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1 Abstract

In motor-related brain regions, movement intention has been successfully decoded from in-vivo
spike train by isolating a lower-dimension manifold that the high-dimensional spiking activity
is constrained to. The mechanism enforcing this constraint remains unclear, although it has
been hypothesized to be implemented by the connectivity of the sampled neurons. We test this
idea and explore the interactions between local synaptic connectivity and its ability to encode
information in a lower dimensional manifold through simulations of a detailed microcircuit model
with realistic sources of noise. We confirm that even in isolation such a model can encode the
identity of different stimuli in a lower-dimensional space. We then demonstrate that the reliability
of the encoding depends on the connectivity between the sampled neurons by specifically sampling
populations whose connectivity maximizes certain topological metrics. Finally, we developed an
alternative method for determining stimulus identity from the activity of neurons by combining
their spike trains with their recurrent connectivity. We found that this method performs better
for sampled groups of neurons that perform worse under the classical approach, predicting the
possibility of two separate encoding strategies in a single microcircuit.

2 Introduction

Advances in experimental techniques have allowed us to record the in-vivo activity of hundreds
of neurons simultaneously. This has gone along with new processing techniques to extract in-
formation from such spike trains. Some are based on the manifold hypothesis (Gallego et al.,
2017), which describes the high-dimensional spiking activity of large neuron populations as de-
termined by a lower-dimensional space whose components may be aligned with behavioral (such
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as movement direction) or stimulus variables. The reconstruction of the underlying space can
then improve the decoding of such variables.

The manifold hypothesis posits that activity is limited to the lower-dimensional space due
to constraints imposed by the synaptic connectivity (Gallego et al., 2017), however, details of
this relation remain unclear. One identified constraint is that neurons with a large number of
synaptic connections tend to spike at the same time as the population at large, while fewer con-
nections allow neurons to spike when others are silent. Beyond this result, information on how
the structure of synaptic connectivity shapes the neural manifold are scarce. This is in large part
due to a lack of data: While a large number of neurons can be simultaneously recorded from, it
remains challenging to determine the microstructure of their synaptic connectivity at the same
time.

Conversely, in a model of a neural circuit, we have complete knowledge about connectivity
as well as activity and can try to understand their relation. However, in order to study how
connectivity shapes the structure of the neural manifold in biology, it is crucial that the connec-
tivity of the model matches biology as closely as possible. Furthermore, to study this specific
question, one additional requirement must be fulfilled: Encoding a lower-dimensional space in
high-dimensional spike trains implies that the spiking activity is highly redundant. Such re-
dundancy is often a means to overcome the presence of noise in a system (Tkacik et al., 2010).
Indeed, there are various sources of noise affecting neural activity and it has been demonstrated
to be often unreliable (Nolte et al., 2019; Tolhurst et al., 1983; Stern et al., 1997; Shadlen and
Newsome, 1998). Consequently, a model to study the structural implementation of a neural
manifold needs to include these noise sources, to fully understand its function.

One such model is the rat neocortical microcircuit model of Blue Brain (NMC-model, (Markram
et al., 2015)). It includes detailed synaptic connectivity that replicates a number of biologically
characterized features (Reimann et al., 2015; Gal et al., 2017) and recreates a diverse set of ex-
perimentally characterized features of cortical activity (Reyes-Puerta et al., 2015; Renart et al.,
2010; Luczak et al., 2007). It models morphological detail in the form of 55 morphological types
of neurons and type-specific synaptic transmission between them (Ramaswamy et al., 2015).
Crucially, the model of synaptic transmission includes short-term plasticity (Stevens and Wang,
1995; Markram and Tsodyks, 1996; Abbott, 1997) and both spontaneous release (Simkus and
Stricker, 2002; Ling and Benardo, 1999) and synaptic failure (Ribrault et al., 2011), both impor-
tant sources of noise in neural microcircuit (Nolte et al., 2019; Faisal et al., 2008).

We first tested whether a lower-dimensional manifold could be used to describe the emergent
activity of the model. To that end we used the model in a classification task : We subjected the
model to a number of repeated synaptic stimulus patterns, recording the responses of all neurons.
Then we used established techniques to reconstruct the neural manifold from the spiking activity
and tested whether the values of its components were sufficient to classify the identity of the
stimulus pattern injected at any given time.

Next, we investigated the dependence of classification accuracy on the connectivity of a neu-
ronal population, thereby determining which local connectivity features give rise to a robust
manifold capable of encoding information about the structure of a stimulus. We found signifi-
cantly different numbers of motifs of three neurons in high-performing than in low-performing
populations. To expand on this, we sampled neuronal sub-populations with uncommonly struc-
tured synaptic connectivity between themselves or to the rest of the population. Based on the
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results, a method to predict the classification accuracy of any sub-population based on a num-
ber of topological parameters was used. Finally, we developed an alternative method to reduce
the dimensionality of spike trains that allowed us to reliably decode stimulus identity from the
activity of populations where the classical technique failed.

3 Results

3.1 Detailed microcircuit model encodes stimuli in a lower-dimensional space
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Figure 1: A: The modeled microcircuit includes 310 input fibers modelling thalamo-cortical
afferents. B: Spike trains are prescribed to the fibers to serve as stimulus patterns. Each pattern is
associated with 31 randomly selected fibers. Each repetition of a pattern, activates the associated
fibers with an adapting Markov process, i.e. repetitions of a pattern use the same fibers, but
with different stochastic spike trains. We apply a stream of 4495 repetitions of one of 8 stimulus
patterns in random order (bottom) and simulate the microcircuits response (top). C: Random
sampling: We sample at random offsets by randomly picking 600 neurons from all neurons within
a given radius and consider their spike trains for further analysis.

We began by investigating whether the manifold hypothesis, i.e. the hypothesis that spiking
activity of a neuron depends on a linear combination of latent variables, can describe the results
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of simulations of the NMC-model. To that end we ran a simulation campaign subjecting 31,000
neurons in the model to eight different synaptic input patterns (Fig. 1A, B). The stimuli were
injected by activating thalamo-cortical afferent fibers that in turn activated synapses placed onto
modeled dendrites according to a layer-specific density profile from the literature (Meyer et al.,
2010). Each stimulus activated a random 10% subset of the fibers with an adapting, stochastic
spiking process for 200 ms (see Methods). This was immediately followed by the next stimulus,
randomly picked from the eight patterns, resulting in an uninterrupted, random stream. Each
repetition of a pattern used the same synaptic input fibers, but different randomly instantiated
spike trains. In total, 4495 stimuli were presented, each pattern used 562 +- 4 (mean +- std)
times.

To approximate the recording of spike trains with extracellular electrodes, we sampled neu-
rons within a given radius from random offsets within the model and recorded their spike train
for further analysis (Fig. 1 C). Initially, we performed 25 such samplings within 175µm. The
number of samplings was set to conform with our second, structural sampling method presented
in the next section. There most of our sampling parameters display a pronounced change in their
distributions around the value 25 (CGLLRS et al., 2020).

We then analyzed the samples according to the manifold hypothesis by first extracting the
hidden components through factor analysis (time bin size 10 ms, first 12 components extracted,
see Methods). We then investigated whether the values of these components can be used to
distinguish between the stimuli. Exploratory analysis revealed that within three of the strongest
components different stimuli followed different average trajectories (Fig. 2A), although individ-
ual trajectories were subject to a large amount of noise (Suppl. Fig. 5).

Next, we wanted to understand which of the twelve extracted components contained infor-
mation about the identity of the presented stimulus. The time course of a component during a
single stimulus followed a simple trajectory of rapidly rising to a maximum (or negative mini-
mum) value and decaying back to zero (Fig. 2A). This allowed us to collapse the time course to
the value furthest away from zero with minimal loss of information. We found that most of the
time, this value differed significantly for the different stimulus patterns, with mean values for
a given stimulus up to 1.6 standard deviations from the mean over all repetitions of all stimuli
(Fig. 2B). In other cases however, components never strayed more than half a standard deviation
away from the overall mean.

