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 2 

SUMMARY 19 

 20 

Different regions of the striatum regulate different types of behavior. However, how dopamine 21 

signals differ across striatal regions and how dopamine regulates different behaviors remain 22 

unclear. Here, we compared dopamine axon activity in the ventral, dorsomedial, and dorsolateral 23 

striatum, while mice performed in a perceptual and value-based decision task. Surprisingly, 24 

dopamine axon activity was similar across all three areas. At a glance, the activity multiplexed 25 

different variables such as stimulus-associated values, confidence and reward feedback at 26 

different phases of the task. Our modeling demonstrates, however, that these modulations can be 27 

inclusively explained by moment-by-moment changes in the expected reward, i.e. the temporal 28 

difference error. A major difference between these areas was the overall activity level of reward 29 

responses: reward responses in dorsolateral striatum (DLS) were positively shifted, lacking 30 

inhibitory responses to negative prediction error. Tenets of habit and skill can be explained by 31 

this positively biased dopamine signal in DLS. 32 

 33 
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 3 

INTRODUCTION 46 

 47 

Flexibility in behavior relies critically on an animal’s ability to alter behavior based on past 48 

experiences. In particular, the behavior of the animal is greatly shaped by the consequences of 49 

specific actions – whether a previous action led to positive or negative experiences. One of the 50 

fundamental questions in neuroscience is how animals learn from rewards and punishments.   51 

 52 

A neurotransmitter, dopamine, is thought to be a key regulator of learning from rewards and 53 

punishments (Hart et al., 2014; Montague et al., 1996; Schultz et al., 1997). Neurons that release 54 

dopamine (hereafter, dopamine neurons) are located mainly in the ventral tegmental area (VTA) 55 

and substantia nigra pars compacta (SNc). These neurons send their axons to various regions 56 

including the striatum, neocortex, and amygdala (Menegas et al., 2015; Yetnikoff et al., 2014). 57 

The striatum, which receives the densest projection from VTA and SNc dopamine neurons, is 58 

thought to play particularly important roles in learning from rewards and punishments (Lloyd 59 

and Dayan, 2016; O’Doherty et al., 2004). However, what information dopamine neurons 60 

convey to the striatum, and how dopamine regulates behavior through its projections to the 61 

striatum remain elusive. 62 

 63 

A large body of experimental and theoretical studies have suggested that dopamine neurons 64 

signal reward prediction errors (RPEs) – the discrepancy between actual and predicted rewards 65 

(Bayer and Glimcher, 2005; Cohen et al., 2012; Hart et al., 2014; Schultz et al., 1997). In 66 

particular, the activity of dopamine neurons resembles a specific type of prediction error, called 67 

temporal difference RPE (TD error) (Montague et al., 1996; Schultz et al., 1997; Sutton, 1988; 68 

Sutton and Barto, 1987). Although it was widely assumed that dopamine neurons broadcast 69 

homogeneous RPEs to a swath of dopamine-recipient areas, recent findings indicated that 70 

dopamine signals are more diverse than previously thought (Brown et al., 2011; Kim et al., 2015; 71 

Matsumoto and Hikosaka, 2009; Menegas et al., 2017, 2018; Parker et al., 2016). For one, recent 72 

studies have demonstrated that a transient (“phasic”) activation of dopamine neurons occurs near 73 

the onset of a large movement (e.g. locomotion), regardless of whether these movements are 74 

immediately followed by a reward (Howe and Dombeck, 2016; da Silva et al., 2018). These 75 

phasic activations at movement onsets have been observed in the somatic spiking activity in the 76 
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SNc (da Silva et al., 2018) as well as the axonal activity in the dorsal striatum (Howe and 77 

Dombeck, 2016). Another study showed that dopamine axons in the dorsomedial striatum 78 

(DMS) are activated when the animal makes a contralateral orienting movement in a decision-79 

making task (Parker et al., 2016). Other studies have also found that dopamine axons in the 80 

posterior or ventromedial parts of the striatum are activated by aversive or threat-related stimuli 81 

(de Jong et al., 2019; Menegas et al., 2017). An emerging view is that dopamine neurons 82 

projecting to different parts of the striatum convey distinct signals and support different 83 

functions (Cox and Witten, 2019).  84 

 85 

Previous studies have shown that different parts of the striatum control distinct types of reward-86 

oriented behaviors (Dayan and Berridge, 2014; Graybiel, 2008; Malvaez and Wassum, 2018; 87 

Rangel et al., 2008). First, the ventral striatum (VS) has often been associated with Pavlovian 88 

behaviors, where the expectation of reward triggers relatively pre-programmed behaviors 89 

(approaching, consummatory behaviors etc.) (Dayan and Berridge, 2014). Psychological studies 90 

suggest that these behaviors are driven by stimulus-outcome associations (Kamin, 1969; Pearce 91 

and Hall, 1980; Rescorla and Wagner, 1972). Consistent with this idea, previous experiments 92 

have shown that dopamine in VS conveys canonical RPE signals (Menegas et al., 2017; Parker et 93 

al., 2016), and support learning of values associated with specific stimuli (Clark et al., 2012). In 94 

contrast, the dorsal part of the striatum has been linked to instrumental behaviors, where animals 95 

acquire an arbitrary action that leads to a reward (Montague et al., 1996; Suri and Schultz, 1999). 96 

Instrumental behaviors are further divided into two distinct types: goal-directed and habit 97 

(Dickinson and Weiskrantz, 1985). Goal-directed behaviors are “flexible” reward-oriented 98 

behaviors that are sensitive to a causal relationship (“contingency”) between action and outcome, 99 

and can quickly adapt to changes in the value of the outcome (Balleine and Dickinson, 1998). 100 

After repetition of a goal-directed behavior, the behavior can become a habit which is 101 

characterized by insensitivity to changes in the outcome value (e.g. devaluation) (Balleine and 102 

O’Doherty, 2010). According to psychological theories, goal-directed and habitual behaviors are 103 

supported by distinct internal representations: action-outcome and stimulus-response 104 

associations, respectively (Balleine and O’Doherty, 2010). Lesion studies have indicated that 105 

goal-directed behaviors and habit are controlled by DMS and the dorsolateral striatum (DLS), 106 

respectively (Yin et al., 2004, 2005).  107 
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 108 

Instrumental behaviors are shaped by reward, and it is generally thought that dopamine is 109 

involved in their acquisition (Gerfen and Surmeier, 2011; Montague et al., 1996; Schultz et al., 110 

1997). However, how dopamine is involved in distinct types of instrumental behaviors remain 111 

unknown. A prevailing view in the field is that habit is controlled by “model-free” reinforcement 112 

learning, while goal-directed behaviors are controlled by “model-based” mechanisms (Daw et 113 

al., 2005; Dolan and Dayan, 2013; Rangel et al., 2008). In this framework, habitual behaviors are 114 

driven by “cached” values associated with specific actions (action values) which animals learn 115 

through direct experiences via dopamine RPEs. In contrast, goal-directed behaviors are 116 

controlled by a “model-based” mechanism whereby action values are computed by mentally 117 

simulating which sequence of actions lead to which outcome using a relatively abstract 118 

representation (model) of the world. Model-based behaviors are more flexible compared to 119 

model-free behaviors because a model-based mental simulation may allow the animal to 120 

compute values in novel or changing circumstances. Although these ideas account for the 121 

relative inflexibility of habit over model-based, goal-directed behaviors, they do not necessarily 122 

explain the most fundamental property of habit, that is, its insensitivity to changes in outcome, as 123 

cached values can still be sensitive to RPEs when the actual outcome violates expectation, 124 

posing a fundamental limit in this framework (Dezfouli and Balleine, 2012; Miller et al., 2019). 125 

Furthermore, the idea that habits are supported by action value representations does not 126 

necessarily match with the long-held view of habit based on stimulus-response associations.  127 

 128 

Until recently an implicit assumption across many studies was that dopamine neurons broadcast 129 

the same teaching signals throughout the striatum to support different kinds of learning (Rangel 130 

et al., 2008; Samejima and Doya, 2007). However, as mentioned before, more recent studies 131 

revealed different dopamine signals across striatal regions, raising the possibility that different 132 

striatal regions receive distinct teaching signals. In any case, few studies have directly examined 133 

the nature of RPE signals across striatal regions in instrumental behaviors, in particular, between 134 

DLS and other regions. As a result, it remains unclear whether different striatal regions receive 135 

distinct dopamine signals during instrumental behaviors. Are dopamine signals in particular 136 

areas dominated by movement-related signals? Are dopamine signals in these areas still 137 

consistent with RPEs or are they fundamentally distinct? How are they different? Characterizing 138 
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dopamine signals in different regions is a critical step toward understanding how dopamine may 139 

regulate distinct types of behavior.  140 

 141 

In the present study, we sought to characterize dopamine signals in different striatal regions (VS, 142 

DMS and DLS) during instrumental behaviors. We used a task involving both perceptual and 143 

value-based decisions in freely-moving mice – a task that is similar to those previously used to 144 

probe various important variables in the brain such as values, biases (Rorie et al., 2010; Wang et 145 

al., 2013), confidence (Hirokawa et al., 2019; Kepecs et al., 2008), belief states (Lak et al., 146 

2017), and response vigor (Wang et al., 2013). In this task, the animal goes through various 147 

movements and mental processes – self-initiating a trial, collecting sensory evidence, integrating 148 

the sensory evidence with reward information, making a decision, initiating a choice movement, 149 

committing to an option and waiting for reward, receiving an outcome of reward or no reward, 150 

and adjusting internal representations for future performance using RPEs and confidence. 151 

Compared to Pavlovian tasks, which have been more commonly used to examine dopamine 152 

RPEs, the present task has various factors with which to contrast dopamine signals between 153 

different areas.  154 

 155 

Contrary to our initial hypothesis, dopamine signals in all three areas showed similar dynamics, 156 

going up and down in a manner consistent with TD errors, reflecting moment-by-moment 157 

changes in the expected future reward (i.e. state values). Notably, although we observed 158 

correlates of accuracy and confidence in dopamine signals, consistent with previous studies 159 

(Engelhard et al., 2019; Lak et al., 2017), the appearance of these variables was timing- and trial 160 

type-specific. In stark contrast, our modeling demonstrate that these apparently diverse dopamine 161 

signals can be inclusively explained by a single variable – TD error, that is moment-by-moment 162 

changes in the expected reward in each trial. In addition, we found consistent differences 163 

between these areas. For instance, DMS dopamine signals were modulated by contralateral 164 

orienting movements, as reported previously (Parker et al., 2016). Furthermore, DLS dopamine 165 

signals, while following TD error dynamics, were overall more positive, compared to other 166 

regions. Based on these findings, we present novel models of how these distinct dopamine 167 

signals may give rise to distinct types of behavior such as flexible versus habitual behaviors.  168 

 169 
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 170 

RESULTS 171 

 172 

A perceptual decision-making task with reward amount manipulations 173 

 174 

Mice were first trained in a perceptual decision-making task using olfactory stimuli (Figure 1) 175 

(Uchida and Mainen, 2003). To vary the difficulty of discrimination, we used two odorants 176 

mixed with different ratios (Figure 1A). Mice were required to initiate a trial by poking their 177 

nose into the central odor port, which triggered a delivery of an odor mixture. Mice were then 178 

required to move to the left or right water port depending on which odor was dominant in the 179 

presented mixture. Odor-water side (left or right) rule was held constant throughout training and 180 

recording in each animal. In order to minimize temporal overlaps between different trial events 181 

and underlying brain processes, we introduced a minimum time required to stay in the odor port 182 

(for 1 s before exiting the odor port) and in the water port (for 1 s) to receive a water reward.  183 

 184 

After mice learned the task, the water amounts at the left and right water ports were manipulated 185 

