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6

Abstract The activity of a neural population encodes information about the stimulus that7

caused it, and decoding population activity reveals how neural circuits process that information.8

Correlations between neurons strongly impact both encoding and decoding, yet we still lack9

models that simultaneously capture stimulus encoding by large populations of correlated10

neurons and allow for accurate decoding of stimulus information, thus limiting our quantitative11

understanding of the neural code. To address this, we propose a class of models of large-scale12

population activity based on the theory of exponential family distributions. We apply our models13

to macaque primary visual cortex (V1) recordings, and show they capture a wide range of14

response statistics, facilitate accurate Bayesian decoding, and provide interpretable15

representations of fundamental properties of the neural code. Ultimately, our framework could16

allow researchers to quantitatively validate predictions of theories of neural coding against both17

large-scale response recordings and cognitive performance.18

19

Introduction20

A foundational idea in sensory neuroscience is that the activity of neural populations constitutes21

a “neural code” for representing stimuli (Dayan and Abbott, 2005; Doya, 2007): the activity pattern22

of a population in response to a sensory stimulus encodes information about that stimulus, and23

downstream neurons decode, process, and re-encode this information in their own responses.24

Sequences of such neural populations implement the elementary functions that drive perception,25

cognition, and behaviour (Pitkow and Angelaki, 2017). Therefore, by studying the encoding and de-26

coding of population responses, researchers may investigate how information is processed along27

neural circuits, and how this processing influences perception and behaviour (Wei and Stocker,28

2015; Panzeri et al., 2017; Kriegeskorte and Douglas, 2018).29

Given a true statistical model of how a neural population responds to (encodes information30

about) stimuli, Bayes’ rule can transform the encoding model into an optimal decoder of stimu-31

lus information (Zemel et al., 1998; Pillow et al., 2010). However, when validated as Bayesian de-32

coders, existing statistical models of neural encoding are often outperformed by models trained33

to decode stimulus-information directly, indicating that the encoding models miss key statistics of34

the neural code (Graf et al., 2011;Walker et al., 2020). In particular, the correlations between neu-35

rons’ responses to repeated presentations of a given stimulus (noise correlations), and how these36

noise correlations are modulated by stimuli, can strongly impact coding in neural circuits (Zohary37

et al., 1994; Abbott and Dayan, 1999; Sompolinsky et al., 2001; Ecker et al., 2016; Kohn et al., 2016;38

Schneidman, 2016), especially in large populations of neurons (Moreno-Bote et al., 2014; Montijn39

et al., 2019; Bartolo et al., 2020; Kafashan et al., 2020; Rumyantsev et al., 2020). Yet effectively40

modelling noise correlations has proven challenging.41

Validating theories of population coding (Ma et al., 2006; Beck et al., 2011a; Ganguli and Simon-42
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celli, 2014;Makin et al., 2015; Yerxa et al., 2020) in large neural circuits thus depends on encoding43

models that support accurate Bayesian decoding, effectively capture noise-correlations, and effi-44

ciently fit large-scale neural recordings. Generalized linear models (GLMs) are one class of model45

that yield effective Bayesian decoders, and GLMs have been applied to analyzing spatio-temporal46

features of information processing in the retina and cortex (Pillow et al., 2008; Park et al., 2014;47

Runyan et al., 2017). Nevertheless, neural correlations are often the result of low-dimensional,48

shared variability (Arieli et al., 1996; Ecker et al., 2014; Goris et al., 2014; Rabinowitz et al., 2015;49

Okun et al., 2015; Semedo et al., 2019), and it is unknown whether extensions of the GLM ap-50

proach to capture shared-variability (Archer et al., 2014; Zhao and Park, 2017) can support accu-51

rate Bayesian decoding. Similarly, methods based on factor analysis (Yu et al., 2009; Ecker et al.,52

2014; Semedo et al., 2019) have proven highly effective at modelling neural correlations in large-53

scale recordings, but it also unknown if they can support Bayesian decoding. Finally, a model class54

related to GLMs is pairwise-maximum entropy models (Schneidman et al., 2006; Lyamzin et al.,55

2010; Granot-Atedgi et al., 2013; Meshulam et al., 2017), which have been used to investigate se-56

mantic clustering of responses in the retinal code (Ganmor et al., 2015); yet these models have57

so-far been limited to population sizes of tens of neurons.58

Towards modelling responses and accurate Bayesian decoding in large populations of corre-59

lated neurons, we have developed a class of spike-count encoding model based on conditional fi-60

nitemixtures of multivariate Poisson distributions, which we refer to as CPMs (Conditional Poisson61

Mixtures). Within neuroscience, Poisson mixtures are widely applied to modelling the spike-count62

distributions of individual neurons (Wiener and Richmond, 2003; Shidara et al., 2005; Goris et al.,63

2014; Taouali et al., 2015). Outside of neuroscience, mixtures of multivariate Poisson distributions64

are an established model of multivariate count distributions that effectively capture correlations65

in count data (Karlis and Meligkotsidou, 2007; Inouye et al., 2017).66

Building on the theory of exponential family distributions (Wainwright and Jordan, 2008;Macke67

et al., 2011b), our model extends previous mixture models of multivariate count data in two ways.68

Firstly, we develop a tractable extension of Poisson mixtures that captures both over- and under-69

dispersed response variability (i.e. where the response variance is larger or smaller than themean,70

respectively) based on Conway-Maxwell Poisson distributions (Shmueli et al., 2005; Stevenson,71

2016). Secondly, we introduce an explicit dependence of the model on a stimulus variable, which72

allows themodel to accurately capture changes in response statistics (including noise correlations)73

across stimuli. Importantly, the resulting encodingmodel affords closed-form expressions for both74

its Fisher information and probability density function and thereby a rigorous quantification of75

the coding properties of a modelled neural population (Dayan and Abbott, 2005). Moreover, the76

model learns low-dimensional representations of stimulus-driven neural activity, andwe showhow77

it provides a parsimonious description of a fundamental property of population codes known as78

information-limiting correlations (Moreno-Bote et al., 2014; Montijn et al., 2019; Bartolo et al.,79

2020; Kafashan et al., 2020; Rumyantsev et al., 2020).80

We apply the CPM framework to both synthetic data and recordings from macaque primary81

visual cortex (V1), and demonstrate that it effectivelymodels responses of populations of hundreds82

of neurons, captures noise correlations, and supports accurate Bayesian decoding. Ultimately, our83

model of neural encoding and decoding can be used to quantify coding properties of a neural84

circuit, such as their efficiency, linearity, or information capacity.85

Results86

A critical part of our theoretical approach is based on expressing models of interest in exponen-87

tial family form. An exponential family distribution p(n) over some data n (in our case, neural re-88

sponses) is defined by the proportionality relation p(n) ∝ eθ⋅s(n)b(n), whereθ are the so-called natural89

parameters, s(n) is a vector-valued function of the data called the sufficient statistic, and b(n) is a90

scalar-valued function called the base measure (Wainwright and Jordan, 2008). The exponential91

family form allows us to modify and extend existing models in a simple and flexible manner, and92
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to gain analytical insight into the coding properties of our models. We demonstrate our approach93

with applications to both synthetic data generated by example CPMs, and data recorded in V1 of94

anaesthetized and awake macaques viewing drifting grating stimuli at different orientations (for95

details see Materials and methods).96

Extended Poissonmixturemodels capture spike-count variability and covariability97

Our first goal is to define a class of models of neural population activity, that model neural activity98

directly as spike-counts, and that accurately capture single-neuron variability and pairwise covari-99

ability. We base our models on Poisson distributions, as they are widely-applied to modelling the100

trial-to-trial distribution of the number of spikes generated by a neuron (Dayan and Abbott, 2005;101

Macke et al., 2011a). We will also generalize our Poisson models with Conway-Maxwell (CoM) Pois-102

son distributions, because they can capture the broad range of Fano factors (FF; the variance di-103

vided by the mean) observed in cortex, in contrast with Poisson distributions for which the FF is104

always 1 (Sur et al., 2015; Stevenson, 2016; Chanialidis et al., 2018).105

Mixtures of Poisson distributions are also used to capture complex spike-count distributions106

in cortex, and allow for over-dispersion (FF>1) (Shidara et al., 2005; Goris et al., 2014; Taouali107

et al., 2015) (Figure 1A). In our case we consider multivariate Poisson mixtures, as they capture108

covariability in count data as well (see Karlis and Meligkotsidou (2007) for the general definition).109

