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Modelling the neural code in large
populations of correlated neurons
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Abstract The activity of a neural population encodes information about the stimulus that
caused it, and decoding population activity reveals how neural circuits process that information.
Correlations between neurons strongly impact both encoding and decoding, yet we still lack
models that simultaneously capture stimulus encoding by large populations of correlated
neurons and allow for accurate decoding of stimulus information, thus limiting our quantitative
understanding of the neural code. To address this, we propose a class of models of large-scale
population activity based on the theory of exponential family distributions. We apply our models
to macaque primary visual cortex (V1) recordings, and show they capture a wide range of
response statistics, facilitate accurate Bayesian decoding, and provide interpretable
representations of fundamental properties of the neural code. Ultimately, our framework could
allow researchers to quantitatively validate predictions of theories of neural coding against both
large-scale response recordings and cognitive performance.

Introduction

A foundational idea in sensory neuroscience is that the activity of neural populations constitutes
a “neural code” for representing stimuli (Dayan and Abbott, 2005; Doya, 2007): the activity pattern
of a population in response to a sensory stimulus encodes information about that stimulus, and
downstream neurons decode, process, and re-encode this information in their own responses.
Sequences of such neural populations implement the elementary functions that drive perception,
cognition, and behaviour (Pitkow and Angelaki, 2017). Therefore, by studying the encoding and de-
coding of population responses, researchers may investigate how information is processed along
neural circuits, and how this processing influences perception and behaviour (Wei and Stocker,
2015; Panzeri et al., 2017; Kriegeskorte and Douglas, 2018).

Given a true statistical model of how a neural population responds to (encodes information
about) stimuli, Bayes' rule can transform the encoding model into an optimal decoder of stimu-
lus information (Zemel et al., 1998; Pillow et al., 2010). However, when validated as Bayesian de-
coders, existing statistical models of neural encoding are often outperformed by models trained
to decode stimulus-information directly, indicating that the encoding models miss key statistics of
the neural code (Graf et al., 2011; Walker et al., 2020). In particular, the correlations between neu-
rons' responses to repeated presentations of a given stimulus (noise correlations), and how these
noise correlations are modulated by stimuli, can strongly impact coding in neural circuits (Zohary
etal., 1994; Abbott and Dayan, 1999; Sompolinsky et al., 2001; Ecker et al., 2016; Kohn et al., 2016;
Schneidman, 2016), especially in large populations of neurons (Moreno-Bote et al., 2014; Montijn
et al., 2019; Bartolo et al., 2020; Kafashan et al., 2020; Rumyantsev et al., 2020). Yet effectively
modelling noise correlations has proven challenging.

Validating theories of population coding (Ma et al., 2006; Beck et al., 2011a; Ganguli and Simon-

10of 25


sacha.sokoloski@mailbox.org
https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/

bIORXIV preprlnt d0| _https //doi. 0rg/10 1101/2020 11 05.369827; this versmn posted November 6, 2020. The copyright holder for thls preprlnt

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

20

91

92

|JIr..I"‘L..>LI’Ip su' miiedio \_an

celli, 2014; Makin et al., 2015; Yerxa et al., 2020) in large neural circuits thus depends on encoding
models that support accurate Bayesian decoding, effectively capture noise-correlations, and effi-
ciently fit large-scale neural recordings. Generalized linear models (GLMs) are one class of model
that yield effective Bayesian decoders, and GLMs have been applied to analyzing spatio-temporal
features of information processing in the retina and cortex (Pillow et al., 2008; Park et al., 2014;
Runyan et al., 2017). Nevertheless, neural correlations are often the result of low-dimensional,
shared variability (Arieli et al., 1996; Ecker et al., 2014; Goris et al., 2014; Rabinowitz et al., 2015;
Okun et al., 2015; Semedo et al., 2019), and it is unknown whether extensions of the GLM ap-
proach to capture shared-variability (Archer et al., 2014; Zhao and Park, 2017) can support accu-
rate Bayesian decoding. Similarly, methods based on factor analysis (Yu et al., 2009; Ecker et al.,
2014; Semedo et al., 2019) have proven highly effective at modelling neural correlations in large-
scale recordings, but it also unknown if they can support Bayesian decoding. Finally, a model class
related to GLMs is pairwise-maximum entropy models (Schneidman et al., 2006; Lyamzin et al.,
2010; Granot-Atedgi et al., 2013; Meshulam et al., 2017), which have been used to investigate se-
mantic clustering of responses in the retinal code (Ganmor et al., 2015); yet these models have
so-far been limited to population sizes of tens of neurons.

Towards modelling responses and accurate Bayesian decoding in large populations of corre-
lated neurons, we have developed a class of spike-count encoding model based on conditional fi-
nite mixtures of multivariate Poisson distributions, which we refer to as CPMs (Conditional Poisson
Mixtures). Within neuroscience, Poisson mixtures are widely applied to modelling the spike-count
distributions of individual neurons (Wiener and Richmond, 2003; Shidara et al., 2005; Goris et al.,
2014; Taouali et al., 2015). Outside of neuroscience, mixtures of multivariate Poisson distributions
are an established model of multivariate count distributions that effectively capture correlations
in count data (Karlis and Meligkotsidou, 2007; Inouye et al., 2017).

Building on the theory of exponential family distributions (Wainwright and Jordan, 2008; Macke
et al., 2011b), our model extends previous mixture models of multivariate count data in two ways.
Firstly, we develop a tractable extension of Poisson mixtures that captures both over- and under-
dispersed response variability (i.e. where the response variance is larger or smaller than the mean,
respectively) based on Conway-Maxwell Poisson distributions (Shmueli et al., 2005; Stevenson,
2016). Secondly, we introduce an explicit dependence of the model on a stimulus variable, which
allows the model to accurately capture changes in response statistics (including noise correlations)
across stimuli. Importantly, the resulting encoding model affords closed-form expressions for both
its Fisher information and probability density function and thereby a rigorous quantification of
the coding properties of a modelled neural population (Dayan and Abbott, 2005). Moreover, the
model learns low-dimensional representations of stimulus-driven neural activity, and we show how
it provides a parsimonious description of a fundamental property of population codes known as
information-limiting correlations (Moreno-Bote et al., 2014; Montijn et al., 2019; Bartolo et al.,
2020; Kafashan et al., 2020; Rumyantsev et al., 2020).

We apply the CPM framework to both synthetic data and recordings from macaque primary
visual cortex (V1), and demonstrate that it effectively models responses of populations of hundreds
of neurons, captures noise correlations, and supports accurate Bayesian decoding. Ultimately, our
model of neural encoding and decoding can be used to quantify coding properties of a neural
circuit, such as their efficiency, linearity, or information capacity.

Results

A critical part of our theoretical approach is based on expressing models of interest in exponen-
tial family form. An exponential family distribution p(n) over some data » (in our case, neural re-
sponses) is defined by the proportionality relation p(n) « e®*™b(n), where 0 are the so-called natural
parameters, s(n) is a vector-valued function of the data called the sufficient statistic, and b(n) is a
scalar-valued function called the base measure (Wainwright and Jordan, 2008). The exponential
family form allows us to modify and extend existing models in a simple and flexible manner, and
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to gain analytical insight into the coding properties of our models. We demonstrate our approach
with applications to both synthetic data generated by example CPMs, and data recorded in V1 of
anaesthetized and awake macaques viewing drifting grating stimuli at different orientations (for
details see Materials and methods).

Extended Poisson mixture models capture spike-count variability and covariability
Our first goal is to define a class of models of neural population activity, that model neural activity
directly as spike-counts, and that accurately capture single-neuron variability and pairwise covari-
ability. We base our models on Poisson distributions, as they are widely-applied to modelling the
trial-to-trial distribution of the number of spikes generated by a neuron (Dayan and Abhott, 2005;
Macke et al., 2011a). We will also generalize our Poisson models with Conway-Maxwell (CoM) Pois-
son distributions, because they can capture the broad range of Fano factors (FF; the variance di-
vided by the mean) observed in cortex, in contrast with Poisson distributions for which the FF is
always 1 (Sur et al., 2015; Stevenson, 2016; Chanialidis et al., 2018).