(Lak et al., 2017; Rorie et al., 2010; Wang et al., 2013) in a probabilistic manner. In our task, one 186 

of the reward ports was associated with a big or medium size of water (BIG side) while another 187 

side was associated with a small or medium size of water (SMALL side) (Figure 1A). In a daily 188 

session, there were two blocks of trials, the first with equal-sized water and the second with 189 

different distributions of water sizes on the two sides (BIG versus SMALL side). The reward 190 

ports for BIG or SMALL conditions stayed unchanged within a session, and were randomly 191 

chosen for each session. In each reward port (BIG or SMALL side), which of the two reward 192 

sizes was delivered was randomly assigned in each trial. Note that the medium-sized reward is 193 

delivered with the probability of 0.5 for every correct choice at either side. This design was used 194 

to facilitate our ability to characterize RPE-related responses even after mice were well trained 195 

(Tian et al., 2016). First, the responses to the medium sized-reward allowed us to characterize 196 

how “reward expectation” affects dopamine reward responses because we can examine how 197 

different levels of expectation, associated with the BIG and SMALL side, affect dopamine 198 

responses to reward of the same (medium) amount. Conversely, for a given reward port, two 199 
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 8 

sizes of reward allow us to characterize the effect of “actual reward” on dopamine responses, by 200 

comparing the responses when the actual reward was smaller versus larger than expected.  201 

 202 

We first characterized the choice behavior by fitting a psychometric function (a logistic 203 

function). Compared to the block with equal-sized water, the psychometric curve was shifted 204 

laterally to the BIG side (Figure 1B, Figure S1). The fitted psychometric curves were laterally 205 

shifted whereas the slopes were not significantly different across blocks (p=0.45) (Figure 1B). 206 

We, therefore, quantified a choice bias as a lateral shift of the psychometric curve with a fixed 207 

slope in terms of the % mixture of odors for each mouse (Figure 1C) (Wang et al., 2013). All the 208 

mice exhibited a choice bias toward the BIG side (22/22 animals). Because a “correct” choice 209 

(i.e. whether a reward is delivered or not) was determined solely by the stimulus in this task, 210 

biasing their choices away from the 50/50 boundary inevitably lowers the choice accuracy (or 211 

equivalently, the probability of reward). For ambiguous stimuli, however, mice could go for a 212 

big reward, even sacrificing accuracy, in order to increase the long-term gain. Indeed, the 213 

observed biases approximated the optimal bias that maximizes total reward (1.016 ± 0.001 times 214 

reward compared to no bias, mean ± s.e.m, slightly less than the optimal bias that yields 1.022 215 

times reward compared to no bias), rather than maximizing the accuracy (= reward probability, 216 

i.e. no bias) or solely minimizing the risk (the variance of reward amounts) (Figures 1D and 1E).  217 

 218 

Previous studies have shown that animals shift their decision boundary even without reward 219 

amount manipulations in perceptual decision tasks (Lak et al., 2020a). These shifts occur on a 220 

trial-by-trial basis, following a win-stay strategy, choosing the same side when that side was 221 

associated with reward in the previous trial, particularly when the stimulus was more ambiguous 222 

(Lak et al., 2020a). In the current task design, however, the optimal bias is primarily determined 223 

by the sizes of reward (more specifically, which side delivered a big or small reward) which 224 

stays constant across trials within a session. To determine whether the animal adopted a short-225 

time scale updating or a more stable bias, we next examined how receipt of reward affected the 226 

choice in the subsequent trials. To extract trial-by-trial updating, we compared the psychometric 227 

curves 1 trial before (n-1) and after (n+1) the current trials (n). This analysis was performed 228 

separately for the rewarded side in the current (n) trials. We found that choice biases before and 229 

after a specific reward location were not significantly different in any trial types (Figure 1F), 230 
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 9 

suggesting that trial-by-trial updating was minimum, contrary to a previous study (Lak et al., 231 

2020b). Instead, these results indicate that the mice adopted a relatively stable bias that lasts 232 

longer than one trial.  233 

 234 

Although we imposed a minimum time required to stay in the odor port, the mice showed 235 

different reaction times (the duration between odor onset and odor port exit) across different trial 236 

types (Figure 1G). First, reaction times were shorter when animals chose the BIG side compared 237 

to the SMALL side in easy, but not difficult, trials. Second, reaction times were positively 238 

correlated with the level of sensory evidence for choice (as determined by odor % for the choice) 239 

when mice chose the BIG side. However, this modulation was not evident when mice chose the 240 

SMALL side.  241 

 242 

Overall activity pattern of dopamine axons in the striatum 243 

 244 

To monitor the activity of dopamine neurons in a projection specific manner, we recorded the 245 

dopamine axon activity in the striatum using a calcium indicator, GCaMP7f  (Dana et al., 2019) 246 

with fiber fluorometry (Kudo et al., 1992) (fiber photometry) (Figure 2). We targeted a wide 247 

range of the striatum including the relatively dorsal part of VS, DMS and DLS (Figure 2B). 248 

Calcium signals were monitored from mice both before and after introducing water amount 249 

manipulations (n = 9, 7, 6 mice, for VS, DMS, DLS). 250 

 251 

The main analysis was performed using the calcium signals obtained in the presence of water 252 

amount manipulations. To isolate responses that are time-locked to specific task events but with 253 

potentially overlapping temporal dynamics, we first fitted dopamine axon activity in each animal 254 

with a linear regression model using multiple temporal kernels (Park et al., 2014) with Lasso 255 

regularization with 10-fold cross validation (Figure 2). We used kernels that extract stereotypical 256 

time courses of activity locked to four different events: odor onset (odor), odor port exit 257 

(movement), water port entry (choice commitment or “choice” for short), and reward delivery 258 

(water) (Figures 2C-2F). 259 

 260 
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 10 

The constructed model captured modulations of dopamine axon activity time-locked to different 261 

events (Figure 2C). On average, the magnitude of the extracted odor-locked activity was 262 

modulated by odor cues. Dopamine axons were more excited by a pure odor associated with the 263 

BIG side than a pure odor associated with the SMALL side (Figures 2C and 2F). The movement-264 

locked activity was stronger for a movement toward the contra-lateral, compared to the ipsi-265 

lateral side, which was most evident in DMS (Parker et al., 2016) but much smaller in VS or 266 

DLS (Figure 2E, %Explained by movement). The choice-locked activity showed two types of 267 

modulations (Figure 2C). First, it exhibited an inhibition in error trials at the time of reward (i.e. 268 

when it has become clear that reward is not going to come). Second, dopamine activity showed a 269 

modulation around the time of water port entry, an excitation when the choice was correct, and 270 

an inhibition when the choice was incorrect, even before the mice received a feedback. These 271 

“choice commitment”-related signals will be further analyzed below. Finally, delivery of water 272 

caused a strong excitation which was modulated by the reward size (Figures 2C and 2F). 273 

Furthermore, the responses to medium-sized water was slightly but significantly smaller on the 274 

BIG side compared to the SMALL side (Figures 2C and 2F). The contribution of water-locked 275 

kernels was larger than other kernels except in DMS, where odor, movement and water kernels 276 

contributed similarly (Figures 2D and 2E). 277 

 278 

In previous studies, RPE-related signals have typically been characterized by phasic responses to 279 

reward-predictive cues and a delivery or omission of reward. Overall, the above results 280 

demonstrate that observed populations contain the basic response characteristics of RPEs. First, 281 

dopamine axons were excited by reward-predicting odor cues, and the magnitude of the response 282 

was stronger for odors that instructed the animal to go to the side which is associated with a 283 

higher value (i.e. BIG side). Responses to water were modulated by reward amounts, and the 284 

water responses were suppressed by higher reward expectation. These characteristics were also 285 

confirmed by using the actual responses, instead of obtained kernel models (Figures 2F and 2G). 286 

Finally, in error trials, dopamine axons were inhibited when the time passed beyond the expected 287 

time of reward, as the negative outcome becomes certain (Figure 2C). Next, we will investigate 288 

each striatal area in more detail.  289 

 290 

Shifted representation of TD error in dopamine axon activity across the striatum 291 
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 292 

Although excitation to unpredicted reward is one of the signatures of dopamine RPE, recent 293 

studies found that the dopamine axon response to water is small or undetectable in some part of 294 

the dorsal striatum (Howe and Dombeck, 2016; Parker et al., 2016; da Silva et al., 2018). 295 

Therefore, the above observation that all three areas (VS, DMS, and DLS) exhibited modulation 296 

by reward may appear at odds with previous studies.  297 

 298 

We noticed greatly diminished water responses when the reward amount was not manipulated, 299 

that is, when dopamine axon signals were monitored during training sessions before introducing 300 

the reward amount manipulations (Figure 3). In these sessions, dopamine axons in some animals 301 

did not show significant excitation to water rewards (Figures 3A and 3D). This “lack” of reward 302 

response was found in DMS, consistent with previous studies (Parker et al., 2016), but not in VS 303 

or DLS (Figure 3G). Surprisingly, however, DMS dopamine axons in the same animals showed 304 

clear excitation when reward amount manipulations were introduced, particularly strongly 305 

responding to a big reward (Figures 3B and 3E). Indeed, the response patterns were qualitatively 306 

similar across different striatal areas (Figure 4); the reward responses in all the areas were 307 

modulated by reward size and expectation, although the whole responses seem to be shifted 308 

higher in DLS, and lower in DMS (Figures 4A and 4B). These results indicate that a stochastic 309 

nature of reward delivery in our task enhanced or “rescued” reward responses in dopamine axons 310 

in DMS.  311 

 312 

The above results emphasized the overall similarity of reward responses across areas, but some 313 

important differences were also observed. Most notably, although a delivery of a small reward 314 

caused an inhibition of dopamine axons below baseline in VS and DMS, the activity remained 315 

non-negative in DLS. The overall responses tended to be higher in DLS.  316 

 317 

In order to understand the diversity of dopamine responses to reward, we examined modulation 318 

of dopamine activity by different parameters (Figure 4D). First, the effect of the amount of 319 

“actual” reward was quantified by comparing responses to different amounts of water for a given 320 

cue (i.e. the same expectation). The reward responses in all areas were modulated by reward 321 

amounts, with a slightly higher modulation by water amounts in VS (Figure 4D Water big-322 
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medium, Water medium-small). Next, the effect of expectation was quantified by comparing the 323 

responses to the same amounts of water with prediction of different amounts. Effects of reward 324 

size prediction were not significantly different across areas, although VS showed slightly less 325 

modulation with more variability (Figure 4D, prediction SMALL-BIG).  326 

 327 

Next, we sought to characterize these differences between areas in simpler terms by fitting 328 

response curves (response functions). Previous studies that quantified responses of dopamine 329 

neurons to varied amounts of reward under different levels of expectation indicated that their 330 

reward responses can be approximated by a common function, with different levels of 331 

expectation just shifting the resulting curves up and down while preserving the shape (Eshel et 332 

al., 2016). We, therefore, fitted dopamine axon responses with a common response function (a 333 

power or linear function) for each expectation level (i.e. separately for BIG and SMALL) while 334 

fixing the shape of the function (i.e. the exponent of the power function or the slope of the linear 335 

function were fixed, respectively) (Figure 4C, Figure S2A). The obtained response functions for 336 

the three areas recapitulated the main difference between VS, DMS and DLS, as discussed 337 

above. For one, the response curves of DLS are shifted overall upward. This can be characterized 338 

by estimating the amount of water that does not elicit a change in dopamine responses from 339 

baseline firing (“zero-crossing point” or reversal point). The zero-crossing points, obtained from 340 

the fitted curves, were significantly lower in DLS (Figures 4C and 4D). The results were similar 341 

regardless of whether the response function was a power (power function 𝛼 < 1) or a linear 342 

function (𝛼 = 1) (Figure S2B). Similar results were obtained using the aforementioned kernel 343 

models in place of the actual activity (Figure S2D). 344 

 345 

Since the recording locations varied across animals, we next examined the relationship between 346 

recording locations and the zero-crossing points (Figures 4E and 4F). The zero-crossing points 347 

varied both along the medial-lateral and the dorsal-ventral axes (linear regression coefficient; b = 348 