We tried to quantify these differences by calculating for each component its expected useful-
ness for distinguishing between stimuli. To that end, we calculated the negative logarithm of the
p-value of a Kruskal test against the null hypothesis that the mean value was identical for differ-
ent stimuli (Fig. 2C). This confirmed that pattern identity strongly affected the values for over
half of the components in most volumetric samples. For some samples though, pattern identity
affected only few and weaker components (Fig. 2C, samples #8, #23). Finally, we performed
a classification task attempting to discern stimulus pattern identity from the trajectories of the
first 12 components. The linear classifiers were 6-times cross validated with a split into 60%
training data and 40% validation data (see Methods). We found that the resulting classification
accuracies reflected the differences between the samples. Where stimulus identity significantly
affected the trajectory of most components, accuracies exceeded 80%, where it only affected few
or weaker components it could go as low as 40%. Yet, in all cases accuracies were significantly
above the chance level of 12.5%.
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Figure 2: A: Trajectories of three components for an exemplary volumetric sample with a radius
of 175µm. Responses to different stimuli are indicated in different colors (mean of 562 +- 4 (mean
+- std) repetitions each). B: Mean of the most extreme value taken by individual components
during a stimulus presentation, normalized with respect to the overall mean/std. Indicated
for four random neuron populations, volumetrically sampled with a radius of 175µm. Green
outline indicates the three components shown in A. C: (left) For 25 volumetric samples with
radius 175µm: Negative logarithm of the p-values of a test against the null hypothesis that their
extreme values as in B have identical means (Kruskal test). Green outlines indicate the samples
shown in B. (Right) Mean accuracy of a classifier of stimulus identity based on the trajectories
of the 12 main components of the indicated volumetric samples (see Methods). D: Bottom: triad
motif over- and underexpression in 125 volumetric samples with radii between 125 and 325 µm,
relative to ER. Samples are sorted by classification accuracy (right). Top: Correlation between
expression of a specific motif and classification accuracy in the samples (pearsonr).

We conclude that our simulations, combined with a volumetric sampling method lead to re-
sults that are comparable to the literature in the sense that different stimuli lead to different
trajectories in a lower-dimensional manifold. However, the degree to which the manifold encodes
stimulus identity varies between samples. According to the manifold hypothesis, the nature of
the manifold is constrained by and therefore depends on the connectivity of the participating
neurons (Gallego et al., 2017). We therefore aim to identify what feature of connectivity leads
to more or less successful stimulus encoding.
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We began by considering the presence of triad motifs in the volumetric samples. For each
sample, we counted the occurrences of each possible motif of three connected neurons, and
calculated their over- or under-expression compared to an Erdos-Renyi control model with the
same number of neurons and connections (Figure 2D, bottom). When we compared the degree
of expression of individual motifs to the classification accuracy, we found significant correlations
for 11 out of 13 motifs. Specifically, for highly connected motifs with four or more connections,
over-expression was associated with higher accuracy and under-expression with lower accuracy.
For weakly connected motifs with only two connections, this trend was largely reversed. As the
degree of expression of motifs was normalized to the total number of connections in the sample,
this indicates that strongly clustered connectivity leads to increased accuracy in the classification
task. Unfortunately, the observed trend was very similar for all highly connected motifs, ruling
out more fine-grained observations. Therefore, we explored a different approach to study the
effect of connectivity.

3.2 A classification task in samples with uncommon connectivity

The hypothesis that differences of the connectivity between volumetric samples explain their
different accuracies in the classification task leads to the following prediction: A neuron sample
with an uncommon pattern of connectivity is more likely to depict an outlying classification
accuracy - either very low or very high. To confirm this, we used chief-tribe sampling to generate
such samples with uncommon connectivity (CGLLRS et al., 2020).
Briefly, any of the 31,000 neurons in the model can be considered a chief and its associated
tribe contains in addition all neurons that are directly synaptically connected to it (Fig. 3A). To
find tribes with uncommon connectivity, we defined 18 topological parameters that measure the
structure of connectivity within, to, and from a tribe (see Table 1). We then sample the 25 tribes
containing at least 50 neurons and with the highest values for a parameter as the champions of
that parameter.

The champions of a parameter were indeed outliers, with values that fell far outside the bulk
of the distribution of the parameter over all tribes (Fig. 3B). To confirm that the connectivity
of the champion samples deviated from the overall structure of the model, we first quantified
the over- and underexpression of triad motifs in the volumetric samples (Fig. 3C). We then
compared the result to the expression of triad motifs in the champion samples and found large
differences for all champions (Fig. 3D). For each champion the prevalence of at least one motif
was over five standard deviations from the mean of the volumetric samples.

However, the profiles of over- and underexpression were very similar for some pairs of pa-
rameters, indicating that their associated champions were redundant. We therefore removed
champions and parameters with too strongly correlating triad profiles, reducing the number of
parameters to 11 (see Methods, Fig. 4, Table 1).

We then repeated the stimulus pattern classification task, but this time using spike trains
from the champion samples. As predicted, the resulting classification accuracy varied drastically
between champions of different parameters, possibly reflecting their differently structured con-
nectivity (Fig. 4A). However, while the volumetric neuron samples always contained 600 neurons,
the size of the champion samples depended on the connectivity of their chiefs and consequently
varied. When we compared the size of the samples to the classification accuracies, we found a
strong correlation (Fig. 4B, grey diamonds and blue dots).
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Figure 3: A: Chief-tribe sampling: Any neuron can be a chief. Its associated tribe are all synapti-
cally connected neurons, plus the chief itself. We then calculate various topological parameters of
the tribe’s connectivity. B: Blue violinplot: Distribution of various topological parameters, nor-
malized between 0 and 1. Orange dots: Location of the champions, i.e. the 25 tribes of at least
50 neurons with the highest values for a parameter. C: Frequency of triad motifs in volumetric
samples with a 175µm radius relative to an Erdos-Renyi graph with the same number of nodes
and edges. Grey: 25 volumetric samples; Black: their mean. D: Over- and under-expression
of triad motifs in the connectivity of champion samples of various parameters, normalized with
respect to mean/std of the volumetric samples.

This led to two questions: First, is this observed difference in accuracy a result of different
connectivity – in this case, a lower combined in- and out-degree of the chief – or simply an
artifact of the analysis – i.e. a consequence of using fewer spike trains in the classification task?
And second, do the various topological metrics capture relevant features of connectivity beyond
simply the size of the sampled tribe?

To address the first question, we repeated the pattern classification task for the three largest
champions at reduced sizes. That is, we used only 90%, 70%, 50%, 25% or 15% of the neurons
in the champion tribes of Euler characteristic, In-degree and Out-degree for classification (see
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Parameter Shorthand Explanation Type

Adjacency spectral gap (high)
Diff. between two largest moduli

Recurrent
of eigenvalues of adjacency matrix

Adjacency spectral gap (low) ASG
Lowest nonzero modulus of an

Recurrent
eigenvalue of adjacency matrix

Adjacency spectral radius
Maximum modulus of an

Recurrent
eigenvalue of adjacency matrix

Extension
Num. of neurons connected

to but not in tribe
Afferent extension AE * for afferent connectivity Afferent
Efferent extension EE * for efferent connectivity Efferent

Betti numbers Betti numbers of the tribes
Betti two Second Betti number Recurrent

Betti three Third Betti number Recurrent

Chung spectral gap
Smallest eigenval. of largest

Recurrent
strongly connected component of tribe

Euler characteristic EC Euler charac. of the tribe Recurrent

Density coefficients
Num. of k-simplices divided by num.,

of k-1-simplices and normalized
Second density coefficient * for second dimension Recurrent
Third density coefficient * for third dimension Recurrent

Fourth density coefficient 4DC * for fourth dimension Recurrent
Fifth density coefficient 5DC * for fifth dimension Recurrent

In-degree ID Total in-degree of the chief Afferent

Out-degree OD Total out-degree of the chief Efferent

Normalized Betti coefficient NBC Sum of normalized Betti numbers, Recurrent

Relative boundary RB
Number of connections into tribe,

Afferent
divided by connections within tribe

Transitive clustering coefficient TCC
Number of directed 3-cliques containing

Recurrentthe chief divided by number of possible
such cliques

Table 1: Topological parameters used. Type denotes which connections determine the param-
eter: Only recurrent connections within the tribe, or additionally afferent connections into the
tribe, or efferent connections. Parameters without a shorthand assigned were removed for being
redundant. For details, see Methods.

Methods). The classification accuracies of these subsampled champions was only slightly reduced
compared to the performance of the complete sample (Fig. 4B, red circles). Importantly, the
subsampled champions performed at the top end or better than complete champions of compara-
ble size. This indicates that for complete champions of smaller size (such as relative boundary),
the lower number of spike trains being analyzed does not fully explain their reduced classification
performance. Instead, the smaller size indicates weaker connectivity of the chief to the rest of
the population, which may reduce the tribes ability to successfully encode stimulus identity.