Mixtures of Poisson distributions are also used to capture complex spike-count distributions
in cortex, and allow for over-dispersion (FF>1) (Shidara et al., 2005; Goris et al., 2014; Taouali
et al., 2015) (Figure 1A). In our case we consider multivariate Poisson mixtures, as they capture
covariability in count data as well (see Karlis and Meligkotsidou (2007) for the general definition).
To construct a multivariate Poisson mixture we begin with a product of independent Poisson dis-
tributions, one per neuron. We then mix a finite number of such independent Poisson models,
to arrive at a multivariate spike-count, finite mixture model (see Materials and methods). Impor-
tantly, although each mixture component is a product of independent Poisson distributions, ran-
domly switching between components induces correlations between the neurons (Figure 1B,C). In
fact, multivariate Poisson mixtures may model arbitrary pairwise covariability (see Materials and
methods, Equation 6). Nevertheless, they are limited because the variance of individual neurons
cannot be smaller than the mean, and are thus always over-dispersed (Equation 5, Materials and
methods).

To address this limitation, we show how to express multivariate Poisson mixtures in an expo-
nential family form, and then generalize the model with CoM-Poisson distributions. We first note
that a multivariate Poisson mixture with d, components may be expressed as a latent variable
model over spike-count vectors n and latent component-indices k, where 1 < k < dg. In this formu-
lation we denote the kth component distribution by p(n | k), and the probability of realizing (switch-
ing to) the kth component by p(k). The mixture model over spike-counts n is then expressed as
the marginal distribution pm) = X%, p(n | k)p(k) = XX, p(n, k), of the joint distribution p(m, k). Un-
der mild regularity assumptions (see Materials and methods), we may reparameterize this joint
distribution in exponential family form as

eGN~n+BK~5(k)+n~®NK~6(k)

Hjj:N] ;!
where 0, 0, and ®,, are the natural parameters of p(n, k), and 8(k) = (5,(k), ... .84, (k) is the
Kronecker delta vector defined by 6,(k) = 1 if j = k, and 0 otherwise.

The exponential family form of a multivariate Poisson mixture represents the first component
distribution (i.e. p(n | k) with index k = 1) as a baseline distribution, and the other components
(where k > 1) as modulations of the baseline distribution, and this representation helps us extend
multivariate Poisson mixtures. In particular, the first component distribution has natural (base-
line) parameters 0, and for k > 1, the natural parameters of p(n | k) are the sum of the baseline
parameters 0, and one row from the matrix of parameters @, (Equation 12, Materials and meth-
ods). Because the dimension of 6, is much smaller than the total number of parameters in a given
mixture, the baseline parameters provide a relatively low-dimensional means of affecting all the
component distributions of the given mixture, as well as the index probabilities (Figure 1D; see
Materials and methods, Equation 11 for how p(k) depends on 0 ).

p(n, k) o , (M
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Figure 1. Poisson mixtures and Conway-Maxwell extensions A: A Poisson mixture distribution (red), defined as
the weighted sum of three component Poisson distributions (black; scaled by their weights). FF denotes the
Fano Factor (variance over mean) of the mixture. B,C: The average spike-count (rate) of the first and second
neurons for each of 13 components (black dots) of a bivariate Poisson mixture model, and 68% confidence
ellipses for the spike-count covariance of the mixture (red lines; see Equations 5 and 6). The spike-count
correlation of each mixture is denoted by r. D: Same model as A, except we shift the distribution by
increasing the baseline rate of the components. E,F: Same model as A, except we use an additional baseline
parameter based on Conway-Maxwell Poisson distributions to concentrate (E) or disperse (F) the mixture
distribution and its components.

We now extend Relation 1 with CoM-Poisson theory, and propose the latent variable exponen-

tial family

p(n, k) eeN~n+e;,~lf(n)+e,<~6(k)+n~®NK~6(k), )
where If(n) = (log(n,!), ... Jlog(n, 1) is the vector of log-factorials of the individual spike-counts,
and 0}, are a set of natural parameters based on CoM-Poisson distributions (see Materials and
methods). The exponential family form continues to represent the mixture in terms of a baseline
distribution, in this case p(n | k) is a product of independent CoM-Poisson distributions, with base-
line parameters 8 and CoM-based parameters .. However, whereas the rows of ®, modulate
0, depending on the component index k, the parameters 63, are not modulated, and remain the
same for each component distribution (Equation 15, Materials and methods, and see Equation 14
for index-probability formula). For the rest of this paper we refer to models described by Relation 1
as vanilla mixtures, and models described by Relation 2 as CoM-based mixtures.

Due to the addition of the CoM-based parameters, a CoM-based mixture can model under-
dispersed (FF < 1) neural activity (Equation 16, Materials and methods). In Figures 1D-F we demon-
strate how changing the parameters of the CoM-based mixture can concentrate or disperse both
the mixture distribution and its components.

To validate our mixture models, we tested if they capture variability and covariability of V1 pop-
ulation responses to repeated presentations of a grating stimulus with fixed orientation (d, = 43
neurons and d; = 355 repetitions in one awake macaque; d, = 70 and d,; = 1,200 in one anaes-
thetized macaque). We optimized model parameters as described in Materials and methods. The
CoM-Poisson mixture accurately captured single-neuron variability (Figure 2A-B, red symbols), in-
cluding both cases of over-dispersion and under-dispersion. In contrast, the simpler multivariate
Poisson mixture (Figure 2A-B, blue symbols) could not accommodate under-dispersion, and also
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Figure 2. Capturing neural variability in V1 responses to a single stimulus with CPMs. We qualitatively compare
vanilla Poisson mixtures (Relation 1) and CoM-based mixtures (Relation 2), on awake and anaesthetized V1
responses to stimulus orientation x = 20°; both mixtures are defined with dx = 4 components for awake data,
and dg = 8 components for anaesthetized data (see Materials and methods for training algorithms). A,B:
Empirical Fano factors of the awake (A) and anaesthetized data (B), compared to vanilla (blue) and CoM-based
mixtures (red). C,D: Empirical correlation matrix (upper right) of awake (C) and anaesthetized data (D),
compared to the correlation matrix of the corresponding vanilla mixtures (lower left). E,F: Correlations
highlighted in C and D, respectively. G,H: Correlations highlighted in C and D, except model correlations are
from CoM-based mixtures.

had a limited ability to model over-dispersion due to the coupling between the mean and variance
(Equation 5). On the other hand, we found that both mixture models were flexible enough to qual-
itatively capture pairwise noise correlations, both in awake and anaesthetized animals (Fig. 2C-H)
(in later sections we quantitatively compare the model performance).

Extended Poisson mixture models capture stimulus-dependent response statistics
So far we have introduced the exponential family theory of vanilla and CoM-based Poisson mix-
tures, and shown how they capture response variability and covariability for a fixed stimulus. To
allow us to study stimulus encoding and decoding, we further extend our mixtures by inducing
a dependency of the model parameters on a stimulus. When there are a finite number of stim-
ulus conditions and sufficient data, we may define a stimulus-dependent model with a lookup
table, and fit it by fitting a distinct model at each stimulus condition. However, this is inefficient
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when the amount of data at each stimulus-condition is limited and the stimulus-dependent statis-
tics have structure that is shared across conditions. A notable feature of the exponential family
parameterizations in Relations 1 and 2 is that the baseline parameters influence both the index
probabilities and all the component distributions of the model. This suggests that by restricting
stimulus-dependence to the baseline parameters, we might model rich stimulus-dependent re-
sponse structure, while bounding the complexity of the model.