-44 [zero-crossing point water amounts/mm], p = 0.008 for medial-lateral axis; b = -52, p = 349 

0.011 for the dorsal-ventral axis). Examination of each animal confirmed that DMS showed 350 

higher zero-crossing points (upper-left in Figure 4E left) whereas DLS showed lower zero-351 

crossing points (upper-right cluster in Figure 4E right). 352 

 353 
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We next examined whether the difference in zero-crossing points manifested specifically during 354 

reward responses or whether it might be explained by recording artifacts; upward and downward 355 

shifts in the response function can be caused by a difference in baseline activity before trial start 356 

(odor onset), and/or lingering activity of pre-reward activity owing to the relatively slow 357 

dynamics of the calcium signals (a combination of calcium concentration and the indicator). To 358 

examine these possibilities, the same analysis was performed after subtracting the pre-reward 359 

signals (Figure S2C). We observed similar or even bigger differences in zero-crossing points 360 

(p=2.2´10-5, analysis of variance [ANOVA]). These results indicate that the elevated or 361 

decreased responses, characterized by different zero-crossing points, was not due to a difference 362 

in “baseline” but was related to the difference that manifests specifically in responses to reward. 363 

 364 

Considerably small zero-crossing points in dopamine axons in DLS were not due to a poor 365 

sensitivity to reward amounts nor a poor modulation by expected reward (Figure 4D). Different 366 

zero-crossing points, i.e. shifts of the boundary between excitation and inhibition at reward, 367 

suggest biased representation of TD error in dopamine axons across the striatum. In TD error 368 

models, difference in zero-crossing points may affect not only water responses but also responses 369 

to other events. Thus, the small zero-crossing points in dopamine axons in DLS should yield 370 

almost no inhibition following an event that is worse than predicted. To test this possibility, we 371 

examined responses to events with lower value than predicted (Figure 5): small water (Figures 372 

5A-5C), water omission caused by choice error (Figures 5D-5F), and a cue that was associated 373 

with no outcome (Figures 5G-5I). Consistent with our interpretation of small zero-crossing 374 

points, dopamine axons in DLS did not show inhibition in response to outcomes that were worse 375 

than predicted while being informative about water amounts.  376 

 377 

Taken together, these results demonstrate that dopamine reward responses in all three areas 378 

exhibited characteristics of RPEs. However, relative to canonical responses in VS, the responses 379 

were shifted more positively in the DLS and more negatively in the DMS.   380 

 381 

 382 

TD error dynamics in signaling perceptual uncertainty and cue-associated value 383 

 384 
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The analyses presented so far mainly focused on phasic dopamine responses time-locked to cues 385 

and reward. However, dopamine axon activity also exhibited richer dynamics between these 386 

events, which need to be explained. For instance, the signals diverged between correct and error 387 

trials even before the actual outcome was revealed (a reward delivery versus a lack thereof) 388 

(Figure 2C Choice). This difference between correct and error trials, which is dependent on the 389 

strength of sensory evidence (or stimulus discriminability), was used to study how neuronal 390 

responses are shaped by “confidence”. Confidence is defined as the observer’s posterior 391 

probability that their decision is correct given their subjective evidence and their choice 392 

(𝑃(𝑟𝑒𝑤𝑎𝑟𝑑|𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠, 𝑐ℎ𝑜𝑖𝑐𝑒)) (Hangya et al., 2016). A decision model allows the 393 

experimenter to link stimulus discriminability to subjective evidence (Hangya et al., 2016). A 394 

given model and task structure makes specific predictions on the shape of three key signatures 395 

relating stimulus discriminability, choice and confidence. The predictions can vary depending on 396 

task design (Adler and Ma, 2018; Rausch and Zehetleitner, 2019), but the structure of our task 397 

follows the original predictions (Hangya et al., 2016). Additionally, in our task, the mice 398 

combined the information about reward size with the strength of sensory evidence to select an 399 

action (confidence, or uncertainty) (Figure 1). The previous analyses did not address how these 400 

different types of information affect dopamine activity over time. We next sought to examine the 401 

time course of dopamine axon activity in greater detail, and to determine whether a simple model 402 

could explain these dynamics.  403 

 404 

Our task design included two delay periods, imposed before choice movement and water 405 

delivery, to improve our ability to separate neuronal activity associated with different processes 406 

(Figure 1A). The presence of stationary moments before and after the actual choice movement 407 

allows us to separate time windows before and after the animal’s commitment to a certain option. 408 

We examined how the activity of dopamine neurons changed before choice movement and after 409 

the choice commitment (Figure 6).  410 

 411 

We first examined dopamine axon activity after water port entry (0-1 s after water port entry). In 412 

this period, the animals have committed to a choice and are waiting for the outcome to be 413 

revealed. Responses following different odor cues were plotted separately for trials in which the 414 

animal chose the BIG or SMALL side. The vevaiometric curve (a plot of responses against 415 
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sensory evidence) followed the expected ‘X-pattern’ with a modulation by reward size 416 

(Hirokawa et al., 2019), which matches the expected value for these trial types, or the size of 417 

reward multiplied by the probability of receiving a reward, given the presented stimulus and 418 

choice (Figure 6C). The latter has been interpreted as the decision confidence, 419 

𝑃(𝑟𝑒𝑤𝑎𝑟𝑑|𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠, 𝑐ℎ𝑜𝑖𝑐𝑒) (Lak et al., 2017, 2020b). The crossing point of the two lines 420 

forming an “X” is shifted to the left in our data because of the difference in the reward size 421 

(Figure 6C).  422 

 423 

When this analysis was applied to the time period before choice movement (0-1 s before odor 424 

port exit), the pattern was not as clear; the activity was monotonically modulated by the strength 425 

of sensory evidence (%Odor BIG) only for the BIG choice trials, but not for the SMALL choice 426 

trials (Figure 6B). This result is contrary to a previous study that suggested that the dopamine 427 

activity reflecting confidence develops even before a choice is made (Lak et al., 2017). We note, 428 

however, that the previous study only examined the BIG choice trials, and the results were 429 

shown by “folding” the x-axis, that is, by plotting the activity as a function of the stimulus 430 

contrast (which would correspond to |%Odor BIG – 50| in our task), with the result matching the 431 

so-called “folded X-pattern”. We would have gotten the same result, had we plotted our results 432 

in the same manner excluding the SMALL choice trials. Our results, however, indicate that a full 433 

representation of “confidence” only becomes clear after a choice commitment, leaving open the 434 

question what the pre-choice dopamine activity really represents.  435 

 436 

The aforementioned analyses, using either the kernel regression or actual activity showed that 437 

cue responses were modulated by whether the cue instructed a choice toward the BIG or SMALL 438 

side (Figures 2C and 2F). These results indicate that the information about stimulus-associated 439 

values (BIG versus SMALL) affected dopamine neurons earlier than the strength of sensory 440 

evidence (or confidence). We next examined the time course of how these two variables affected 441 

dopamine axon activity more closely. We computed the dopamine axon activity between trials 442 

when a pure odor instructed to go to the BIG versus SMALL side. Consistent with the above 443 

result, the difference was evident during the cue period, and then gradually decreased after 444 

choice movement (Figure 6D). We performed a similar analysis, contrasting between easy and 445 

difficult trials (i.e. the strength of sensory evidence). We computed the difference between 446 
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dopamine axon activity in trials when the animal chose the SMALL side after the strongest 447 

versus weaker stimulus evidence (a pure odor that instruct to choose the SMALL side versus an 448 

odor mixture that instruct to choose the BIG side). In stark contrast to the modulation by the 449 

stimulus-associated value (BIG versus SMALL), the modulation by the strength of stimulus 450 

evidence in SMALL trials fully developed only after a choice commitment (i.e. water port entry) 451 

(Figure 6E). Across striatal regions, the magnitude and the dynamics of modulation due to 452 

stimulus-associated values and the strength of sensory evidence were similar (Figures 6F and 453 

6G), although we noticed that dopamine axons in DMS showed slightly higher correlation with 454 

sensory evidence before choice (Figure S3).  455 

 456 

As discussed above, a neural correlate of “confidence” appears at a specific time point (after 457 

choice commitment and before reward delivery) or in a specific trial type (when an animal would 458 

choose BIG side) before choice. We, therefore, next examined whether a simple model can 459 

account for dopamine axon activity more inclusively (Figure 7). To examine how the value and 460 

RPE may change within a trial, we employed a Monte-Carlo approach to simulate animal’s 461 

choices assuming that the animal has already learned the task. We used a Monte-Carlo method to 462 

obtain the ground truth landscape of the state values over different task states, without assuming 463 

a specific learning algorithm.  464 

 465 

The variability and errors in choice in psychophysical performance are thought to originate in the 466 

variability in the process of estimating sensory inputs (perceptual noise) or in the process of 467 

selecting an action (decision noise). We first considered a simple case where the model contains 468 

only perceptual noise (Green and Swets, 1966). In this model, an internal estimate of the 469 

stimulus or a “subjective odor” was obtained by adding Gaussian noise to the presented odor 470 

stimulus on a trial-by-trial basis (Figures 7B left). In each trial, the subject chooses 471 

deterministically the better option (Figure 7C left) based on the subjective odor and the reward 472 

amount associated with each choice (Figure 7B right). The model had different “states” 473 

considering N subjective odors (N = 60 and 4 were used and yielded similar results), the 474 

available options (left versus right), and a sequence of task events (detection of odor, recognition 475 

of odor identity, choice movement, water port entry [choice commitment], Water/No-water 476 

feedback, inter-trial interval [ITI]) (Figure 7A). The number of available choices is two after 477 
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detecting an odor but reduced to 1 (no choice) after water port entry. In each trial, the model 478 

receives one of the four odor mixtures, makes a choice, and obtains feedback (rewarded or not). 479 

After simulating trials, the state value for each state was obtained as the weighted sum of 480 

expected values of the next states, which was computed by multiplying expected values of the 481 

next states with probability of transitioning into the corresponding state. After learning, the state 482 

value in each state approximates the expected value of future reward, sum of the amount of 483 

reward multiplied by probability of the reward (for simplicity, we assumed no temporal 484 

discounting of value within a trial). After obtaining state values for each state, state values for 485 

each odor (“objective” odor presented by experimenters) was calculated as the weighted sum of 486 

state values over subjective odors. After obtaining state values at each state, we then computed 487 

TD errors using a standard definition of TD error which is the difference between the state values 488 

at consecutive time points plus received rewards at each time step (Sutton and Barto, 1987). 489 

 490 

We first simulated the dynamics of state values and TD errors when the model made a correct 491 

choice in easy trials, choosing either the BIG or SMALL side (Figure 7F bottom, blue versus 492 

red). As expected, the state values for different subjective odors diverged as soon as an odor 493 

identity was recognized, and the differences between values stayed constant as the model 494 

received no further additional information before acquisition of water. TD errors, which are the 495 

derivative of state values, exhibited a transient increase after odor presentation, and then returned 496 

to their baseline levels (near zero), remaining there until the model received a reward. Next, we 497 

examined how the strength of sensory evidence affected the dynamics of value and TD errors 498 

(Figures 7F and 7J). Notably, after choice commitment, TD error did not exhibit the additional 499 

modulation by the strength of sensory evidence, or a correlate of confidence (Figures 7F right 500 

and 7J right), contrary to our data (Figures 7E and 7I right). Thus, this simple model failed to 501 

explain aspects of dopamine axon signals that we observed in the data. 502 

 503 

In the first model, we assumed that the model picks the best option given the available 504 

information in every trial (Figure 7C). In this deterministic model, all of the errors in choice are 505 

attributed to perceptual noise. We next considered a model that included decision noise in 506 

addition to the perceptual noise (Figure 7D). Here decision noise refers to some stochasticity in 507 

the action selection process, and may arise from errors in an action selection mechanism or 508 
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exploration of different options, and can be modeled using different methods or rationale behind 509 

it. Here we present results based on a “softmax” decision rule, in which a decision variable (in 510 

this case, the difference in the ratio of the expected values at the two options) was transformed 511 

into the probability of choosing a given option using a sigmoidal function (e.g. Boltzmann 512 

distribution) (Sutton and Barto, 2011). We also tested other stochastic decision rules such as 513 