To address the second question, we first generated a large number of additional tribal sam-
ples. This time, we sampled 1276 tribes by picking up to 25 chiefs randomly from each of the 55
morphological types of neurons in the model (Markram et al., 2015; Petilla Interneuron Nomen-
clature Group et al., 2008). We then subjected the samples to the stimulus pattern identification
task (Fig. S6). This provided us with a large number of additional data points that were not
biased towards extreme connectivity patterns, but represented typical connectivity of the model,
while still providing variable classification accuracy. As before, classification accuracy in these
samples depended on the sizes of tribes, in particular we found a linear relation to the mean
tribe size, i.e. the mean over all neurons in a sample of the size of the associated tribe (Fig. 4C,
grey dots). Corresponding data points for champion samples matched the fit, indicating that it
captured the effect of tribe size we found earlier (Fig. 4C, green dots). We performed a linear fit
of the data (Fig. 4C, black line) that allows us to predict the effect of tribe sizes on classification
accuracy. Subtracting the prediction from the measured accuracies yields the residual accuracy,
i.e. the accuracy with the effect of tribe sizes largely removed (Fig. 4C, blue). As the mean tribe
size measure does not depend on the presence of a chief in the sample, we will later be able to
generalize this concept to the volumetric samples.

We studied the relation between values of the various topological parameters and the residual
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Figure 4: A: Accuracy of a linear classifier to decode stimulus identity from the spike trains of
the champion-samples. Blue dots: Accuracies of 6-times cross validation for 25 champions (see
Methods); bar and errorbars: mean and standard deviation. B: Size of champion tribes against
their decoding accuracy. Blue dots: individual tribes; grey diamonds and errorbars: mean and
standard deviation of champions of a parameter. Red circles: For the three largest classes of
champions, subsampled at 90%, 70%, 50%, 25% and 15%. C: Mean size of associated tribes over
neurons in champion (green) and randomly picked (grey) tribes. Black line: Linear fit; indicated
in blue: residual of the fit. D: Efferent extension against the residual accuracy indicated in
C for randomly picked tribes. Grey dots: 1276 random tribes; black line: linear fit. E: Left:
Slopes of linear fits of residual accuracy against normalized values of the indicated parameter for
randomly picked tribes. Right: Fraction of variance of the residual accuracy that is explained by
the linear models over a model that takes only the morphological type of the chief into account
(see Methods). Black stars indicate Bonferoni-corrected significance (***: p < 0.0001).

accuracy using data from the randomly sampled tribes (for an example see Fig. 4D). Specifically,
we compared the effect of only the morphological type of the chief to linear models combining
the effects of morphological type and a topological parameter, calculating the additional fraction
of variance explained by the combined model (Fig. 4E, right). This additional step let us rule
out explanations where connectivity patterns captured by the topological parameters are merely
correlated with the morphological types and have no direct effect on residual accuracy. Addi-
tionally we considered the slope of the linear fit in each parameter to assess the direction and
strength of its effect. We found statistically significant effects for all parameters except the fifth
density coefficient (t-test, p < 0.0001 Bonferroni-corrected; Fig. 4E). This indicated that the
topological parameters were capable of measuring features of connectivity conducive to encoding
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the identity of a stimulus pattern in a lower-dimensional space.
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Figure 5: A: Two ways of calculating values for topological parameters in volumetric samples.
Left: Values are calculated directly on the synaptic connectivity within the sample. Right:
Generation of “synthetic” values of topological parameters that take the tribal structure of the
sample into account: The size of the overlap of each possible tribe with the sample is calculated,
then a weighted average of the parameter value for the N strongest overlapping tribes is used.
B: Left: Slopes of linear fits of residual accuracy against normalized parameter values that were
directly calculated. Right: Fraction of variance of the residual accuracy that is explained by the
linear models over a model that takes only the radius of the sample into account (see Methods).
Black stars indicate Bonferoni-corrected significance (***: p < 0.0001). Shorthand parameter
names see Table 1. C: Comparing directly calculated parameter values (blue) to weighted mean-
based, “synthetic” values of the fourth density coefficient. D: As in B, but for synthetic values
of topological parameters.

3.3 Generalization for volumetric samples

Finally, we tried to generalize our ability to predict the classification accuracy from the topology
of synaptic connectivity to the volumetric samples. As before, we calculated the mean of the
sizes of tribes associated with neurons contained in the samples, but this time for volumetric
samples with radii between 125µm and 325µm. Based on this, we predicted their classification
accuracies using the linear fit from before, and subtracted the prediction to gain residual accu-
racies. We then calculated the values of the topological parameters based on the connectivity of
the samples (Fig. 5A, left) and analyzed their relation to the residual accuracies as in the previ-
ous section. However, the parameters in-degree, out-degree and transitive clustering coefficient
were defined with respect to the chief of a tribe (see Table 1) and consequently undefined for

10

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.363929doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.363929
http://creativecommons.org/licenses/by-nc/4.0/


volumetric samples. We instead used the mean of in-degree, out-degree and clustering coefficient
over all neurons in a sample. Most parameters calculated this way had no significant effect on the
residual accuracies with only three exceptions (Fig. 5B). It thus appears as if the ability of most
topological parameters to capture significant connectivity patterns is linked to tribal structure
of the samples we used before.

Therefore, we developed the following method to generate a synthetic value of a topological
parameter for a volumetric sample that takes its tribal structure into account (Fig. 5A, right).
First, calculate the relative size of the overlap between each tribe and the sample. Next, find the
N tribes with the strongest overlap. Finally calculate the synthetic value as the weighted mean
of parameter values of those N tribes, where the weights are proportional to the relative overlap
sizes. For each topological parameter, an optimal value for N was determined that maximized
the correlation between the resulting synthetic values for volumetric samples and their residual
classification accuracies (see Fig. 5C for an exemplary result). Using this method, all but two
investigated parameters provided a statistically significant effect (t-test; p < 0.0001 Bonferroni-
corrected; Fig. 5D; Fig. S8A), reinforcing the idea that differences in classification accuracy can
be explained by the connectivity of the sampled neurons, and the topological parameters capture
some of the features of connectivity that are relevant for this.

The optimal number of tribes to include in the weighted mean (N above) tended to be
low, under 300 tribes for most parameters, with larger numbers leading to a gradual decline
in correlation with classification accuracy (Fig. S8B). Exceptions were the transitive clustering
coefficient, efferent extension and out-degree, where the optimal solutions were weighted means
including all 31,000 tribes. Curiously, this was accompanied by a switch of the sign of the
correlation as more tribes were included (compare Fig. 4E to Fig. 5D). This indicates that at
least these two classes of parameters capture different ways in which connectivity affects the
performance of a neuron sample in the classification task.

3.4 The role of low-performing populations

Having identified the connectivity patterns that improve a population’s ability to encode stim-
ulus patterns, the question remains what the role of the low-performing populations might be
in the neural computations of a microcircuit. These are populations containing neurons forming
small tribes, that is, neurons with structurally weak coupling to the rest of the population. A
dichotomy between weakly and strongly coupled neurons has been characterized before in the
form of soloists that spike when the rest of the population is silent, and choristers that spike
together with the rest (Okun et al., 2015). We therefore investigated whether the low-performing
samples and tribes contained a larger amount of soloists.

