Pairwise  activity  correlations).  Additionally,  there  are  multiple  dependencies  that  can  affect  the  score                          

correlation  between  the  activity  of  pairs  of  areas.  In  order  to  measure  the  strength  of  the  linear  relationship                                    

between  each  pair  of  areas  after  adjusting  for  relationships  with  the  rest  of  the  areas,  we  computed  the  partial                                      

score  correlations.  The  correlation  pattern  remained  unchanged  with  strong  dependencies  between  V1-LM,                        

V1-RL  and  LM-AL  suggesting  that  these  areas  work  together  as  a  network  of  areas  specialized  for  object                                  

recognition   ( Fig.   5c ).   Interestingly,   we   did   not   find   a   strong   relationship   between   V1-AL   ( Fig.   5c ).  
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Figure  5:  Temporal  dynamics  and  cross-area  dependencies. (a)  Schematic  representation  of  the  classification  scores  as  the                                

distances  of  the  response  trajectories  to  the  decision  boundary  (left)  and  their  resulting  temporal  dependencies  across  different  areas                                    

(right).  (b)  Score  correlations  across  all  recorded  areas  (left)  and  raw  pairwise  correlations  of  the  single  neuron  activity  between  areas                                        

(right).  Significance  was  estimated  by  bootstrapping  across  all  correlations,  *p  <  0.025/45.  (c)  Schematic  representation  of  the  score                                    

partial   correlation   coefficients   between   areas.   

 

Discussion  
The  ability  to  recognize,  discriminate,  and  track  objects  across  time  is  evidently  a  key  adaptive  trait                                

that  is  fundamental  to  identifying  food  items  or  conspecifics (Jones  and  Ratterman,  2009)  and  the  ability  to                                  

recognize  objects  has  been  observed  not  only  in  higher  mammals  such  as  humans  and  monkeys,  but  also                                  

rodents,  birds,  fish  and  insects (Bevins  and  Besheer,  2006;  Blaser  and  Heyser,  2015;  Newport  et  al.,  2018;                                  

Soto  and  Wasserman,  2014;  Werner  et  al.,  2016;  Zoccolan  et  al.,  2009) .  While  the  implementation  of  how                                  

information  is  extracted  from  the  visual  scene  may  vary  across  species,  the  computational  problem  remains                              

the  same:  construct  an  invariant  representation  of  objects  under  a  wide  range  of  identity-preserving                            

transformations.  While  there  is  plenty  of  evidence  that  mice  can  detect  novel  objects (Leger  et  al.,  2013) ,  and                                    

that  mice  rely  on  their  vision  to  hunt  crickets (Hoy  et  al.,  2016) ,  until  our  study  there  was  no  direct  evidence                                          

that   mice   are   capable   of   invariant   object   recognition.  

In  this  work,  we  showed  that  mice  can  be  trained  to  recognize  unfamiliar  objects  in  a  2AFC  paradigm                                    

( Fig.  1) .  Similar  tasks  have  been  developed  for  rats  (Zoccolan  et  al.,  2009),  but  mice  have  not  been  reported  to                                        

perform  such  a  task.  That  might  be  related  to  the  fact  that  even  though  mice  and  rats  can  achieve  similar                                        

performance  levels,  mice  are  slower  to  train  (Jaramillo  and  Zador,  2014).  Our  unique  training  approach                              

involves  minimal  interactions  with  the  animals  since  the  training  system  is  part  of  their  housing.  Within  a  few                                    

weeks  animals  learn  to  discriminate  objects  and  can  show  generalization  across  unseen  objects  poses                            

establishing   that   mice   are   capable   of   invariant   object   recognition   ( Fig.   1d ).   
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To  identify  how  animals  are  able  to  extract  object  identity,  we  analyzed  the  activity  of  thousands  of                                  

neurons  of  all  known  visual  cortical  areas  of  the  mouse.  We  found  that  the  decoding  performance  varied                                  

across  the  visual  hierarchy.  A  set  of  lateral  visual  areas  carried  more  linearly  decodable  information  about  the                                  