To construct a multivariate Poisson mixture we begin with a product of independent Poisson dis-110

tributions, one per neuron. We then mix a finite number of such independent Poisson models,111

to arrive at a multivariate spike-count, finite mixture model (see Materials and methods). Impor-112

tantly, although each mixture component is a product of independent Poisson distributions, ran-113

domly switching between components induces correlations between the neurons (Figure 1B,C). In114

fact, multivariate Poisson mixtures may model arbitrary pairwise covariability (see Materials and115

methods, Equation 6). Nevertheless, they are limited because the variance of individual neurons116

cannot be smaller than the mean, and are thus always over-dispersed (Equation 5, Materials and117

methods).118

To address this limitation, we show how to express multivariate Poisson mixtures in an expo-119

nential family form, and then generalize the model with CoM-Poisson distributions. We first note120

that a multivariate Poisson mixture with dK components may be expressed as a latent variable121

model over spike-count vectors n and latent component-indices k, where 1 ≤ k ≤ dK . In this formu-122

lation we denote the kth component distribution by p(n ∣ k), and the probability of realizing (switch-123

ing to) the kth component by p(k). The mixture model over spike-counts n is then expressed as124

the marginal distribution p(n) = ∑dK
k=1 p(n ∣ k)p(k) =

∑dK
k=1 p(n, k), of the joint distribution p(n, k). Un-125

der mild regularity assumptions (see Materials and methods), we may reparameterize this joint126

distribution in exponential family form as127

p(n, k) ∝ eθN ⋅n+θK ⋅δ(k)+n⋅�NK ⋅δ(k)
∏dN

i=1 ni!
, (1)

where θN , θK , and �NK are the natural parameters of p(n, k), and δ(k) = (�2(k),… , �dK (k)) is the128

Kronecker delta vector defined by �j(k) = 1 if j = k, and 0 otherwise.129

The exponential family form of a multivariate Poisson mixture represents the first component130

distribution (i.e. p(n ∣ k) with index k = 1) as a baseline distribution, and the other components131

(where k > 1) as modulations of the baseline distribution, and this representation helps us extend132

multivariate Poisson mixtures. In particular, the first component distribution has natural (base-133

line) parameters θN , and for k > 1, the natural parameters of p(n ∣ k) are the sum of the baseline134

parameters θN and one row from thematrix of parameters�NK (Equation 12, Materials andmeth-135

ods). Because the dimension of θN is much smaller than the total number of parameters in a given136

mixture, the baseline parameters provide a relatively low-dimensional means of affecting all the137

component distributions of the given mixture, as well as the index probabilities (Figure 1D; see138

Materials and methods, Equation 11 for how p(k) depends on θN ).139
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Figure 1. Poisson mixtures and Conway-Maxwell extensions A: A Poisson mixture distribution (red), defined asthe weighted sum of three component Poisson distributions (black; scaled by their weights). FF denotes theFano Factor (variance over mean) of the mixture. B,C: The average spike-count (rate) of the first and secondneurons for each of 13 components (black dots) of a bivariate Poisson mixture model, and 68% confidenceellipses for the spike-count covariance of the mixture (red lines; see Equations 5 and 6). The spike-countcorrelation of each mixture is denoted by r. D: Same model as A, except we shift the distribution byincreasing the baseline rate of the components. E,F: Same model as A, except we use an additional baselineparameter based on Conway-Maxwell Poisson distributions to concentrate (E) or disperse (F) the mixturedistribution and its components.

We now extend Relation 1 with CoM-Poisson theory, and propose the latent variable exponen-140

tial family141

p(n, k) ∝ eθN ⋅n+θ
∗
N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k), (2)

where lf (n) = (log(n1!),… , log(ndN !)) is the vector of log-factorials of the individual spike-counts,142

and θ∗
N are a set of natural parameters based on CoM-Poisson distributions (see Materials and143

methods). The exponential family form continues to represent the mixture in terms of a baseline144

distribution, in this case p(n ∣ k) is a product of independent CoM-Poisson distributions, with base-145

line parameters θN and CoM-based parameters θ∗
N . However, whereas the rows of�NK modulate146

θN depending on the component index k, the parameters θ∗
N are not modulated, and remain the147

same for each component distribution (Equation 15, Materials and methods, and see Equation 14148

for index-probability formula). For the rest of this paper we refer tomodels described by Relation 1149

as vanilla mixtures, and models described by Relation 2 as CoM-based mixtures.150

Due to the addition of the CoM-based parameters, a CoM-based mixture can model under-151

dispersed (FF < 1) neural activity (Equation 16, Materials and methods). In Figures 1D-F we demon-152

strate how changing the parameters of the CoM-based mixture can concentrate or disperse both153

the mixture distribution and its components.154

To validate our mixture models, we tested if they capture variability and covariability of V1 pop-155

ulation responses to repeated presentations of a grating stimulus with fixed orientation (dN = 43156

neurons and dT = 355 repetitions in one awake macaque; dN = 70 and dT = 1, 200 in one anaes-157

thetized macaque). We optimized model parameters as described in Materials and methods. The158

CoM-Poisson mixture accurately captured single-neuron variability (Figure 2A-B, red symbols), in-159

cluding both cases of over-dispersion and under-dispersion. In contrast, the simpler multivariate160

Poisson mixture (Figure 2A-B, blue symbols) could not accommodate under-dispersion, and also161
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Figure 2. Capturing neural variability in V1 responses to a single stimulus with CPMs. We qualitatively comparevanilla Poisson mixtures (Relation 1) and CoM-based mixtures (Relation 2), on awake and anaesthetized V1responses to stimulus orientation x = 20◦; both mixtures are defined with dK = 4 components for awake data,and dK = 8 components for anaesthetized data (see Materials and methods for training algorithms). A,B:Empirical Fano factors of the awake (A) and anaesthetized data (B), compared to vanilla (blue) and CoM-basedmixtures (red). C,D: Empirical correlation matrix (upper right) of awake (C) and anaesthetized data (D),compared to the correlation matrix of the corresponding vanilla mixtures (lower left). E,F: Correlationshighlighted in C and D, respectively. G,H: Correlations highlighted in C and D, except model correlations arefrom CoM-based mixtures.

had a limited ability to model over-dispersion due to the coupling between the mean and variance162

(Equation 5). On the other hand, we found that both mixture models were flexible enough to qual-163

itatively capture pairwise noise correlations, both in awake and anaesthetized animals (Fig. 2C-H)164

(in later sections we quantitatively compare the model performance).165

Extended Poissonmixturemodels capture stimulus-dependent response statistics166

So far we have introduced the exponential family theory of vanilla and CoM-based Poisson mix-167

tures, and shown how they capture response variability and covariability for a fixed stimulus. To168

allow us to study stimulus encoding and decoding, we further extend our mixtures by inducing169

a dependency of the model parameters on a stimulus. When there are a finite number of stim-170

ulus conditions and sufficient data, we may define a stimulus-dependent model with a lookup171

table, and fit it by fitting a distinct model at each stimulus condition. However, this is inefficient172
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when the amount of data at each stimulus-condition is limited and the stimulus-dependent statis-173

tics have structure that is shared across conditions. A notable feature of the exponential family174

parameterizations in Relations 1 and 2 is that the baseline parameters influence both the index175

probabilities and all the component distributions of the model. This suggests that by restricting176

stimulus-dependence to the baseline parameters, we might model rich stimulus-dependent re-177

sponse structure, while bounding the complexity of the model.178

In general we refer to any finite mixture of independent Poisson distributions with stimulus-179

dependent parameters as a conditional Poisson mixture (CPM), and depending on whether the180

CPM is based on Relations 1 or 2, we refer to it as a vanilla or CoM-based CPM, respectively. Al-181

though there are many ways we might induce stimulus-dependence, in this paper we consider182

two forms of CPM: (i) a maximal CPM, which we implement as a lookup table, such that all the183

parameters in Relation 1 or 2 depend on the stimulus, and (ii) a minimal CPM, for which we restrict184

stimulus-dependence to the baseline parameters θN , resulting in the CoM-based CPM185

p(n, k ∣ x) ∝ eθN (x)⋅n+θ∗
N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k), (3)

where x is the stimulus, and θN (x) are the stimulus-dependent baseline parameters (we may re-186

cover a minimal, vanilla CPM by setting θ∗
N = −1). The tuning curves of the CPM neurons are the187

average spike-counts (firing rates) of each ni as a function of the stimulus x, and we refer to θN (x)188

as the baseline tuning curve parameters, as they define how the firing rates of the baseline CPM189

distribution (i.e. p(n ∣ x, k) when k = 1) depend on x. For k > 1, the modulated CPM p(n ∣ x, k) is190

then a scaled, or “gain-modulated” version of the baseline CPM (see Equations 12 and 15 and the191

accompanying discussions).192

Towards understanding the expressive power of CPMs, we study a minimal, CoM-based CPM193

with dN = 20 neurons, dK = 5 mixture components, and randomly chosen parameters (see Ma-194

terials and methods). Moreover, we assume that the stimulus is periodic (e.g. the orientation of195

a grating), and that the baseline tuning curves have a von Mises shape which is a widely applied196

model of neural tuning to periodic stimuli (Herz et al., 2017). We may achieve such a baseline197

shape by defining the baseline tuning curve parameters as θN (x) = θ0
N + �NX ⋅ vm(x), where θ0

N198

and �NX are the tuning curve parameters, and vm(x) = (cos 2x, sin 2x). Figure 3A shows that the199

tuning curves of the CPM neurons are approximately bell-shaped, yet many also exhibit significant200

deviations.201

We also study if CPMs can be effectively fit to datasets comparable to those obtained in typical202

neurophysiology experiments. We generated 200 responses from the CoM-based CPM described203

above— the ground truth CPM— to each of 10 orientations spread evenly over the half-circle, for a204

total of 2,000 stimulus-response sample points. We then used this data to fit a CPM with the same205

number of components. Towards this aim, we derived an approximate expectation-maximization206

algorithm (EM, a standard choice for training finite mixture models (McLachlan et al., 2019)) to207

optimize model parameters, that also accounts for the stimulus-dependence (see Materials and208

methods). Figure 3B shows that the tuning curves of the learned CPM are nearly indistinguishable209

from those of the ground truth CPM (Figure 3B).210

To reveal the orientation-dependent latent structure of the model, in Figure 3C we plot the211

index probability p(k ∣ x) for every k as a function of the orientation x. In Figure 3D we show212

that the orientation-dependent index probabilities of the learned CPM qualitatively match the true213

index probabilities in Figure 3C. We also note that although the learned CPM does not correctly214

identify the indices themselves, this has no effect on the performance of the CPM.215