We began by calculating the coupling coefficient of all excitatory neurons in the population
and comparing its distribution to two controls with shuffled spike trains: One that preserved
only the overall firing rate of the entire population and one that preserved firing rates of indi-
vidual neurons (see Methods, Fig. 6A). We confirmed that in our simulation both soloists and
choristers, that is, neurons with an unexpectedly low or high coupling coefficient emerged. Next,
we investigated whether this property depended on the size of the tribe that a neuron is the chief
of (Fig. 6B). We found a strong, positive correlation between these properties, albeit only for
chiefs in layers 1 to 5. Curiously, for chiefs in layer 6 the relation reversed, with larger tribes
apparently reducing the coupling coefficient of their tribe. At the same time, neurons in layer 6
depicted the highest coupling coefficients.
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Figure 6: A: Distribution of the coupling coefficient, as in Okun et al., 2015, of all excitatory
neurons in the model. Blue: data; grey lines with errorbars: Shuffled controls that keep or
shuffle mean firing rates of individual neurons. Neurons with an unexpected low coefficient are
“soloists”, a high coefficient indicates a “chorister”. B: Tribe size against the coupling coefficient
of the chief for chief neurons in layers 1-5 (blue) and in layer 6 (orange). Dashed lines: linear
fits. C: As in B, but coupling coefficient against classification accuracy of the tribes. D: Mean
coupling coefficient of neurons in a volumetric sample against its residual classification accuracy,
as in Fig. 5C. Inset: Fraction of variance explained as in Fig. 5D. E: Classification based on
topological featurization: For a given tribe, we consider in each 10 ms time step only the subset
of neurons that are firing. We then calculate the value of the Euler characteristic (EC) of the
graph of connectivity between them. We classify stimulus identity based on the EC time series
of 25 chiefs. F: Left: Results of the classification for chiefs randomly picked from the various
morphological types in the model. Errorbar: std of cross validation. Right: Same, for the
various champions. G: Mean classification accuracies using the manifold-based method against
accuracies based on topological featurization. Red/blue dots: Random chiefs as in F; green dots
as labelled. H: Accuracies as in F against the mean coupling coefficient of neurons in the tribes.
Errorbars: std over coupling coefficients.
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Figure 7: A: Mean relative overlap of pairs of tribes that are champions of the same parameter
against the mean correlation coefficient of their Euler characteristic time series (feature cor-
relation. B: Pairwise feature correlations of the champions of two exemplary parameters. C:
Mean feature correlation of champions against their performance in feature-based classification.
D1: Feature-based classification for volumetric samples can be performed using the active sub-
networks of each sample in each time step, then pooling over samples. D2: Alternatively, the
25 largest tribes can be found within a single volumetric sample, which are then analyzed as
other tribal samples. E1: Mean feature correlation for volumetric samples of various radii when
the technique in D1 is employed. E2: Same, when the method outlined in D2 is employed. F:
Feature-based classification accuracies for volumetric samples using the purely volumetric (blue)
or subtribe-based (red) techniques. G: Feature correlation against classification accuracy for
volumetric samples using the purely volumetric (blue) or subtribe-based (red) technique.

Having found that the size of a tribe affects both classification accuracy and coupling coeffi-
cient, it was no surprise that we also found a strong correlation between the coupling coefficients
of neurons in a tribe and its classification accuracy (Fig. 6C). However, once again, tribes with
chiefs in layer 6 reversed this correlation. For the volumetric samples, we analyzed the effect of
mean coupling coefficient on residual accuracy, finding the same strongly positive correlation as
for layers 1 to 5 (Fig. 6D). The coupling coefficient explained over 30% of the variance of residual
accuracy, more than any of the topological parameters (compare inset to Fig. 5D). Taken to-
gether, this confirmed that neurons with an uncommonly low coupling coefficient below 0.1 were
more prevalent in tribes and volumetric samples that did not perform well in the classification
task.
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In order to further explore the ways in which stimuli are encoded in microcircuit activity, we
employed an alternative decoding method based on topological featurization (Fig. 6E CGLLRS
et al. (2020)). Similar to the manifold-based method, it begins by binning the spike trains of
individual neurons in a tribe into 10-ms time bins. However, the way the dimensionality of this
result is reduced, differs drastically. In each time bin, we consider all neuron members of a tribe
that are spiking, and the connections between them. We then calculate the Euler characteristic
(EC ) of the flag complex of the graph of the spiking sub-network (see Section 5). This yielded a
time series of EC values that represent the time course of activity in the tribe. As this reduced
the dimensionality to a single dimension with ten time steps for a tribe, we grouped 25 tribes
together and used their pooled time series in the same linear classification method as before. The
tribes pooled together were either champions of the same parameter, or their chiefs randomly
picked from the same morphological type.

As for manifold-based classification, the results depended on the type of tribe. For pooled
tribes based on picking chiefs randomly from a given morphological type, we found an overall
gradient from accuracy around 80% for chiefs in superficial layers, to under 50% for chiefs in
layer 6 (Fig. 6F, left). For pooled champions, the accuracy varied comparably between 40% and
80%, depending on the topological parameter they were champion of (Fig. 6F, right).

Astonishingly, the results were almost completely the inverse of the manifold-based classifica-
tion: Tribes that performed well in the manifold performed poorly for topological featurization
and vice versa (Fig. 6G). Only some tribes with chiefs in layer 6 and the champions of the
transitive clustering coefficient performed equally badly for both methods. This indicated that
topological featurization is a classification method more suitable for the samples that performed
poorly in manifold-based classification, that is, samples with a large number of soloist-type neu-
rons. Indeed, we found a strong negative correlation between the mean coupling coefficient of
a tribe and its topological featurization-based classification accuracy (Fig. 6H). We therefore
predict that soloists employ an alternative scheme for encoding information in their spike trains;
one that can be more readily read out when in addition to their spiking activity their synaptic
connectivity is taken into account.

While we have demonstrated that topological featurization performs good classification for
soloists, the question remains: Why does it fail for choristers? One of the defining features of
choristers was their overall larger degree, leading to large associated tribes. We therefore hy-
pothesized that these larger tribes were also more strongly overlapping, leading to more similar
EC time series. As such, the information in the time series would be more redundant – each
tribe conveying the same information. To test this, we further investigated to what extent the
25 champion samples belonging to the same parameter were overlapping and how similar their
EC time series were. To that end, we computed the mean relative overlap of pairs of tribes using
the Szymkiewicz-Simpson coefficient (Vijaymeena and Kavitha, 2016), i.e. the relative number
of common neurons shared by a pair of tribes. Likewise, we computed the mean correlation
coefficients (Pearson) between all pairs of pooled EC time series averaged over trials, referred
to as feature correlation. We found a strong positive correlation between feature correlation and
samples overlap in champion samples (Fig. 7A), indicating that a higher number of shared neu-
rons is linked to a higher correlation in the corresponding feature time series. Two examples of
pairwise feature correlation matrices of the parameters with the lowest and highest mean corre-
lations respectively are illustrated (Fig. 7B). Our next question was whether such a redundancy
in the feature time series would lead to reduced classification accuracies. And indeed we found a
negative correlation between featurization-based mean accuracies (over 6-times cross validation)
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and mean feature correlations (Fig. 7C).

As before, our next aim was to apply this technique to the volumetric samples. A straight-
forward approach to this simply uses the active sub-networks of 25 samples, pooling their EC
time series (Fig. 7D1). However, as we found earlier that taking the tribal structure of a sample
into account led to better results, we also used an alternative approach: Using only the neurons
in a single volumetric sample, we extracted the 25 largest tribes that could be found within a
single volumetric sample, referred to as subtribes, which were then analyzed as the other tribal
samples (Fig. 7D2).

In the first approach, when applying the featurization directly on volumetric samples, we
found a clear dependence of the mean feature correlation on the sampling radius, with larger
radii resulting in higher feature correlations (Fig. 7E1). This was expected, as larger radii nat-
urally resulted in larger overlaps of samples volumes. In the second approach, when applying
featurization on subtribes, the resulting feature correlation seemed to be rather independent of
the sampling radius (Fig. 7E2).

Astonishingly, when comparing the featurization-based classification accuracies of both ap-
proaches, we found that the subtribes-based approach clearly outperformed the volumetric ap-
proach for large radii (Fig. 7F). We found opposite dependencies of the mean accuracies on the
sampling radii, reaching highest values for large radii in the subtribes-based approach and for
small radii in the volumetric approach respectively. So, although the subtribes-based approach
only used information extracted from a single volumetric sample instead of pooling several of
them, it clearly performed better above 225µm. As before, we again found a negative correlation
between accuracies and feature correlation values for both approaches (Fig. 7G). Taken together,
these results suggest that features are better predictors when taking the tribal structure within
a volume into account than just combining features from multiple volumes.

4 Discussion

We have confirmed that the emergent activity of the NMC-model can be described according
to the manifold hypothesis, that is, as determined by a lower-dimensional space; and that the
values of those dimensions encode information about inputs given to the model. We have further
demonstrated that within the morphological, electrical and synaptic diversity captured by the
model, some neuronal populations are more useful in reconstructing the lower-dimensional space
and using it to decode information about a stimulus. We found that these differences can be
largely explained by the synaptic connectivity of neurons in the populations.

A large component of this finding was that neurons that are strongly connected to the rest of
the population tend to be of the “chorister” type (Okun et al., 2015) and provide better capabil-
ity for decoding stimulus identity, when using manifold-based techniques. This is not surprising,
as a chorister is defined by spiking together with many other neurons and is consequently aligned
with the stronger components of the underlying manifold. Thus, their spike trains carry infor-
mation about those strong components.

