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Abstract

Decoding sensory stimuli from neural activity can provide insight into how the nervous
system might interpret the physical environment, and facilitates the development of
brain-machine interfaces. Nevertheless, the neural decoding problem remains a
significant open challenge. Here, we present an efficient nonlinear decoding approach for
inferring natural scene stimuli from the spiking activities of retinal ganglion cells
(RGCs). Our approach uses neural networks to improve upon existing decoders in both
accuracy and scalability. Trained and validated on real retinal spike data from > 1000
simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of
nonlinear computations for accurate decoding of the fine structures of visual stimuli.
Specifically, high-pass spatial features of natural images can only be decoded using
nonlinear techniques, while low-pass features can be extracted equally well by linear and
nonlinear methods. Together, these results advance the state of the art in decoding
natural stimuli from large populations of neurons.

Author summary

Neural decoding is a fundamental problem in computational and statistical neuroscience.
There is an enormous literature on this problem, applied to a wide variety of brain areas
and nervous systems. Here we focus on the problem of decoding visual information from
the retina. The bulk of previous work here has focused on simple linear decoders,
applied to modest numbers of simultaneously recorded cells, to decode artificial stimuli.
In contrast, here we develop a scalable nonlinear decoding method to decode natural
images from the responses of over a thousand simultaneously recorded units, and show
that this decoder significantly improves on the state of the art.

Introduction 1

What is the relationship between stimuli and neural activity? While this critical neural 2

coding problem has often been approached from the perspective of developing and 3

testing encoding models, the inverse task of decoding — the mapping from neural 4

signals to stimuli — can provide insight into understanding neural coding. Furthermore, 5

efficient decoding is crucial for the development of brain-computer interfaces and 6

neuroprosthetic devices [1–10]. 7
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Fig 1. Outline of the decoding method. RGC responses to image stimuli are passed
through both linear and nonlinear decoders to decode the low-pass and high-pass
components of the original stimuli, respectively, before the combined decoded images
are deblurred and denoised by a separate deblurring neural network.

The retina has long provided a useful testbed for decoding methods, since mapping 8

retinal ganglion cell (RGC) responses into a decoded image provides a direct 9

visualization of decoding model performance. Most approaches to decoding images from 10

RGCs have depended on linear methods, due to their interpretability and computational 11

efficiency [1, 11,12]. Although linear methods successfully decoded spatially uniform 12

white noise stimuli [1] and the coarse structure of natural scene stimuli from RGC 13

population responses [12], they largely fail to recover finer visual details of naturalistic 14

images. 15

More recent decoders incorporate nonlinear methods for more accurate decoding of 16

complex visual stimuli. Some have leveraged optimal Bayesian decoding for white noise 17

stimuli, but exhibited limited scalability to large neural populations [13]. Others have 18

attempted to incorporate key prior information for natural scene image structures and 19

perform computationally expensive approximations to Bayesian inference [14,15]. 20

Unfortunately, computational complexity and difficulties in formulating an accurate 21

prior for natural scenery have hindered these methods. Other studies have constructed 22

decoders that explicitly model the correlations between spike trains of different cells, for 23

example by using the relative timings of first spikes as the measure of neural 24

response [16]. Parallel endeavors into decoding calcium imaging recordings from the 25

visual cortex have produced coarse reconstructions of naturalistic stimuli through both 26

linear and nonlinear approaches [17–20]. 27

In parallel, some recent decoders have relied on neural networks as efficient Bayesian 28

inference approximators. However, established neural network decoders have either only 29

been validated on artificial spike datasets [21–23] or on limited real-world datasets with 30

modest numbers of simultaneously recorded cells [23–25]. No nonlinear decoder has 31

been developed and evaluated with the ultimate goal of efficiently decoding natural 32

scenes from large populations (e.g., thousands) of neurons. Because the crux of the 33

neural coding problem is to understand how the brain encodes and decodes naturalistic 34

stimuli in through large neuronal populations, it is crucial to address this gap. 35

Therefore in this work we developed a multi-stage decoding approach that exhibits 36

improved accuracy over linear methods and greater efficiency over existing nonlinear 37

methods, and applied this decoder to decode natural images from large-scale 38

multi-electrode recordings from the primate retina. 39

Results 40

Overview 41

All decoding results were obtained on retinal datasets consisting of macaque RGC spike 42

responses to natural scene images [12]. Two identically prepared datasets, each 43

containing responses to 10,000 images, were used for independent validation of our 44

decoding methods. The electrophysiological recordings were spike sorted using 45
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YASS [26] to identify 2094 and 1897 natural scene RGC units for the two datasets. We 46

also recorded the responses to white noise visual stimulation and estimated receptive 47

fields to classify these units into retinal ganglion cell types, to allow for analyses of 48

cell-type specific natural scene decoding. See Materials and methods for full details. 49

Our decoding approach addresses accuracy and scalability by segmenting the 50

decoding task into three sub-tasks (Figure 1). 51

• We use linear ridge regression to map the spike-sorted, time-binned RGC spikes to 52

“low-pass,” Gaussian-smoothed versions of the target images. The smoothing filter 53

size approximates the receptive fields of ON and OFF midget RGCs, the cell 54

types with the highest densities in the primate retina. 55

• A spatially-restricted neural network decoder is trained to capture the nonlinear 56

relationship between the RGC spikes and the “high-pass” images, which are the 57

residuals between the true and the low-pass images from the first step. The 58

high-pass and low-pass outputs are summed to produce “combined” decoded 59

image s (Figure 2). 60

• A deblurring network is trained and applied to improve the combined decoder 61

outputs by enforcing natural image priors. 62

The division of visual decoding into low-pass and high-pass decoding sub-tasks allowed 63

us to leverage linear regression, which is simple and quick, for obtaining the target 64

images’ global features, while having the neural network decoder focus its statistical 65

power on the addition of finer visual details. As discussed below, this strategy yielded 66

better results than applying the neural network decoder to either the low-pass or the 67

whole test images (Table 1). 68

Linear decoding efficiently decodes low-pass spatial features 69

We used two penalized linear regression approaches (ridge and LASSO regression [27]) 70

for linearly decoding the low-pass images. Both decoders only considered the neural 71

responses during the image onset (30 - 150 ms) and offset (170 - 300 ms) time frames 72