Herrnstein’s matching law (Herrnstein, 1961) or e-greedy exploration (randomly selecting an 514 

action in a certain fraction [e] of trials) (Sutton and Barto, 2011) (Figures S4A-S4C).  515 

 516 

Interestingly, just by adding some stochasticity in action selection, various peculiar features of 517 

dopamine axon signals described above were suddenly explained (Figures 7G and 7K). Note that 518 

the main free parameters of the above models are the width of the Gaussian noise, which 519 

determines the “slope” of the psychometric curve, and was chosen based merely on the 520 

behavioral performance, but not the neural data. When the model chose the BIG side, state value 521 

at odor presentation was roughly monotonically modulated by the strength of sensory evidence 522 

similar to the above (Figure 7G top left). When the model chose the SMALL side, however, the 523 

relationship between the strength of sensory evidence and value was more compromised (Figure 524 

7G middle left). As a result, TD error did not show monotonic relationship with sensory 525 

evidence before choice (Figures 7G middle right and 7K left), similar to actual dopamine axons 526 

responses (Figures 7E middle and 7I left), which was reminiscent of reaction time pattern 527 

(Figure 7H). On the other hand, once a choice was committed, the model exhibited interesting 528 

dynamics very different from the above deterministic model. After choice commitment, expected 529 

value was monotonically modulated by the strength of sensory evidence both for the choice to 530 

the BIG and SMALL sides (Figure 7G top and middle left, After). Further, because of the 531 

introduced stochasticity in action selection, the model sometimes chose a suboptimal option, 532 

resulting in a drop in the state value. This, in turn, caused TD error to exhibit an “inhibitory dip” 533 

once the model “lost” a better option (Figure 7G right), similar to the actual data (Figures 7E and 534 

7I). This effect was strong particularly when the subjective odor instructed the BIG side but the 535 

model ended up choosing the SMALL side. For a similar reason, TD error showed a slight 536 

excitation when the model chose a better option (i.e. lost a worse option). The observed features 537 

in TD dynamics were not dependent on exact choice strategy: softmax, matching, and e-greedy, 538 

all produced similar results (Figures S4B and S4C). This is because, with any strategy, after 539 
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commitment of choice, the model loses another option with a different value, which results in a 540 

change in state value. These results are in stark contrast to the first model in which all the choice 541 

errors were attributed to perceptual noise. 542 

 543 

In summary, we found that a standard TD error, computing the moment-by-moment changes in 544 

state value (or, the expected future reward), can capture various aspects of dynamics in dopamine 545 

axon activity observed in the data, including the changes that occur before and after choice 546 

commitment, and the detailed pattern of cue-evoked responses. These results were obtained as 547 

long as we introduced some stochasticity in action selection (decision noise), regardless of how 548 

we did it. The state value dynamically changes during the performance of the task because the 549 

expected value changes according to an odor cue (i.e. strength of sensory evidence and stimulus-550 

associated values) and the changes in potential choice options. A drop of the state value and TD 551 

error at the time of choice commitment occurs merely because the state value drops when the 552 

model chose an option that was more likely to be an error. Further, a correlate of “confidence” 553 

appears after committing a choice, merely because at that point (and only at that point), the state 554 

value becomes equivalent to the reward size multiplied with the confidence, i.e. the probability 555 

of reward given the stimulus and the choice. This means that, as long as the animal has 556 

appropriate representations of states, a representation of “confidence” can be acquired through a 557 

simple associative process or model-free reinforcement learning without assuming other 558 

cognitive abilities such as belief states or self-monitoring (meta-cognition). In total, not only the 559 

phasic responses but also some of the previously unexplained dynamic changes can be explained 560 

by TD errors computed over the state value, provided that the model contains some stochasticity 561 

in action selection in addition to perceptual noise. Similar dynamics across striatal areas (Figure 562 

6) further support the idea that dopamine axon activity follows TD error of state values in spite 563 

of the aforementioned diversity in dopamine signals. 564 

  565 
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DISCUSSION  566 

 567 

In the present study, we monitored dopamine axon activity in three regions of the striatum (VS, 568 

DMS and DLS) while mice performed instrumental behaviors involving perceptual and value-569 

based decisions. In addition to phasic responses associated with reward-predictive cues and 570 

reward, we also analyzed more detailed temporal dynamics of the activity within a trial. Contrary 571 

to the current emphases on diversity or multiplexing in dopamine signals (and therefore, to our 572 

surprise), we found that dopamine axon activity in all of the three areas exhibited dynamics that 573 

can be explained by the TD error which calculates moment-by-moment “changes” in the 574 

expected future reward (i.e. state value). Interestingly, however, our results showed consistent 575 

differences between regions. First, as reported previously (Parker et al., 2016), during choice 576 

movements, contra-lateral orienting movements caused a transient activation in the DMS. This 577 

response was negligible in VS and DLS, however. Second, although dopamine axon signals 578 

exhibited temporal dynamics that are predicted by TD errors, reward responses were generally 579 

elevated in DLS. As a consequence, dopamine axon signals in DLS did not exhibit a clear 580 

inhibitory response (“dopamine dip”) even when the actual reward was smaller than expected, or 581 

even when the animal did not receive a reward, despite our observations that dopamine axons in 582 

VS and DMS exhibited clear inhibitory responses in these conditions. Overall, the activity during 583 

the reward period was biased toward positive responses in the DLS, compared to other areas. 584 

Activation of dopamine neurons both in VTA and SNc are known to reinforce preceding 585 

behaviors (Ilango et al., 2014; Keiflin et al., 2019; Lee et al., 2020; Saunders et al., 2018). The 586 

differences in dopamine axon signals that we observed in instrumental behaviors can provide 587 

specific constraints on the behaviors learned through dopamine-mediated reinforcement in these 588 

striatal regions.  589 

 590 

Diversity in representation of TD errors 591 

 592 

Accumulating evidence indicates that dopamine neurons are diverse in various aspects such as 593 

anatomy, physiological properties, and activity (Engelhard et al., 2019; Farassat et al., 2019; 594 

Howe and Dombeck, 2016; Kim et al., 2015; Lammel et al., 2008; Matsumoto and Hikosaka, 595 

2009; Menegas et al., 2015, 2017, 2018; Parker et al., 2016; da Silva et al., 2018; Watabe-Uchida 596 
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and Uchida, 2018). Our study is one of the first to examine dopamine signals in three different 597 

regions of the striatum during an instrumental behavior involving perceptual and value-based 598 

decisions. We found that dopamine axon activity in the striatum follows TD error dynamics in 599 

our choice paradigm. At the same time, we found that the response function for water delivery in 600 

dopamine axons in different striatal areas showed different zero-crossing points, the boundary 601 

between excitatory and inhibitory responses (Figure 4). The results suggested that dopamine 602 

axons in DMS use a higher boundary (requiring larger amounts of reward to excite), and 603 

dopamine axons in DLS use a lower boundary (requiring smaller amounts of reward to excite). 604 

In other words, dopamine signals in DMS use a strict criterium to be excited, whereas dopamine 605 

signals in DLS tend to be more excited with smaller rewards.  606 

 607 

A recent study (Dabney et al., 2020) proposed that the diversity in dopamine responses 608 

potentially give rise to a population code for a reward distribution (distributional reinforcement 609 

learning). In this theory, there are optimistic and pessimistic dopamine neurons. Optimistic 610 

dopamine neurons emphasize positive over negative RPEs, and as a consequence, their 611 

corresponding value predictors are biased to predict a higher value in a reward distribution, or 612 

vice versa. The distributional reinforcement learning, as formulated in Dabney et al. (Dabney et 613 

al., 2020), predicts that optimistic and pessimistic dopamine neurons should have zero-crossing 614 

points shifted toward larger and smaller rewards, respectively. In this sense, our observation that 615 

DLS dopamine signals have smaller zero-crossing points resembles pessimistic dopamine 616 

neurons in distributional reinforcement learning, although the previous study found both 617 

optimistic and pessimistic dopamine neurons in the VTA, which does not necessarily project to 618 

the DLS. Whether the present result is related to distributional reinforcement learning requires 619 

more specific tests such as dopamine neurons’ sensitivity to positive versus negative RPEs 620 

(Dabney et al., 2020). It will be interesting to characterize these response properties in a 621 

projection-specific manner. 622 

 623 

Higher criteria in DMS may partly explain the observation that some dopamine neurons do not 624 

show a clear excitation by reward, such as in the case of our recording without reward amount 625 

modulations (Figure 3). Our results suggest that whether dopamine neurons respond to reward 626 

likely depends critically on task structures and training history. It will be important to further 627 
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examine in what conditions these dopamine neurons lose responses to water, or whether there are 628 

dopamine neurons which do not respond to reward in any circumstances. In contrast to DMS, we 629 

observed reliable excitation to water reward in dopamine axons in DLS. Thus, the previous 630 

observation that some dopamine neurons in the substantia nigra show small or no excitation to 631 

reward (da Silva et al., 2018) may mainly come from DMS-projecting dopamine neurons or 632 

another subpopulation of dopamine neurons that project to the tail of the striatum (TS) (Menegas 633 

et al., 2018), but not DLS. The distinction is important because smaller dopamine responses to 634 

reward have been often linked to skill or habit with value-free mechanism (Miller et al., 2019). 635 

In contrast, we found that dopamine axons in DLS show strong modulation by reward amounts 636 

and prediction, and its dynamics resemble TD errors. Our observation suggests that the lack of 637 

reward omission responses and excitation by even small rewards is a key for the function of 638 

dopamine in DLS. 639 

 640 

 641 

Positively biased reinforcement signals in DLS dopamine 642 

 643 

It has long been observed that the activity of many dopamine neurons exhibits a phasic inhibition 644 

when an expected reward was omitted or when the reward received was smaller than expected 645 

(Hart et al., 2014; Schultz et al., 1997). This inhibitory response to negative RPEs is one of the 646 

hallmarks of dopamine RPE signals. Our results that DLS dopamine signals largely lack these 647 

dopamine dips (Figure 4 and Figure 5) has profound implications on what types of behaviors are 648 

learned through DLS dopamine signals as well as what computational principles underlie 649 

reinforcement learning in DLS.  650 

 651 

Dopamine “dips” are thought to act as aversive stimuli and/or can facilitate extinction of 652 

previously learned behaviors (weakening) (Chang et al., 2018; Montague et al., 1996; Schultz et 653 

al., 1997). The lack of dopamine dip in DLS may lead to the animal’s reduced sensitivity to 654 

worse-than-expected outcome (i.e. negative prediction error). This characteristic resembles the 655 

activity of dopamine axons in TS, posterior to DLS, which signals potential threat and also lacks 656 

inhibitory responses to an omission of a predicted threat (Menegas et al., 2017, 2018). We 657 

proposed that the lack of inhibitory omission signals (and so lack of weakening signals) would 658 
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be critical to maintain threat prediction even if an actual threat is sometimes omitted. Similarly, 659 

the lack of weakening signals in DLS may help keep the learned actions from being erased even 660 

if the outcome is sometimes worse than predicted or even omitted. This idea is in line with the 661 

previous observations that DLS plays an important role in habitual behaviors (Yin et al., 2004). 662 

The uniquely modified TD error signal in DLS (i.e. a reduced inhibitory response during the 663 

reward period) may explain a predominant role of DLS in controlling habitual behaviors.  664 

 665 

What is learned in the DLS? “The law of exercise” and learning sequences.  666 

 667 

A deeper understanding of the nature of reinforcement signals can constrain the search for 668 

computational principles and provide critical insight into what is actually learned by the system. 669 