The orientation-dependent index-probabilities provide a high-level picture of how the complex-216

ity and structure of model correlations varies with the orientation. The vertical dashed lines in217

Figures 3C-D denote two orientations that yield substantially different index probabilities p(k ∣ x).218

When a large number of index-probabilities are non-zero, the correlation-matrices of the CoM-219

based CPM can exhibit complex correlations with both negative and positive values (Figure 3E).220

However, when one index dominates, the correlation structure largely disappears (Figure 3F). In221
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Figure 3. Recovering a ground truth conditional Poisson mixture (CPM).We compare a ground truth, CoM-basedCPM with 20 neurons, 5 mixture components, von Mises baseline tuning, and randomized parameters to alearned CPM fit to 2,000 samples from the ground truth CPM. A-B: Tuning curves of the ground-truth CPM (A)and learned CPM (B). Three tuning curves are highlighted for effect. C-D: The orientation-dependent indexprobabilities of the ground truth CPM (C) and learned CPM (D), where colour indicates component index.Dashed lines indicate example stimulus-orientations used in Figures 3C-D.E-F: The correlation matrix of theground truth CPM (upper right), compared to the correlation matrix of the learned CPM (lower left) atstimulus orientations x = 85◦ (E) and x = 110◦ (F). G: The FFs of the ground-truth CPM compared to thelearned CPM at orientations x = 85◦ (blue circles) and x = 110◦ (red triangles).

Figure 3G we show that the FFs also depend on stimulus orientation. Lastly, we find that both the222

FF and the correlation-matrices of the learned CPM are nearly indistinguishable from the ground-223

truth CPM (Figure 3E-G).224

In summary, our analyses show that CPMs can generate complex, stimulus-dependent response225

statistics, and that the learned CPM accurately recovers both the statistics and the latent structure226

of the neural responses from realistic amounts of data.227

CPMs effectively model neural responses in macaque V1228

A variety of models may be defined within the CPM framework illustrated by Relations 1, 2, and 3.229

Towards understanding how effectively CPMs can model real data, we compare different variants230

by their cross-validated log-likelihood. We consider both vanilla and CoM-based variants of each of231

the following conditional mixtures: (i) maximal CPMs where we learn a distinct mixture for each of232

dX stimulus conditions, (ii) minimal CPMs with von Mises baseline tuning curves, and (iii) minimal233

CPMswith discrete baseline tuning curves given by θN (x) = θ0
N+�NX ⋅δ(x), where δ is the Kronecker234

delta vector with dX −1 elements, and x is the index of the stimulus. In contrast with the von Mises235

CPM, the discrete CPM makes no assumptions about the form of baseline tuning.236
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Encoding Performance
Awake Anaesthetized

Inf. Gain dK Num. Params. Inf. Gain dK Num. Params.
Maximal Vanilla 2.30 ± 0.32 5 2,689 8.77 ± 0.71 8 5,103
Maximal CoM 2.44 ± 0.35 5 3,044 9.42 ± 0.70 7 4,464
VM Vanilla 2.01 ± 0.26 45 2,065 8.97 ± 0.70 40 2,979
VM CoM 2.10 ± 0.25 40 1,888 9.38 ± 0.69 35 2,694
Disrete Vanilla 2.25 ± 0.28 40 2,103 9.17 ± 0.70 35 3,044
Disrete CoM 2.35 ± 0.29 30 1,708 9.53 ± 0.68 30 2,689

Table 1. The encoding performance of CPMs on neural responses in macaque V1. We apply 10-foldcross-validation to estimate the mean and standard error of the information gain on held-out data, fromeither awake or anaesthetized macaque V1. We compare maximal CPMs (Maximal), minimal CPMs with vonMises baseline tuning (VM), and minimal CPMs with discrete baseline tuning (Discrete), and for each case weconsider either Vanilla or CoM-based variants. For each variant, we indicate the number of CPM components
dK and the corresponding number of model parameters required to achieve peak information gain(cross-validated). For reference, the independent Poisson models use 129 and 210 parameters for the awakeand anaesthetized data, respectively.

To provide an interpretable measure of the relative performance of each CPM variant, we mea-237

sured the difference between the estimated log-likelihood of the given CPM and the log-likelihood238

of a vonMises-tuned, independent Poissonmodel, which is a standardmodel of uncorrelated neu-239

ral responses to oriented stimuli (Herz et al., 2017). We refer to this quantity as the information240

gain.241

Table 1 shows that the CPM variants considered achieve comparable performance, and per-242

form substantially better than the independent Poisson lower bound on both the awake and anaes-243

thetized data. Figure 4 shows that a performance peak emerges smoothly as themodel complexity244

(number of parameters) is increased. In all cases, the CoM-based models outperform their vanilla245

counterparts, and typically with fewer parameters. The CoM-based discrete CPMs achieve high246

performance on both datasets. In contrast, von Mises CPMs perform well on the anaesthetized247

data but more poorly on the awake data, and maximal CPMs exhibit the opposite trend. Never-248

theless, von Mises CPMs solve a more difficult statistical problem as they also interpolate between249

stimulus conditions, and so may still prove relevant even where performance is limited. On the250

other hand, even though maximal CPMs achieve high performance, they simply do so by replicat-251

ing the high performance of stimulus-independent mixtures (Figure 2) at each stimulus condition,252

requiring significantly more parameters than minimal CPMs.253

CPMs facilitate accurate and efficient Bayesian decoding of neural responses254

To demonstrate that CPMs model the neural code, we must show that CPMs not only capture the255

features of neural responses, but that these features also encode stimulus-information. Given an256

encoding model p(n ∣ x) and a response from the model n, we may optimally decode the informa-257

tion in the response about the stimulus x by applying Bayes’ rule p(x ∣ n) ∝ p(n ∣ x)p(x), where p(x ∣ n)258

is the posterior distribution (the decoded information), and p(x) represents our prior assumptions259

about the stimulus (Zemel et al., 1998). When we do not know the true encodingmodel, and rather260

fit a statistical model to stimulus-response data, using the statistical model for Bayesian decoding261

and analyzing its performance can tell us how well it captures the features of the neural code.262

We analyze the performance of Bayesian decoders based on CPMs by quantifying their decod-263

ing performance, and comparing the results to other common approaches to decoding. We quan-264

tify decoding performance by evaluating the average of the cross-validated log-posterior probabil-265

ity log p(x ∣ n) of the true stimulus value x, for both our awake and anaesthetized V1 datasets. With266

regards to training the CPMs, we analyze the decoding performance of CPMs that achieved the267
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Figure 4. Finding the optimal number of parameters for CPMs to model neural responses in macaque V1. 10-foldcross-validation of the information gain given awake V1 data (A) and anaesthetized V1 data (B), as a functionof the number of model parameters, for multiple forms of CPM: maximal CPMs (green); minimal CPMs withvon Mises baseline tuning (blue); minimal CPMs with discrete baseline tuning (purple); and for each case weconsider either vanilla (dashed lines) or CoM-based (solid lines) variants. Standard errors of the informationgain are not depicted to avoid visual clutter, however they are approximately independent of the number ofmodel parameters, and match the values indicated in Table 1.

best encoding performance based as indicated in Table 1 and depicted Figure 4, instead of apply-268

ing distinct procedures for selecting CPMs based on decoding performance. This is because our269

goal is to understand how well the response features captured by CPMs reflect the neural code,270

rather than strictly maximizing decoding performance.271

In our comparisons we focus on minimal, discrete CPMs as overall they achieved high per-272

formance on both datasets (Figure 4). To characterize the importance of neural correlations to273

Bayesian decoding, we compare our CPMs to the decoding performance of independent Poisson274

models with discrete tuning (IP). To characterize the optimality of our Bayesian decoders, we also275

evaluate the performance of linear multiclass decoders (Linear), as well nonlinear multiclass de-276

coders defined as artificial neural networks (ANNs) with two hidden layers and a cross-validated277

number of hidden units (for details on the training and model selection procedure, see Materials278

and methods).279

Table 2 shows that on the awake data, the performance of the CPMs is statistically indistinguish-280

able from the ANN, and the CPMs and the ANN significantly exceed the performance of both the281

Linear and IP models. On the anaesthetized data, the minimal CPM approaches the performance282

of the ANN, and the minimal CPMs and ANN models again exceed the performance of the IP and283