(Figure 3, Top Left). For reference, LASSO regression is a form of linear regression 73

whose regularization method enforces sparsity such that the uninformative input 74

variables are assigned zero weights while the informative inputs are assigned non-zero 75

weights [27]. In the process, LASSO successfully identified each RGC unit’s relevant 76

linear spatial weights for both the image onset and offset time bins while zero-ing out 77

the insignificant spatial weights (Figure 3, Bottom). 78

The LASSO spatial filters were roughly similar in appearance to the corresponding 79

RGC unit receptive fields calculated from spike-triggered averages of white noise 80

recordings (data not shown; see [12]). These linear filters eventually allowed for a sparse 81

mapping between RGC units and image pixels so that only the most informative units 82

for each pixel would be used as inputs for the nonlinear decoder [25]. Partial 83

LASSO-based decoding using smaller subsets of informative units demonstrated that 84

these few hundred units were responsible for most of the decoding accuracy observed 85

(Figure 3, Top Right). Ultimately, 25 top units per pixel, corresponding to 805 total 86

unique RGC units and a mean low-pass test correlation of 0.977 (±0.0002; this and all 87

following error bars correspond to 99% CI values), were chosen. Choosing fewer than 25 88

informative RGC units per pixel resulted in lower LASSO regression test correlations, 89

while choosing more units per pixel increased computational load without concomitant 90

improvements in test correlation. 91

Consistent with previous findings [12], both linear decoders successfully decoded the 92

global features of the stimuli by accurately modeling the low-pass images (Figure 4). 93
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Fig 2. Outline of the nonlinear decoder. (Top) The first part of the nonlinear decoder featurizes the RGC units’ time-binned
spike responses (50-dimensional vector for each RGC) to a lower dimension (f = 5). Afterwards, each pixel’s k = 25 most
relevant units’ featurized vectors are gathered and passed through a spatially restricted neural network where each pixel is
assigned its own nonlinear decoder to produce the final pixel value. (Bottom) A miniaturized schematic of the spatially
restricted neural network. Parameters that are shared across pixels versus those that are unique to each pixel are color coded
in different shades of blue. Furthermore, all the input values and weights that feed into a single pixel value are outlined in red
to indicate the spatially restricted nature of the network. The vector dimensions of the weights and inputs are written in
italicized parentheses; k represents the number of top units per pixel chosen for decoding.

When evaluated by mean pixel-wise correlation against the true low-pass images, the 94

decoded outputs from the ridge and LASSO decoders registered test correlations of 95

0.976 (±0.0002) and 0.977 (±0.0001), respectively (Figure 4; Table 1)1. Increasing 96

the temporal resolution of linear decoding beyond the two onset and offset time bins did 97

not yield significant improvements in accuracy. 98

How different are decoding results if the linear decoder is, instead, applied to the 99

true whole images rather than the low-pass images, or if a nonlinear decoder is used for 100

the low-pass targets? Notably, a ridge regression decoder trained on true images 101

exhibited performance no better than the low-pass-specific linear decoders. Specifically, 102

it registered a test correlation of 0.963 (±0.0002) versus true low-pass images and 0.890 103

(±0.0006) versus true images, suggesting that linear decoding can only recover low-pass 104

details regardless of whether the decoding target contains high-pass details or not 105

1Note that these correlation values are much higher than the subsequent correlation values in this
manuscript as these low-pass decoded images were evaluated against the true low-pass images, which
are much easier decoding targets than the true whole images themselves.
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Fig 3. LASSO regression establishes a sparse mapping between RGC units and pixels. (Top Left) Schematic of the ON
(red; 30 - 150 ms) and OFF (blue; 170 - 300 ms) responses derived from RGC spikes. Each RGC’s ON and OFF filter weights
were multiplied to the summed spike counts within these windows. The spikes in these bins represent the cells’ responses to
stimuli onsets and offsets, respectively. The raster density (each dot represents a spike from a single RGC unit on a single
trial) indicates that most of the RGC units’ spikes were found in these two bins, which came slightly after the stimuli onsets
and offsets themselves as shown by the top line. (Top Right) Total unique selected RGC unit count (green) and mean
pixel-wise test correlations of partial LASSO decoded images (orange) as functions of the number of units chosen per pixel.
For each pixel, {1, 2, 3, 4, 5, 10, 25, 50, 100, 500, 1000, 1600} top units were chosen. Asterisks mark top 25 units per pixel
(805 unique units and 0.977 test correlation), the hyperparameter setting chosen for the nonlinear decoder below. (Bottom)
Representative “ON” and “OFF” spatial weights estimated by LASSO regression for four RGC units. Overall, LASSO
regression successfully established a sparse mapping between RGC units and individual pixels by zeroing each cells’
uninformative spatial weights, which comprise the majorities of the ON and OFF filters.

(Table 1). The ridge low-pass decoded images registered a test correlation of 0.887 106

(±0.0006) against the whole test images. On the other hand, applying our neural 107

network decoder to the low-pass targets demonstrates that linear decoding is slightly 108

more accurate (likely due to slight overfitting by the neural network) and vastly more 109

efficient for low-pass decoding as the former exhibited a lower test correlation of 0.960 110

(±0.0003) versus the low-pass targets (Table 1). In sum, linear decoding is both the 111

most accurate and appropriate approach for extracting the global features of natural 112

scenes. 113
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Fig 4. Linear decoding efficiently decodes low-pass spatial features. Representative true and true low-pass images along with
their decoded low-pass counterparts produced via ridge (2-time-bin and 50-time-bin) and LASSO regression. Mean pixel-wise
test correlation (evaluated against the true low-pass images, not the true images) are indicated within the top labels. The
50-bin decoder considers spike counts from the entire 500 ms stimulus window organized into 10ms bins; this decoder achieved
similar accuracy as the 2-bin decoder. All three linear regression techniques produce highly accurate decoding of the true
low-pass images, suggesting that linear methods are sufficient for extracting the global features of natural scene image stimuli.