object  identity.  Importantly,  these  areas  retain  the  information  about  object  identity  even  in  difficult  visual                              

conditions  such  as  clutter  and  generalization  across  nuisance  variability.  Our  results  agree  with  the  hypothesis                              

that  object  representations  become  untangled  and  more  linearly  separable  as  information  progresses  through                          

the  visual  hierarchy;  this  process  might  be  beneficial  as  a  simple  readout  mechanism  may  be  employed  in                                  

order  to  use  this  information  to  drive  behavior.  It  is  important  to  note  that  a  biologically  plausible  readout                                    

mechanism  would  involve  sampling  only  from  a  small  set  of  neurons  in  order  to  extract  object  identity  and                                    

that  was  our  motivation  in  restricting  the  access  of  the  decoder  to  a  small  sample  of  neurons.  Interestingly,                                    

when  computing  the  information  per  neuron  we  find  that  information  also  increased  progressively  across  the                              

lateral  hierarchy  of  V1-LM-LI  as  has  been  reported  in  electrophysiology  studies  in  the  rat  (Tafazoli  et  al.,                                  

2017)  ( Supp.  Fig.  2a ).  However,  we  found  that  for  larger  populations  area  LI  carries  less  information  than                                  

LM  ( Fig.  2a,  b ).  This  could  be  due  to  more  redundant  information  between  neurons  in  LI  in  the  responses  to                                        

the  specific  set  of  objects  used  in  this  study.  Therefore,  analogous  to  primates  in  mice  hierarchically  organized                                  

visual   areas   untangle   pixel   intensities   into   more   linearly   decodable   object   representations.   

However,  the  associated  changes  in  the  geometry  of  the  object  manifold  along  the  visual  cortex                              

remain  unknown  for  any  species.  To  that  end,  we  characterized  how  the  geometry  of  the  object  manifolds                                  

changed  across  the  visual  hierarchy,  using  the  newly  developed  theory  of  linear  separability  of  manifolds                              

(Chung  et  al.,  2018;  Cohen  et  al.,  2020) .  We  found  that  the  two  lateral  visual  areas  LM  and  AL  showed                                        

increased  classification  capacity  with  manifolds  that  become  smaller  and  have  lower  dimensionality  ( Fig.  4 ).                            

While  the  classification  capacity  and  radius  of  object  manifolds  has  not  been  previously  quantified  along  the                                

visual  processing  hierarchy,  our  results  on  the  dimensionality  of  the  neural  population  agree  with  previous                              

work.  Different  methods  have  been  used  to  quantify  the  dimensionality  of  the  population  responses  which  also                                

showed  that  it  decreases  along  the  visual  hierarchy  of  monkeys (Brincat  et  al.,  2018;  Lehky  et  al.,  2014) .                                    

However,  critically  the  theory  of  the  linear  separability  of  manifolds  differs  from  these  previous  methods  as  it                                  

quantifies  the  geometrical  properties  of  the  object  response  manifolds  which  contribute  to  the  ability  to                              

perform  linear  decoding  and  thus  enabled  us  to  determine  how  the  object  manifold  changes  from  primary  to                                  

higher   visual   areas   in   a   way   which   allows   for   linear   decoding   of   objects   using   smaller   number   of   neurons.   

The  higher  visual  areas  of  the  mouse (Glickfeld  and  Olsen,  2017;  Wang  and  Burkhalter,  2007) ,  have                                

distinct  spatio-temporal  selectivities (Andermann  et  al.,  2011;  Marshel  et  al.,  2011)  and  project  to  different                              

targets (Wang  et  al.,  2012) .  Based  on  these  differences  in  their  selectivities,  projection  and  chemoarchitectonic                              

patterns,  efforts  have  been  made  to  separate  areas  into  ventral  and  dorsal  pathways  analogous  to  those                                

described  in  primates (Smith  et  al.,  2017;  Wang  et  al.,  2012,  2011;  Wang  and  Burkhalter,  2013) .  Specifically,                                  

areas  such  as  LM,  LI,  P  and  POR  areas  are  hypothesized  to  comprise  the  ventral  stream  whereas  areas  AL,                                      