In general we refer to any finite mixture of independent Poisson distributions with stimulus-
dependent parameters as a conditional Poisson mixture (CPM), and depending on whether the
CPM is based on Relations 1 or 2, we refer to it as a vanilla or CoM-based CPM, respectively. Al-
though there are many ways we might induce stimulus-dependence, in this paper we consider
two forms of CPM: (i) a maximal CPM, which we implement as a lookup table, such that all the
parameters in Relation 1 or 2 depend on the stimulus, and (ii) a minimal CPM, for which we restrict
stimulus-dependence to the baseline parameters 6, resulting in the CoM-based CPM

p(n,k | x) x eGN(x)~n+9’;V<lf(n)+9K»6(k)+n-G)NK»6(k)’ (3)

where x is the stimulus, and 0 (x) are the stimulus-dependent baseline parameters (we may re-
cover a minimal, vanilla CPM by setting 8, = —1). The tuning curves of the CPM neurons are the
average spike-counts (firing rates) of each n; as a function of the stimulus x, and we refer to 6, (x)
as the baseline tuning curve parameters, as they define how the firing rates of the baseline CPM
distribution (i.e. p(n | x, k) when k = 1) depend on x. For k > 1, the modulated CPM p(n | x, k) is
then a scaled, or “gain-modulated” version of the baseline CPM (see Equations 12 and 15 and the
accompanying discussions).

Towards understanding the expressive power of CPMs, we study a minimal, CoM-based CPM
with dy = 20 neurons, dy = 5 mixture components, and randomly chosen parameters (see Ma-
terials and methods). Moreover, we assume that the stimulus is periodic (e.g. the orientation of
a grating), and that the baseline tuning curves have a von Mises shape which is a widely applied
model of neural tuning to periodic stimuli (Herz et al., 2017). We may achieve such a baseline
shape by defining the baseline tuning curve parameters as 0(x) = G?V + O,y - vm(x), where e?v
and @, , are the tuning curve parameters, and vm(x) = (cos 2x,sin2x). Figure 3A shows that the
tuning curves of the CPM neurons are approximately bell-shaped, yet many also exhibit significant
deviations.

We also study if CPMs can be effectively fit to datasets comparable to those obtained in typical
neurophysiology experiments. We generated 200 responses from the CoM-based CPM described
above — the ground truth CPM — to each of 10 orientations spread evenly over the half-circle, for a
total of 2,000 stimulus-response sample points. We then used this data to fit a CPM with the same
number of components. Towards this aim, we derived an approximate expectation-maximization
algorithm (EM, a standard choice for training finite mixture models (McLachlan et al., 2019)) to
optimize model parameters, that also accounts for the stimulus-dependence (see Materials and
methods). Figure 3B shows that the tuning curves of the learned CPM are nearly indistinguishable
from those of the ground truth CPM (Figure 3B).

To reveal the orientation-dependent latent structure of the model, in Figure 3C we plot the
index probability p(k | x) for every k as a function of the orientation x. In Figure 3D we show
that the orientation-dependent index probabilities of the learned CPM qualitatively match the true
index probabilities in Figure 3C. We also note that although the learned CPM does not correctly
identify the indices themselves, this has no effect on the performance of the CPM.

The orientation-dependent index-probabilities provide a high-level picture of how the complex-
ity and structure of model correlations varies with the orientation. The vertical dashed lines in
Figures 3C-D denote two orientations that yield substantially different index probabilities p(k | x).
When a large number of index-probabilities are non-zero, the correlation-matrices of the CoM-
based CPM can exhibit complex correlations with both negative and positive values (Figure 3E).
However, when one index dominates, the correlation structure largely disappears (Figure 3F). In
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Figure 3. Recovering a ground truth conditional Poisson mixture (CPM). We compare a ground truth, CoM-based
CPM with 20 neurons, 5 mixture components, von Mises baseline tuning, and randomized parameters to a
learned CPM fit to 2,000 samples from the ground truth CPM. A-B: Tuning curves of the ground-truth CPM (A)
and learned CPM (B). Three tuning curves are highlighted for effect. C-D: The orientation-dependent index
probabilities of the ground truth CPM (C) and learned CPM (D), where colour indicates component index.
Dashed lines indicate example stimulus-orientations used in Figures 3C-D.E-F: The correlation matrix of the
ground truth CPM (upper right), compared to the correlation matrix of the learned CPM (lower left) at
stimulus orientations x = 85° (E) and x = 110° (F). G: The FFs of the ground-truth CPM compared to the
learned CPM at orientations x = 85° (blue circles) and x = 110° (red triangles).

Figure 3G we show that the FFs also depend on stimulus orientation. Lastly, we find that both the
FF and the correlation-matrices of the learned CPM are nearly indistinguishable from the ground-
truth CPM (Figure 3E-G).

In summary, our analyses show that CPMs can generate complex, stimulus-dependent response
statistics, and that the learned CPM accurately recovers both the statistics and the latent structure
of the neural responses from realistic amounts of data.

CPMs effectively model neural responses in macaque V1

A variety of models may be defined within the CPM framework illustrated by Relations 1, 2, and 3.
Towards understanding how effectively CPMs can model real data, we compare different variants
by their cross-validated log-likelihood. We consider both vanilla and CoM-based variants of each of
the following conditional mixtures: (i) maximal CPMs where we learn a distinct mixture for each of
dy stimulus conditions, (ii) minimal CPMs with von Mises baseline tuning curves, and (iii) minimal
CPMs with discrete baseline tuning curves given by 8y (x) = 8%, +0, - §(x), where & is the Kronecker
delta vector with d, — 1 elements, and x is the index of the stimulus. In contrast with the von Mises
CPM, the discrete CPM makes no assumptions about the form of baseline tuning.
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Encoding Performance

Awake Anaesthetized
Inf. Gain dy  Num. Params. | Inf. Gain dy  Num. Params.
Maximal Vanilla | 230+032 5 2,689 8.77 +£0.71 8 5,103
Maximal CoM 244+035 5 3,044 9.42+0.70 7 4,464
VM Vanilla 2.01+0.26 45 2,065 8.97+0.70 40 2,979
VM CoM 2.10+0.25 40 1,888 9.38+0.69 35 2,694
Disrete Vanilla 225+0.28 40 2,103 9.17+0.70 35 3,044
Disrete CoM 235+0.29 30 1,708 9.53+0.68 30 2,689

Table 1. The encoding performance of CPMs on neural responses in macaque V1. We apply 10-fold
cross-validation to estimate the mean and standard error of the information gain on held-out data, from
either awake or anaesthetized macaque V1. We compare maximal CPMs (Maximal), minimal CPMs with von
Mises baseline tuning (VM), and minimal CPMs with discrete baseline tuning (Discrete), and for each case we
consider either Vanilla or CoM-based variants. For each variant, we indicate the number of CPM components
dx and the corresponding number of model parameters required to achieve peak information gain
(cross-validated). For reference, the independent Poisson models use 129 and 210 parameters for the awake
and anaesthetized data, respectively.

To provide an interpretable measure of the relative performance of each CPM variant, we mea-
sured the difference between the estimated log-likelihood of the given CPM and the log-likelihood
of a von Mises-tuned, independent Poisson model, which is a standard model of uncorrelated neu-
ral responses to oriented stimuli (Herz et al., 2017). We refer to this quantity as the information
gain.

Table 1 shows that the CPM variants considered achieve comparable performance, and per-
form substantially better than the independent Poisson lower bound on both the awake and anaes-
thetized data. Figure 4 shows that a performance peak emerges smoothly as the model complexity
(number of parameters) is increased. In all cases, the CoM-based models outperform their vanilla
counterparts, and typically with fewer parameters. The CoM-based discrete CPMs achieve high
performance on both datasets. In contrast, von Mises CPMs perform well on the anaesthetized
data but more poorly on the awake data, and maximal CPMs exhibit the opposite trend. Never-
theless, von Mises CPMs solve a more difficult statistical problem as they also interpolate between
stimulus conditions, and so may still prove relevant even where performance is limited. On the
other hand, even though maximal CPMs achieve high performance, they simply do so by replicat-
ing the high performance of stimulus-independent mixtures (Figure 2) at each stimulus condition,
requiring significantly more parameters than minimal CPMs.