Nonlinear methods improve decoding of high-pass details and 114

utilize spike temporal correlations 115

Despite the high accuracy of low-pass linear decoding, the low-pass images and their 116

decoded counterparts are (by construction) lacking the finer spatial details of the 117

original stimuli. Therefore we turned our attention next to decoding the spatially 118

high-pass images formed as the differences of the low-pass and original images. Again 119

we compared linear and nonlinear decoders; unlike in the low-pass setting, we found 120

that nonlinear decoders were able to extract significantly more information about the 121

high-pass images than linear decoders. Specifically, a neural network decoder that used 122

the non-zero LASSO regression weights to select its inputs (Figure 2, Top Right) 123

achieved a test correlation of 0.360 (±0.003) when evaluated against the high-pass 124

stimuli, compared to ridge regression’s test correlation of 0.283 (±0.003) (Figure 5, 125

Bottom Left). 126

Moreover, the combined decoder output (summing the linearly decoded low-pass and 127

nonlinearly decoded high-pass images) consistently produced higher test correlations 128

compared to a simple linear decoder. Relative to the true images, ridge regression (for 129

the whole images) and combined decoding yielded mean correlations of 0.890 (±0.0006) 130

and 0.901 (±0.0006), respectively (Figure 5, Top). In comparison, the linear low-pass 131

decoded images alone yielded 0.887 (±0.0006). In other words, linear decoding of the 132

whole image is almost no better than simply aiming for the low-pass image and 133

nonlinear decoding is necessary to recover significantly more detail beyond the low-pass 134

target. Additionally, a neural network decoder that targets the whole true images falls 135
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Fig 5. Nonlinear decoding extracts high-pass features more accurately than linear decoding. (Top) Representative true
images with their linearly decoded and combined decoder outputs; note that the linear decoder here decodes the true images
(not just the true low-pass images) and was included for overall comparison. The correlation values here compare the
aforementioned decoded outputs against the true images. (Bottom Left) Representative high-pass images with
corresponding nonlinear and linear decoded versions. The correlation values here compare the high-pass decoded outputs
against the true high-pass images. (Bottom Right) Pixel-wise test correlation comparisons of linear and nonlinear decoding
performance for the true and high-pass images. Linear decoding, either for the whole or low-pass images, is distinctly
insufficient and nonlinear methods are necessary for accurate decoding.
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short of the combined decoder with a mean test correlation of 0.874 (±0.0008) versus 136

true images (Table 1). In conjunction with the previous section’s finding that the 137

neural network decoder is not as successful with low-pass decoding as linear decoders, 138

these results further justify our approach to reserve nonlinear decoding for the high-pass 139

and linear decoding for the low-pass targets. 140

We then sought to analyze what characteristics of the RGC spike responses allowed 141

for the superior performance of the combined decoding method. Previous studies have 142

reported that nonlinear decoding better incorporates spike train temporal structure, 143

which leads to its improvement over linear methods [25,28,29]. However, these studies 144

were conducted with simplified random or white noise stimuli and it is unclear how 145

these findings translate to natural scene decoding. Thus, we hoped to shed light on how 146

spike train correlations, both cross-neuronal and temporal, contribute to linear and 147

nonlinear decoding. In previous literature, the former have been referred to as “noise 148

correlations” and the latter as “history correlations” [25]. On a separate dataset of 150 149

test images each repeated 10 times, we created modified neural responses with either 150

each unit’s full response being shuffled between repeat trials (removing cross-neuronal 151

correlations) or the spike counts for each time bin being shuffled (removing temporal 152

correlations; Figure 6, Top). Both transformations do not change the average firing 153

rate over time associated with each RGC. 154

For high-pass decoding, the neural network decoder exhibited a 1.9% (±0.4) increase 155

in pixel-wise MSE when temporal correlations were removed, while the ridge decoder 156

experienced a 0.04% (±0.07) increase in MSE (Figure 6, Bottom); i.e., nonlinear 157

high-pass decoding is dependent on temporal correlations while linear high-pass 158

decoding is not. Removing cross-neuronal correlations yielded no significant changes in 159

either decoder, consistent with [12]. Meanwhile, for low-pass decoding, both decoders 160

were equally and significantly affected by removing temporal correlations, as indicated 161

by the 17.5% (±6.7) and 14.2% (±8.9) increases in MSE for the neural network and 162

linear decoders, respectively (Figure 6, Bottom). For the above comparisons, the 163

ridge linear decoder for 50 time bins was used to maintain the same temporal resolution 164

as the neural network decoder. In short, spike temporal correlations are important, 165

specifically for the low-pass linear and all nonlinear decoders for optimal performance, 166

while cross-neuronal correlations are not influential in any decoding setup analyzed here. 167

OFF midget RGC units drive improvements in high-pass 168

decoding when using nonlinear methods 169

Next, we sought to investigate the differential contributions of each major RGC type 170

towards visual decoding. Previous work has revealed that, in the context of linear 171

decoding, midget cells convey more high frequency visual information while parasol cells 172

tend to encode more low frequency information, consistent with the differences in 173

density and receptive field size of these cell classes [12]. Here we focused on the 174

ON/OFF parasol/midget cells, the four numerically dominant RGC types, and their 175

roles in linear versus nonlinear decoding. We classified the RGCs recorded during 176

natural scene stimulation by first identifying units recorded during white noise 177

stimulation and then using a conservative matching scheme that ensured one-to-one 178

matching between recorded units in the two conditions. In total, 1033 units were 179

matched, within which there were 72 ON parasol, 87 OFF parasol, 175 ON midget, and 180