RL,  AM  and  PM  comprise  the  dorsal  stream.  In  rats,  lateral  visual  areas  LM,  LI  and  LL  have  been  shown  to                                          

carry  progressively  more  information  about  objects (Tafazoli  et  al.,  2017;  Vermaercke  et  al.,  2015,  2014) .                              
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However,  the  areas  of  the  mouse  that  might  be  involved  in  extraction  of  object  information  are  not  known.  We                                      

found  that  higher  visual  areas  AL,  LM  and  LI  had  significantly  more  information  about  object  identity  than                                  

V1,  with  area  AL  consistently  outperforming  all  other  areas  which  is  not  consistent  with  the  current                                

assumption  that  AL  is  part  of  the  dorsal  pathway.  In  line  with  this,  both  areas  AL  and  LM show  faster                                        

accumulation  of  information  about  object  identity  in  noisy  conditions ( Supp. Fig.  6 ).  Moreover,  the                            

correlations  in  decoding  confidence  between  areas  AL  and  LM  we  find  ( Fig.  5c )  could  be  the  result  of                                    

recurrent  processes  that  have  been  suggested  to  play  a  significant  role  during  object  recognition (Kar  et  al.,                                  

2019;  Tang  et  al.,  2018,  2014) .  These  object-selective  dependencies  do  not  share  the  same  structure  as  have                                  

been  reported  with  more  parametric  stimuli (Smith  et  al.,  2017) ,  which  could  be  due  to  objects  having  a                                    

statistical   structure   closer   to   the   preferences   of   these   lateral   visual   areas.  

Future  experiments  are  required  to  determine  how  these  different  areas  work  together  to  extract                            

information  about  objects  that  might  be  used  to  guide  behavior.  In  order  to  establish  a  more  causal  relationship                                    

between  visual  areas  and  behavior,  it  will  be  important  to  combine  behavioral  performance  with  neural                              

activity  manipulation.  Neural  networks  models  and  the  inception  loop  methodology  will  enable  the                          

characterization  of  the  specific  features  that  drive  neurons  in  these  different  visual  areas (Bashivan  et  al.,                                

2019;   Ponce   et   al.,   2019;   Walker   et   al.,   2019) .   

In  summary,  we  offer  evidence  that  mice  share  similarities  with  rats  and  higher  mammals  in  their                                

ability  to  recognize  objects.  We  show  that  sequential  visual  processing  leads  to  object  manifolds  with                              

decreased  radius  and  dimension  such  that  the  manifolds  are  more  linearly  separable.  Given  the  panoply  of                                

tools  available,  the  mouse  has  the  potential  to  become  a  powerful  model  to  dissect  the  circuit  mechanisms  of                                    

object   recognition.     
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Methods  
Animal   preparation   and   two   photon   imaging  

All  procedures  were  approved  by  the  Institutional  Animal  Care  and  Use  Committee  (IACUC)  of  Baylor                              

College  of  Medicine.  We  used  25  adult  mice  expressing  GCaMP6s  in  excitatory  neurons  via  either                              

SLC17a7-Cre,  Dlx5-Cre,  Ai75,  Ai148,  Ai162  or  CamKII-tTA  transgenic  lines.  Animals  were  initially                        

anesthetized  with  Isoflurane  (2%)  and  a  4~mm  craniotomy  was  made  over  the  right  visual  cortex  as                                

previously  described (Froudarakis  et  al.,  2014) .  The  animals  were  head-mounted  above  a  cylindrical  treadmill                            

and  calcium  imaging  was  performed  using  Chameleon  Ti-Sapphire  laser  (Coherent)  tuned  to  920  nm.  We                              

recorded  calcium  traces  by  using  either  a  large  field  of  view  mesoscope (Sofroniew  et  al.,  2016)  equipped                                  