CPMs facilitate accurate and efficient Bayesian decoding of neural responses

To demonstrate that CPMs model the neural code, we must show that CPMs not only capture the
features of neural responses, but that these features also encode stimulus-information. Given an
encoding model p(n | x) and a response from the model n, we may optimally decode the informa-
tioninthe response about the stimulus x by applying Bayes' rule p(x | n) « p(n | x)p(x), where p(x | n)
is the posterior distribution (the decoded information), and p(x) represents our prior assumptions
about the stimulus (Zemel et al., 1998). When we do not know the true encoding model, and rather
fit a statistical model to stimulus-response data, using the statistical model for Bayesian decoding
and analyzing its performance can tell us how well it captures the features of the neural code.

We analyze the performance of Bayesian decoders based on CPMs by quantifying their decod-
ing performance, and comparing the results to other common approaches to decoding. We quan-
tify decoding performance by evaluating the average of the cross-validated log-posterior probabil-
ity log p(x | n) of the true stimulus value x, for both our awake and anaesthetized V1 datasets. With
regards to training the CPMs, we analyze the decoding performance of CPMs that achieved the
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Figure 4. Finding the optimal number of parameters for CPMs to model neural responses in macaque V1. 10-fold
cross-validation of the information gain given awake V1 data (A) and anaesthetized V1 data (B), as a function
of the number of model parameters, for multiple forms of CPM: maximal CPMs (green); minimal CPMs with

von Mises baseline tuning (blue); minimal CPMs with discrete baseline tuning (purple); and for each case we
consider either vanilla (dashed lines) or CoM-based (solid lines) variants. Standard errors of the information

gain are not depicted to avoid visual clutter, however they are approximately independent of the number of
model parameters, and match the values indicated in Table 1.

best encoding performance based as indicated in Table 1 and depicted Figure 4, instead of apply-
ing distinct procedures for selecting CPMs based on decoding performance. This is because our
goal is to understand how well the response features captured by CPMs reflect the neural code,
rather than strictly maximizing decoding performance.

In our comparisons we focus on minimal, discrete CPMs as overall they achieved high per-
formance on both datasets (Figure 4). To characterize the importance of neural correlations to
Bayesian decoding, we compare our CPMs to the decoding performance of independent Poisson
models with discrete tuning (IP). To characterize the optimality of our Bayesian decoders, we also
evaluate the performance of linear multiclass decoders (Linear), as well nonlinear multiclass de-
coders defined as artificial neural networks (ANNs) with two hidden layers and a cross-validated
number of hidden units (for details on the training and model selection procedure, see Materials
and methods).

Table 2 shows that on the awake data, the performance of the CPMs is statistically indistinguish-
able from the ANN, and the CPMs and the ANN significantly exceed the performance of both the
Linear and IP models. On the anaesthetized data, the minimal CPM approaches the performance
of the ANN, and the minimal CPMs and ANN models again exceed the performance of the IP and
Linear models. Yet in this case the Linear model is much more competitive, whereas the IP model
performs very poorly, possibly because of the larger magnitude of noise correlations in this data. In
both cases the ANN requires two orders of magnitude more parameters than the CPMs to achieve
its performance gains. In addition, the CoM-based CPM achieves marginally better performance
with fewer parameters than the vanilla CPM, indicating that although modelling individual variabil-
ity is not essential for effective Bayesian decoding, doing so still results in a more parsimonious
model of the neural code.

We also consider widely used alternative measures of decoding performance, namely the Fisher
information (Fl), which is an upper bound on the average precision (inverse variance) of the pos-
terior (Brunel and Nadal, 1998), as well as the linear Fisher information (LFI), which is a linear ap-
proximation of the FI (Seriés et al., 2004) corresponding to the accuracy of the optimal, unbiased
linear decoder of the stimulus (Kanitscheider et al., 2015a). The Fl is especially helpful when the
posterior cannot be evaluated directly (such as when it is continuous), and is widely adopted in the-
oretical (Abbott and Dayan, 1999; Ecker et al., 2014; Moreno-Bote et al., 2014; Kohn et al., 2016)
and experimental (Ecker et al., 2011; Rumyantsev et al., 2020) studies of neural coding. As with
other models based on exponential family theory (Ma et al., 2006; Beck et al., 2011b; Ecker et al.,
2016), the FI of a minimal CPM may be expressed in closed-form, and is equal to its LFI (see Ma-
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302

303

Decoding Performance

Awake Anaesthetized
Average Log-Post. Num. Params. | Average Log-Post. Num. Params.
CoM CPM —0.206 + 0.043 1,663 —0.441 +0.023 2,689
Vanilla CPM —0.207 + 0.039 2,103 —0.448 +0.026 3,044
Ind. Poisson —0.272 + 0.067 387 —-0.967 + 0.071 630
Linear —0.256 + 0.053 352 —0.457 £ 0.019 568
Artificial NN —0.200 + 0.032 527,108 —0.426 + 0.015 408,008

Table 2. The decoding performance of CPMs on neural responses in macaque V1. We apply 10-fold
cross-validation to estimate the mean and standard error of the average log-posteriors log p(x | n) on held-out
data, from either awake or anaesthetized macaque V1. We compare discrete, minimal, CoM-based CPM (CoM.
CPM) and vanilla CPM (Vanilla CPM); an independent Poisson model with discrete tuning (IP); a multiclass
linear decoder (Linear); and a multiclass nonlinear decoder defined as an artificial neural network with two
hidden layers (ANN). The number of CPM components dg was chosen to achieve on peak information gain in
Figure 4. The number of ANN hidden units was chosen based on peak cross-validation performance. In all
cases we also indicate the number of model parameters required to achieve the indicated performance.

terials and methods), and therefore minimal CPMs can be used to study Fl analytically and obtain
model-based estimates of Fl from data.

We generated 40 populations of d,, = 20 model neurons from the vanilla, minimal, von Mises
CPM, with parameters corresponding to the best-fit parameters of 40 random subsets of neurons
from our V1 datasets. For each population, we generated 50 responses at each of 10 evenly spaced
orientations, for a total of d;, = 500 responses per population. We then fit a CPM to each set of
500 responses, and compared the FI of the fit CPM to the ground-truth FI at 50 evenly spaced
orientations. Pooled over all populations and orientations, the relative error of the estimated Fl
was —12.8% + 18.6% on the awake data and —9.1% + 22.4% on the anaesthetized data.

The aforementioned measures allow us to assess decoding performance when we do not know
the full posterior, however the full posterior is an essential part of probabilistic neural codes (Pouget
et al., 2016; Drugowitsch et al., 2019). To test whether CPMs can in principle recover full posteri-
ors, we consider a ground truth CPM defined as discrete, CoM-based, minimal CPM with d,, = 200
neurons, dy = 20 stimulus-conditions, d, = 30 components, and randomized parameters, and we
fit a discrete, CoM-based, minimal CPM with d, = 40 components (chosen with cross-validation) to
d; = 10,000 responses from the ground-truth CPM (see Materials and methods). We then compute
the average KL-divergence (a fundamental measure of the similarity of two distributions, see Cover
and Thomas (2006); Amari and Nagaoka (2007)) of the learned posteriors from the ground-truth
posterior over all the d;, = 10,000 responses, and find that the average posterior divergence is
0.047 +£0.007 bits, indicating that on average the learned and ground-truth posteriors are extremely
close.

To summarize, CPMs support accurate Bayesian decoding in awake and anaesthetized macaque
V1 recordings, and are competitive with nonlinear decoders with two orders of magnitude more
parameters. Moreover, CPMs afford closed-form expressions of FI and can interpolate good esti-
mates of Fl from modest amounts of data, and thereby support analyses of neural data based on
this widely applied theoretical tool. Finally, a CPM fit to the responses of a ground-truth CPM can
almost perfectly recover the ground-truth posterior distributions.