Linear models. Yet in this case the Linear model is much more competitive, whereas the IP model284

performs very poorly, possibly because of the largermagnitude of noise correlations in this data. In285

both cases the ANN requires two orders of magnitude more parameters than the CPMs to achieve286

its performance gains. In addition, the CoM-based CPM achieves marginally better performance287

with fewer parameters than the vanilla CPM, indicating that although modelling individual variabil-288

ity is not essential for effective Bayesian decoding, doing so still results in a more parsimonious289

model of the neural code.290

Wealso considerwidely used alternativemeasures of decoding performance, namely the Fisher291

information (FI), which is an upper bound on the average precision (inverse variance) of the pos-292

terior (Brunel and Nadal, 1998), as well as the linear Fisher information (LFI), which is a linear ap-293

proximation of the FI (Seriès et al., 2004) corresponding to the accuracy of the optimal, unbiased294

linear decoder of the stimulus (Kanitscheider et al., 2015a). The FI is especially helpful when the295

posterior cannot be evaluated directly (such as when it is continuous), and is widely adopted in the-296

oretical (Abbott and Dayan, 1999; Ecker et al., 2014; Moreno-Bote et al., 2014; Kohn et al., 2016)297

and experimental (Ecker et al., 2011; Rumyantsev et al., 2020) studies of neural coding. As with298

other models based on exponential family theory (Ma et al., 2006; Beck et al., 2011b; Ecker et al.,299

2016), the FI of a minimal CPM may be expressed in closed-form, and is equal to its LFI (see Ma-300
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Decoding Performance
Awake Anaesthetized

Average Log-Post. Num. Params. Average Log-Post. Num. Params.
CoM CPM −0.206 ± 0.043 1,663 −0.441 ± 0.023 2,689
Vanilla CPM −0.207 ± 0.039 2,103 −0.448 ± 0.026 3,044
Ind. Poisson −0.272 ± 0.067 387 −0.967 ± 0.071 630
Linear −0.256 ± 0.053 352 −0.457 ± 0.019 568
Artificial NN −0.200 ± 0.032 527,108 −0.426 ± 0.015 408,008

Table 2. The decoding performance of CPMs on neural responses in macaque V1. We apply 10-foldcross-validation to estimate the mean and standard error of the average log-posteriors log p(x ∣ n) on held-outdata, from either awake or anaesthetized macaque V1. We compare discrete, minimal, CoM-based CPM (CoM.CPM) and vanilla CPM (Vanilla CPM); an independent Poisson model with discrete tuning (IP); a multiclasslinear decoder (Linear); and a multiclass nonlinear decoder defined as an artificial neural network with twohidden layers (ANN). The number of CPM components dK was chosen to achieve on peak information gain inFigure 4. The number of ANN hidden units was chosen based on peak cross-validation performance. In allcases we also indicate the number of model parameters required to achieve the indicated performance.

terials and methods), and therefore minimal CPMs can be used to study FI analytically and obtain301

model-based estimates of FI from data.302

We generated 40 populations of dN = 20 model neurons from the vanilla, minimal, von Mises303

CPM, with parameters corresponding to the best-fit parameters of 40 random subsets of neurons304

from our V1 datasets. For each population, we generated 50 responses at each of 10 evenly spaced305

orientations, for a total of dT = 500 responses per population. We then fit a CPM to each set of306

500 responses, and compared the FI of the fit CPM to the ground-truth FI at 50 evenly spaced307

orientations. Pooled over all populations and orientations, the relative error of the estimated FI308

was −12.8% ± 18.6% on the awake data and −9.1% ± 22.4% on the anaesthetized data.309

The aforementionedmeasures allow us to assess decoding performance when we do not know310

the full posterior, however the full posterior is an essential part of probabilistic neural codes (Pouget311

et al., 2016; Drugowitsch et al., 2019). To test whether CPMs can in principle recover full posteri-312

ors, we consider a ground truth CPM defined as discrete, CoM-based, minimal CPM with dN = 200313

neurons, dS = 20 stimulus-conditions, dK = 30 components, and randomized parameters, and we314

fit a discrete, CoM-based, minimal CPM with dK = 40 components (chosen with cross-validation) to315

dT = 10, 000 responses from the ground-truth CPM (seeMaterials andmethods). We then compute316

the average KL-divergence (a fundamental measure of the similarity of two distributions, see Cover317

and Thomas (2006); Amari and Nagaoka (2007)) of the learned posteriors from the ground-truth318

posterior over all the dT = 10, 000 responses, and find that the average posterior divergence is319

0.047±0.007 bits, indicating that on average the learned and ground-truth posteriors are extremely320

close.321

To summarize, CPMs support accurate Bayesiandecoding in awake andanaesthetizedmacaque322

V1 recordings, and are competitive with nonlinear decoders with two orders of magnitude more323

parameters. Moreover, CPMs afford closed-form expressions of FI and can interpolate good esti-324

mates of FI from modest amounts of data, and thereby support analyses of neural data based on325

this widely applied theoretical tool. Finally, a CPM fit to the responses of a ground-truth CPM can326

almost perfectly recover the ground-truth posterior distributions.327

Minimal CPMs provide an interpretable latent representation of a fundamental328

feature of the neural code329

Having shown that CPMs can be used to accurately decode stimuli, we next aim to demonstrate330

that the latent structure of CPMs offers an interpretable representation of a central phenomenon331

in neural coding known as information-limiting correlations, which are neural correlations that332
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Figure 5. Fisher information and information-limiting correlations in CPMs. We consider a von Mises-tuned,independent Poisson source model (green) with dK = 200 neurons, and an information-limited, CoM-basedCPM (purple) with dK = 25 components, fit to 10,000 responses of the source-model to stimuli obscured byvon Mises noise. In B-F we consider a stimulus-orientation x = 90◦ (blue line). A: The average (lines) andstandard deviation (filled area) of the FI over orientations, for the source (green) and information-limited(purple) models, as a function of random subpopulations, starting with ten neurons, and graduallyreintroducing missing neurons. Dashed black line indicates the theoretical upper bound. B: Theindex-probability curves (lines) of the CPM for indices k > 1 and the intersection (red, yellow, and orangecircles) of the stimulus with three curves (orange, yellow, and orange lines). C: The sum of the firing rates ofthe modulated CPM for all indices k > 1 (lines) as a function of orientation, with three modulated CPMshighlighted (red, yellow, and orange lines) corresponding to the highlighted indices in B. D-F: Three responsesfrom the yellow (D; yellow points), red (E; red points), and orange modulated CPMs (F; orange points)indicated in C. For each response we plot the posterior based on the source model (green line) and theinformation-limited model (purple line).

fundamentally limit stimulus-information in neural circuits (Moreno-Bote et al., 2014;Montijn et al.,333

2019; Bartolo et al., 2020; Kafashan et al., 2020; Rumyantsev et al., 2020). To illustrate this, we334

generate population responses with limited information, and then fit a CPM to these responses335

and study the learned latent representation. In particular, we consider a source population of 200336

independent Poisson neurons p(n ∣ s)with homogeneous, vonMises tuning curves responding to a337

noisy stimulus-orientation s, where the noise p(s ∣ x) follows a vonMises distribution centred at the338

true stimulus-orientation x (see Materials and methods). In Figure 5A we show that, as expected,339

the average FI in the source population about the noisy orientation s grows linearly with the size of340

randomized subpopulations, whereas the FI about the true orientation x is theoretically bounded341

by the precision (inverse variance) of the sensory noise.342

Even though the neurons in the source model are uncorrelated, sensory noise ensures that343
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the information-limited encoding model p(n ∣ x) = ∫ p(n ∣ s)p(s ∣ x)ds contains information-limiting344

correlations that bound the FI about x (Moreno-Bote et al., 2014; Kanitscheider et al., 2015b). To345

understand whether and how the latent structure of CPMs captures information-limiting noise346

correlations, we fit a minimal, von Mises, vanilla CPM with dK = 20 mixture components to dT =347

10, 000 responses from p(n ∣ x). Figure 5A (purple) shows that the FI of the learned CPM saturates348

near the precision of the sensory noise, indicating that the learned CPM accurately captures the349

information-limiting correlations present in p(n ∣ x).350

To understand how the learned CPM represents the correlations in p(n ∣ x) we study the re-351

lation between the latent modulations and the population activity. Figure 5B shows the index-352

probabilities of the learned CPM: given the true orientation x = 90◦, there are 3 modulations with353

probabilities substantially greater than 0. To provide a high-level picture of how thesemodulations354

affect population responses, in Figure 5C we plot the sum of themodulated rates of the population355

as a function of orientation, and see that each modulation concentrates the tuning of the popula-356

tion around a particular orientation, and that two of the modulations in particular shift the tuning357

away from the true orientation.358

Because there are essentially three modulations that are relevant to the responses of the CPM359

to the true orientation x = 90◦, generating a response from the CPM approximately reduces to360

generating a response from one of the three possible modulated populations. In Figures 5D-F361

we depict a response to x = 90◦ from each of the three modulated populations, as well as the362

optimal posterior based on the learned CPM (purple lines), and a suboptimal posterior based on363

the source model (i.e. ignoring noise correlations; green lines). We observe that the trial-to-trial364

variability of the learned CPM results in random shifts of the peak neural activity away from the365

true orientation, thus fundamentally limiting information. Furthermore, when the response of the366

population is concentrated at the true orientation (Figure 5E), the suboptimal posterior assigns a367

high probability to the true orientation, whereas when the responses are biased away from the368

true orientation (Figures 5D and 5F) the suboptimal posterior assigns nearly 0 probability to the369

true orientation. This is in contrast to the optimal posterior, which always assigns a significant370

probability to the true orientation.371

In summary, CPMs accurately capture information-limiting correlations, and provide insight372

into how such correlations can be generated by a simple latent structure.373

Discussion374

In this paperwe introduced a latent variable exponential family formulation ofmultivariate Poisson375

mixtures. We showed how this formulation allows us to effectively extend multivariate Poisson376

mixtures both to capture sub-Poisson variability, and to incorporate stimulus dependence, which377

we termed Conditional Poisson Mixtures (CPMs). Our analyses and simulations showed that CPMs378

can be fit efficiently and recover ground truth models in synthetic data, capture a wide range of V1379

response statistics in real data, and can be easily inverted to obtain accurate Bayesian decoding380

that is competitive with nonlinear decoders, while using orders of magnitude less parameters. In381

addition, we illustrated how the latent structure of CPMs provides an interpretable representation382

of a fundamental feature of the neural code, e.g. information-limiting correlations.383