with  a  custom  objective  (0.6  NA,  21mm  focal  length)  with  a  typical  field  of  view  of  ~2500x2000μm,  or  a                                      

two-photon  resonant  microscope  (Thorlabs)  equipped  with  a  Nikon  objective  (1.1  NA,  25X)  with  a  typical                              

field  of  view  or  ~500x500μm.  Laser  power  after  the  objective  was  kept  below  ~60mW.  We  recorded  data  from                                    

depths  of  100–380  μm  below  the  cortical  surface.  Imaging  was  performed  at  approximately  5-12~Hz  for  all                                

scans.  Imaging  data  were  motion  corrected,  automatically  segmented  and  deconvolved  using  the  CNMF                          

algorithm (Pnevmatikakis  et  al.,  2016) ;  cells  were  further  selected  by  a  classifier  trained  to  detect  somata                                

based   on   the   segmented   cell   masks.   

 

Behavioral   training  

The  mice  are  trained  in  a  2  alternative  forced  choice  task  in  response  to  moving  objects  that  are  presented  on  a                                          

small  7”  monitor  that  is  located  in  front  of  their  home  cage.  The  training  procedure  is  illustrated  in  Figure  1.                                        

Briefly,  naive  water  unrestricted  mice  are  placed  in  a  modified  cage  that  has  three  ports  and  a  monitor  on  one                                        

side  of  the  box.  The  center  port  has  a  proximity  sensor,  and  the  two  other  ports  on  either  side  of  the  central                                            

port  are  used  to  detect  licks  and  are  coupled  to  a  computerized  valve-controlled  liquid  delivery  that  can  deliver                                    

liquid  volumes  with  1uL  resolution.  The  task  is  as  follows:  Mice  initiate  a  trial  by  placing  their  snout  in  close                                        

proximity  to  the  central  port  for  ~200-500msec.  A  stimulus  that  can  be  one  of  two  objects  is  presented  on  the                                        

monitor  that  is  ~1.5”  in  front  of  the  animal.  The  animal  has  to  report  the  identity  of  the  object  by  licking  one                                            

of  the  side  ports.  Each  port  is  allocated  to  the  identity  of  the  same  object  throughout  the  training.  If  the  animal                                          

licks  the  correct  port,  then  a  small  water  reward  ~5-12µl  is  delivered  almost  immediately  which  the  animals                                  

consume.  A  new  trial  can  be  started  thereafter.  If  the  animal  licks  the  wrong  port,  a  short  delay  4-10  seconds  is                                          

added  and  the  screen  turns  black.  A  new  trial  can  start  after  the  delay.  Animals  have  free  access  to  food,  and                                          

the  only  water  that  they  receive  comes  from  their  training.  The  training  periods  in  which  animals  can  initiate                                    

tasks  are  restricted  to  4-8  hours  a  day.  At  the  start  of  the  training  animals  are  shown  the  same  clip  for  each                                            

object  that  contains  the  same  set  of  transformations.  Once  animals  reach  performance  levels,  new  clips  with                                

unique  transformations  are  added.  At  the  end  of  their  training  they  have  seen  between  10-20  unique  10s  clips                                    

of  unique  object  transformations.  For  the  generalization  test,  at  the  start  of  a  new  session  a  whole  new  set  of                                        

10   clips   are   used   for   each   object   and   the   performance   was   compared   to   the   session   that   preceded.   
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Visual   area   identification  

We  generated  retinotopic  maps  of  all  the  visual  areas  using  widefield  imaging.  The  signals  from  GCamp6s                                

were  captured  using  either  a  custom  epifluorescence  setup  or  two-photon  imaging.  For  the  epifluorescence,                            

brain  was  illuminated  with  a  high  power  LED  (Thorlabs)  and  the  emitted  signal  was  bandpass  filtered  at  nm                                    

and  captured  at  a  rate  of  10  Hz  with  a  CMOS  camera  (MV1-D1312-160-CL,  PhotonFocus).  For  the                                