Here we speculate on these questions in the light of reinforcement learning theories and 670 

anatomy.  671 

 672 

Thorndike (Thorndike, 1932) proposed three principles for instrumental learning – the law of 673 

effect, the law of readiness, and the law of exercise. The law of effect emphasizes the role of 674 

outcome of behaviors: behaviors that led to good outcomes become more likely to occur – the 675 

idea that is a foundation of value-based reinforcement learning. In contrast, the law of exercise 676 

emphasizes the number of times a particular action was taken. There has been an increasing 677 

appreciation of the law of exercise because repetition or overtraining is the hallmark of habits 678 

and skills (Hikosaka et al., 1995; Matsuzaka et al., 2007; Miller et al., 2019; Morris and 679 

Cushman, 2019; Ölveczky, 2011; Robbins and Costa, 2017; Smith and Graybiel, 2016). Here we 680 

propose that dopamine signals in DLS provide an ideal neural substrate of learning with an 681 

emphasis on the law of exercise. A positively biased TD error signals ensures that an "OK" 682 

action will be positively reinforced, in a manner that depends on the number of times that the 683 

same behavior was repeated as far as it is accompanied by a small reward (i.e. with "OK" 684 

signals). This property may explain why the formation of habit (and skills) normally requires 685 

overtraining (i.e. repeating a certain behavior many times).  686 

 687 

The observation that DLS dopamine signals lack inhibitory responses raises the question what is 688 

actually learned by the system. Learning of values depends on the balance between positive and 689 
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negative prediction errors: the learned value converges to the point at which positive and 690 

negative prediction errors form an equilibrium. If a reinforcement signal lacks negative 691 

prediction errors, this learning would no longer work as it was originally conceptualized. In 692 

reinforcement learning theories, an alternative approach is policy-based reinforcement learning. 693 

We propose that policy learning may be a better way to conceptualize the function of the DLS. In 694 

reinforcement learning, a policy is a set of rules that map an action to a state, and has direct 695 

relevance to stimulus-response associations that are proposed to underlie habit because the 696 

relationship between stimulus (state) and response (action) can be more directly encoded using a 697 

policy. According to Sutton and Barto (Sutton and Barto, 2018), policy learning can be done by 698 

learning what is called “preference”, ℎ(𝑠, 𝑎), which defines the likelihood of a certain action, 𝑎, 699 

in a given state, 𝑠. In a given state, an action is selected based on preference through a winner-700 

take-all mechanism either deterministically (e.g. by selecting the action with the maximum 701 

preference) or stochastically (e.g. through a softmax action selection). One way to conceptualize 702 

preference is to see it as a generalized version of value, which has less constraints than value (the 703 

idea of “value” may imply many properties that it should follow, e.g. the value should be zero for 704 

no outcome). Alternatively, ℎ(𝑠, 𝑎) can directly encode the probability of an action.  705 

 706 

It is also important to consider what are “states” for learning in DLS. Importantly, the main 707 

inputs to DLS come from the motor cortex, somatosensory cortex, and other subcortical areas 708 

such as intralaminar nuclei in thalamus (Hunnicutt et al., 2016). Thus, the inputs to DLS may not 709 

be dominated by the sensory information representing the external world, as often 710 

conceptualized in reinforcement learning. Instead, DLS is well-positioned to receiving inputs 711 

representing motor commands (the current “motor states”) or somatosensory information (the 712 

current “bodily states” consisting of proprioception, sense of touch etc.). In other words, DLS 713 

may compute their output by monitoring the current motor and bodily states. Dopamine in DLS 714 

can thus be conceptualized as a reinforcement signal that strengthens the connection between the 715 

current motor/bodily state and the next motor output. This mechanism, when chained, can 716 

produce a sequence of movements as long as the same motor/bodily state is revisited or 717 

reproduced, which may not occur easily at the beginning but can occur after repeated training. 718 

As such, DLS may regulate “how” to perform a sequence of well-trained movements smoothly 719 

and automatically. The key properties of habits and skills such as stereotypy, automaticity and 720 
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the requirement of overtraining, can be explained by this model. In this model, the learning of 721 

habits and skills are a natural consequence of reinforcement learning using a specialized 722 

reinforcement signals (positively shifted response to outcomes) and the unique anatomical 723 

property (the specialized input suitable for chaining actions) of the DLS. Future experiments 724 

using tasks involving sequence of actions (Hikosaka et al., 1995; Ölveczky, 2011) can test this 725 

idea. 726 

 727 

Potential mechanisms underlying diverse TD error signals 728 

 729 

We found that, across the striatum, dopamine signals overall resemble TD errors, with positive 730 

or negative biases in a subregion-specific manner (Figure 4). A potential mechanism to generate 731 

such a diversity is by optimistic and pessimistic expectations, as proposed in distributional 732 

reinforcement learning (Dabney et al., 2020). Alternatively, DLS-projecting dopamine neurons 733 

may add "success premium" at each feedback. Signals of success feedback were observed in 734 

multiple cortical areas (Chen et al., 2017; Sajad et al., 2019; Stuphorn et al., 2000), which is 735 

often more sustained than phasic dopamine responses. Interestingly, we noticed that responses to 736 

water in dopamine axons in DLS are more sustained than dopamine axons in other areas (Figure 737 

4A). DLS-projecting dopamine neurons potentially receive and integrate those success feedback 738 

signals with reward value, shifting the teaching signals more positively. 739 

 740 

Mechanistically, biases in dopamine signals may stem from a difference in the excitation-741 

inhibition balance at the circuit level. In addition to dopamine neurons, there are multiple brain 742 

areas where activity of some neurons resembles RPE (Li et al., 2019; Matsumoto and Hikosaka, 743 

2007; Oyama et al., 2010; Tian et al., 2016). Among these, presynaptic neurons in multiple brain 744 

areas directly convey a partial prediction error to dopamine neurons (Tian et al., 2016). On the 745 

other hand, rostromedial tegmental area (RMTg) exhibits a flipped version of RPE (the sign is 746 

opposite to dopamine neurons), and its inhibitory neurons directly project to dopamine neurons 747 

in a topographic manner (Hong et al., 2011; Jhou et al., 2009a, 2009b; Li et al., 2019; Tian et al., 748 

2016). Hence, each dopamine neuron may receive a different ratio of excitatory and inhibitory 749 

inputs of RPE. It would be interesting if DLS-projecting dopamine neurons receive less 750 

inhibitory RPE, and DMS-projecting dopamine neurons receive more, so that RPE signals are 751 
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pushed up or down, whereas the information is still almost intact. In addition to anatomical 752 

reasons, DLS-projecting dopamine neurons show higher burstiness in intact animals (Farassat et 753 

al., 2019) and higher excitability in vitro (Evans et al., 2017; Lerner et al., 2015). These multiple 754 

reasons may explain why DLS-projecting dopamine neurons do not show inhibitory responses to 755 

negative prediction errors. It will be fascinating if we could connect all these levels of studies 756 

into functional meaning in the future. 757 

 758 

Future directions to understand the meaning of diversity of dopamine signals 759 

 760 

Recent studies reported that dopamine neurons are modulated by various parameters (Engelhard 761 

et al., 2019; Watabe-Uchida and Uchida, 2018). Here, we found that TD error dynamics can 762 

inclusively explain two seemingly separate decision variables, namely, stimulus-associated value 763 

and choice accuracy when animal's choice strategy is not deterministic (i.e. there is decision 764 

noise) (Figure 6). At a glance, dopamine activity patterns may appear to be signaling two distinct 765 

variables at different timings, but both are inclusively explained by a single quantity (TD error) 766 

in one framework (Figure 7). These results underscore the importance of considering moment-767 

by-moment dynamics, and underlying computation. Taken together, our results showed that 768 

dopamine axon signals in the striatum approximate TD error dynamics. We propose that 769 

dopamine in different striatal areas conveys TD errors in a biased manner. One compelling idea 770 

is that the lack of negative teaching signals in DLS plays a role in skill/habit, although further 771 

examination is needed to establish its functions. Although we designed the task to minimize 772 

effects of movement itself on results, accumulating studies suggested close relationship between 773 

dopamine signaling and movement (Howe and Dombeck, 2016; da Silva et al., 2018). It is 774 

important to test these other parameters in the future in order to understand the meaning of the 775 

diversity of dopamine neurons and organization of dopamine-striatum systems. 776 

 777 

 778 

 779 

 780 

  781 
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EXPERIMENTAL PROCEDURES 782 

 783 

Animals 784 

17 dopamine transporter (DAT)-cre (B6.SJL-Slc6a3tm1.1(cre)Bkmn/J, Jackson Laboratory; 785 

RRID:IMSR JAX:006660) (Bäckman et al., 2006) heterozygous mice, and 5 DAT-Cre;Ai14 786 

(Rosa-CAG-LSL-tdTomato, Jackson Laboratory; RRID:IMSR JAX:007914) (Madisen et al., 787 

2010) double heterozygous mice, male and female, were used for recording signals from 788 

dopamine axons. All mice were backcrossed with C57BL/6J (Jackson Laboratory). Animals 789 

were housed on a 12 hour dark/12 hour light cycle (dark from 07:00 to 19:00) and performed a 790 

task at the same time each day. All procedures were performed in accordance with the National 791 

Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the 792 

Harvard Animal Care and Use Committee. 793 

 794 

Surgical Procedures 795 

All surgeries were performed under aseptic conditions with animals anesthetized with isoflurane 796 

(1–2% at 0.5–1.0 l/min). Analgesia was administered pre (buprenorphine, 0.1 mg/kg, I.P) and 797 

postoperatively (ketoprofen, 5 mg/kg, I.P). To express GCaMP7f (Dana et al., 2019) specifically 798 

in dopamine neurons, we unilaterally injected 300 nl of mixed virus solution; AAV5-CAG-799 

FLEX-GCaMP7f (1 × 1012 particles/ml, UNC Vector Core, NC) and AAV5-CAG-FLEX-800 

tdTomato (2 × 1013 particles/ml, UNC Vector Core, NC) into both the VTA and SNc (600 nl 801 

total) in the DAT-cre mice. Only AAV5-CAG-FLEX-GCaMP7f (300 nl total) was used for 802 

DAT;Ai14 double transgenic mice. Virus injection lasted around 20 minutes, and then the 803 

injection pipette was slowly removed over the course of several minutes to prevent damage to 804 

the tissue. We also implanted optic fibers (400 µm diameter, Doric Lenses, Canada) into the VS, 805 

DMS, or DLS (1 fiber per mouse). To do this, we first slowly lowered optical fibers into the 806 

striatum. Once fibers were lowered, we first attached them to the skull with UV-curing epoxy 807 

(NOA81, Thorlabs, NJ), and then a layer of rapid-curing epoxy to attach the fiber cannulas even 808 

more firmly to the underlying glue. After waiting 15 minutes for this to dry, we applied a black 809 

dental adhesive (Ortho-Jet, Lang Dental, IL). We used magnetic fiber cannulas (Doric Lesnses, 810 

MFC_400/430) and the corresponding patch cords to allow for recordings in freely moving 811 
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animals. After waiting 15 minutes for the dental adhesive to dry, the surgery was complete. We 812 

used the following coordinates to target our injections and implants. 813 

 814 

- (VTA) Bregma: -3.0 mm, Lateral: 0.6 mm, Depth: between 4.5 mm and 4.3 mm  815 

- (SNc) Bregma: -3.0 mm, Lateral: 1.6 mm, Depth: between 4.3 mm and 4.1 mm  816 

- (VS) Bregma: between 1.5 mm and 1.0 mm, Lateral: 1.8 mm, Depth: 3.8 mm, angle 10º 817 

- (DMS) Bregma: between 1.5 mm and 0 mm, Lateral: 1.3 mm, Depth: 2.3 mm 818 

- (DLS) Bregma: between 1.3 mm and -0.8 mm, Lateral: 3.0 mm, Depth: 2.3 mm 819 

 820 

Behavioral tasks 821 

All behavioral experiments were performed in custom-built behavioral rigs and controlled by a 822 