195 OFF midget units (Materials and Methods). 181

We performed standard ridge regression decoding for whole and low-pass images 182

using spikes from the above four cell types and compared these decoded outputs to 183

those derived from all 2094 RGC units, which include those not belonging to the four 184

main types (Figure 7). Consistent with previous results [12], midget decoding recovers 185
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Fig 6. Spike temporal correlations are useful for high-pass nonlinear decoding and for low-pass decoding. (Top) Schematic
of the shuffling of time bins and units’ responses across repeated stimuli trials. (Bottom) Ratio increases in MSE for neural
network and linear decoders for high-pass and low-pass images before and after removing spike train correlations. While
temporal correlations are important for both decoders in low-pass decoding, only the neural network decoder is reliant on
temporal correlations in high-pass decoding. Cross-neuronal correlations are not crucial for both decoders in either decoding
scheme.
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Fig 7. All major RGC types meaningfully contribute to low-pass linear decoding. (Top Left) Representative whole images
with their corresponding linearly decoded outputs using all, ON, OFF, ON Midget, OFF midget, midget, and parasol units,
respectively. (Top Right) Whole test correlations as functions of RGC type used for linear decoding. (Bottom Left)
Representative low-pass images with their corresponding linearly decoded outputs using all, ON, OFF, ON Midget, OFF
midget, midget, and parasol units, respectively. (Bottom Right) Low-pass test correlations as functions of RGC type used
for linear decoding. Midget units encode more high frequency information than parasol units while ON and OFF units
produce similar qualities of decoding. Overall, all RGC types contribute meaningfully to low-pass, linear decoding.
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more high frequency visual information than parasol decoding, while ON and OFF units 186

yield decoded images of similar quality. Meanwhile, differences between parasol and 187

midget cell decoding are reduced for low-pass filtered images, as this task is not asking 188

either cell population to decode high frequency visual information. 189

We then investigated cell type contributions in the context of high-pass decoding 190

(Figure 8). Specifically, we investigated which cell type contributed most to the 191

advantage of nonlinear over linear high-pass decoding and, thus, explained the improved 192

performance of our decoding scheme. The advantages of nonlinear decoding were most 193

prominent for midget and OFF units, with mean increases in test correlation by 7.1% 194

and 6.8%, respectively (Figure 8, Top Right). Parasol and ON units, meanwhile, saw 195

a statistically insignificant change in test correlation. More fine-grained analyses showed 196

that only the OFF midget units enjoyed a statistically significant increase of 6.5% in 197

mean test correlation in high-pass decoding. While ON midget units did indeed 198

contribute meaningfully to high-pass decoding (as shown by their relatively high test 199

correlations), they enjoyed no improvements with nonlinear over linear decoding. 200

Therefore, one can conclude that the improvements in decoding for midget and OFF 201

units via nonlinear methods can both be primarily attributed to the OFF midget 202

sub-population, which are also better encoders of high-pass details than their parasol 203

counterparts. Previous studies have indeed indicated that midget units may encode 204

more high frequency visual information and that OFF midget units, in particular, 205

exhibit nonlinear encoding properties [12,30,31]. 206

A final “deblurring” neural network further improves accuracy, 207

but only in conjunction with nonlinear high-pass decoding 208

Despite the success of the neural network decoder in extracting more spatial detail than 209

the linear decoder, the combined decoder output still exhibited the blurriness near edges 210

that is characteristic of low-pass image decoding. Therefore we trained a final 211

convolutional “deblurring” network and found that this network was indeed 212

qualitatively able to “sharpen” object edges present in the decoder output images 213

(Figure 9, Top; see [22] for a related approach applied to simulated data). 214

Quantitatively, the test pixel-wise correlation improved from 0.890 (±0.0006) and 0.901 215

(±0.0006) in the linear and combined decoder images, respectively, to 0.912 (±0.0006) 216

in the combined-deblurred images (Figure 9, Middle; Table 1). Comparison by 217

SSIM, a more perceptually oriented measure [32], also revealed similar advantages in 218

deblurring in combination with nonlinear decoding over other methods (Figure 9, 219

Bottom). In short, this final addition to the decoding scheme brought both subjective 220

and objective improvements to the quality of the final decoder outputs. 221

The deblurring network is trained to map noisy, blurry decoded images back to the 222

original true natural image — and therefore implicitly takes advantage of statistical 223

regularities in natural images. (See [22] for further discussion on this point.) 224

Hypothetically, applying the deblurring network to linear decoder outputs could be 225

sufficient for improved decoding. We therefore investigated the necessity of nonlinear 226

decoding in the context of the deblurring network. Re-training and applying the 227

deblurring network on the simple ridge decoder outputs (with the result denoted 228

“ridge-deblurred” images) produced a final mean pixel-wise test correlation of 0.903 229

(±0.0006), which is lower than that of the combined-deblurred images (Figure 9; 230