two-photon  retinotopic  mapping  we  sampled  the  activity  from  a  2.4x2.4mm  area  with  large  field  of  view  two                                  

photon  microscope (Sofroniew  et  al.,  2016)  at  a  rate  of  ~5Hz.  We  stimulated  with  upward  and  rightward                                  

drifting  white  bars  (speed:  9-18deg/sec,  width:  10-20deg)  on  black  background  that  had  their  size  and  speed                                

constant  relative  to  the  mouse  perspective  as  previously  described.  Additionally,  within  the  bar  we  had  drifting                                

gratings  with  a  direction  opposite  to  the  movement  of  the  bar.  Images  from  either  the  epifluorescent  or  the                                    

two-photon  setups  were  analyzed  by  a  custom-written  code  in  MATLAB  to  construct  the  2D  phase  maps  for                                  

the  two  directions.  We  used  the  resulting  retinotopic  maps  to  identify  the  borders  and  delineate  the  visual  areas                                    

as   previously   described    (Garrett   et   al.,   2014;   Wang   and   Burkhalter,   2007) .   

 

Stimulus   generation   and   visual   stimulation  

In  this  study  we  used  four  synthesized  three-dimensional  objects  that  were  rendered  in  Blender                            

( www.blender.org ).  Two  of  the  objects  were  built  to  match  the  objects  used  in (Zoccolan  et  al.,  2009)  and  the                                      

other  two  were  already  existing  models  within  Blender.  We  varied  the  following  parameters  of  the  objects:  X                                  

and  Y  location  (Translation),  magnification  (Scale),  tilt  and  axial  rotation  (Pose)  and  variation  of  either  the                                

location  or  energy  of  4  light  sources  (Light).  The  different  object  parameters  were  varied  continuously  over                                

time  in  order  to  generate  a  cohesive  object  motion.  Objects  were  rendered  either  on  a  gray  background,  or  on  a                                        

gaussian  noise  pattern  with  a  fixed  seed  between  objects.  The  long  rendered  movie  was  split  into  smaller  10                                    

second  clips.  A  short  3-5  second  segment  from  150-380  clips  for  each  object  were  presented  in  a  random                                    

sequence  to  the  left  eye  with  a  25''  LCD  monitor  positioned  ~15cm  away  from  the  animal.  A  small  number  of                                        

clips   were   repeated   multiple   times   in   order   to   estimate   the   reliability   of   the   neural   responses.  

 

Decoding   and   discriminability  

We  used  a  one-versus-all  logistic  regression  classifier  to  estimate  the  decoding  error  between  the  neural                              

representations  of  2-4  objects  of  200-500  ms  scenes.  Each  scene  was  represented  as  an  N-dimensional  vector                                

of  neural  activity  for  each  response  scene.  In  almost  all  of  the  cases  we  used  a  10  fold  cross-validation  in                                        

which  the  performance  of  the  decoder  was  tested  on  10%  of  the  data  that  were  held  out  during  training.  When                                        

generalizing  across  the  background  noise  in  Figure  3,  the  decoder  was  trained  on  90%  of  the  data  with  the                                      

no-background  objects  and  tested  on  10%  of  the  data  with  the  background  objects.  For  the  generalization                                

across  object  parameters  in  Figure  3  we  used  a  4  fold  cross-validation  in  which  the  decoder  was  trained  on                                      

75%  of  the  data  ,  and  tested  on  25%  with  a  unique  parameter  range.  We  converted  the  decoding  error  to                                        
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discriminability,  the  mutual  information  (measured  in  bits)  between  the  true  class  label c  and  its  estimate  ,  by                                    

computing  

I(c, )  logM c︿ =   ∑
 

i
∑
 

j
pij 2

pij

p pi. .j
 

where  is  the  probability  of  observing  true  class i  and  predicted  class j  and  and  denote  the  respective   pij                             pi.     p.j        

marginal   probabilities.   