NIDAQ board (National Instruments, TX) and Labview (National Instruments, TX), similar to a 823 

previous study (Uchida and Mainen, 2003). Mice were trained to perform an odor-discrimination 824 

task for water reward, similar to a study in rats (Uchida and Mainen, 2003) with several 825 

modification. Mice initiated trials in a self-paced manner by poking a center port, which then 826 

delivered an odor. Different odors were used in a pseudorandomized order from 3 different pure 827 

chemicals (odor A, B and C) and mixtures of odor A and B with various ratios. Mice were 828 

required to choose a left or right water port depending on dominant odor identity, odor A or B. 829 

Correct choice was always rewarded by a drop of water. Odor C was never associated with 830 

outcomes. To isolate cue- and water-related signals from potential motion artifacts in recording 831 

and motor-related activity, mice were required to stay in an odor port for at least 1 s, and then to 832 

stay in a water port for 1 s to get water reward. The inter-trial-interval was fixed at 7 s after water 833 

onset in correct trials and at 9 s after any types of an error including violation of the stay 834 

requirement, no choice within 5 s after odor port out, and multiple pokes of an odor port after 835 

odor delivery. 1-Butanol, eugenol and cymene were diluted in 1/10 with mineral oil and 836 

randomly assigned to odor A, B or C across animals. The odor-port assignment (left or right) was 837 

held constant in a single animal. 838 

 839 

Mice were first trained only with pure odors and with the same amounts of water reward (~6 ul). 840 

After mice achieved greater than 90% accuracy, mice received a surgery for viral injection and 841 

fiber implantation. Following a 1-week recovery period, mice received re-training and then, 842 
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mixtures of odor A and B (100/0, 90/10, 65/35, 35/65, 10/90, 0/100) were gradually introduced. 843 

After the accuracy of all the mixture odors achieved more than 50%, neuronal recording with 844 

fiber fluorometry was performed for 5 sessions. Subsequently, a task with different amounts of 845 

water was introduced. Mixtures of odor A and B (100/0, 65/35, 35/65, 0/100) but no odor C were 846 

used in this task. Each recording session started with 88-120 trials with an equal amount of water 847 

(~6 ul, the standard amount) in the first block to calibrate any potential bias on the day. In the 848 

second block, different amounts of reward were delivered in each water port. In order to make 849 

the water amounts unpredictable, one water port delivered big or medium size of water (2.2 and 850 

0.8 times of the standard, ~13.2 and 4.8 µl, BIG side) in a pseudo-random order, and another 851 

water port delivered medium or small size of water (0.8 and 0.2 times of the standard, ~4.8 and 852 

1.2 µl, SMALL side) in a pseudo-random order. Block 2 continued for 200 trials or until the end 853 

of recording sessions, whichever came earlier. A mouse performed 134.3 ± 3.4 (mean ± SEM) 854 

trials in block 2. The water condition (BIG or SMALL) was assigned to a left or right water port 855 

in a pseudo-random order across sessions. Recording was conducted for 40 min every other day 856 

to avoid potential bleaching. On days with no recording, animals were trained with pure odors A 857 

and B with the standard amount of water. 858 

 859 

Fiber photometry 860 

Fiber fluorometry (photometry) was performed as previously reported (Menegas et al., 2018) 861 

with a few modification. The optic fiber (400 µm diameter, Doric Lenses) allows chronic, stable, 862 

minimally disruptive access to deep brain regions and interfaces with a flexible patch cord (Doric 863 

Lenses, Canada) on the skull surface to simultaneously deliver excitation light (473 nm, 864 

Laserglow Technologies, Canada; 561 nm, Opto Engine LLC, UT) and collect GCaMP and 865 

tdTomato fluorescence emissions. Activity-dependent fluorescence emitted by cells in the 866 

vicinity of the implanted fiber’s tip was spectrally separated from the excitation light using a 867 

dichroic, passed through a single band filter, and focused onto a photodetector connected to a 868 

current preamplifier (SR570, Stanford Research Systems, CA). During recording, optic fibers 869 

were connected to a magnetic patch cable (Doric Lesnses, MFP_400/430) which delivered 870 

excitation light (473 nm and 561 nm) and collected all emitted light. The emitted light was 871 

subsequently filtered using a 493/574 nm beam-splitter (Semrock, NY) followed by a 500 ± 20 872 

nm (Chroma, VT) and 661 ± 20 nm (Semrock, NY) bandpass filters and collected by a 873 
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photodetector (FDS10x10 silicone photodiode, Thorlabs, NJ) connected to a current preamplifier 874 

(SR570, Stanford Research Systems, CA). This preamplifier output a voltage signal which was 875 

collected by a NIDAQ board (National Instruments, TX) and Labview software (National 876 

Instruments, TX). 877 

 878 

Histology 879 

Mice were perfused using 4% paraformaldehyde and then brains were sliced into 100 µm thick 880 

coronal sections using a vibratome and stored in PBS. Slices were then mounted in anti-fade 881 

solution (VECTASHIELD anti-fade mounting medium, H-1000, Vector Laboratories, CA) and 882 

imaged using a Zeiss Axio Scan Z1 slide scanner fluorescence microscope (Zeiss, Germany).  883 

 884 

Behavior analysis 885 

We fitted % of odor mixture (X) to % of choice left or choice BIG (µ) using generalized linear 886 

model with logit link function in each animal as previously reported (Uchida and Mainen, 2003).  887 

log(µ/(1-µ)) = Xb1 + b0 888 

We first fitted a control block (block 1) and a reward-manipulation block (block 2) separately to 889 

examine difference of a slope, b1 and a bias, 50-b0/b1 of the curve. Next, to quantify shift of 890 

choice bias, we fitted choice of block 1 and block 2 together with a fixed slope, by fitting odor 891 

(X1) and a block type (X2=0 for block 1, X2=1 for block 2) to choice. 892 

log(µ/(1-µ)) = X1b1 + X2b2 + b0  893 

Choice bias in block 2 was quantified choice bias as a lateral shift of the psychometric curve 894 

equivalent to % mixture of odors, 50 - (b0 + b2)/ b1, which is a lateral shift compared to no bias, 895 

and b0/b1 - (b0 + b2)/ b1, which is a lateral shift compared to choice in block 1. 896 

 897 

GCaMP detection and analysis 898 

To synchronize behavioral events and fluorometry signals, TTL signals were sent every 10 s 899 

from a computer that was used to control and record task events using Labview, to a NIDAQ 900 

board that collects fluorometry voltage signals. GCaMP and tdTom signals were collected as 901 

voltage measurements from current preamplifiers. Green and red signals were cleaned by 902 

removing 60Hz noise with bandstop FIR filter 58-62Hz and smoothing with moving average of 903 

signals in 50ms. The global change within a session was normalized using a moving median of 904 
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100s. Then, the correlation between green and red signals during ITI was examined by linear 905 

regression. If the correlation is significant (p<0.05), fitted tdTom signals were subtracted from 906 

green signals. 907 

 908 

Responses were calculated by subtracting the average baseline activity from the average activity 909 

of the target window. Unless specified otherwise, odor responses were calculated by averaging 910 

activity from 1-0 s before odor port out (before choice) minus the average activity from the 911 

baseline period (1-0.2 s before odor onset). Responses after choice were calculated by averaging 912 

activity from 0-1 s after water port in minus the same baseline. Outcome responses were 913 

calculated by averaging activity from 0-1 s after water onset minus the same baseline. When 914 

comparing activity before and after water onset, average activity in 1-0.2 s before water onset 915 

was used as baseline. To normalize GCaMP signals across sessions within an animal, GCaMP 916 

signals were divided by average of peak responses during 1 s after odor onset in all the 917 

successful trials in the session. Z-scores of the signals were obtained using mean and standard 918 

deviation of signals in all the choice trials (from 2 s before odor onset to 6 s after odor onset) in 919 

each animal. 920 

 921 

We built a regularized linear regression to fit cosine kernels (Park et al., 2014) (width of 200 ms, 922 

interval of 40 ms) to the activity of dopamine axons in each animal. We used down-sampled 923 

(every 20 ms) responses in all valid choice trials (trials with >1s odor sampling time and any 924 

choice, -1 to 7 s from odor onset) for the model fitting. We used 4 different time points to lock 925 

kernels: odor onset ("odor"), odor port out ("movement"), water port in ("choice"), and water 926 

onset ("water"). Odor kernels consist of 4 types of kernels: "base" kernels to span -960 to 200 ms 927 

from odor onset in all trials, and "pure big" kernels in trials with a pure odor associated with 928 

big/medium water, "pure small" kernels in trials with a pure odor associated with medium/small 929 

water, and "mixture" kernels in trials with a mixture odor to span 0-1600 ms from odor onset. 930 

Movement kernels consist of 2 types of kernels: "contra turn" kernels in trials with choice contra-931 

lateral to the recording site, and "ipsi turn" kernels in trials with choice ipsi-lateral to the 932 

recording site to span -1000 to 1200 ms from when a mouse exited an odor port. Choice kernels 933 

consist of 3 types of kernels: "correct big" kernels in trials with correct choice of medium/small 934 

water and "correct small" kernels in trials with correct choice of medium/small water to span -935 
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400 to 1200 ms from when a mouse entered a water port (water port in), and "error" kernels in 936 

trials with choice error to span -400 to 5200 ms from water port in. Water kernels consist of 4 937 

types of kernels: "big water" kernels for big size of water, "medium water big side" kernels for 938 

medium size of water at a water port of big/medium water, "medium water small side" kernels 939 

for medium size of water at a water port of medium/small water, and "small water" for small size 940 

of water to span 0-4200 ms after water onset. All the kernels were fitted to responses using linear 941 

regression with Lasso regularization with 10-fold cross validation. Regularization coefficient 942 

lambda was chosen so that cross-validation error is minimum plus one standard deviation. % 943 

explained by a model was expressed as reduction of a variance in the residual responses 944 

compared to the original responses. Contribution of each component in the model was measured 945 

by reduction of a deviance compared to a reduced model excluding the component. 946 

 947 

We estimated response function to water in dopamine axons with linear regression with power 948 

function in each animal.  949 

𝑟		 = 	𝑘(𝑅; 	+ 	𝑐1	 ∗ 𝑆	 + 	𝑐2)	 950 

where r is the dopamine axon response to water, R is the water amount, S is SMALL side (S=1 951 

when water was delivered at SMALL side, S=0 otherwise). There are 4 different conditions, 952 

responses to big and medium water at a port of BIG side, and to medium and small water at a 953 

port of SMALL side. We first optimized a by minimizing average of residual sum of squares for 954 

each animal and then applied a =0.7 for all the animals to obtain other parameters, k, c1, and c2. 955 

The response function was drawn with R as x-axis and r as y-axis. The amount of water to which 956 

dopamine axons do not respond under expectation of BIG or SMALL water was estimated by 957 

getting a crossing point of the obtained response function where the value is 0 (a zero-crossing 958 

point). The distribution of zero-crossing points was examined by linear regression of zero-959 

crossing values against anatomical locations (anterior-posterior, dorsal-ventral, and medial-960 

lateral). To visualize zero crossing points on the atlas, zero-crossing values were fitted against 961 

anatomical locations with interaction terms using linear regression with elastic net regularization 962 

(a=0.1) with 3-fold cross validation. The constructed map was sliced at a coronal plane Bregma 963 

+0.7 and overlaid on an atlas (Paxinos and Franklin, 2019). 964 

 965 
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To visualize activity pattern in multiple time windows at the same time, we stretched activity in 966 

each trial to standard windows. Standard windows from odor onset to odor poke out, and from 967 

odor poke out to water poke in, were determined by median reaction time and median movement 968 

time for each animal. For average plots of multiple animals, windows were determined by the 969 

average of median reaction times and of median movement times in all animals. The number of 970 