Our framework is particularly relevant for probabilistic theories of neural coding based on the384

theory of exponential families (Beck et al., 2007), which include theories that address the linearity385

of Bayesian inference in neural circuits (Ma et al., 2006), the role of phenomena such as divisive386

normalization in neural computation (Beck et al., 2011a), Bayesian inference about dynamic stim-387

uli (Makin et al., 2015; Sokoloski, 2017), and the metabolic efficiency of neural coding (Ganguli and388

Simoncelli, 2014; Yerxa et al., 2020). These theories have proven difficult to validate quantitatively389

with neural data due to a lack of statistical models which are both compatible with their exponen-390

tial family formulation, and can model correlated activity in recordings of large neural populations.391

Our work suggests that CPMs can overcome these difficulties, and help connect the rich mathe-392

matical theory of neural coding with the state-of-the-art in parallel recording technologies.393
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CPMs are not limited to modelling neural responses to stimuli, and can model how arbitrary394

experimental variables modulate neural variability and covariability. Examples of experimental395

variables that have measurable effects on neural covariability include the spatial and temporal396

context around a stimulus (Snyder et al., 2014; Snow et al., 2016, 2017; Festa et al., 2020), as well397

as task-variables and the attentional state of the animal (Maunsell, 2015; Rabinowitz et al., 2015;398

Kanashiro et al., 2017; Bondy et al., 2018; Ruff and Cohen, 2019). Each of these variables could be399

incorporated into a CPM by either replacing the stimulus-variable in our equations, or combining400

it with the stimulus-variable to construct a CPM with multivariate dependence. This would allow401

researchers to explore how the stimulus and the experimental variablesmutually interact to shape402

variability and covariability in large populations of neurons.403

To understand how this variability and covariability effects neural coding, latent variablemodels404

such as CPMsare often applied to extract interpretable features of the neural code fromdata (White-405

way and Butts, 2019). The latent states of a CPM provide a soft classification of neural activity, and406

we may apply CPMs to model how an experimental variable modulates the class membership of407

neurons. In the aforementioned studies, models of neural activity yielded predictions of percep-408

tual and behavioural performance. Because CPMs support Bayesian decoding, an appropriate409

CPM can also make predictions about how a class of neurons is likely to modulate perception and410

behaviour, and we may then test these predictions with experimental interventions on the neu-411

rons themselves (Panzeri et al., 2017). In this manner, we believe CPMs could form a critical part412

of a rigorous, Bayesian framework for “cracking the neural code” in large populations neurons.413

In our applications we considered low-dimensional variables, and implemented the stimulus-414

dependence of the CPM parameters with linear functions. Nevertheless, the stimulus-dependence415

of a CPM can be implemented by arbitrary parametric functions of high-dimensional variables such416

as deep neural networks, and CPMs can also incorporate history-dependence via recurrent neu-417

ral networks. As such, CPMs have the potential to integrate encoding models of higher cortical418

areas (Yamins et al., 2014) with models of the temporal features of the neural code (Pillow et al.,419

2008; Park et al., 2014; Runyan et al., 2017), towards analyzing the neural code in dynamic, corre-420

lated neural populations in higher cortex. Outside of neuroscience, high-dimensional count data421

exists in many fields such as corpus linguistics and genomics (Inouye et al., 2017), and researchers422

who aim to understand how this data depends on history or additional variables could benefit from423

our techniques.424

Materials and methods425

Notation426

We use capital, bold letters (e.g. �) to indicate matrices; small, bold letters (e.g. θ) to indicate vec-427

tors; and regular letters (e.g. �) to indicate scalars. We use subscript capital letters to indicate the428

role of a given variable, so that, in Relation 1 for example, θK are the natural parameters that bias429

the index-probabilities, θN are the baseline natural parameters of the neural firing rates, and �NK430

is the matrix of parameters through which the indicies and rates interact.431

We denote the ith element of a vector θ by �i, or e.g. of the vector θK by �K,i. We denote the432

ith row or jth column of � by θi or θj , respectively, and always state whether we are considering433

a row or column of the given matrix. When referring to the jth element of a vector θi indexed by434

i, we write �ij . Finally, when indexing data points from a sample, or parameters that are tied to435

individual data points, we use parenthesized, superscript letters, e.g. x(i), or θ(i)
N .436

Poisson mixtures and their moments437

The following derivations were presented in a more general form in Karlis and Meligkotsidou438

(2007), but we present the simpler case here for completeness. A Poisson distribution has the form439

p(n; �) = �ne−�

n!
, where n is the count and � is the rate (in our case, spike count and firing rate, respec-440

tively). We may use a Poisson model to define a distribution over dN spike counts n = (n1,… , ndN )441
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by supposing that the neurons generate spikes independently of one another, leading to the in-442

dependent Poisson model p(n;λ) =
∏dN

i=1 p(ni; �i) with firing rates λ = (�1,… , �dN ). Finally, if we443

consider the dK rate vectors λ1,… ,λdK , and dK weights w1,… , wdK , where 0 ≤ wk for all k, and444

w1 = 1 −
∑dK

k=2wk, we then define a mixture of Poisson distributions as a latent variable model445

p(n) =
∑

k p(n ∣ k)p(k) =
∑

k p(n, k), where p(n ∣ k) = p(n;λk), and p(k) = wk.446

The mean �i of the ith neuron of a mixture of independent Poisson distributions is447

�i =
∞
∑

ni=0

dK
∑

k=1
p(ni ∣ k)p(k)ni =

dK
∑

k=1
p(k)

∞
∑

ni=0
p(ni ∣ k)ni =

dK
∑

k=1
wk�ik. (4)

The variance �2
i of neuron i is448

�2
i =

∞
∑

ni=0
p(ni)n2i − �

2
i =

dK
∑

k=1
p(k)

∞
∑

ni=0
p(ni ∣ k)n2i − �

2
i =

dK
∑

k=1
p(k)(�2

ik + �
2
ik) − �

2
i = �i +

dK
∑

k=1
wk(�ik − �i)

2, (5)
where �2

ik = �ik is the variance of the ith neuron under the kth component distribution, i.e. the449

variance of p(ni ∣ k), and where ∑∞
ni=0

p(ni ∣ k)n2i = �2
ik + �

2
ik, and ∑dK

k=1wk�2ik − �
2
i =

∑dK
k=1wk(�ik − �i)

2
450

both follow from the fact that a distribution’s variance equals the difference between its second451

moment and squared first moment.452

The covariance �2
ij between spike-counts ni and nj for i ≠ j is then

�2
ij =

∞
∑

ni=0

∞
∑

nj=0
p(ni, nj)(ni − �i)(nj − �j) =

dK
∑

k=1
p(k)

∞
∑

ni=0

∞
∑

nj=0
p(ni, nj ∣ k)(ni − �i)(nj − �j)

=
dK
∑

k=1
p(k)

∞
∑

ni=0
p(ni ∣ k)(ni − �i)

∞
∑

nj=0
p(nj ∣ k)(nj − �j) =

dK
∑

k=1
wk(�ik − �i)(�jk − �j). (6)

Observe that if wk = 1
dK−1

, then �2
ij is simply the sample covariance between i and j, where the453

sample is composed of the rate components of the ith and jth neurons. Equation 6 thus implies454

that Poisson mixtures can model arbitrary covariances. Nevertheless, Equation 5 shows that the455

variance of individual neurons is restricted to being larger than their means.456

Exponential family mixture models457

In this section we show that the latent variable form for Poisson mixtures we introduced above458

is a member of the class of models known as exponential families. An exponential family distri-459

bution p(x) over some data x has the form p(x) = eθ⋅s(x)− (θ)b(x), where θ are the so-called nat-460

ural parameters, s(x) is a vector-valued function of the data called the sufficient statistic, b(x) is461

a scalar-valued function called the base measure, and  (θ) = log ∫ eθ⋅s(x)b(x)dx is the log-partition462

function (Wainwright and Jordan, 2008). In the context of Poissonmixturemodels, we note that an463

independent Poisson model p(n;λ) is an exponential family, with natural parameters θN given by464

�N,i = log �i, base measure b(n) = ∏

i ni! and sufficient statistic sN (n) = n, and log-partition function465

 N (θN ) = log
∑

i e
�N,i . Moreover, the distribution of component indices p(k) (also known as a cat-466

egorical distribution) also has an exponential family form, with natural parameters �K,k = log wk+1
w1