Table 1). Comparison by SSIM also yielded identical findings. Therefore, enforcing 231

natural image priors on the decoder outputs was largely successful only when the 232

outputs were obtained via nonlinear decoding with minimal noise, demonstrating the 233

necessity of nonlinear decoding within the decoding algorithm. 234
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Fig 8. Midget and OFF units contribute most to high-pass, nonlinear decoding. (Top Left) Representative high-pass
images with their corresponding nonlinear decoded versions using all, ON, OFF, ON Midget, OFF midget, midget, parasol
units, respectively. (Top Right) Comparison of test correlations between linear and nonlinear high-pass decoding versus cell
type. (Bottom Left) Representative true images with their corresponding combined decoder outputs using all, ON, OFF,
ON Midget, OFF midget, midget, parasol units, respectively. (Bottom Right) Comparison of test correlations for the
combined decoded images per cell type. Nonlinear decoding most significantly improves midget and OFF cell high-pass and
combined decoding while it does not bring any significant benefit to parasol and ON cell decoding.
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Fig 9. Neural network deblurring further improves nonlinear decoding quality. (Top) Representative true images and their
corresponding combined-deblurred, combined, ridge-deblurred, and ridge decoder outputs. (Middle) Comparisons of
pixel-wise test correlation of the combined-deblurred versus ridge, combined, and ridge-deblurred decoder outputs,
respectively. (Bottom) Comparisons of SSIM values of the combined-deblurred versus ridge, combined, and ridge-deblurred
decoder outputs, respectively. The combined-deblurred images had the highest mean SSIM at 0.265 (±0.018, 90% CI)
compared to 0.247 (±0.017, 90% CI) and 0.202 (±0.014, 90% CI) for the combined and ridge decoder images, respectively.
The ridge-deblurred images had a SSIM of 0.216 (±0.015), which is lower than those of both the combined and the
combined-deblurred images. The deblurring network, specifically in combination with nonlinear decoding, brings quantitative
and qualitative improvements to the decoded images. See Figure 10 for a similar analysis on a second dataset.
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vs. True LP vs. True HP vs. True
LP Ridge (2-bin) 0.976 (0.00016) - - LP Ridge: 2-bin 0.887 (0.00062)

- - HP NN 0.360 (0.0032) HP NN + LP Ridge (2-bin) 0.901 (0.00059)
Combined-Deblurred 0.912 (0.00055)

Ridge-Deblurred 0.903 (0.00057)
Whole Ridge 0.963 (0.00021) HP Ridge 0.283 (0.0028) Whole Ridge 0.890 (0.00061)

LP NN 0.960 (0.00033) - - Whole NN 0.874 (0.00076)
LP Ridge (50-bin) 0.979 (0.00015) - - - -

LP LASSO 0.977 (0.00013) - - - -

Table 1. Pixel-wise test correlations of all decoder outputs (99% confidence interval values in parentheses). The 2-bin and
50-bin LP ridge labels represent the two linear ridge decoders trained on the low-pass images. The whole ridge decoder is the
2-bin ridge decoder trained on the true whole images themselves while the HP ridge decoder is the same decoder trained on
the high-pass images only. The LP, HP, and whole NN labels denote the spatially restricted neural network decoder trained
on low-pass, high-pass, and whole images, respectively. LP LASSO represents the 2-bin LASSO regression decoder trained on
low-pass images. Finally, the combined-deblurred images are the deblurred versions of the sum of the HP NN and LP Ridge
(2-bin) decoded images while the ridge-deblurred images are the deblurred versions of the whole ridge decoder outputs. These
final three (combined-deblurred, ridge-deblurred, and HP NN + LP Ridge (2-bin)) are bolded as they produced best results.
The second, fourth, and sixth columns represent pixel-wise test correlations of each decoder’s output versus the true low-pass,
high-pass, and whole images, respectively.

Discussion 235

The approach presented above combines recent innovations in image restoration with 236

prior knowledge of neuronal receptive fields to yield a decoder that is both more 237

accurate and scalable than the previous state of the art. A comparison of linear and 238

nonlinear decoding reveals that linear methods are just as effective as nonlinear 239

approaches for low-pass decoding, while nonlinear methods are necessary for accurate 240

decoding of high-pass image details. The nonlinear decoder was able to take advantage 241

of spike temporal correlations in high-pass decoding while the linear decoder was not; 242

both decoders utilized temporal correlations in low-pass decoding. Furthermore, much 243

of the advantage that nonlinear decoding brings can be attributed to the fact that OFF 244

midget units best encode high-pass visual details in a manner that is more nonlinear 245

than the other RGC types, which aligns with previous findings about the nonlinear 246

encoding properties of this RGC sub-class [31]. 247

These results differ from previous findings (using non-natural stimuli) that linear 248

decoders are unaffected by spike temporal correlations [25,28] as, evidently, the low-pass 249

linear decoder is just as reliant on such correlations as the nonlinear decoder for low-pass 250

decoding. On the other hand, they also seem to support prior work indicating that 251

nonlinear decoders are able to extract temporally coded information that linear decoders 252

cannot [28,29]. Indeed, previous studies have noted that retinal cells can encode some 253

characteristics of visual stimuli linearly and others nonlinearly [28,33–35], which 254

corresponds with our findings that temporally encoded low-pass stimuli information can 255

be recovered linearly while temporally encoded high-pass information cannot. The 256

above may help explain why linear and neural network decoders perform equally well for 257

low-pass images but exhibit significantly different efficacies for high-pass details. 258

Nevertheless, several key questions remain. While our nonlinear decoder 259

demonstrated state-of-the-art performance in decoding the high-pass images, the neural 260

networks still missed many spatial details from the true image. Although it is unclear 261

how much of these missing details can be theoretically be decoded from spikes from the 262

peripheral retina, we suspect that improvements in nonlinear decoding methods are 263

possible. For example, while our spatially-restricted parameterization of the nonlinear 264

decoder allowed for efficient decoding, it could lose important information in the 265
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dimensionality reduction process. 266

Likewise, the deblurring of the combined decoder outputs is a challenging problem 267

that current image restoration methods in computer vision likely cannot fully capture. 268

Specifically, this step represents an unknown combination of super-resolution, 269

deblurring, denoising, and inpainting. With ongoing advances in image restoration 270

networks that can handle more complex blur kernels and noise, it is likely that further 271

improvements in performance are possible [36–44]. 272

Finally, while our decoding approach helped shed some light on the importance of 273

nonlinear spike temporal correlations and OFF midget cell signals on accurate, 274

high-pass decoding, the specific mechanisms of visual decoding have yet to be fully 275

investigated. Indeed, many other sources of nonlinearity, including nonlinear spatial 276

interactions within RGCs or nonlinear interactions between RGCs or RGC types, are all 277

factors that could help justify nonlinear decoding that we did not explore [33–35,45–48]. 278