Minimal CPMs provide an interpretable latent representation of a fundamental
feature of the neural code

Having shown that CPMs can be used to accurately decode stimuli, we next aim to demonstrate
that the latent structure of CPMs offers an interpretable representation of a central phenomenon
in neural coding known as information-limiting correlations, which are neural correlations that
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Figure 5. Fisher information and information-limiting correlations in CPMs. We consider a von Mises-tuned,
independent Poisson source model (green) with dx = 200 neurons, and an information-limited, CoM-based
CPM (purple) with dg = 25 components, fit to 10,000 responses of the source-model to stimuli obscured by
von Mises noise. In B-F we consider a stimulus-orientation x = 90° (blue line). A: The average (lines) and
standard deviation (filled area) of the Fl over orientations, for the source (green) and information-limited
(purple) models, as a function of random subpopulations, starting with ten neurons, and gradually
reintroducing missing neurons. Dashed black line indicates the theoretical upper bound. B: The
index-probability curves (lines) of the CPM for indices k > 1 and the intersection (red, yellow, and orange
circles) of the stimulus with three curves (orange, yellow, and orange lines). C: The sum of the firing rates of
the modulated CPM for all indices k > 1 (lines) as a function of orientation, with three modulated CPMs
highlighted (red, yellow, and orange lines) corresponding to the highlighted indices in B. D-F: Three responses
from the yellow (D; yellow points), red (E; red points), and orange modulated CPMs (F; orange points)
indicated in C. For each response we plot the posterior based on the source model (green line) and the
information-limited model (purple line).

333 fundamentally limit stimulus-information in neural circuits (Moreno-Bote et al., 2014; Montijn et al.,
33a  2019; Bartolo et al., 2020; Kafashan et al., 2020; Rumyantsev et al., 2020). To illustrate this, we
33 generate population responses with limited information, and then fit a CPM to these responses
3¢ and study the learned latent representation. In particular, we consider a source population of 200
337 independent Poisson neurons p(n | s) with homogeneous, von Mises tuning curves responding to a
338 Noisy stimulus-orientation s, where the noise p(s | x) follows a von Mises distribution centred at the
330 true stimulus-orientation x (see Materials and methods). In Figure 5A we show that, as expected,
a0 the average Flin the source population about the noisy orientation s grows linearly with the size of
a1 randomized subpopulations, whereas the Fl about the true orientation x is theoretically bounded
a2 by the precision (inverse variance) of the sensory noise.

343 Even though the neurons in the source model are uncorrelated, sensory noise ensures that
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the information-limited encoding model p(n | x) = [ p(n | s)p(s | x)ds contains information-limiting
correlations that bound the Fl about x (Moreno-Bote et al., 2014; Kanitscheider et al., 2015b). To
understand whether and how the latent structure of CPMs captures information-limiting noise
correlations, we fit a minimal, von Mises, vanilla CPM with d, = 20 mixture components to d, =
10,000 responses from p(n | x). Figure 5A (purple) shows that the Fl of the learned CPM saturates
near the precision of the sensory noise, indicating that the learned CPM accurately captures the
information-limiting correlations present in p(n | x).

To understand how the learned CPM represents the correlations in p(n | x) we study the re-
lation between the latent modulations and the population activity. Figure 5B shows the index-
probabilities of the learned CPM: given the true orientation x = 90°, there are 3 modulations with
probabilities substantially greater than 0. To provide a high-level picture of how these modulations
affect population responses, in Figure 5C we plot the sum of the modulated rates of the population
as a function of orientation, and see that each modulation concentrates the tuning of the popula-
tion around a particular orientation, and that two of the modulations in particular shift the tuning
away from the true orientation.

Because there are essentially three modulations that are relevant to the responses of the CPM
to the true orientation x = 90°, generating a response from the CPM approximately reduces to
generating a response from one of the three possible modulated populations. In Figures 5D-F
we depict a response to x = 90° from each of the three modulated populations, as well as the
optimal posterior based on the learned CPM (purple lines), and a suboptimal posterior based on
the source model (i.e. ignoring noise correlations; green lines). We observe that the trial-to-trial
variability of the learned CPM results in random shifts of the peak neural activity away from the
true orientation, thus fundamentally limiting information. Furthermore, when the response of the
population is concentrated at the true orientation (Figure 5E), the suboptimal posterior assigns a
high probability to the true orientation, whereas when the responses are biased away from the
true orientation (Figures 5D and 5F) the suboptimal posterior assigns nearly O probability to the
true orientation. This is in contrast to the optimal posterior, which always assigns a significant
probability to the true orientation.

In summary, CPMs accurately capture information-limiting correlations, and provide insight
into how such correlations can be generated by a simple latent structure.

Discussion

In this paper we introduced a latent variable exponential family formulation of multivariate Poisson
mixtures. We showed how this formulation allows us to effectively extend multivariate Poisson
mixtures both to capture sub-Poisson variability, and to incorporate stimulus dependence, which
we termed Conditional Poisson Mixtures (CPMs). Our analyses and simulations showed that CPMs
can be fit efficiently and recover ground truth models in synthetic data, capture a wide range of V1
response statistics in real data, and can be easily inverted to obtain accurate Bayesian decoding
that is competitive with nonlinear decoders, while using orders of magnitude less parameters. In
addition, we illustrated how the latent structure of CPMs provides an interpretable representation
of a fundamental feature of the neural code, e.g. information-limiting correlations.

Our framework is particularly relevant for probabilistic theories of neural coding based on the
theory of exponential families (Beck et al., 2007), which include theories that address the linearity
of Bayesian inference in neural circuits (Ma et al., 2006), the role of phenomena such as divisive
normalization in neural computation (Beck et al., 2011a), Bayesian inference about dynamic stim-
uli (Makin et al., 2015; Sokoloski, 2017), and the metabolic efficiency of neural coding (Ganguli and
Simoncelli, 2014; Yerxa et al., 2020). These theories have proven difficult to validate quantitatively
with neural data due to a lack of statistical models which are both compatible with their exponen-
tial family formulation, and can model correlated activity in recordings of large neural populations.
Our work suggests that CPMs can overcome these difficulties, and help connect the rich mathe-
matical theory of neural coding with the state-of-the-art in parallel recording technologies.
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308 CPMs are not limited to modelling neural responses to stimuli, and can model how arbitrary
ses  experimental variables modulate neural variability and covariability. Examples of experimental
396 Variables that have measurable effects on neural covariability include the spatial and temporal
307 context around a stimulus (Snyder et al., 2014; Snow et al., 2016, 2017, Festa et al., 2020), as well
308 as task-variables and the attentional state of the animal (Maunsell, 2015; Rabinowitz et al., 2015;
300 Kanashiro et al., 2017; Bondy et al., 2018; Ruff and Cohen, 2019). Each of these variables could be
200 incorporated into a CPM by either replacing the stimulus-variable in our equations, or combining
201 it with the stimulus-variable to construct a CPM with multivariate dependence. This would allow
202 researchersto explore how the stimulus and the experimental variables mutually interact to shape
203 variability and covariability in large populations of neurons.

404 To understand how this variability and covariability effects neural coding, latent variable models
205 suchas CPMs are often applied to extractinterpretable features of the neural code from data (White-
ws Way and Butts, 2019). The latent states of a CPM provide a soft classification of neural activity, and
207 We may apply CPMs to model how an experimental variable modulates the class membership of
a8 nNeurons. In the aforementioned studies, models of neural activity yielded predictions of percep-
200 tual and behavioural performance. Because CPMs support Bayesian decoding, an appropriate
a0 CPM can also make predictions about how a class of neurons is likely to modulate perception and
.11 behaviour, and we may then test these predictions with experimental interventions on the neu-
a2 rons themselves (Panzeri et al., 2017). In this manner, we believe CPMs could form a critical part
a1z of arigorous, Bayesian framework for “cracking the neural code” in large populations neurons.

414 In our applications we considered low-dimensional variables, and implemented the stimulus-
a1 dependence of the CPM parameters with linear functions. Nevertheless, the stimulus-dependence
a6 of a CPM can be implemented by arbitrary parametric functions of high-dimensional variables such
a1z as deep neural networks, and CPMs can also incorporate history-dependence via recurrent neu-
a1s ral networks. As such, CPMs have the potential to integrate encoding models of higher cortical
a0 areas (Yamins et al., 2014) with models of the temporal features of the neural code (Pillow et al.,
a20 2008; Park et al., 2014; Runyan et al., 2017), towards analyzing the neural code in dynamic, corre-
a1 lated neural populations in higher cortex. Outside of neuroscience, high-dimensional count data
422 exists in many fields such as corpus linguistics and genomics (Inouye et al., 2017), and researchers
423 who aim to understand how this data depends on history or additional variables could benefit from
a24  OUr techniques.