However, we also found topological features of connectivity influencing the manifold that go
beyond merely adding more synaptic connections and instead capture the specific structure of
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them. We demonstrated that topological parameters such as density coefficients and clustering
coefficients can be used to predict the success of a stimulus classification task. The clustering
coefficient measures the tendency of the connectivity to form tightly bound assemblies and the
density coefficients measure the tendency to form specific types of clusters called directed sim-
plices (Reimann et al., 2017). Their effect can be explained as follows: While synaptic input
strongly constrains neuron activity, this effect is weakened by the presence of noise, especially
synaptic noise. At the same time, it has been demonstrated that correlations in synaptic input
diminish the effect of noise (Wang et al., 2010). This means that a neuron participating in con-
nection motifs that generate correlated input, will be less subject to noise, and constrained more
tightly to the manifold, improving the value of its spike train in decoding the manifold. Directed
simplices have been shown to generate such correlations before (Nolte et al., 2019).

We found that the distinction between “well-classifying” and “poorly-classifying” neurons
parallels the split into “soloists” and “choristers” that has been found before (Okun et al., 2015).
When we further investigated the emergent activity, we employed an alternative, topology-based
method to reduce the dimensionality of spike trains of large neuronal populations (CGLLRS
et al., 2020). With this “topological featurization” technique, previously poorly-classifying neu-
rons provided sufficient information to classify stimuli with high accuracy. While this technique
cannot currently be employed in-vivo, as it requires information about the local connectome,
advances in connectome reconstructions from electron-microscopy will allow us to validate this
method in the future.

Topological featurization required the pooling of information from multiple neuron samples,
unlike the manifold-based approach that kept them separate. Therefore, it arguably used more
information for classification, potentially explaining its superior performance under some cir-
cumstances. This is however contradicted by the fact that the samples performing well with
featurization were the ones that were individually small, and the larger samples performed more
poorly. Further, for volumetric samples, the approach that took only a single sample instead of
pooling over 25 samples had superior performance. Finally, we found that neuron samples clas-
sifying well with the featurization approach tend to be “soloists”. Taken together, this indicates
the presence of an alternative encoding scheme employed specifically by “soloist”-type neurons.

Does this mean that there exists neural circuitry that reads out the Euler characteristic of
another population? While such a claim would certainly be premature, we at least want to
consider whether such circuitry could be implemented with known biological mechanisms. The
Euler characteristic is the sum of the counts of directed n-cliques for increasing n with alternating
signs (see Methods). This would require, for each n-clique σ one additional readout neuron bσ
receiving input from all neurons in σ. Where bσ should fire only when receiving input from all
neurons in σ simultaneously, forming conceptually an AND conjunction and indicating that the
entire n-clique is active. This could be achieved through clustering of inputs from σ onto adjacent
locations on the dendrite of bσ such that their concurrent activation triggers dendritic nonlin-
earities while individual activations remain local. Both cooperativity between nearby synapses
(Harnett et al., 2012; Weber et al., 2016) and functional clustering of synapses with similar re-
ceptive properties (Iacaruso et al., 2017) has been observed experimentally. Topologically, bσ
would extend the n-clique to an n+ 1-clique and indeed we have found before that n-cliques are
part of an unexpectedly high number of n+ 1-cliques (Reimann et al., 2017).

The final readout EC would be a neuron receiving input from all bσs, with a sign that de-
pends on the size (value of n) of the clique that it reads from (see Fig. S9). That would mean

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.363929doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.363929
http://creativecommons.org/licenses/by-nc/4.0/


that readouts from even-sized cliques would all need to be inhibitory, readouts from uneven-sized
cliques excitatory. There is no evidence for such strict motifs, nor for mechanisms that would
lead to their formation. But it is possible that a less strictly alternating sum could provide simi-
lar information as the Euler characteristic. In summary, a neural readout circuitry implementing
the Euler characteristic is possible, but only some of its possible building blocks have been found
experimentally.

These results were obtained in a highly detailed model, albeit one of only an individual
microcircuit acting alone. The nature of biological neural manifolds is likely determined as well
by long-range connections and dynamic interactions between different brain regions, meaning a
purely local view is limited (Allen et al., 2019; Stringer et al., 2019). Yet, our results provide
predictions on the general principles that may be employed to encode information in lower-
dimensional neural manifolds.
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5 Methods

5.1 Network simulations

Simulation methods are based on a previously published model of a neocortical microcircuit of
the somatosensory cortex of the two week-old rat, here called the NMC-model (Markram et al.,
2015). Synaptic connectivity (with apposition-based connectome) between 219,422 neurons be-
longing to 55 different morphological types (m-types) was derived algorithmically starting from
the appositions of dendrites and axons, and then taking into account further biological constraints
such as number of synapses per connection and bouton densities (Reimann et al., 2015). Neu-
ronal activity in the NMC-model was then simulated in the NEURON simulation environment
(www.neuron.yale.edu/neuron/). Detailed information about the circuit, NEURON models
and the seven connectomes of the different statistical instantiations of the NMC-model analyzed
in this study are available at bbp.epfl.ch/nmc-portal/ (Ramaswamy et al., 2015). Simulations
and analysis were performed on an HPE SGI 8600 supercomputer (BlueBrain5).

We simulated evoked activity of the model described above for 900 seconds. After one sim-
ulated second (at t = 0 ms, as we discard the first second) we start applying a thalamic stimuli
through synapses of 310 VPM fibers that innervate the microcircuit. The stimuli are a stream of
eight different input patterns, where each pattern activates 31 randomly picked VPM fibers for
75 ms with an adapting, stochastic spiking process starting at 75 Hz and decaying to zero with a
time constant of 20 ms. The stream consisted of repetitions of the eight patterns in random or-
der, presenting one pattern every 200 ms. Repetitions of the same stimulus used the same fibers,
but with different stochastic instantiations of the spiking process. Additionally, each of the 310
fibers was activated with a poissonian firing rate of 0.2 Hz. As for each stimulus the pattern was
chosen randomly, the total numbers of presentations differed slightly between patterns: Pattern
0: 558 repetitions; pattern 1: 559; pattern 2: 566; pattern 3: 568; pattern 4: 561; pattern 5:
560; pattern 6: 557; pattern 7; 566.

5.2 Topological methods

Abstractly, the brain can be viewed as a directed graph G = (V,E), consisting of a set of vertices
V , corresponding to the neurons, and a set of directed edges E. The elements of the edge set
E are all pairs (i, j), where i and j are vertices in V , such that there is a synaptic connection
from neuron indexed i to neuron indexed j. Reciprocal edges between any pair of vertices i
and j (namely both pairs (i, j) and (j, i)), are allowed, but no more than one edge in the same
direction. Loops, namely pairs (i, i) corresponding to edges whose start and end point is the
same are also excluded.

If G = (V,E) is a directed graph and v ∈ V is a vertex, then the closed neighbourhood of v
is the set of all vertices in G that are connected to v (in either direction) and the vertex v itself.
The subgraph of G that consists of the vertices in the closed neighbourhood of v and all edges
between them is also referred to in the mathematical literature as the closed neighbourhood, or
the closed neighbourhood graph of v.

A collection of n-vertices v1, . . . , vn ∈ V of a graph in which every pair of vertices is connected
by an edge is called an n-clique. If G is a directed graph then a subgraph on n vertices such that
every pair of them is connected by an edge in G, and which does not contain as a subgraph a
3-clique that is oriented cyclically, is called a directed n-clique. If G is a directed graph then one
can construct a topological space that is made out of the directed n-cliques in G. This topological
space is called the directed flag complex of G (Reimann et al., 2017). If v is a vertex in a directed
graph G, then both the closed neighbourhood graph of v and its associated directed flag complex
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are referred to as the tribe of v. For a more comprehensive mathematical explanation of these
concepts and the associated invariants the reader is referred to CGLLRS et al. (2020). We now
describe the parameters from Table 1 in a topological setting. In the Supplementary Material
9.1 we give more heuristic explanations to complement the mathematical definitions.

5.3 In-degree and out-degree

If G is a directed graph and v is a vertex in G, the in-degree of v in G is the number of directed
edges in G that end at v, and the out-degree of v in G is the number of directed edges that
emanate from v in G. The degree of v in G is the sum of its in-degree and out-degree. Note that
the degree of v in G is one less than the number of vertices in the closed neighbourhood of v.
Degrees of all the vertices in a graph, and associated degree sequences, characterize properties
of the graph (Diestel, 2017). In- and out-degree of a single vertex in a graph are, however, very
local parameters, and in themselves do not inform on global structure of the graph. Note that a
directed n-clique is characterized by having one vertex with in-degree zero (within the clique),
called the source, and one vertex with out-degree zero (within the clique), called the sink.