467

for 1 ≤ k < dK , sufficient statistic δ(k) = (�2(k),… , �dK (k)), base measure b(k) = 1, and log-partition468

function  K (θK ) = log(1+
∑dK−1

k=1 e�K,k ). Note that in both cases, the exponential parameters are well-469

defined only if the rates and weights are strictly greater than 0 — in practice however this is not a470

significant limitation.471

We claim that the joint distribution of a multivariate Poisson mixture model p(n, k) can be repa-472

rameterized in the exponential family form473

p(n, k) = eθN ⋅n+θK ⋅δ(k)+n⋅�NK ⋅δ(k)− NK (θN ,θK ,�NK )
∏

i ni!
, (7)

14 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

where  NK (θN ,θK ,�NK ) = log
∑

k eθk⋅δ(k)+ N (θN+�NK ⋅δ(k)) is the log-partition function of p(n ∣ k). To474

show this we showhow to express the natural parameters θN ,θK , and�NK as (invertible) functions475

of the component rate vectors λ1,… ,λdK , and the weights w1,… , wdK . In particular, we set476

θN = logλ1, (8)
where log is applied element-wise. Then, for 1 ≤ k < dK , we set the kth row θNK,k of �NK to477

θNK,k = logλk+1 − logλ1, (9)
and the kth element of θK to478

θK,k = log
wk+1

w1
+  (θN ) −  N (θN +�NK ⋅ δ(k)). (10)

This reparameterizationmay then be checked by substituting Equations 8, 9, and 10 into Equation 7479

to recover the joint distribution of the mixture model p(n, k) = p(n ∣ k)p(k) = wkp(n;λK ); for a more480

explicit derivation see Sokoloski (2019).481

The equation for p(n, k) ensures that the index-probabilities are given by482

p(k) = eθK ⋅δ(k)− NK (θN ,θK ,�NK )
∑

n

en⋅(θN+�NK ⋅δ(k))
∏

i ni!
= eθK ⋅δ(k)− NK (θN ,θK ,�NK )+ N (θN+�NK ⋅δ(k)). (11)

Consequently, the component distributions in exponential family form are given by483

p(n ∣ k) =
p(n, k)
p(k)

= en⋅(θN+�NK ⋅δ(k))− N (θN+�NK ⋅δ(k)). (12)
Observe that p(n ∣ k) is a multivariate Poisson distribution with parameters θN + �NK ⋅ δ(k), so484

that for k > 1, the parameters are the sum of θN and row k − 1 of �NK . Because the exponential485

family parameters are the logarithms of the firing rates of n, each row of �NK modulates the firing486

rates of n multiplicatively. When θN (x) depends on a stimulus and we consider the component487

distributions p(n ∣ x, k), each row of �NK then scales the tuning curves of the baseline population488

(i.e. (p(n ∣ x, k) for k = 1); in the neuroscience literature, such scaling factors are typically referred489

to as gain modulations.490

The exponential family form has many advantages. However, it has a less intuitive relationship491

with the statistics of themodel such as themean and covariance. Themost straightforwardmethod492

to compute these statistics given a model in exponential family form is to first reparameterize it in493

terms of the weights and component rates, and then evaluate Equations 4, 5, and 6.494

CoM-Poisson distributions and their mixtures495

Conway-Maxwell (CoM) Poisson distributions decouple the location and shape of count distribu-496

tions (Shmueli et al., 2005; Stevenson, 2016; Chanialidis et al., 2018). A CoM Poisson model has497

the form p(n; �, �) ∝
( �n

n!

)� . The floor function ⌊�⌋of the location parameter � is themodeof the given498

distribution. With regards to the shape parameter �, p(n; �, �) is a Poisson distribution with rate �499

when � = 1, and is under- or over-dispersedwhen � > 1 or � < 1, respectively. A CoM-Poissonmodel500

p(n; �, �) is also an exponential family, with natural parameters θC = (� log �,−�), sufficient statistic501

sC (n) = (n, log n!), and basemeasure b(n) = 1. The log-partition function does not have a closed-form502

expression, but it can be effectively approximated by truncating the series ∑∞
n=0 e

sC (n)⋅θC (Shmueli503

et al., 2005). More generally, when we consider a product of independent CoM-Poisson distri-504

butions, we denote its log-partition function by log C (θN ,θ
∗
N ) =

∑dN
i=1

∑∞
ni=0

eni�N,i+log(ni)!�
∗
N,i , where505

θC,i = (�N,i, �∗N,i) are the parameters of the ith CoM-Poisson distribution. In this case we can also ap-506

proximate the log-partition function  C by truncating the dN constituent series∑∞
ni=0

eni�N,i+log(ni)!�
∗
N,i507

in parallel.508

We define a multivariate CoM-based mixture as509

p(n, k) = eθN ⋅n+θ
∗
N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k)− CK (θN ,θ∗

N ,θK ,�NK ), (13)
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where lf (n) = (log(n1!),… , log(ndN !)) is the vector of log-factorials of the individual spike-counts,510

and  CK (θN ,θ∗
N ,θK ,�NK ) = log

∑

k e
θk⋅δ(k)+ C (θN+�NK ⋅δ(k),θ∗

N ) is the log-partition function. This form511

ensures that the index-probabilities satisfy512

p(k) = eθK ⋅δ(k)− CK (θN ,θ∗
N ,θK ,�NK )+ C (θN+�NK ⋅δ(k),θ∗

N ), (14)
and consequently that each component distribution p(n ∣ k) is a product of independent CoM513

Poisson distributions given by514

p(n ∣ k) = en⋅(θN+�NK ⋅δ(k))+θ∗
N ⋅lf (n)− C (θN+�NK ⋅δ(k),θ∗

N ). (15)
Observe that, whereas the parameters θN + �NK ⋅ δ(k) of p(n ∣ k) depend on the index k, the515

parameters θ∗
N of p(n ∣ k) are independent of the index and act exclusively as biases. Note as well516

that when considering a CoM-based, minimal CPM, the modulated populations (p(n ∣ k, x) for k > 1)517

continue to scale the firing rates of the baseline population (p(n ∣ k, x)) monotonically, but not in a518

linear, multiplicative manner.519

The moments of a CoM-Poisson distribution are not available in closed-form, yet they can also520

be effectively approximated through truncation. Given approximate means �ik and variances �2
ik521

of p(ni ∣ k), we may easily evaluate the means, variances, and covariances of p(ni). In particular, the522

mean of ni is �i = ∑dK
k=1 p(k)�ik, and its variance is523

�2
i = �̄2

i +
dK
∑

k=1
p(k)(�ik − �i)

2, (16)
where �̄2

i =
∑dK

k=1 p(k)�
2
ik. Finally, similarly to Equation 6, the covariance �ij between ni and nj is524

�ij =
∑dK

k=1 p(k)(�ik − �i)(�jk − �j).525

By comparing Equations 5 and 16, we see that the CoM-based mixture may address the lim-526

itations on the variances �2
i of the vanilla mixture by setting the average variance �̄2

i of the com-527

ponents in Equation 16 to be small, while holding the value of the means �i fixed, and ensuring528

that the means of the components �ik cover a wide range of values to achieve the desired values529

of �2
i and �ij . Solving the parameters of a CoM-based mixture for a desired covariance matrix is530

unfortunately not possible since we lack closed-form expressions for the means and variances.531

Nevertheless, we may justify the effectiveness of the CoM-based strategy by considering the ap-532

proximations of the components means and variances �ik ≈ �ik +
1

2�ik
− 1

2
and �2

ik ≈
�ik
�ik
, which hold533

when neither �ik or �ik are too small (Chanialidis et al., 2018). Based on these approximations,534

observe that when �ik is large, �2
ik is small, whereas �ik is more or less unaffected. Therefore, in535

the regime where these approximations hold, a small value for �̄2
i can be achieved by reducing the536

parameters �ik, without significantly restricting the values of �ik or �i.537

Fisher information of a CPM538

The Fisher information (FI) of an encoding model p(n ∣ x) with respect to x is I(x) =
∑

n p(n ∣
x)()x log p(n ∣ x))2 (Cover and Thomas, 2006). With regards to the FI of a CPM,
)x log p(n ∣ x) =

∑

k )xp(n, k ∣ x)
p(n ∣ x)

=
∑

k )xe
θN (x)⋅n+θ∗

N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k)− CK (θN (x),θ∗
N ,θK ,�NK )

p(n ∣ x)

= )x(θN (x) ⋅ n −  CK (θN (x),θ
∗
N ,θK ,�NK ))

∑

k p(n, k ∣ x)
p(n ∣ x)

= )xθN (x) ⋅ (n − µN (x)),

where )x CK (θN (x),θ∗
N ,θK ,�NK ) = µN (x) ⋅)xθN (x) follows from the chain rule and properties of the

log-partition function (Wainwright and Jordan, 2008). Therefore
I(x) =

∑

n
p(n ∣ x)()xθN (x) ⋅ (n − µN (x)))

2 = )xθN (x) ⋅ �N (x) ⋅ )xθN (x),

where �N (x) is the covariance matrix of p(n ∣ x). Moreover, because )xθN (x) = �−1
N (x) ⋅ )xµ(x) (Wain-539

wright and Jordan, 2008), the FI of a CPMmay also be expressed as I(x) = )xµN (x) ⋅�−1
N (x) ⋅ )xµN (x),540

which is the linear Fisher information (Beck et al., 2011b).541
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Note that when calculating the FI or other quantities based on the covariance matrix, vanilla542