100ms bins in each time window was determined by dividing median reaction time and median 971 

movement time by 100. Dopamine responses in the window were divided into the bin number 972 

and the average response in each bin was stretched to 100ms. The stretched activity patterns 973 

were used only for visualization, and all the statistical analyses were performed using original 974 

responses. 975 

 976 

Estimation of state values and TD errors using simulations 977 

To examine how the value and RPE may change within a trial, we employed a Monte-Carlo 978 

approach to simulate animal’s choices at a steady state (i.e. after the animal learned the task). We 979 

used a Monte-Caro approach to obtain the ground truth state values as the animal progresses 980 

through task events without assuming a specific learning algorithm, under the assumption that 981 

the animal has learned the task. After obtaining the state values, we computed TD errors over the 982 

obtained state values. 983 

 984 

Model architecture 985 

We considered two types of models. The variability and errors in choice in psychophysical 986 

performance can arise from at least two noise sources; noise in the variability in the process of 987 

estimating sensory inputs (perceptual noise) and noise in the process of selecting an action 988 

(decision noise). The first model contained only perceptual noise (Green and Swets, 1966), and 989 

the second model contained both perceptual and decision noise.  990 

 991 

These models had different “states” considering NS subjective odors (NS = 60 or 4 discrete 992 

states), choice (BIG versus SMALL), and different timing (inter-trial interval, odor port entry, 993 

odor presentation, choice, water port in, waiting for reward, and receiving feedback/outcome) 994 

(circles in Figure 7A).  995 

 996 
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We assumed NS possible subjective odor states (O’) which comprise SubOdor1 and SubOdor2 997 

states. We assumed that, in each trial, an internal estimate of the stimulus or a “subjective odor” 998 

(O’) was obtained by adding a noise to the presented odor stimulus (O) (one of the 4 mixtures of 999 

Odor A and B; 100/0, 65/35, 35/65, 0/100) (Figure 7A-C). In the model, the probability of falling 1000 

on a given subjective odor state (O’) is calculated using a Gaussian distribution centering on the 1001 

presented odor (O) with the standard deviation, 𝜎. We considered two successive states for 1002 

subjective odor states in order to reflect a relatively long duration before an odor port exit. 1003 

 1004 

As in the behavioral paradigm, whether the model receives a reward or not was determined 1005 

solely by whether the presented odor (O) instructed the BIG side or SMALL side. Each 1006 

subjective odor state contains cases when the presented odor (O) is consistent or congruent with 1007 

the subjective odor (O’). For each subjective odor state, the probability of receiving a reward 1008 

after choosing the BIG side, 𝑝(𝐵𝐼𝐺	𝑖𝑠	𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 	𝑓F , can be calculated as the fraction of cases 1009 

when the presented odors instructed the BIG side. Conversely, the probability of reward after 1010 

choosing the SMALL side is 𝑝(𝑆𝑀𝐴𝐿𝐿	𝑖𝑠	𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 	𝑓J = 1 − 𝑓F . Note that neither 𝑓F  nor 𝑓J 1011 

depends on reward size manipulations (as will be discussed later, the animal’s choices will be 1012 

dependent on reward size manipulations).  1013 

 1014 

Action selection 1015 

For each subjective odor, the model chose either the BIG or the SMALL side based on the value 1016 

of choosing the BIG or SMALL side (𝑉F  and 𝑉J respectively, equivalent to the state value of the 1017 

next state after committing to choose the BIG or SMALL side; see below for how 𝑉F  and 𝑉J 1018 

were obtained). In the first model which contains only perceptual noise, the side that is 1019 

associated with a larger value is chosen. In the second model which contains both perceptual and 1020 

decision noise, a choice is made by transforming 𝑉F	and  𝑉J	 into the probability of choosing a 1021 

given option using a sigmoidal function (e.g. Boltzmann distribution) (Sutton and Barto, 2011). 1022 

In the softmax, the probabilities of choosing the BIG and SMALL side (𝑃F, 𝑃J) are given, 1023 

respectively, by, 1024 

𝑃F =
𝑒(MN/(MNPMQ))/R

𝑒(MN/(MNPMQ))/R + 𝑒(MQ/(MNPMQ))/R 1025 

𝑃J = 1 − 𝑃F 1026 
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We also tested other stochastic decision rules such as Herrnstein’s matching law (Herrnstein, 1027 

1961) or e-greedy exploration (randomly selecting an action in a certain fraction [e] of trials) 1028 

(Sutton and Barto, 2011). In Herrnstein’s matching law, the probability of choosing the BIG side 1029 

is given by, 1030 

𝑃F =
𝑉J

𝑉J + 𝑉F
 1031 

 1032 

The perceptual noise and a set of decision rule determine the behavioral performance of the 1033 

model. The first model has only one free parameter, 𝜎. The second model has one or no 1034 

additional parameter (𝜏 for softmax, or 𝜀, for 𝜀-greedy; no additional parameter for matching). 1035 

We first obtained the best fit parameter(s) based on the behavioral performance of all animals 1036 

(the average performance in Block 2; i.e. Figure 1C, orange) by minimizing the mean squared 1037 

errors in the psychometric curves.  1038 

 1039 

For the first model, the best fit 𝜎 was 21% Odor. We also tested with 𝜎 of 5%, and the TD error 1040 

dynamic was qualitatively similar. For the second model using the softmax rule, the best fit 𝜏 1041 

was 0.22 while 𝜎 was 18% Odor.  1042 

 1043 

State values 1044 

The state value for each state was obtained as the weighted sum of expected values of available 1045 

options which was computed by multiplying expected values of the option with probability of an 1046 

option in the next step. 1047 

 1048 

Outcome2 state represents the timing when the animal recognizes the amount of water. The state 1049 

value is given by the amount of water that the model received (big, medium, small), 1050 

𝑉U = 2.2; 1051 

𝑉W = 0.8; 1052 

𝑉Z = 0.2; 1053 

where the exponent 𝛼 = 0.7 makes the value function a concave function of reward amounts, 1054 

similar to the fitting analysis of the fluorometry data (Figure 4C). Using  𝛼 = 1 (i.e. a linear 1055 

function) did not change the results. 1056 
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 1057 

Ourcome1 state, or Water/No-water states (W and N, respectively) represent when the animal 1058 

noticed the presence or absence of reward, respectively, but not the amount of reward. The value 1059 

of a W (Water) state was defined by the average value of the next states. At the BIG side,  1060 

𝑉\F = (𝑉U + 𝑉W)/2 1061 

 1062 

whereas at the SMALL side,  1063 

𝑉\J = (𝑉W + 𝑉Z)/2 1064 

The values of N (No-water) states at the BIG and SMALL side are zero,  1065 

𝑉]F = 0 1066 

𝑉]J = 0 1067 

 1068 

WaterPort1 and WaterPort2 states represent when the animal entered and stayed in the water 1069 

port, respectively. The state value was obtained separately for the BIG and SMALL side. The 1070 

value of choosing the BIG and SMALL sides is given by weighted sum of the values of the next 1071 

states (𝑉\F, 𝑉]F , 𝑉\J , 𝑉]J). The probabilities of transiting to the W and N states are given by the 1072 

probability of receiving a reward given the choice (BIG or SMALL). As discussed above, these 1073 

probabilities are given by 𝑓F  and 𝑓J, respectively. Thus, 1074 

𝑉F = 𝑓F ∙ 𝑉\F  1075 

𝑉J = 𝑓J ∙ 𝑉\J  1076 

We considered two successive states for WaterPort states to reflect a relatively long duration 1077 

before receiving feedback/outcome. The two successive states had the same state values.  1078 

 1079 

SubOdor1 and SubOdor2 states represent when the animal obtained a subjective odor (O’) and 1080 

before making a choice. The model chooses the BIG or SMALL side with the probability of 1081 

𝑃F	and  𝑃J	, respectively, as defined above. Therefore, the state value of WaterPort1 and 1082 

WaterPort2 was defined by the weighted sum of the values of the next states (𝑉F	and  𝑉J), 1083 

𝑉_` = 𝑃F𝑉F + 𝑃J𝑉J 1084 

The two successive states had the same state values.  1085 

 1086 
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OdorOn state represents when the animal recognized the presentation of an odor but before 1087 

recognizing the identity of that odor. The state value of the OdorOn state is defined by the 1088 

weighted sum of the values of the next states (SubOdor1).  1089 

 1090 

ITI state represents when the animal is in the inter-trial interval (i.e. before odor presentation). 1091 

The value of ITI state was set to zero.  1092 

 1093 

TD errors 1094 

After obtaining state values at each state, we then computed TD errors using a standard 1095 

definition of TD error which is the difference between the state values at consecutive time points 1096 

plus received rewards at each time step (Sutton and Barto, 1987). For simplicity, a discounting 1097 

factor was set to 1 (no discounting).  1098 

 1099 

Invalid trials 1100 

We also tested the effect of including invalid trials. At water acquisition, we included failures 1101 

(20% of trials, value 0) where a mouse did not fulfil the requirement of odor poke duration (short 1102 

odor poke), but did indicate a choice. At an odor port, failures resulted from multiple pokes of 1103 

odor port (4% of trials), and a short odor poke (14% of trials). Values for these failures were set 1104 

to 0. Existence or omission of these failures in models did not change the conclusion.  1105 

 1106 

Randomization, blinding, and data exclusion 1107 

Chemicals were randomly assigned to an odor cue. Trial types (odors) were pseudorandomized 1108 

in a block. Session types were pseudorandomized in a recording schedule. Animals were 1109 

randomly assigned to a recording location. The experimenter did not know location of recording 1110 

until the recording schedule was completed. No animals were excluded from the study: all 1111 

analysis includes data from all animals. No trials were excluded from statistical analyses. To 1112 

visualize average activity pattern in a stretched time-window, outlier trials (maximum, minimum 1113 

or average activity of a trial is outside of 3 ´ standard deviation of maximum, minimum or 1114 

average activity of all the trials) were excluded. 1115 

 1116 

Statistical analyses 1117 
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Data analysis was performed using custom software written in Matlab (MathWorks, Natick, MA, 1118 

USA). All code used for analysis is available on request. All statistical tests were two-sided. For 1119 

statistical comparisons of the mean, we used one-way ANOVA and two-sample Student’s t tests, 1120 

unless otherwise noted. Paired t tests were conducted when the same mouse’s neural activity was 1121 

being compared across different conditions or different time windows. The significance level 1122 

was corrected for multiple comparisons using Holm–Sidak’s tests unless otherwise indicated. All 1123 

error bars in the figures are s.e.m. In boxplots, the edges of the boxes are the 25th and 75th 1124 

percentiles (q1 and q3, respectively), and the whiskers extend to the most extreme data points not 1125 

considered outliers. Points are drawn as outliers if they are larger than q3+1.5´(q3-q1) or q1-1126 

1.5´(q3-q1). Individual data points were overlaid on boxplots to compare striatal areas. 1127 

  1128 
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Figure 1. Perceptual choice paradigm with probabilistic reward conditions (A) A mouse 

discriminated a dominant odor in odor mixtures that indicates water availability in either the left 

or right water port. Correct choice was rewarded by a drop of water. In each session, an equal 

amount of water was assigned at both water ports in the first block, and in the second block, 

big/medium water (50% 50%, randomized) was assigned at one water port (BIG side) and 

medium/small water (50% 50%, randomized) was assigned at another port (SMALL side). The 

BIG or SMALL side was assigned to a left or right water port in a pseudorandom order across 

sessions. (B) Left, % of choice of the BIG side in block 1 and 2 (mean ± SEM) and the average 

psychometric curve for each block. Center, slope of the psychometric curve. Right, choice bias at 

50/50 choice, expressed as 50 - odor (%). (C) Left, % of choice of the BIG side in block 1 and 2 

(mean ± SEM) and the average psychometric curve with a fixed slope across blocks. Right, all 

the animals showed choice bias toward BIG side in block 2 compared to block 1. The choice bias 

was expressed by a lateral shift of a psychometric curve with a fixed slope across blocks. (D) 