«s Materials and methods

22  Notation

«2z  We use capital, bold letters (e.g. ®) to indicate matrices; small, bold letters (e.g. 8) to indicate vec-
a8 tors; and regular letters (e.g. 0) to indicate scalars. We use subscript capital letters to indicate the
a20 role of a given variable, so that, in Relation 1 for example, 8, are the natural parameters that bias
a0 the index-probabilities, 0, are the baseline natural parameters of the neural firing rates, and ©,
41 is the matrix of parameters through which the indicies and rates interact.

432 We denote the ith element of a vector © by 6, or e.g. of the vector 6, by 6, ;. We denote the
as3  ith row or jth column of © by 6, or ,, respectively, and always state whether we are considering
a3 arow or column of the given matrix. When referring to the jth element of a vector 6, indexed by
a5 i, we write 6. Finally, when indexing data points from a sample, or parameters that are tied to
436 individual data points, we use parenthesized, superscript letters, e.g. x®, or 953.

.37 Poisson mixtures and their moments
a3s  The following derivations were presented in a more general form in Karlis and Meligkotsidou
430 (2007), but we present the simpler case here for completeness A Poisson distribution has the form

440 p(n ﬂ)
a1 tively). We may use a Poisson model to define a distribution over d,, spike countsn = (nl, sy )
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by supposing that the neurons generate spikes independently of one another, leading to the in-
dependent Poisson model p(n;A) = H | p(n;; 4) with firing rates A = (4, ey Ay ) Finally, if we
consider the dy rate vectors A,,..., A, , and dy weights w,, ..., w, , where 0 < w, for all k, and
w, =1- Zz’z‘z w,, we then define a mixture of Poisson distributions as a latent variable model
p(n) =Y, p(n | k)p(k) = X, p(n, k), where p(n | k) = p(n; A), and p(k) =

The mean y; of the ith neuron of a mixture of independent Poisson distributions is

o dg
= D pn, | ypkom, = Zp(k) Zp(n | ko, = Z Wiy @)
n;=0 k=1 n;=0

The variance a} of neuroniis

o} = Zp(n =} = Zp(k)z‘,p(n |l — p? = Zp(kxa,kHZ)—u = p + Zwkulk )’ (5)
n;=0 n;=0 k=1

where ¢, = 4, is the variance of the ith neuron under the kth component distribution, i.e. the

variance of p(n, | k), and where ¥=_ p(n, | k> = 62 + 2%, and X% w, 22 — p2 = T4% w, (A — wy)*

both follow from the fact that a distribution’s variance equals the difference between its second

moment and squared first moment.

The covariance afj between spike-counts n; and n; for i # j is then

=D pOn,n)(m = u)n, = py) = 2p(k> 2 2 g,y | ), = )y = )

n;=0n;=0 n;=0n;=0
dg
= Z p(k) Z pOn, | k), — ) 2 POy 1K)y = ) = ) w0 Gy = ) Ay — ). (6)
n;=0 n]»=0 k=1

Observe that if w, = ﬁ then afj is simply the sample covariance between i and j, where the
sample is composed of the rate components of the ith and jth neurons. Equation 6 thus implies
that Poisson mixtures can model arbitrary covariances. Nevertheless, Equation 5 shows that the
variance of individual neurons is restricted to being larger than their means.

Exponential family mixture models
In this section we show that the latent variable form for Poisson mixtures we introduced above
is @ member of the class of models known as exponential families. An exponential family distri-
bution p(x) over some data x has the form p(x) = e®s®¥®p(x), where 0 are the so-called nat-
ural parameters, s(x) is a vector-valued function of the data called the sufficient statistic, b(x) is
a scalar-valued function called the base measure, and y/(0) = log [ e®*®b(x)dx is the log-partition
function (Wainwright and Jordan, 2008). In the context of Poisson mixture models, we note that an
independent Poisson model p(n; A) is an exponential family, with natural parameters 6, given by
0y, = log 4, base measure b(n) = [], »,! and sufficient statistic s (n) = n, and log-partition function
wy(0y) = log Y, e’¥i. Moreover, the distribution of component indices p(k) (also known as a cat-
egorical distribution) also has an exponential family form, with natural parameters 6, , = log <
for 1 < k < dy, sufficient statistic 8(k) = (5,(k), .. <584, (K)), base measure b(k) = 1, and log- partltlon
function y(6) = log(1 + ZkK "e% ), Note that in both cases, the exponential parameters are well-
defined only if the rates and weights are strictly greater than 0 — in practice however this is not a
significant limitation.

We claim that the joint distribution of a multivariate Poisson mixture model p(n, k) can be repa-
rameterized in the exponential family form

£ON MO -S5Oy g -5()-Wnk (OO Onk)

P, ) = : , @)
i
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where yy (8, 0k, Opg) = log Y, O 80HvnOn+ONk-8(K) s the |og-partition function of p(n | k). To
show this we show how to express the natural parameters 0y, 0, and © as (invertible) functions
of the component rate vectors A, ..., A, , and the weights w,, ..., w,, . In particular, we set

0y =logA,, (8)
where log is applied element-wise. Then, for 1 < k < dy, we set the kth row 6y, of @, to
Onki =10gA; —logAy, 9

and the kth element of 6, to

w
Oy, = log LZ“ Fw(0y) —wy(Oy + 0Oy, - 8(k)). (10)
1

This reparameterization may then be checked by substituting Equations 8, 9, and 10 into Equation 7
to recover the joint distribution of the mixture model p(n, k) = p(n | k)p(k) = w,p(n; Ay); for a more
explicit derivation see Sokoloski (2019).

The equation for p(n, k) ensures that the index-probabilities are given by

n(e +0 8(k))
pk) = Ok 8()-wNk(ON.Ok.ONk) Z NH—NK ek 8wk (ON.Ok.ONkI+YN(ON+ON k- S(K)) (11

Consequently, the component distributions in exponential family form are given by

(| k)= IM = oM (ON+ONK-8UN-YN(ON+ONk-5(K) (12)
p(k)

Observe that p(n | k) is a multivariate Poisson distribution with parameters 6, + @, - 8(k), SO
that for k > 1, the parameters are the sum of 6, and row k — 1 of ®, . Because the exponential
family parameters are the logarithms of the firing rates of n, each row of ®, , modulates the firing
rates of n multiplicatively. When 6 (x) depends on a stimulus and we consider the component
distributions p(n | x, k), each row of ®,, then scales the tuning curves of the baseline population
(i.e. (p(n | x, k) for k = 1); in the neuroscience literature, such scaling factors are typically referred
to as gain modulations.

The exponential family form has many advantages. However, it has a less intuitive relationship
with the statistics of the model such as the mean and covariance. The most straightforward method
to compute these statistics given a model in exponential family form is to first reparameterize it in
terms of the weights and component rates, and then evaluate Equations 4, 5, and 6.