5.4 Transitive clustering coefficient

The clustering coefficient at a vertex v in a graph G is a measure of how interconnected the
vertices of the neighbourhood of v are. This coefficient has been widely studied, initially by
Watts and Strogatz (Watts and Strogatz, 1998) in undirected graphs and by Fagiolo (Fagiolo,
2007) for directed graphs. We use a variation called the transitive clustering coefficient, which
appeared in CGLLRS et al. (2020), and is more suitable to our context, since in our topological
analysis we only consider directed cliques in the construction of the directed flag complex, and
therefore in tribes. The transitive clustering coefficient of a vertex v in a directed graph G is
defined by

C2(v) =
the number of directed 3-cliques that contain v

the number of possible directed 3-cliques that could contain v
. (1)

Any pair of edges that are incident to v could theoretically form one or two directed 3-cliques
depending on their orientation. Therefore, the numerator in the definition is the number of actual
directed 3-cliques that contain v, while the denominator is the maximum number of theoretically
possible directed 3-cliques that contain v. The difference between this definition and that of
Fagiolo is that in his definition all possible 3-cliques are considered (including the cyclical ones),
where in our definition the cyclical cliques are omitted from the count. The number of possible
directed 3-cliques at a vertex v in a directed graph is calculated as a function of the in-degree
and out-degree of v, as well as the number of reciprocal connections it forms (CGLLRS et al.,
2020).

Topologically a 3-clique is 2-dimensional, hence the 2 in the subscript of C2. The transitive
clustering coefficient can be generalised for higher dimensions, but this is not used here.

5.5 Density coefficient

Every directed (k + 1)-clique contains k + 1 directed k-cliques as its faces, but no number of
directed k-cliques will necessarily form any (k+ 1)-cliques. If we let Qk(v) denote the number of
directed k-cliques that contain a vertex v, then the quotient Qk+1(v)/Qk(v) gives an indication
of how efficiently k-cliques are put together around v to create (k + 1)-cliques. This number
can be shown to be arbitrarily small or large, depending on the ambient graph (CGLLRS et al.,
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2020). Therefore, to obtain a distribution as a number between 0 and 1, we normalise and define
the k-th density coefficient for a vertex v in a graph G with n vertices to be

Dk(v) =
k

(k + 1)(n− k)
· Qk+1(v)

Qk(v)
. (2)

With this definition, if G is a directed graph on n vertices, where any pair of vertices is
reciprocally connected then the k-th density coefficient of any vertex in it will be 1 for all k. For
instance the 2nd density coefficient of a vertex v is defined by

D2(v) =
2

3(n− 2)
· Q3(v)

deg(v)
.

In all cases the subscript k refers to (k + 1)-cliques being topologically k-dimensional. Notice
also that Q2(v) = deg(v).

5.6 Homological parameters

If G is a directed graph, let XG denote its directed flag complex. This is a topological space
obtained from G by replacing every directed 2-clique (a directed edge) by a line segment (or in
mathematical language - a 1-simplex), every directed 3-clique by a solid triangle (a 2-simplex),
every directed 4-clique by a solid tetrahedron (a 3-simplex), and so on in higher dimension. In
general each directed (n + 1)-clique is replaced by an n-simplex - an n-dimensional object that
generalises the concepts of, line segment, triangle and tetrahedron to a general dimension. The
directed flag complex XG of the directed graph G has been defined and studied in the context of
neuronal networks and neuroscience in Reimann et al. (2017) and Masulli and Villa (2016).

Any directed (n+ 1)-clique contains exactly n+ 1 directed n-sub-cliques. The corresponding
n-simplex contains n+ 1 (n− 1)-dimensional faces, that are themselves (n− 1)-simplices in XG .
Using this structure it is possible to associate with the directed flag complex an algebraic object
called a chain complex. It is constructed as follows. For every n ≥ 0, take Cn(G) to be the vector
space over the finite field of 2 elements (or any other field) Lidl and Niederreiter (1997), with
basis given abstractly by the set of all n-simplices in XG or equivalently all the directed (n+ 1)-
cliques in G. Taking faces of simplices gives rise, for every n ≥ 1, to a linear transformation
called a differential

∂n : Cn(G)→ Cn−1(G).

The n-the homology group of XG (with coefficients in the field of 2 elements) is defined by

Hn(XG) = Ker(∂n)/Im(∂n+1),

namely the quotient vector space of the kernel of ∂N by the subspace that is the image of ∂n+1.
For the purpose of the discussion in this article, what is important to understand is only the
dimension of the vector space Hn(XG) - the so called the n-th Betti number of XG . If we let
Dn denote the matrix representing the linear transformation ∂n, then the n-th Betti number,
denoted bn or bn(G), is calculated as the difference

bn = Null(Dn)− rk(Dn+1),

i.e., the dimension of the null-space Dn minus the dimension of the column space of Dn+1.
These numbers depend on the field as well as on the graph G, but in this article we worked only
with the field of 2 elements. The interested reader is referred to Hatcher (2002) for a thorough
mathematical background on these concepts.
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The 0-th Betti number b0 is exactly the number of connected components of G. The 1-st
Betti number b1 can be thought of as the number of distinct loops in G that are not bounding a
2-dimensional subspace in XG . Intuitively, the Betti numbers of XG are a count of n-dimensional
“cavities” in XG (Reimann et al., 2017).

In this paper we consider two extra topological metrics that are associated to Betti numbers.
The first is the classical Euler characteristic. The Euler characteristic χ(XG) can be computed
in two ways that yield the same number. One is the alternating sum

χ = b0 − b1 + b2 − b3 + · · ·
of the Betti numbers of XG . The other is the alternating sum of the number of directed cliques
in each dimension in G. The Euler characteristic is relatively very easy to compute (using the
second method) and although it is considered to be a weak invariant of topological spaces, it is
frequently extremely efficient both in theory and in applications. It is used in a classification
task in CGLLRS et al. (2020) and as a topological parameter in this article.

The second topological parameter we use here is the normalized Betti coefficient. It is a
weighted sum of the Betti numbers:

B(XG) :=
∞∑
i=0

(i+ 1) · bi
the number of i-dimensional simplices in XG

. (3)

The Betti coefficient is a rough measure of how efficient the graph G is in creating cavities in all
dimensions where they exist in the directed flag complex XG .

5.7 Spectral parameters

Every square n × n real valued matrix A has eigenvalues {λ1, . . . , λn}, which are the (real or
complex) solutions to the characteristic equation Ax = λx where x is a vector of length n.
Equivalently the eigenvalues are the roots of the characteristic polynomial of A. The collection
of eigenvalues of a matrix A is often referred to as the spectrum of A.

Considering the set of moduli (absolute values) of the eigenvalues of A, one associates three
invariants with A:

• The spectral radius of A is the largest modulus of an eigenvalue.

• The low spectral gap of A is the smallest modulus of a non-zero eigenvalue of A.

• The high spectral gap of A is the difference between the moduli of its two largest eigenvalues
(sorted by their moduli).

Let G be a directed graph with n vertices. The adjacency matrix A of G has (i, j)-entry
ai,j = 1 if there is a directed edge from vertex i to vertex j, and 0 otherwise. The Chung–
Laplacian matrix has a more involved definition, which can be found in Chung (2005). A graph
is said to be strongly connected if for any two distinct vertices u and v in G there is a directed
path in G from u to v. The Chung–Laplacian matrix is only defined on a strongly connected
graph. In this paper we consider the spectral radius of the adjacency matrix of the graphs we
studied, as well as its low and high spectral gaps. We also considered the Chung–Laplacian
spectral gaps of the largest strongly connected components of graphs, whenever these can be
uniquely determined.

These invariants are well studied in theoretical and applied graph theory, where their main
objective is to relate various structural properties of graphs to the spectrum. For example the
Laplacian spectral gap is famously known to measure how easy the graph is to disconnect through
so-called Cheeger inequalities (Chung, 1996).
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5.8 Relative boundary

For a subset S ⊆ V of vertices in a graph G = (V,E), the edge boundary

∂S := {(i, j) ∈ E | either i ∈ S, j /∈ S or j ∈ S, i /∈ S} (4)

of S consists of all edges with exactly one endpoint in S. Likewise, the edge volume

|S| := |{(i, j) ∈ E | i ∈ S, j ∈ S}| (5)

of S is the number of edges whose both endpoints are in S. We then define the relative boundary

rb(S) :=
|∂S|
|S| (6)

of S as the size of its edge boundary divided by its volume. Relative boundary is related to
the so-called isoperimetric or Cheeger number (Chung, 1996) and is designed to measure how
strongly the subset S connects to the rest of the graph relative to its internal connectivity.