Average reward amounts, accuracy, and coefficients of variance were examined with different 

levels of choice bias with a fixed slope (average slope of all animals). (E) Optimal choice 

patterns with different strategies in D (bias -11, 0, and -4, respectively) and the actual average 

choice pattern (mean bias -7.3). (F) Trial-by-trial choice updating was examined by comparing 

choice bias before (center, trial n-1) and after (left, trial n+1) specific trial types. Choice updating 

in one trial was not significant for reward acquisition of either small or big water in easy or 

difficult trials (right). (G) Left, animal's reaction time was modulated by odor types. Center, for 

easy trials (pure odors, correct choice), reaction time was shorter when animals chose the BIG 

side (p=2.7´10-5). Right, the reaction time was negatively correlated with sensory evidence for 

choice of the BIG side (p=1.2´10-4), whereas the modulation was not significant for choice of 

the SMALL side (p=0.13). n = 22 animals.  
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Figure 2
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Figure 2. Dopamine axons in the striatum show characteristics of RPE (A) AAV-flex-

GCaMP7f was injected in VTA and SNc, and dopamine axon activity was measured with an 

optic fiber inserted in the striatum. Right top, dopamine axon activity in all the valid trials (an 

animal chose an either water port after wait for the required stay time) in an example animal, 

aligned at odor onset (mean ± SEM). Right bottom, a fitted model of the same animal (mean ± 

SEM). (B) Location of an optic fiber in example animals. Arrow heads, tips of fibers. Green, 

GCaMP7f. Bar = 1 mm (C) Odor-, movement-, choice-, and water-locked components in the 

model of all the animals (mean ± SEM). (D) Contribution of each component in the model was 

measured by reduction of deviance in the full model compared to a reduced model excluding the 

component. (E) Contribution of each component in the model in each animal group. (F) Left, 

comparison of dopamine axon responses to an odor cue that instructs to choose BIG and SMALL 

side in easy trials (pure odor, correct choice, -1-0 s before odor port out). p=5.0´10-6 for actual 

signals and p=7.4´10-5 for models. Right, comparison of dopamine axon responses to different 

sizes of water (big versus medium water with BIG expectation, and medium versus small water 

with SMALL expectation) and to medium water with different expectation (BIG versus SMALL 

expectation) (0.3-1.3 s after water onset). p=1.2´10-11, p=3.8´10-9 and p=3.9´10-4, respectively 

for actual signals, and p=1.0´10-9, p=1.0´10-7, and p=0.0031, respectively for models. n=22 

animals. m(B), medium water with BIG expectation; m(S), medium water with SMALL 

expectation. (G) Comparison between actual dopamine axon responses and model responses to 

water. 
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Figure 3
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Figure 3. Small responses to fixed amounts of water in dopamine axons in DMS 
(A, D) Dopamine axon responses to water in a fixed reward amount task (pure odor, 
correct choice). (B, E) Dopamine axon responses to a big amount of water in a vari-
able reward amount task (pure odor, correct choice). (C, F) Dopamine axon responses 
to a small amount of water in a variable reward amount task (pure odor, correct 
choice). A-C, dopamine axon activity in an example animal; D-F, another example 
animal. (G) Responses to water (0.3-1.3 s after water onset) were significantly modu-
lated with striatal location (p=0.020, ANOVA). The water responses were significant-
ly positive in VS (p=0.0011) and in DLS (p=6.3x10-4), but not in DMS (p=0.28).
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Figure 4. Responses to water in dopamine axons in the striatum (A) Activity patterns per 

different striatal location, aligned at water onset (mean ± SEM, n=9 for VS, n=7 for DMS, n=6 

for DLS). (B) Average responses to each water condition in each animal grouped by striatal 

areas. (C) Average response functions of dopamine axons in each striatal area. (D) Comparison 

of parameters for each animal grouped by striatal areas. "Water big-medium" is responses to big 

water minus responses to medium water at the BIG side and "Water medium-small" is responses 

to medium water minus responses to small water at the SMALL side, normalized with difference 

of water amounts (2.2 minus 0.8 for BIG and 0.8 minus 0.2 for SMALL). "Prediction SMALL-

BIG" is responses to medium water at SMALL side minus responses to medium water at BIG 

side. "Zero-crossing BIG" is the water amount when the dopamine response is zero at BIG and 

side, which was estimated by the obtained response function. "Zero-crossing SMALL" is the 

water amount when the dopamine response is zero at SMALL side, which was estimated by the 

obtained response function. Response changes by water amounts (BIG or SMALL) or prediction 

was not significantly modulated by the striatal areas (p=0.011, p=0.34, p=0.23, ANOVA), 

whereas zero-crossing points (BIG or SMALL) were significantly modulated (p=0.002, p=0.002, 

ANOVA; p=0.004, DMS versus DLS for BIG side; p=0.005, VS versus DLS; p=0.003, DMS 

versus DLS for SMALL side). (E) Zero-crossing points were plotted along anatomical location 

in the striatum. Zero-crossing points were correlated with medial-lateral positions (p=0.011) and 

with dorsal-ventral positions (p=0.014). (F) Zero-crossing points were fitted with recorded 

location, and the estimated values in the striatal area were overlaid on the atlas for visualization 

(see Methods). 
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Figure 5
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Figure 5. No inhibition by negative prediction error in dopamine axons in DLS (A) Activity 

pattern in each recording site aligned at small water. (B) Average activity pattern in each brain 

area (mean ± SEM). (C) Mean responses to small water (0.3-1.3 s after water onset) were 

negative in VS and DMS (p=0.031, p=0.0025, responses versus baseline), but not in DLS. The 

responses were different across striatal areas (p=0.0013, ANOVA; p=0.0042, VS versus DLS; 

p=2.8´10-4, DMS versus DLS). (D) Activity pattern aligned at water timing in error trials. (E) 

Average activity pattern in each brain areas (mean ± SEM). (F) Mean responses in error trials 

(0.3-1.3 s after water timing) were negative in VS and DMS (p=6.2´10-4, p=6.5´10-5, responses 

versus baseline), but not in DLS. The responses were different across striatal areas (p=1.5´10-4, 

ANOVA; p=5.8´10-4, VS versus DLS; p=1.6´10-4, DMS versus DLS). (G) Activity pattern 

aligned at CS(-) in a fixed reward amount task. (H) Average activity pattern in each brain area 

(mean ± SEM). (I) Mean responses at CS(-) (-1-0 s before odor port out) were negative in VS 

and DMS (p=1.4´10-4, VS; p=1.0´10-5, DMS, responses versus baseline), but not in DLS. 

Responses were different across striatal areas (p=2.5´10-4, ANOVA; p=0.0012, VS versus DLS; 

p=0.0065, DMS versus DLS).  
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Figure 6. Dopamine signals stimulus-associated value and sensory evidence with different 

dynamics (A) Dopamine axon activity pattern aligned to time of water port entry for all animals 

(mean ± SEM). (B) Responses before choice (-1-0 s before odor port out) were fitted with linear 

regression with odor mixture ratio, and coefficient beta (slope) for all the animals are plotted. 

Correlation slopes were significantly positive for choice of the BIG side (p=5.6´10-6), but not 

significant for choice of the SMALL side (p=0.42). (C) Responses after choice (0-1 s after water 

port in) were fitted with linear regression with stimulus evidence (odor %) and coefficient beta 

(slope) for all the animals are plotted. Correlation slopes were significantly positive for both 

choice of the BIG side (p=1.4´10-5) and of the SMALL side (p=2.2´10-4). (D) Dopamine axon 

activity with an odor that instructed to choose BIG side (pure odor, correct choice) minus activity 

with odor that instructed to choose SMALL side (pure odor, correct choice) in each recording 

site (left), and the average difference in activity was plotted (mean ± SEM, middle). Correlation 

slopes between responses and stimulus-associated value (water amounts) significantly decreased 

after choice (p=0.025, before choice (-1-0 s before odor port out) versus after choice (0-1 s after 

water port in), pure odor, correct choice). (E) Dopamine axon activity when an animal chose 

SMALL side in easy trials (pure odor, correct choice) minus activity in difficult trials (mixture 

odor, wrong choice) in each recording site (left), and the average difference in activity was 

plotted (mean ± SEM, center). Coefficient beta between responses to odors and sensory evidence 

(odor %) significantly increased after choice (p=0.0078, before choice versus after choice). (F) 

Average difference in activity (odor BIG minus odor SMALL) before and after choice in each 

striatal area. The difference of coefficient (before versus after choice) was not significantly 

different across areas (p=0.86, ANOVA). (G) Average difference in activity (easy minus 

difficult) in each striatal area. The difference of coefficient (before versus after choice) was not 

significantly different across areas (p=0.25, ANOVA). 
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Figure 7. TD error dynamics capture emergence of sensory evidence after stimulus-

associated value in dopamine axon activity (A) Trial structure in the model. Some repeated 

states are omitted for clarification. (B-D) Models were constructed by adding perceptual noise 

with normal distribution to each experimenter's odor (B left, subjective odor), calculating correct 

choice for each subjective odor (B right), and determining choice for each subjective odor (C or 

D left) according to choice strategy in the model. The final choice for each objective odor by 

experimenters (odor %) was calculated as the weighted sum of choice for subjective odors (C or 

D right). (E) Dopamine axon activity in trials with different levels of stimulus evidence: easy 

(pure odor, correct choice), difficult (mixture odor, correct choice), and error (mixture odor, 

error), when animals chose the BIG side (top) and when animals chose the SMALL side 

(middle). Bottom, dopamine axon activity when animals chose the BIG or SMALL side in easy 

trials (pure odor, correct choice). (F, G) Time-course in each trial of value (left) and TD error 

(right) of a model. (H) Line plots of actual reaction time from Figure 1G. Y-axis are flipped for 

better comparison with models. (I) Line plots of actual dopamine axon responses before and after 

choice from Figures 6B and 6C. (J, K) Model responses before and after choice were plotted 

with sensory evidence (odor %). 
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Figure S1. Average psychometric curve in odor manipulation blocks
% of choice of a left port when a left port is the BIG side or when a right port is the BIG 
side (mean ± SEM) and the average psychometric curve for each case.
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Figure S2.  Zero-crossing points across the striatum with different methods (A) Each 
regression coefficient in the response function shown in Figure 4C. Fitting was performed 
by response  = k(Rα  + c1 x S + c2), where R is the water amount, S is SMALL side (see 
Methods). (B) Zero-crossing points with linear function (p=0.003 for BIG; p=6.1x10-4 for 
SMALL, ANOVA). (C) Zero-crossing points with power function using a before-water 
time window (-1 to -0.2 s before water) as baseline. (p=5.8x10-5 for BIG;  p=2.1x10-4 for 
SMALL, ANOVA). (D) Zero-crossing points using kernel models with power function 
(p=0.0033 and p=8.9x10-4, ANOVA). 
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Figure S3
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Figure S3. Dopamine axon responses before and after choice in each striatal 
area (A) Responses before choice (-1-0 s before odor port out) was fitted with 
linear regression with sensory evidence (odor %) and average fitted lines in each 
striatal area were plotted. The correlation slope for small choice was slightly 
modulated by striatal areas (p=0.0043, ANOVA; p=0.0013, VS versus DMS). (B) 
Responses after choice (0-1 s after water port in) was fitted with linear regression 
with sensory evidence and an average fitted line of each striatal area was plotted. 
The correlation slope was not significantly modulated by striatal areas (p=0.35 for 
choice BIG; p=0.35 for choice SMALL, ANOVA).
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Figure S4
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Figure S4. TD errors with stochastic choice strategies. (A) choice for each subjective odor (left) 
and choice for each objective odor (right) with epsilon greedy strategy and matching strategy. (B) TD 
errors with different sensory evidence (odor %) before and after choice in each model. (C) The 
temporal dynamics of state values and TD errors in each model. (D) The temporal dynamics of state 
values and TD errors with a softmax choice strategy (Figure 7D) but with equal amounts of water for 
both water ports. (E) TD errors with different levels of sensory evidence (odor %) before and after 
choice in model from D.
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