CPMs have the advantage that their covariance matrices tend to have large diagonal elements and543

are thus inherently well-conditioned. Because decoding performance is not significantly different544

between vanilla and CoM-based CPMs (see Table 2), vanilla CPMs may be preferable when well-545

conditioned covariance matrices are critical. Nevertheless, the covariance matrices of CoM-based546

mixtures can be made well-conditioned by applying standard techniques.547

Expectation-Maximization for CPMs548

Expectation-maximization (EM) is an algorithm that maximizes the likelihood of a latent variable549

model given data by iterating two steps: generating model-based expectations of the latent vari-550

ables, and maximizing the complete log-likelihood of the model given the data and latent expecta-551

tions. Although the maximization step optimizes the complete log-likelihood, each iteration of EM552

is guaranteed to increase the data log-likelihood as well (Neal and Hinton, 1998).553

EM is arguably the most widely-applied algorithm for fitting finite mixture models (McLachlan554

et al., 2019). As a formof latent variable exponential family, the expectation step for a finitemixture555

model reduces to computing average sufficient statistics, and the maximization step is a convex556

optimization problem (Wainwright and Jordan, 2008). In general, the average sufficient statistics,557

or mean parameters, correspond to (are dual to) the natural parameters of an exponential family,558

andwhere we denote natural parameters with �, we denote their correspondingmean parameters559

with �.560

Suppose we are given a dataset (n(1),… ,n(dT )) of neural spike-counts, and a CoM-based mixture
model with natural parameters θN , θ∗

N , θK , and �NK (see Equation 13). The expectation step for
this model reduces to computing the data-dependent mean parameters η(i)

K given by
θ(i)
K = θK + n(i) ⋅�NK , �(i)K,k =

e�
(i)
K,k

1 +
∑

l e
�(i)K,l

,

for all 0 < i ≤ dT . The mean parameters η(i)
K are the averages of the sufficient statistic δk(k) under561

the distribution p(k ∣ n(i)), and are what we use to complete the log-likelihood since we do not562

observe k.563

Given η(i)
K , the maximization step of a CoM-based mixture thus reduces to maximizing the com-

plete log-likelihood ∑dT
i=1 (θK ,θN ,θ

∗
N ,�NK ,η

(i)
K ,n

(i)), where we substitute η(i)
K into the place of δ(k)

in Equation 13, such that
(θK ,θN ,θ

∗
N ,�NK ,η

(i)
K ,n

(i)) =

θN ⋅ n(i) + θ∗
N ⋅ lf (n

(i)) + θK ⋅ η
(i)
K + n(i) ⋅�NK ⋅ η

(i)
K −  CK (θN ,θ

∗
N ,θK ,�NK ).

This objective may bemaximized in closed-form for a vanilla Poissonmixture (Karlis and Meligkot-564

sidou, 2007), but this is not the case when the model has CoM-Poisson shape parameters or de-565

pends on the stimulus. Nevertheless, solving the resulting maximization step is still a convex opti-566

mization problem (Wainwright and Jordan, 2008), and may be approximately solved with gradient567

ascent. Doing so requires that we first compute the mean parameters ηN , η∗
N , ηK , and HNK that568

are dual to θN , θ∗
N , θK , and �NK , respectively.569

We compute the mean parameters by evaluating
�†K,k = �K,k +  C (θN +�NK ⋅ δ(k),θ

∗
N ) −  (θN ), �K,k =

e�
†
K,k

1 +
∑dK−1

k=1 e�
†
K,k

, �jk =
∞
∑

nj=0
nj p(nj ∣ k),

�∗N,j =
dK
∑

k=1
p(k)

∞
∑

nj=0
log nj! p(nj ∣ k), �N,j =

dK
∑

k=1
p(k)�jk, �NK,jk = �K,k�j(k+1),

where �K,k is the kth element of ηK , �N,j is the jth element of ηN , �∗N,j is the jth element of η∗
N ,and �NK,jk is the jth element of the kth column of HNK . Note as well that we truncate the series

17 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife
∑

nj
nj p(nj ∣ k) and ∑

nj
log nj! p(nj ∣ k) to approximate �jk and �∗N,j . Given these mean parameters,

we may then express the gradients of (i) = (θK ,θN ,θ
∗
N ,�NK ,ηK,i,n(i)) as

)θN
(i) = n(i) − ηN , )θ∗

N
(i) = lf (n(i)) − η∗

N ,

)θK
(i) = η(i)

K − ηK , )�NK
(i) = n(i) ⊗ η(i)

K −HNK ,

where⊗ is the outer product operator, and where the second term in each equation follows from570

the fact that the derivative of  CK with respect to θN , θ∗
N , θK , or �NK yields the dual parameters571

ηN , η∗
N , ηK , and HNK , respectively. By ascending the gradients of ∑dT

i=1 
(i) until convergence, we572

approximate a single iteration of the EM algorithm for a CoM-based mixture.573

Finally, if our dataset ((n(1), x(1)),… , (n(dT ), x(dT ))) includes stimuli x, and the parameters θN de-
pend on the stimulus, then the gradients of the parameters of θN must also be computed. For a
von Mises CPM where θN (x) = θ0

N +�NX ⋅ vm(x), the gradients are given by
)θ0

N
(i) = )

θ
(i)
N
(i), )�NX

(i) = )
θ
(i)
N
(i) ⊗ vm(x(i)),

where θ(i)
N = θN (x(i)) is the output of θN at x(i). Although in this paper we restrict our applications574

to Von Mises or discrete tuning curves for 1-dimensional stimuli, this formalism can be readily575

extended to the case where the baseline tuning curve parameters θN (x) are a generic nonlinear576

function of the stimulus, represented by a deep neural network. Then, the gradients of the pa-577

rameters of θN can be computed through backpropagation, and )
θ
(i)
N
(i) is the error that must be578

backpropagated through the network to compute the gradients.579

CPM initialization and training procedures580

To fit a CPM to a dataset ((n(1), x(1)),… , (n(dT ), x(dT ))), we first initialize the CPM and then optimize581

its parameters with our previously described EM algorithm. Naturally, initialization depends on582

exactly which formof CPMwe consider, but in general we first initialize the baseline parametersθN ,583

then add the categorical parameters θK and mixture component parameters �NK . When training584

CoM-based CPMs we always first train a vanilla CPM, and so the initialization procedure remains585

the same for vanilla and CoM-based models.586

To initialize a minimal, von Mises CPM with dN neurons, we first fit dN independent, von Mises-
tuned neurons by maximizing the log-likelihood ∑dT

i=1 log p(n
(i) ∣ x(i)) of θN (x) = θ0

N + �NX ⋅ vm(x).
This is a convex optimization problem and so can be easily solved by gradient ascent, in particular
by following the gradients

)θ0
N

dT
∑

i=1
log p(n(i) ∣ x(i)) =

dT
∑

i=1
n(i) − log(θN (x(i))),

)�NX

dT
∑

i=1
log p(n(i) ∣ x(i)) =

dT
∑

i=1
log(n(i) − logθN (x(i)))⊗ vm(x(i)),

to convergence. For both discrete and maximal CPMs, where there are dX distinct stimuli, we587

initialize θN (x) = θ0
N +�NX ⋅ δ(x) by computing the average rate vector at each stimulus-condition588

and creating a lookup table for these rate vectors. Formally, where xl is the lth stimulus value for589

0 < l ≤ dX , we may express the lth rate vector as λl =
1

∑dT
i=1 �(xl ,x

(i))

∑dT
i=1 �(xl, x

(i))n(i), where �(xl, x(i))590

is 1 when xl = x(i), and 0 otherwise. We then construct a lookup table for these rate vectors in591

exponential family form by setting θ0
N = logλ1, and by setting the lth row θNX,l of �NX to θNX,l =592

logλl+1 − logλ1.593

In general we initialize the parameters θK by sampling the weights w1,… , wdK of a categori-594

cal distribution from a Dirichlet distribution with a constant concentration of 2, and converting595

the weights into the natural parameters of a categorical distribution θK . For discrete and maxi-596

mal CPMs we initialize the modulations �NK by generating each element of �NK from a uniform597

distribution over the range [−0.0001, 0.0001]. For von Mises CPMs we initialize each row θNK,k of598
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�NK as shifted sinusoidal functions of the preferred stimuli of the independent von Mises neu-599

rons. That is, given θ0
N and �NX , we compute the preferred stimulus of the ith neuron given by600

�i = atan2(θ0
N +θNX,i), where θNX,i is the ith row of�NX . We then set the ith element �NK,k,i of θNK,k601

to �NK,k,i = 0.2 sin(�i +
k
360

◦
). Initializing von Mises CPMs in this way ensures that each modulation602

has a unique peak as a function of preferred stimuli, which helps differentiate the modulations603

from each other, and in our experience improves training speed.604

With regards to training, the expectation step in our EM algorithm may be computed directly,
and so the only challenge is solving the maximization step. Although the optimal solution strategy
depends on the details of themodel and data in question, in the context of this paper we settled on
a strategy that is sufficient for all simulationsweperform. For eachmodelweperforma total of dI =
500 EM iterations, and for each maximization step we take dS = 100 gradient ascent steps with the
Adam gradient ascent algorithm (Kingma and Ba, 2014) with the default momentum parameters
(see Kingma and Ba (2014)). We restart the Adam algorithm at each iteration of EM and gradually
reduce the learning rate. Where �+ = 0.002 and �− = 0.0005 are the initial and final learning rates,
we set the learning rate �t at EM iteration t to