5.9 Extension

For a subset S ⊆ V of vertices in a graph G = (V,E), its extension is the number of vertices that
are connected to S but are not in S itself. The afferent extension of S and the efferent extension
of S are defined as

ae(S) := |{v ∈ V \ S | (v, j) ∈ E, j ∈ S}|, (7)

ee(S) := |{v ∈ V \ S | (i, v) ∈ E, i ∈ S}|, (8)

respectively. Note that, for example, a vertex v outside of S for which (v, s1), (v, s2) ∈ E for
distinct s1, s2 ∈ S will be counted only once in ae(S), so as to distinguish the extension of S from
the edge boundary of S. In other words, ae(S) + ee(S) is bounded above by the edge boundary
of S, and the bound is attained whenever no vertex in V \S is connected by more than one edge
to S. In that case, the edge boundary coincides with the extension.

5.10 Analysis of simulation results

The results of the simulations were analyzed according to the pipeline depicted in Fig. 1. Inputs
were:

1. The spike trains of the 31,346 most central excitatory neurons in the simulations

2. For each neuron its morphological type, layer and location in the model (x,y,z-coordinates)

3. The adjacency matrix of synaptic connections between all neurons in the model

4. The identifier of the pattern presented during each stimulation (the “stimulus stream”).

The entire analysis pipeline conceptualized in Fig. S1 was implemented in custom python code
(python version 3.7), except for parts of the topological analysis which used custom c++ code
that was wrapped for use in python using pybind11. Both the inputs and the code will be made
publicly available in a timely manner.

The following sections will explain the individual steps of the pipeline.
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Supplementary Figure 1: Overview of the inputs into the analysis pipeline and its individual
analysis steps.

5.11 Generating neuron samples (Sample-tribes)

Neuron samples were generated in one of five ways:

1. Volumetric. First, we found the center of the neuron population by averaging their x, y, and
z-coordinates. Next, we added a random offset between −100µm and 100µm for the x- and
z-coordinates (parallel to layer boundaries) and −300µm and 300µm for the y-coordinate
(orthogonal to layer boundaries). Next, we found all neurons in the model within a certain
radius of that point and randomly picked 600 neurons from them. We repeated these steps
to generate 25 samples each for radii of 125µm, 175µm, 225µm, 275µm and 325µm.

2. Champions. We generated champions by finding the 25 tribes that yielded the largest
values for one of the topological parameters described above. We limited the selection to
tribes with at least 50 neurons.

3. Random samples. For each of the morphological types of neurons in the model, we randomly
picked 25 neurons and used their associated tribes.

4. Subsampled. For the champions of in-degree, out-degree, and euler characteristic we gen-
erated random subsamples. First, we randomly picked five champions of each of the three
parameters. Next, we randomly selected a certain fraction of the neurons contained in the
tribes. We repeated this five times, generating five subsamples of each picked tribe. We
thus generated subsamples at 90%, 70%, 50%, 25% and 15% of the original tribe sizes.

5. Subtribes. For volumetric samples, we picked the 25 largest tribes contained within a
sample.
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5.12 Triad counts

Input into the triad counter was the adjacency matrix of the model and the identifiers of neu-
rons in a given sample. First we extracted the submatrix defining the internal connectivity of
the sample. Then we recursively iterated through all possible combinations of three neurons
of the sample and classified their connectivity into one of 13 motifs. We limited this analysis
to neuron triplets that were strongly connected in either direction, otherwise three additional
motifs (unconnected, single connection, single bidirectional connection) would have been possible.

We then calculated the expected numbers of each motif in two control models. First, an
Erdos-Renyi graph with the same number of nodes and edges, yielding CER(i), the expected
count of motif i. Second, an Erdos-Renyi graph with the same number of nodes and edges,
but taking into account the “tribal” sampling procedure. That is, taking into account that the
sample contains one central neuron and its neighbourhood. We calculated this as follows.

First, we calculated the number of triplets that contain the chief (central neuron):

Tchief =
(N − 1) · (N − 2)

2
, (9)

Where N refers to the size of the sample. In this arrangement, the connections binding the chief
to the two other neurons can have one of three patterns. From the view of the chief they can be
efferent-efferent (probability 0.25), efferent-afferent (probability 0.5) or afferent-afferent (0.25).
For each of these possibilities we analytically derived the expected numbers of motifs assuming
that the remaining connections were subject to a uniform, statistically independent probability
derived. This included the option to turn the connection binding the chief to a tribe member
into a bidirectional connection. The thusly derived motif probabilities, Pchief , multiplied by the
number of chief-including triplets yielded the first part of the expected motif counts.

Next, the number of triplets not containing the chief was:

Tnon−chief =
(N − 1) · (N − 2) · (N − 3)

6
(10)

For these we derived the expected motif counts according to an Erdos-Renyi control. Total
expected count of motif i in tribal sampling was then:

Ctribe(i) = Tchief (i) ∗ Pchief (i) + Tnon−chief (i) ∗ PER(i) (11)

The degree of over- and under-expression of motif i in volumetric samples was then calculated
as:

Ovol(i) =
Cvol(i)− CER(i)

Cvol(i) + CER(i)
. (12)

The degree of over- and under-expression in champion samples was calculated relative to the
volumetric samples. First we normalized each sample against their respective control:

Ôvol(i) =
Cvol(i)

CER(i)
, Ôchamp(i) =

Cchamp(i)

Ctribe(i)
, (13)

Then, we normalized the motif count in the samples to the mean and standard deviation of the
volumetric samples:

Ochamp(i) =
Ôchamp(i)−mean(Ôvol(i))

std(Ôvol(i))
, (14)

Where mean and std refer to the mean and standard deviation over volumetric samples.
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5.13 Calculating topological parameters for samples

We calculated the values of the topological parameters for all possible tribes, i.e. we considered
each neuron in the model as a chief and calculated the parameters of the resulting tribe. We also
calculated parameter values for volumetric samples in two ways.

First, by simply applying the topological method to the connectivity of the sample. This
could be done for all parameters except in-degree, out-degree, transitive clustering coefficient.
These parameters were calculated in tribal samples as the in-degree, out-degree, etc. of the chief
and were consequently undefined for volumetric samples. We instead used the mean in-degree,
out-degree of clustering coefficient of all neurons in the volumetric sample.

Second, by taking the tribal structure of the sample into account. We did this by calculating
the relative overlap of the sample with each possible tribe in terms of neuron contents. Then
we calculated the value of a topological parameter as a weighted average of the n strongest
overlapping tribes with the weight being proportional the size of the overlap. We optimized the
value of n to yield the best predictor of accuracy, separately for each topological parameter.

5.14 Calculation of coupling coefficients

Input into this step were the raw spike trains of all neurons recorded in the simulations.
We started by binning the spike trains of all neurons in the model into 10 ms bins. This yielded
a N × T sparse matrix, where N was the number of neurons and T the number of time bins
and the entry at i, j specified the number of spikes of neuron i in time bin j. For the coupling
coefficient of neuron i, we used the ith row of the matrix as the time series of firing of that
neuron, and the mean value of all rows of the matrix, except i as the average firing rate of all
others. We then calculated the coupling coefficient as the normalized correlation between the
two time series (numpy.corrcoef).

5.15 Manifold analysis

Input into this step were the raw spike trains of all neurons recorded in the simulations, informa-
tion about the pattern identity of each stimulation, and the identifiers of a sample of neurons.
We began by binning the spike trains of all samples neurons into 10 ms bins. This yielded a
Nsample × T sparse matrix, where Nsample denotes the number of neurons in the sample. Non-
spiking neurons were removed. Next, we extracted the twelve strongest components from this
Nsample-dimensional time series using factor analysis (sklearn.decomposition.FactorAnalysis).
Then we split the resulting 12-dimensional time series into 200 ms time windows that each cor-
responded to a stimulus presentation. Finally, we grouped these time windows by the identity
of the stimulus pattern presented at that time.

5.16 Stimulus classification

Input into the classifier was either: The twelve strongest components of the spiking activity of a
tribe, extracted as detailed above. Or: The time series of euler characteristic values of the active
sub-tribe extracted from the activity of 25 tribes as detailed in the main text. In both cases, the
input was split into time windows that each represented a single trial, i.e. a single stimulus. The
time windows were further grouped by the identity of the stimulus pattern used in the trial.
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Next, we generated for each time window a time series of expected outputs of the classifier.
This was simply the identity of the stimulus (an integer between 0 and 7), repeated for each
time step. 60% of the trials and their associated expected outputs were used to train a linear
classifier (sklearn.svm.SVC). The remaining 40% were used to determine classification accuracy.
This was repeated 5 times, thereby conducting 6-times cross validation.