CoM-Poisson distributions and their mixtures

Conway-Maxwell (CoM) Poisson distributions decouple the location and shape of count distribu-
tions (Shmueli et al., 2005; Stevenson, 2016; Chanialidis et al., 2018). A CoM Poisson model has
the form p(n; 1, v) « (%)V The floor function | 4] of the location parameter 4 is the mode of the given
distribution. With regérds to the shape parameter v, p(n; 4, v) is a Poisson distribution with rate A
whenv =1, and is under- or over-dispersed whenv > 1 orv < 1, respectively. ACoM-Poisson model
p(n; A,v) is also an exponential family, with natural parameters 6. = (vlog 4, —v), sufficient statistic
sc(n) = (n,logn!), and base measure b(n) = 1. The log-partition function does not have a closed-form
expression, but it can be effectively approximated by truncating the series Y >  esc® % (Shmueli
et al., 2005). More generally, when we consider a product of independent CoM-Poisson distri-
butions, we denote its log-partition function by logwc(8,,0}) = XN B "N N, where
0c,; = (Oy,, 0} ) are the parameters of the ith CoM-Poisson distribution. In this case we can also ap-
proximate the log-partition function . by truncating the d, constituent series 3°_ "N e,
in parallel. I

We define a multivariate CoM-based mixture as

p(n’ k) — eeN<n+6]*v<lf(n)+9K<8(k)+n.®NK~5(k)—u/CK(GN,GL,GK,@NK)’ (1 3)
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where If(n) = (log(n,!), ... Jlog(n, 1) is the vector of log-factorials of the individual spike-counts,
and weg(0y, 0%, 04, 0yx) = log Y, ek tWHve@x+Oni-30.0) js the |og-partition function. This form
ensures that the index-probabilities satisfy

p(k) = eel('S(k)*‘I/CK(eN'97\/seKseNK)+WC(9N+®NK‘5(k)seX1‘V)’ (14)

and consequently that each component distribution p(n | k) is a product of independent CoM
Poisson distributions given by

pn | k)= M ONFON -8+, W) -y (O N +ON k-8(K),07) (15)

Observe that, whereas the parameters 6y + O, - 8(k) of p(n | k) depend on the index k, the
parameters ), of p(n | k) are independent of the index and act exclusively as biases. Note as well
that when considering a CoM-based, minimal CPM, the modulated populations (p(n | k, x) for k > 1)
continue to scale the firing rates of the baseline population (p(n | , x)) monotonically, but notin a
linear, multiplicative manner.

The moments of a CoM-Poisson distribution are not available in closed-form, yet they can also
be effectively approximated through truncation. Given approximate means y, and variances o,
of p(n; | k), we may easily evaluate the means, variances, and covariances of p(n,). In particular, the
mean of n; is y, = ZZ’;I p(k)u;,., and its variance is

dg
o2 =62+ ) p(k) g — 1)’ (16)
k=1
where 52 = Zgl p(k)e. Finally, similarly to Equation 6, the covariance o, between n, and n; is

= 2K PRy — 1)y — 1))-

By comparing Equations 5 and 16, we see that the CoM-based mixture may address the lim-
itations on the variances o7 of the vanilla mixture by setting the average variance 57 of the com-
ponents in Equation 16 to be small, while holding the value of the means y; fixed, and ensuring
that the means of the components y,, cover a wide range of values to achieve the desired values
of 67 and ¢,;. Solving the parameters of a CoM-based mixture for a desired covariance matrix is
unfortunately not possible since we lack closed-form expressions for the means and variances.
Nevertheless, we may justify the effectiveness of the CoM-based strategy by considering the ap-
proximations of the components means and variances u;, ~ 4; + 5 - and o~ L&, which hold
when neither 4, or v, are too small (Chanialidis et al., 2018). Based on these apprOX|mat|ons
observe that when v, is large, o7, is small, whereas g, is more or less unaffected. Therefore, in
the regime where these approximations hold, a small value for 67 can be achieved by reducing the
parameters v,,, without significantly restricting the values of y,, or y,.

Fisher information of a CPM
The Fisher information (FI) of an encoding model p(n | x) with respect to x is I(x) = Y p(n |
x)(d, log p(n | x))* (Cover and Thomas, 2006). With regards to the Fl of a CPM,

Zk p(n k | x) Z a e N(x)n+9* A (m)+0 g - 8(k)+n-0O - 5(k)— WCK(BN(X)G Ok.Onk)
X

0.1
wlogpn |0 === p(n | x)

2 P,k | x)
=0, (05y(x) - n— Oy (x),07%,0,,0 —_—
x( N( ) WCK( N( ) N Yk NK)) (0] %)
where 0, g (04(x), 07,04, 0Oyx) = ny(x)- 0,0, (x) follows from the chain rule and properties of the

log-partition function (Wainwright and Jordan, 2008). Therefore

=0,05(x) - (n — py(x)),

I(x) = Zp(n | )(0,0 5 (x) - (= py (x)))* = 0,0y (x) - By (x) - 9,0,y (%),

where X (x) is the covariance matrix of p(n | x). Moreover, because 9,0 (x) = £/ (x) - 9, u(x) (Wain-
wright and Jordan, 2008), the Fl of a CPM may also be expressed as I(x) = 0,y (x) - 31 (x) - 0, 1y (x),
which is the linear Fisher information (Beck et al., 2011b).
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Note that when calculating the Fl or other quantities based on the covariance matrix, vanilla
CPMs have the advantage that their covariance matrices tend to have large diagonal elements and
are thus inherently well-conditioned. Because decoding performance is not significantly different
between vanilla and CoM-based CPMs (see Table 2), vanilla CPMs may be preferable when well-
conditioned covariance matrices are critical. Nevertheless, the covariance matrices of CoM-based
mixtures can be made well-conditioned by applying standard techniques.

Expectation-Maximization for CPMs

Expectation-maximization (EM) is an algorithm that maximizes the likelihood of a latent variable
model given data by iterating two steps: generating model-based expectations of the latent vari-
ables, and maximizing the complete log-likelihood of the model given the data and latent expecta-
tions. Although the maximization step optimizes the complete log-likelihood, each iteration of EM
is guaranteed to increase the data log-likelihood as well (Neal and Hinton, 1998).

EM is arguably the most widely-applied algorithm for fitting finite mixture models (McLachlan
etal.,2019). As a form of latent variable exponential family, the expectation step for a finite mixture
model reduces to computing average sufficient statistics, and the maximization step is a convex
optimization problem (Wainwright and Jordan, 2008). In general, the average sufficient statistics,
or mean parameters, correspond to (are dual to) the natural parameters of an exponential family,
and where we denote natural parameters with 9, we denote their corresponding mean parameters
with 7.

Suppose we are given a dataset (n'", ..., n“")) of neural spike-counts, and a CoM-based mixture
model with natural parameters 8, 8, 8, and O, (see Equation 13). The expectation step for
this model reduces to computing the data-dependent mean parameters n(') given by

)
egK.k

00 =0, +n? - O, 0 =2
14 Y, e’k

Mk k
for all 0 < i < d;. The mean parameters n(” are the averages of the sufficient statistic §,(k) under
the distribution p(k | n”), and are what we use to complete the log-likelihood since we do not
observe k.

Given n(’) the maximization step of a CoM-based mixture thus reduces to maximizing the com-
plete log-likelihood Y7, £(04, 0y, 07%. Oy 1Y, n®), where we substitute n' into the place of 8(k)
in Equation 13, such that

L0k, 0y,0%.0y,,nY,n?) =
Oy -0+ 0% - HMD)+ 0, -nY +nV Oy, Y —weg(Oy, 07,04, Opp).

This objective may be maximized in closed-form for a vanilla Poisson mixture (Karlis and Meligkot-
sidou, 2007), but this is not the case when the model has CoM-Poisson shape parameters or de-
pends on the stimulus. Nevertheless, solving the resulting maximization step is still a convex opti-
mization problem (Wainwright and Jordan, 2008), and may be approximately solved with gradient
ascent. Doing so requires that we first compute the mean parameters n,, n%, ng, and Hy, that
are dual to 8y, 0%, 8%, and @, respectively.

We compute the mean parameters by evaluating

T * -
01(’/(=0K,k+wc(eN+®NK'é(k)’eN)_lll(GN)’ rlk,k_—’ l,{jkz an p(n/ |k)’
1+ ZdK ! 9 n;=0
dg )
"I;‘j = Zp(k) Z logn;! p(n; | k), Inj = Zp(k)ﬂjka NNk jk = MK kHj+1)
k= —

where #y, is the kth element of ny, ny; is the jth element of ny, #y, ; is the jth element of n},
and ny ;. is the jth element of the kth column of Hy,. Note as well that we truncate the series
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an n; p(n; | k) and an logn;! p(n; | k) to approximate u;, and My - Given these mean parameters,
we may then express the gradients of £LO = L£(8, 0,07, 0y, Ng,;,n?) as

aeN[:(i) =n® — Nys 097\][,(” — lf(n(i)) _ nj\/’
ae,(['(i) = n(,? — Nk ae),\,,(['(i) =n"® Tl([? —Hyg,

where ® is the outer product operator, and where the second term in each equation follows from
the fact that the derivative of y, with respect to 6, 63, 6, or @, yields the dual parameters
Ny, My Nk, and Hy,, respectively. By ascending the gradients of Z,-dlj £® until convergence, we
approximate a single iteration of the EM algorithm for a CoM-based mixture.