�t = exp
( (dI − 1 − t) log(�+) + t log(�−)

dI − 1

)

,

where we assume t starts at 0 and ends at dI − 1.605

Because we must evaluate large numbers of truncated series when working with CoM-based606

CPMs, training times are typically one to two orders of magnitude greater. To minimize training607

time of CoM-based CPMs over the dI EM iterations, we therefore first train a vanilla CPM for 0.8dI608

iterations. We then equate the parameters θN , θK , and �NK of the vanilla CPM (see Equation 7)609

with a CoM-based CPM (see Equation 13) and set θ∗
N = −1, which ensures that resulting CoM-based610

model has the same density function p(n, k ∣ x) as the original vanillamodel. We then train the CoM-611

based CPM for 0.2dI iterations. We found this strategy results in practically no performance loss,612

while greatly reducing training time.613

CPM parameter selection for simulations614

In the section Extended Poisson mixture models capture stimulus-dependent response statistics615

and the section CPMs facilitate accurate and efficient Bayesian decoding of neural responses we616

considered CoM-based, minimal CPMswith randomized parametersθN (x), θ∗
N , θK , and�NK , which617

for simplicity we refer to as models 1 and 2, respectively. We construct randomized CPMs piece by618

piece, in a similar fashion to our initialization procedure.619

Firstly, where dN is the number of neurons, we tile their preferred stimuli �i over the circle such620

that �i = i
dN

360◦. We then generate the concentration �i and gain 
i of the ith neuron by sampling621

from normal distributions in log-space, such that log �i ∼ N(−0.1, 0.2), and log 
i ∼ N(0.2, 0.1). Finally,622

for von Mises baseline tuning curves θN (x) = θ0
N + �NX ⋅ vm(x), we set each row θNX,i of �NX to623

θNX,i = (�i cos �i, �i sin �i), and each element �0N,i of θ0
N to �0N,i = log 
i −  X(θNX,i), where  X is the624

logarithm of the modified Bessel function of order 0, which is the log-partition function of the von625

Mises distribution.626

We then set θK = 0, and generated each element �NK,i,k of the modulation matrix θNK in the627

same matter as the gains, such that �NK,i,k ∼ N(0.2, 0.1). Finally, to generate random CoM-based628

parameters we generate each element �∗N,i of θ∗
N from a uniform distribution, such that θ∗

N,i ∼629

U(−1.5,−0.8).630

Model 2 entails two more steps. Firstly, when sampling from larger populations of neurons,631

single modulations often dominate themodel activity around certain stimulus values. To suppress632

this we consider the natural parameters θ0
K (x) of p(k ∣ x) (see Equation 14), and compute the max-633

imum value of these natural parameters over the range of stimuli �+K,k = maxx{�0K,k(x)}. We then634

set each element �K,k of the parameters θK of the CPM to �K,k = �̄+K − �+K,k, where �̄+K =
∑dK

i=1
�K,k
dK

,635

which helps ensure that multiple modulations are active at any given x. Finally, since model 2636
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is a discrete CPM, we replace the von Mises baseline tuning curves with discrete baseline tuning637

curves, by evaluating θ0
N + �NX ⋅ vm(x) at each of the dX valid stimulus-conditions, and assemble638

the resulting collection of natural parameters into a lookup table in the manner we described in639

our initialization procedures.640

Decoding models641

When constructing a Bayesian decoder for discrete stimuli, we first estimate the prior p(x) by com-642

puting the relative frequency of stimulus presentations in the training data. For the given encod-643

ing model, we then evaluate p(n ∣ x) at each stimulus condition, and then compute the posterior644

p(x ∣ n) ∝ p(n ∣ x)p(x) by brute-force normalization of p(n ∣ x)p(x). When training the encoding645

model used for our Bayesian encoders, we only trained them to maximize encoding performance646

as previously described, and not to maximize decoding performance.647

We considered two decoding models, namely the linear network and the artificial neural net-648

work (ANN) with sigmoid activation functions. In both cases the input of the network was a neural649

response vector, and the output the natural parameters θX of a categorical distribution. The form650

of the linear network was θX(n) = θX +�XN ⋅ n, and is otherwise fully determined by the structure651

of the data. For the ANN on the other hand, we had to choose both the number of hidden layers,652

and the number of neurons per hidden layer. We cross-validated the performance of both 1 and 2653

hidden layer models, over a range of sizes from 100 to 2000 neurons. We found the performance654

of the networks with 2 hidden layers generally exceeded that of those with 1 hidden layer, and that655

700 and 600 hidden neurons was optimal for the awake and anaesthetized networks, respectively.656

Given a dataset ((n(1), x(1)),… , (n(dT ), x(dT ))), we optimized the linear network and the ANN bymax-657

imizing ∑dT
i=1 log p(x

(i) ∣ n(i)) via stochastic gradient ascent. We again used the Adam optimizer with658

default momentum parameters, and used a fixed learning rate of 0.0003, and randomly divided659

the dataset into minibatches of 500 data points. We also used early stopping, where for each fold660

of our 10-fold cross-validation simulation, we partitioned the dataset into 80% training data, 10%661

test data, and 10% validation data, and stopped the simulation when performance on the test data662

declined from epoch to epoch.663

Experimental design664

Throughout this paper we demonstrate our methods on two sets of parallel response recordings665

in macaque primary visual cortex (V1). The stimuli were drifting full contrast gratings at 9 distinct666

orientations spread evenly over the half-circle from 0◦ to 180◦ (2◦ diameter, 2 cycles per degree,667

2.5 Hz drift rate). Stimuli were generated with custom software (EXPO by P. Lennie) and displayed668

on a cathode ray tube monitor (Hewlett Packard p1230; 1024 × 768 pixels, with ∼ 40 cd/m2 mean669

luminance and 100 Hz frame rate) viewed at a distance of 110 cm (for anaesthetized dataset) or670

60 cm (for awake dataset). Grating orientations were randomly interleaved, each presented for 70671

ms (for anaesthetized dataset) or 150 ms (for awake dataset), separated by a uniform gray screen672

(blank stimulus) for the same duration.673

For each electrode, we extracted waveform signals (sampled at 30 kHz) whenever the extracel-674

lular voltage exceeded a user defined threshold (typically 5x the root mean square signal on each675

channel). We then sorted waveforms manually using the Plexon Offline Sorter, and isolated both676

single and multi-unit clusters, here both referred to as neurons. We computed spike counts in a677

fixed windowwith length equal to the stimulus duration, shifted by 50ms after stimulus onset. We678

excluded from further analyses all neurons that were not driven by any stimulus above baseline +679

3std.680

In the first dataset the monkey was awake, and there were dT = 3168 trials of the responses of681

72 neurons; due to the presence of cross-talk between a small subset of electrodes, we removed682

all pairs of neurons in the dataset that exhibited correlations greater than 0.5, which left dN = 43683

neurons in the dataset. We refer to this dataset as the awake V1 dataset. After familiarization with684

the restraining chair, headpost surgery, and postoperative recovery time (methods and protocols685
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described in Festa et al. (2020)), the animal was trained to fixate in a 1.3◦ × 1.3◦ window. Eye posi-686

tion was monitored with a high-speed infrared camera (Eyelink, 1000 Hz). A second surgery was687

performed over V1 to implant a 96 channel microelectrode array into V1 (electrode length 1 mm).688

After postoperative recovery, the spatial receptive fields of the sampled neurons were mapped by689

presenting small patches of drifting full contrast gratings (0.5◦ diameter; 4 orientations, 1 cycle per690

degree, 3 Hz drift rate, 250 ms presentation) at 25 distinct positions spanning a 3◦ × 4◦ region of691

visual space. Subsequent stimuli were centered in the aggregate receptive field of the recorded692

units.693

In the second dataset the monkey was anaesthetized and there were dT = 10, 800 trials of the694

responses of dN = 70 neurons; we refer to this dataset as the anaesthetized V1 dataset. The695

protocol and general methods employed for the anaesthetized experiment have been described696

previously (Smith andKohn, 2008). In short, anaesthesiawas inducedwith ketamine (10mg/kg) and697

maintained during surgerywith isoflurane (1.5–2.5% in 95%O2), switching to sufentanil (6–18 �g/kg698

per h, adjusted as needed) during recordings. Eye movements were reduced using vecuronium699

bromide (0.15mg/kg per h). Temperature wasmaintained in the 36 –37 C◦ range, and relevant vital700

signs (EEG, ECG, blood pressure, end-tidal PCO2, temperature, and lung pressure) weremonitored701

continuously to ensure sufficient level of anaesthesia and well-being. A 10×10multielectrode array702

(400 �m spacing, 1 mm length) was implanted into the upper layers of primary visual cortex, at a703

depth of 0.6-0.8 mm.704

All procedureswere approved by the Albert Einstein College ofMedicine and followed the guide-705

lines in the United States Public Health Service Guide for the Care and Use of Laboratory Animals.706
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