For example, it has been suggested that nonlinear interactions between jointly activated, 279

neighboring ON and OFF cells may signal edges in natural scenes [12]. We hope to 280

investigate these issues further in future work. 281

Materials and methods 282

RGC datasets 283

See [12] for full experimental procedures. Briefly, retinae were obtained from terminally 284

anesthetized macaques used by other researchers in accordance with animal ethics 285

guidelines (see Ethics Statement). After the eyes were enucleated, only the eye cup 286

was placed in a bicarbonate-buffered Ames’ solution. In a dark setting, retinal patches, 287

roughly 3mm in diameter, were placed with the RGC side facing down on a planar array 288

of 512 extracellular micro-electrodes covering a 1.8mm-by-0.9mm region. For the 289

duration of the recording, the ex vivo preparation was perfused with Ames’ solution 290

(30-34 C, pH 7.4) bubbled with 95% O2, 5% CO2 and the raw voltage traces were 291

bandpass filtered, amplified, and digitized at 20kHz [30,49–51]. 292

In total, 10,000 natural scene images were displayed with each image being displayed 293

for 100 ms before and after 400 ms intervals of a blank, gray screen. 9,900 images were 294

chosen for training and the remaining 100 for testing. The recorded neural spikes were 295

spike-sorted using the YASS spike sorter to obtain the spiking activities of 2094 RGC 296

units [26], which is significantly more units than previous decoders were trained to 297

decode [12,23–25]. Due to spike sorting errors, some of these 2094 units may be either 298

over-split (partial-cell) or over-merged (multi-cell). Nevertheless, over-split and 299

over-merged units can still provide decoding information [52] and we therefore chose to 300

include all spike sorted units in the analyses here, in an effort to maximize decoding 301

accuracy. In the LASSO regression analysis (described below), we do perform feature 302

selection to choose the most informative subset of units, reducing the selected 303

population roughly by a factor of two. Finally, to incorporate temporal spike train 304

information, the binary spike responses were time-binned into 10 ms bins (50 bins per 305

displayed image). A second retinal dataset prepared in an identical manner was used to 306

validate our decoding method and accompanying findings (Supporting Information 307

S1). 308

While the displayed images were 160-by-256 in pixel dimensions, we restricted the 309

images to a center portion of size 80-by-144 that corresponded to the placement of the 310

multi-electrode array. To facilitate low-pass and high-pass decoding, each of the train 311

and test images were blurred with a Gaussian blur of σ = 4 pixels and radius 3σ to 312

produce the low-pass images. The filter size approximates the average size of the midget 313

RGC. The high-pass images were subsequently produced by subtracting the low-pass 314
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images from their corresponding whole images. 315

RGC unit matching and classification 316

To begin with, we obtained spatio-temporal spike-triggered averages (STAs) of the RGC 317

units from their responses to a separate white noise stimulus movie and classified them 318

based on their relative spatial receptive field sizes and the first principal component of 319

their temporal STAs [30]. Afterwards, both MSE and cosine similarity between 320

electrical spike waveforms were used to identify each white noise RGC unit’s best 321

natural scene unit match and vice versa. Specifically, for each identified white noise 322

unit, we chose the natural scene unit with the closest electrical spike waveform using 323

both measures and only kept the white noise units that had the same top natural scene 324

candidate found by both metrics. Then, we performed the same procedure on all 325

natural scene units, keeping only the units that had the same top white noise match 326

using both metrics. Finally, we only kept the white noise-natural scene RGC unit pairs 327

where each member of the pair chose each other as the top match via both MSE and 328

cosine similarity. This ensured one-to-one matching and that no white noise or natural 329

scene RGC was represented more than once in the final matched pairs. In total, 1033 330

RGC units were matched in this one-to-one fashion, within which there were 72 ON 331

parasol, 87 OFF parasol, 175 ON midget, and 195 OFF midget units. Several other cell 332

types, such as small bistratified and ON/OFF large RGC units, were also found in 333

smaller numbers. We also confirmed that the top 25 units chosen per pixel by LASSO, 334

which comprise the 805 unique units feeding into the nonlinear decoder, also represented 335

the four main RGC classes proportionally. 336

We chose a very conservative matching strategy to ensure one-to-one representation 337

and maximize the confidence in the classification of the natural scene units. Naturally, 338

such a matching scheme produced many unmatched natural scene units and a smaller 339

number of unmatched white noise units. On average, the unmatched natural scene units 340

had similar firing rates to the matched units while having smaller maximum channel 341

spike waveform peak-to-peak magnitudes. While it is likely that a relaxation of 342

matching requirements would yield more matched pairs, we confirmed that our 343

matching strategy still resulted in full coverage of the stimulus area by each of the four 344

RGC types (Supporting Information S2). 345

Low-pass linear decoding 346

To perform efficient linear decoding on a large neural spike matrix without over-fitting, 347

for each RGC, we summed spikes within the 30 - 150 ms and 170 - 300 ms time bins, 348

which correspond to the image onset and offset response windows. Thus, with n, t, x 349

indexing the RGC units, training images, and pixels, respectively, the RGC spikes were 350

organized into matrix X ∈ Rt×2n and the training images into matrix Y ∈ Rt×x. To 351

initially solve the linear equation Y = Xβ, the weights were inferred through the 352

expression β̂ = (XTX + λI)−1XTY , in which the regularization parameter λ ≈ 4833 353

was selected via three-fold cross-validation on the training set [27]. Although we 354

reduced the number of per-image time bins from 50 to 2, we confirmed that performing 355

ridge regression on the augmented X̃ ∈ Rt×mn with m indexing the 50 time bins yielded 356

essentially identical low-pass decoding performance, as discussed in the Results section. 357