 

Classification   capacity   and   geometry   of   manifolds  

An  object  manifold  is  defined  by  the  neuronal  population  responses  to  an  object  under  different  conditions                                

(i.e. identity-preserving  transformations).  The  ability  of  a  downstream  neuron  to  perform  linear  classification                          

of  object  manifolds  depends  on  the  number  of  objects,  denoted P ,  and  the  number  of  neurons  participating  in                                    

the  representation,  denoted N . Classification  capacity denotes  the  critical  ratio  where  is  the                     /Nαc  = P c     N c      

population  size  required  for  a  binary  classification  of P  manifolds  to  succeed  with  high  probability  (Chung  et                                  

al.,  2018).  This  capacity  can  be  interpreted  as  the  amount  of  information  about  object  identity  coded  per                                  

neuron  in  the  given  population.  Capacity depends  on  the  radius  of  each  of  the  manifolds,  denoted ,              αc                      RM  

representing  the  overall  extent  of  variability  (relative  to  the  distance  between  manifolds),  and  their  dimension,                              

denoted ,  representing  the  number  of  directions  in  which  this  variability  is  spread.  These  geometric   DM                            

measures  are  defined  through  the  alignment  of  the  hyperplane  in  the  representation N -dimensional  space  that                              

separates  positively  labelled  from  negatively  labelled  manifolds.  This  hyperplane  is  uniquely  determined  by  a                            

set  of anchor  points ,  one  from  each  manifold,  that  lie  exactly  on  the  separating  plane.  As  the  classification                                    

labels  are  randomly  changed,  the  identity  of  the  anchor  points  change,  and  these  changes  in  addition  to  the                                    

dependence  of  the  hyperplane  orientation  on  the  particular  position  and  orientation  of  the  manifolds,  give  rise                                

to  a  statistical  distribution  of  anchor  points.  Averaging  the  extent  and  directional  spread  of  the  anchor  points                                  

with  this  distribution  determines  the  manifolds  radii  and  dimensions,  respectively.  Knowledge  of  manifold                          

radius  and  dimension  is  sufficient  to  predict  classification  capacity  using  the  relation                         (R , )αc = αBalls M DM  

where  is  a  closed-form  expression  describing  capacity  of -dimensional  balls  of  radius  (Chung  et   αBalls                 D         R      

al.,   2018).  

The  separability  of  manifolds  depends  not  only  on  their  geometries  but  also  on  their  correlations.  For  manifold                                  

classification  with  random  binary  labeling,  clustering  of  the  manifolds  in  the  representational  space,  as                            

expected  for  real-world  object  representations,  hinders  their  separability,  and  the  theory  of  manifold                          

classification   has   been   extended    (Cohen   et   al.,   2020)    to   take   these   correlations   into   account   in   evaluating   . αc   

Here  we  used  the  methods  and  code  from (Cohen  et  al.,  2020)  to  analyze  the  geometry  of  the  object  manifolds                                        

(i.e.  manifold  radius  and  dimension)  as  well  as  estimate  classification  capacity  of  neuronal  populations  in  the                                

different  cortical  areas.  As  those  methods  depend  on  the  correlation  structure  of  the  objects,  we  analyzed                                

neural  representations  for  data-sets  of  4  objects  (i.e.  omitted  data-sets  where  only  2  objects  are  available).  At                                  

each  session  of  simultaneously  recorded  neurons  we  have  sub-sampled  from  the  available  population  64                            

neurons;  the  subsequent  analysis  was  repeated  10  times  with  different  choices  of  neurons,  and  we  report  the                                  
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average  results  across  this  procedure.  Each  object  manifold  is  defined  by  neural  responses  to  an  object  at                                  

non-overlapping  500ms  time  windows,  using  the  entire  range  of  nuisance  parameter  space,  as  well  as                              

responses  with  and  without  background  noise.  This  analysis  was  performed  at  each  visual  area  for  sessions                                

where  more  than  64  neurons  are  available.  The  baseline  to  which  classification  capacity  is  compared  is  the                                  

value   expected   by   structure-less   manifold   which   is   ,   where     is   the   number   of   samples. /M2 M   
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