5.17 Dependence of classification accuracy on topological parameters

We first generated a model of accuracy on tribe size. To that end, we calculated for each sample
its mean tribe size, i.e. the mean over all neurons in a sample of the size of the tribe associated
with the neuron. This could be calculated equally for tribal and volumetric samples. Next, as
the model of the impact of tribe size, we conducted a linear fit of mean tribe size against classifi-
cation accuracy (using the manifold method) based on the data of 1276 randomly picked tribes.
The fit minimized the sum of squared errors and was performed using the statsmodels package
in python 3.7. Specifically, we used the formula based interface with the following formula:

accuracy ∼ mean tribe size

We calculated the residual accuracy for each sample – tribal or volumetric – by subtracting
the prediction of this model from the classification accuracy values.

We then determined the relation between topological parameters and residual accuracy as
follows. We began with a simple control model predicting the residual accuracy from the sam-
pling radius in the case of volumetric samples or from the morphological type of the chief in the
case of tribal samples. Both morphological type and radius were considered categorical variables.
We obtained the models with the formula based interface to statsmodels as:

accuracy residual ∼ C(radius)
accuracy residual ∼ C(morph type)

Next, we normalized the values of each topological parameter to zero mean and unity variance
and generated linear fits taking into account the effects of both radius / morphological type and
and individual, normalized parameter value:

accuracy residual ∼ C(radius) + parameter
accuracy residual ∼ C(morph type) + parameter

We then calculated the slope of the fits in the parameter to assess the strength of the effect
of that parameter; and the fraction of variance explained, from which we subtracted the fraction
of variance explained by the simpler control models.
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Lewis, D. A., Marin, O., Markram, H., Muñoz, A., Packer, A., Petersen, C. C. H., Rock-
land, K. S., Rossier, J., Rudy, B., Somogyi, P., Staiger, J. F., Tamas, G., Thomson, A. M.,
Toledo-Rodriguez, M., Wang, Y., West, D. C., and Yuste, R. (2008). Petilla terminology:
nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews.
Neuroscience, 9(7):557–568.

Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S. R., Antille, N., Arsever, S.,
Atenekeng, G., Bilgili, A., Brukau, Y., Chalimourda, A., Chindemi, G., Delalondre, F., Du-
musc, R., Eilemann, S., Gevaert, M. E., Gleeson, P., Graham, J. W., Hernando, J. B., Kanari,
L., Katkov, Y., Keller, D., King, J. G., Ranjan, R., Reimann, M. W., Rössert, C., Shi, Y., Shill-
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Supplementary Figure 2: (A) Graphs, neighbourhoods, and cliques. (B) Different ways to com-
plete two edges to a directed 3-clique. (C) Different types of graphs. Note the Chung–Laplacian
spectrum considers only the largest strongly connected component when computing eigenvalues.
(D) Comparisons of four different graph parameters relative to one of its vertices. (E) Compar-
isons of three different graph parameters and two different spectra (unique absolute values of
eigenvalues of matrices).
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9.1 Supplementary explanations

Here we expand on the topological methods presented in Section 5.2 and subsequent sections,
and describe the parameters from Table 1 in a more heuristic manner trying to motivate them
from a neuroscientific point of view. Figure 2 is a visualization of some of the parameters.

9.1.1 In-degree and out-degree

In signal-flow networks, a high in-degree indicates that a vertex has a potential to receive inputs
from many other vertices, while high out-degree indicates potentiality to transmit outputs to
many vertices. In a neuroscience context, high in-degree of a vertex v indicates that the cor-
responding neuron is potentially receiving spikes from many neurons, while a high out-degree
means the neuron is potentially transmitting its spikes to a large number of synaptically con-
nected neighbours.

9.1.2 Clustering coefficient

The clustering coefficient at a vertex v is a measure of how interconnected the vertices of the
neighbourhood of v are. A “possible” directed 3-clique at v is formed by two directed edges
containing v and two other distinct vertices. This coefficient aims to measure how far away the
neighbourhood of v is from complete communication, in a directed way, within all its triplets of
neighbours.

9.1.3 Density coefficient

Slightly coarser than the clustering coefficient is the 2nd (unnormalized) density coefficient of
v, which is the number of directed 3-cliques that contain v, divided by the degree of v. This
value is normalized so that v in a complete directed graph on n vertices has density coefficient
1. The idea is that the larger the density coefficient of v is, the more the vertex participates in
“informational exchange”, as indicated by the presence of many directed 3-cliques.

9.1.4 Homological parameters

The Betti coefficient as compared to the Euler characteristic (Section 5.6) is a more refined
method to summarize the Betti numbers, by adding scaled Betti numbers together. This number
is normalized, so that it has value 1 if the topological space XG associated to the graph G is
a sphere (of any dimension). In other words, as the n + 1 Betti numbers for an n-dimensional
sphere are 1, 0, 0, . . . , 0, 0, 1, the normalized Betti coefficient measures how close XG is to being a
sphere, where “close” is used in terms of Betti numbers, that is, in terms of different dimensional
holes.

9.1.5 Spectral parameters

Solution vectors x to the characteristic equation Ax = λx are the eigenvectors of the matrix A.
These eigenvectors in the graph setting are vertex functions. When A is the adjacency matrix
of a graph, the kth element in the product vector Ax is the sum of the function values at the
vertices that the kth vertex has a directed edge to. If this equals the kth element of x scaled
with λi as in the characteristic equation, we see that heuristically the eigenvalues of an adjacency
matrix can be seen as scalings of vertex values in a “balanced” signal transmission in a sense
that a vertex fully distributes its value to its out-neighbours. The spectral radius and spectral
gap (low) then correspond to the maximal and minimal transmission and spectral gap (high) to
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the difference between the two most maximal transmissions. Similar derivation for Laplacian is
not so easy but the Laplacian spectral gap is a measure of robustness of the graph in the sense
that how difficult the graph is to disconnect into two separate sets of vertices by removing edges
5.7.
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Supplementary Figure 3: Comparisons of the edge boundary, relative boundary, afferent exten-
sion, and efferent extension for particular subsets. Subsets are chosen as tribes.

9.1.6 Relative boundary

A subset of vertices in a graph might connect within themselves while also connecting to vertices
not in the subset. Relative boundary therefore measures the relative dominance between these
two connectivities. It is a measure of the communication potential within a subset, in the same
fashion as the clustering coefficient, while also taking into account communication with the
ambient graph.

9.1.7 Extension

The afferent extension is defined to measure how many different vertices in the ambient graph
might send information into the selected subset of the graph. Likewise the efferent extension
measures how much information the subset can potentially send to the ambient graph. Neural
spikes flow between neurons through directed synaptic connections and the amount of spikes
that can pass through a neuron depends on how many neurons it is connected to. The extension
aims to mimic this for a collection of neurons, separating it to incoming and outgoing flow.

9.2 Supplementary figures
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Supplementary Figure 5: Time series of the twelve strongest components (panels) during pre-
sentation of the individual stimulus patterns (colored traces). Thick lines and error bars: mean
and SEM. Thin lines: for five randomly selected trials using a given pattern.
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Supplementary Figure 6: Classification accuracies, using the manifold-based method, for the
randomly selected tribes with chiefs of the indicated morphological type. Grey bars and error
bars: mean and std. Blue dots: individual tribes.
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Supplementary Figure 7: Values of topological parameters against residual accuracy for randomly
selected tribes. Grey dots: individual tribes. Black line: linear fit.
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Supplementary Figure 8: A: Synthetic values of topological parameters for volumetric samples
against their residual accuracy. Blue dots: individual samples. Black line: linear fit. B: Number
of tribes used in the calculation of the synthetic values (see Sec. 5.13) against the resulting cor-
relation (pearsonr) with classifier accuracy. Individual, colored lines: For individual topological
parameters. Colored dots: Maxima of the absolute value of correlations, indicating the number
of tribes used in the remainder of the manuscript.
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Supplementary Figure 9: The neural circuit to read out the Euler characteristic of the active
circuit of a directed 3-clique, the graph in solid black. The red neurons are the read out neurons
for the 2-cliques, the blue neuron is the read out clique for the 3-clique. The black and blue
dotted lines have weight −1, and the red dotted lines have weight 1. The orange neuron stores
the Euler characteristic of the active subgraph.
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