Additionally, to perform pixel-specific feature selection for high-pass decoding, we 358

performed LASSO regression [27], which was proven to successfully select for relevant 359

units, on the same neural bin matrix X from above [25]. Due to the enormity of the 360

neural bin matrix, Celer, a recently developed accelerated L1 solver, was utilized to 361

individually set each pixel’s L1 regularization parameter as decoding each pixel 362

represents an independent regression sub-task [53]. 363
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High-pass nonlinear decoding 364

To maximize high-pass decoding efficacy with the nonlinear decoder, the augmented 365

X̃ ∈ Rt×mn was chosen as the training neural bin matrix. As noted above, nonlinear 366

methods, including kernel ridge regression and feedforward neural networks, have been 367

successfully applied to decode both the locations of black disks on white 368

backgrounds [25] and natural scene images [23]. Notably the former study utilized L1 369

sparsification of the neural response matrix so that only a handful of RGC responses 370

contributed to each pixel before applying kernel ridge regression. We borrow this idea of 371

using L1 regression to create a sparse mapping between RGC units and pixels before 372

applying our own neural network decoding as explained below. However, the successful 373

applications of feedforward decoding networks above crucially depended on the fact that 374

they utilized a small number of RGCs (91 RGCs with 5460 input values and 90 RGCs 375

with 90 input values, respectively). For reference, constructing a feedforward network 376

for our spike data of 2094 RGC units and 104,700 inputs would yield an infeasibly large 377

number of parameters in the first feedforward layer alone. Similarly, kernel ridge 378

regression, which is more time-consuming than a feedforward network, would be even 379

more impractical for large neural datasets. 380

Therefore we constructed a spatially-restricted network based on the fact that each 381

RGC’s receptive field encodes a small subset of the pixels and, conversely, each pixel is 382

represented by a small number of RGCs. Specifically, each unit’s image-specific 383

response m-vector is featurized to a reduced f -vector so that each unit is assigned its 384

own featurization mapping that is preserved across all pixels. Afterwards, for each pixel, 385

the featurized response vectors of the k most relevant units are gathered into a 386

fk-vector and further processed by nonlinear layers to produce a final pixel intensity 387

value. The k relevant units are derived from the L1 weight matrix β ∈ R2n×x from 388

above. Within each pixel’s weight vector βx ∈ R2n×1 and an individual unit’s 389

pixel-specific weights (βn,x ∈ R2×1), we calculate the L1-norm λx,n = |βn,x|1 and select 390

the units corresponding to the k largest norms for each pixel. The resulting high-pass 391

decoded images are added to the low-pass decoded images to produce the combined 392

decoder output. Note that while the RGC featurization weights are shared across all 393

pixels, each pixel has its own optimized set of nonlinear decoding weights (Figure 2). 394

The hyperparameters f = 5, k = 25 were chosen from an exhuastive grid search 395

spanning f ∈ {5, 10, 15, 20}, k ∈ {5, 10, 15, 20, 25} so that the values at which no further 396

performance gains were observed were selected. The neural network itself was trained 397

with a variant of the traditional stochastic gradient descent (SGD) optimizer that 398

includes a momentum term to speed up training [54] (momentum hyperparameter of 0.9, 399

learning rate of 0.1, and weight regularization of 5.0 ∗ 10−6 used for training the network 400

over 32 epochs). 401

Deblurring network 402

To further improve the quality of the decoded images, we sought to borrow image 403

restoration techniques from the ever-growing domain of neural network-based 404

deblurring. Specifically, a deblurring network leveraging natural image priors would 405

take in the combined decoder outputs and produce sharpened versions of the inputs. 406

However, these networks usually come with high requirements for training dataset size 407

and only using the 100 decoded images corresponding to the originally held out test 408

images would be insufficient. 409

As a result, we sought to virtually augment our decoder training dataset of 9,900 410

spikes-image pairs for use as training examples in the deblurring scheme. The 9,900 411

training spikes-image pairs were sub-divided into ten subsets of 990 pairs. Then, each 412

subset was held out and decoded (both linearly and nonlinearly) with the other nine 413
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subsets used as the decoders’ training examples. Rotating and repeating through each 414

of the ten subsets allowed for all 9,900 training examples to be transformed into 415

test-quality decoder outputs, which could be used to train the deblurring network. (To 416

be clear, 100 of the original 10,000 spikes-images pairs were held out for final evaluation 417

of the deblurring network, with no data leakage between these 100 test pairs and the 418

9,900 training pairs obtained through the above dataset augmentation.) An existing 419

alternative method would be to craft and utilize a generative model for artificial neural 420

spikes corresponding to any arbitrary input image [22,23]. However, the search for a 421

solution for the encoding problem is still a topic of active investigation in neuroscience; 422

our method circumvents this need for a forward generative model. 423

With a sufficiently large set of decoder outputs, we could adopt well-established 424

neural network methods for image deblurring and super-resolution [36–44]. Specifically, 425

we chose the convolutional generator of DeblurGANv2, an improvement of the widely 426

adopted DeblurGAN with superior deblurring capabilities [39]. After performing a grid 427

search of the generator ResNet block number hyperparameter ranging {1, 2, · · · , 7, 8}, 428

the 6-block generator was chosen for training under the Adam optimizer [55] for 32 429

epochs at an initial learning rate of 1× 10−5 that was reduced by half every 8 epochs. 430

We do not expect that the decoded images will be near-perfect replicas of the 431

original image. Recordings here were taken from the peripheral retina, where spatial 432

acuity is lower; as a result, one would expect the neural decoding of the stimuli to miss 433

some of the fine details of the original image. Therefore, while the original 434

DeblurGANv2 paper includes pixel-wise L1 loss, a VGG discriminator-based 435

content/perceptual loss, and an additional adversarial loss during training, we excluded 436

the final adversarial loss term, due to the fact that the deblurred images of the decoder 437

would not be perfect (or near-perfect) look-alikes of the raw stimuli images. Instead, we 438

focus on improving the perceptual qualities of the output image, including edge 439

sharpness and contrast, for more facile visual identification. We use both pixel-wise L1 440

loss and L1 loss between the features extracted from the true images and from the 441

reconstructions in the 3rd convolutional layer of the pre-trained VGG-19 network before 442

the corresponding pooling layer [38,56]. 443

Ethics Statement 444

Eyes were removed from terminally anesthetized macaque monkeys (Macaca mulatta, 445

Macaca fascicularis) used by other laboratories in the course of their experiments, in 446

accordance with the Institutional Animal Care and Use Committee guidelines. All of 447

the animals were handled according to approved institutional animal care and use 448

committee (IACUC) protocols (28860) of the Stanford University. The protocol was 449

approved by the Administrative Panel on Laboratory Animal Care of the Stanford 450

University (Assurance Number: A3213-01). 451
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Supporting information 452

S1 Fig. Validation of decoding methods on second RGC dataset

Fig 10. Decoding method results corroborated on second RGC dataset. (Top) Representative outputs from the decoding
algorithm compared to those from a simple linear decoder. (Bottom) Comparison of pixel-wise test correlations and SSIM
values between deblurred and linear decoder outputs and against combined decoder outputs, respectively. The second dataset
consisted of the responses of 1987 RGC units to 10,000 images, prepared in an identical manner as the first dataset. The
superiority of nonlinear decoding with deblurring is apparent.

453
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S2 Fig. Matching of white noise and natural scene RGC units 454

Because hundreds of white noise and more than a thousand natural scene RGC units 455

were discarded during the matching process, these unmatched units were analyzed to 456

see whether they exhibited any distinguishing properties from the matched units. 457

Comparing the mean firing rates of the matched and unmatched units revealed no clear 458

differences: 10.53 Hz vs. 11.46 Hz for matched and unmatched natural scene units; 6.56 459

Hz vs. 7.03 Hz for matched and unmatched white noise units. However, the mean 460

maximum channel peak-to-peak values (PTPs) were markedly different between 461

matched and unmatched units within both experimental settings: 22.06 vs. 10.21 for 462

matched and unmatched natural scene units; 24.93 vs. 18.48 for matched and 463

unmatched white noise units. 464

Non-matching of units is likely caused by several factors. To begin with, MSE and 465

cosine similarity are not perfect measures of template similarity. Many close candidates 466

were quite similar in shape to the reference templates, but either had a slightly different 467

amplitude or had peaks and troughs at different temporal locations. Indeed it is 468

possible that using a more flexible similarity metric would recover more matching units. 469

Meanwhile, it is also likely that some of the unmatched units in either experimental 470

setting are simply inactive units. Specifically, it could be the case that some units are 471

inactive during white noise stimulation, but more active for natural scene input and vice 472

versa. Finally, difficulties with spike sorting smaller units could also lead to mismatches. 473

Nevertheless, despite the above issues, we were able to recover full coverage of the 474

stimulus region for each cell type, as shown in Figure 11. 475

Fig 11. Coverage of image area by matched RGC cells. All four cell types, ON/OFF
parasol/midget, sufficiently cover the image area (marked in dashed rectangle) with the
receptive fields of their constituent white noise-natural scene matched units.

Acknowledgments 476

We thank Eric Wu and Nishal Shah for helpful discussions. 477

August 24, 2020 20/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.07.285742doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.285742
http://creativecommons.org/licenses/by/4.0/


References

1. Warland DK, Reinagel P, Meister M. Decoding Visual Information From a
Population of Retinal Ganglion Cells. Journal of Neurophysiology.
1997;78(5):2336–2350. doi:10.1152/jn.1997.78.5.2336.

2. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. Spikes : Exploring
the Neural Code. Computational Neuroscience. Cambridge, Mass: A Bradford
Book; 1997.

3. Liu W, Vichienchom K, Clements M, DeMarco SC, Hughes C, McGucken E, et al.
A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE
Journal of Solid-State Circuits. 2000;35(10):1487–1497. doi:10.1109/4.871327.

4. Weiland JD, Yanai D, Mahadevappa M, Williamson R, Mech BV, Fujii GY, et al.
Visual task performance in blind humans with retinal prosthetic implants. In:
The 26th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. vol. 2; 2004. p. 4172–4173.

5. Cottaris NP, Elfar SD. Assessing the efficacy of visual prostheses by decoding
ms-LFPs: application to retinal implants. Journal of Neural Engineering.
2009;6(2):026007. doi:10.1088/1741-2560/6/2/026007.

6. Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to
restore normal vision. Proceedings of the National Academy of Sciences.
2012;109(37):15012–15017. doi:10.1073/pnas.1207035109.

7. Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, et al.
Virtual typing by people with tetraplegia using a self-calibrating intracortical
brain-computer interface. Science Translational Medicine.
2015;7(313):313ra179–313ra179. doi:10.1126/scitranslmed.aac7328.

8. Moxon K, Foffani G. Brain-Machine Interfaces beyond Neuroprosthetics. Neuron.
2015;86(1):55–67. doi:10.1016/j.neuron.2015.03.036.

9. Cheng DL, Greenberg PB, Borton DA. Advances in Retinal Prosthetic Research:
A Systematic Review of Engineering and Clinical Characteristics of Current
Prosthetic Initiatives. Current Eye Research. 2017;42(3):334–347.
doi:10.1080/02713683.2016.1270326.

10. Schwemmer MA, Skomrock ND, Sederberg PB, Ting JE, Sharma G, Bockbrader
MA, et al. Meeting brain–computer interface user performance expectations using
a deep neural network decoding framework. Nature Medicine.
2018;24(11):1669–1676. doi:10.1038/s41591-018-0171-y.

11. Marre O, Botella-Soler V, Simmons KD, Mora T, Tkačik G, Berry MJ. High
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