Finally, if our dataset (", x), ..., (m“D, x@r)) includes stimuli x, and the parameters 0, de-
pend on the stimulus, then the gradients of the parameters of 8, must also be computed. For a
von Mises CPM where 0, (x) = 8%, + @, - vn(x), the gradients are given by

00 L = 040 L7, Doy, £ = 00 £ ® vm(x"),

where 6% = 0,(x?) is the output of 8, at x. Although in this paper we restrict our applications
to Von Mises or discrete tuning curves for 1-dimensional stimuli, this formalism can be readily
extended to the case where the baseline tuning curve parameters 0 ,(x) are a generic nonlinear
function of the stimulus, represented by a deep neural network. Then, the gradients of the pa-
rameters of 6, can be computed through backpropagation, and ae(ﬁﬁ(i) is the error that must be
backpropagated through the network to compute the gradients.

CPM initialization and training procedures

To fit a CPM to a dataset (", xV), ..., (@m“", x@ry), we first initialize the CPM and then optimize
its parameters with our previously described EM algorithm. Naturally, initialization depends on
exactly which form of CPM we consider, but in general we firstinitialize the baseline parameters 6,
then add the categorical parameters 6, and mixture component parameters @, . When training
CoM-based CPMs we always first train a vanilla CPM, and so the initialization procedure remains
the same for vanilla and CoM-based models.

To initialize a minimal, von Mises CPM with d,, neurons, we first fit d,, independent, von Mises-
tuned neurons by maximizing the log-likelihood 27:1 log pm® | x@) of Oy (x) = 0%, + Oy - V().
This is a convex optimization problem and so can be easily solved by gradient ascent, in particular
by following the gradients

dr dr
%, 2 logp(n” | %) = 3 n ~log(0, ("),

Doy Z log pm® | x©V) = Z log(n® —log 0, (x?)) ® vm(x"?),
i=1 i=1
to convergence. For both discrete and maximal CPMs, where there are d, distinct stimuli, we
initialize 0y (x) = 9?\, + 0,y - 8(x) by computing the average rate vector at each stimulus-condition
and creating a lookup table for these rate vectors. Formally, where x, is the /th stimulus value for

0 < I £ dy, we may express the /th rate vector as A, = m ST 6(x,, x0)n®, where §(x,, x)

is 1 when x, = x%, and 0 otherwise. We then construct a lookup table for these rate vectors in
exponential family form by setting 8%, = logA,, and by setting the /th row 0y, of @y to 8y, =
log A, —logA,;.

In general we initialize the parameters 8, by sampling the weights w,,...,w, of a categori-
cal distribution from a Dirichlet distribution with a constant concentration of 2, and converting
the weights into the natural parameters of a categorical distribution 0. For discrete and maxi-
mal CPMs we initialize the modulations @, by generating each element of ®,, from a uniform
distribution over the range [-0.0001,0.0001]. For von Mises CPMs we initialize each row 0, , of
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0, as shifted sinusoidal functions of the preferred stimuli of the independent von Mises neu-
rons. That is, given e‘,’v and ©,,, we compute the preferred stimulus of the ith neuron given by
p; = atan2(0%, + 0y ,), where 0, is the ith row of ® . We then set the ith element 6 ., Of 0y« ,
to Oy ks = 0.2sin(p, + 3"‘7)°). Initializing von Mises CPMs in this way ensures that each modulation
has a unique peak as a function of preferred stimuli, which helps differentiate the modulations
from each other, and in our experience improves training speed.

With regards to training, the expectation step in our EM algorithm may be computed directly,
and so the only challenge is solving the maximization step. Although the optimal solution strategy
depends on the details of the model and data in question, in the context of this paper we settled on
astrategy thatis sufficient for all simulations we perform. For each model we perform atotal of d, =
500 EM iterations, and for each maximization step we take dg = 100 gradient ascent steps with the
Adam gradient ascent algorithm (Kingma and Ba, 2014) with the default momentum parameters
(see Kingma and Ba (2014)). We restart the Adam algorithm at each iteration of EM and gradually
reduce the learning rate. Where ¢* = 0.002 and ¢~ = 0.0005 are the initial and final learning rates,
we set the learning rate ¢, at EM iteration ¢ to

(d; —1—-1)log(e*) + tlog(e™)
G =% ( d -1 )
where we assume ¢ starts at 0 and ends at d, — 1.

Because we must evaluate large numbers of truncated series when working with CoM-based
CPMs, training times are typically one to two orders of magnitude greater. To minimize training
time of CoM-based CPMs over the d; EM iterations, we therefore first train a vanilla CPM for 0.84,
iterations. We then equate the parameters 0,, 0, and @, of the vanilla CPM (see Equation 7)
with a CoM-based CPM (see Equation 13) and set 6}, = —1, which ensures that resulting CoM-based
model has the same density function p(n, & | x) as the original vanilla model. We then train the CoM-
based CPM for 0.24, iterations. We found this strategy results in practically no performance loss,
while greatly reducing training time.

CPM parameter selection for simulations

In the section Extended Poisson mixture models capture stimulus-dependent response statistics
and the section CPMs facilitate accurate and efficient Bayesian decoding of neural responses we
considered CoM-based, minimal CPMs with randomized parameters 6 y (x), 8}, 8, and O, which
for simplicity we refer to as models 1 and 2, respectively. We construct randomized CPMs piece by
piece, in a similar fashion to our initialization procedure.

Firstly, where d, is the number of neurons, we tile their preferred stimuli p; over the circle such
that p, —360° We then generate the concentration «; and gain y, of the ith neuron by sampling
from normal distributions in log-space, such that log k;, ~ N(-0.1,0.2), and log y; ~ N(0.2,0.1). Finally,
for von Mises baseline tuning curves 0 (x) = 89 + @, - vm(x), we set each row 0, of @, to
Onx,; = (k;cos p;, k;sin p;), and each element 6%, of 6 to 6%, = logy, — wx(8 ), Where y is the
logarithm of the modified Bessel function of order 0, which is the log-partition function of the von
Mises distribution.

We then set 6, = 0, and generated each element 0, , of the modulation matrix 8, in the
same matter as the gains, such that 6., ~ N(0.2,0.1). Finally, to generate random CoM-based
parameters we generate each element ¢} , of 8}, from a uniform distribution, such that 63, ~
U(-1.5,-0.8).

Model 2 entails two more steps. Firstly, when sampling from larger populations of neurons,
single modulations often dominate the model activity around certain stimulus values. To suppress
this we consider the natural parameters 9‘,)<(x) of p(k | x) (see Equation 14), and compute the max-
imum value of these natural parameters over the range of stimuli 6* = maxx{e%k(x)}. We then
set each element ¢, , of the parameters 6, of the CPM to 6y, = 6} — 6 ,, where 6} = ¥ Sk

K. k' =1 dy
which helps ensure that multiple modulations are active at any given x. Finally, since model 2
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is a discrete CPM, we replace the von Mises baseline tuning curves with discrete baseline tuning
curves, by evaluating 0% + @, - vim(x) at each of the d, valid stimulus-conditions, and assemble
the resulting collection of natural parameters into a lookup table in the manner we described in
our initialization procedures.

Decoding models

When constructing a Bayesian decoder for discrete stimuli, we first estimate the prior p(x) by com-
puting the relative frequency of stimulus presentations in the training data. For the given encod-
ing model, we then evaluate p(n | x) at each stimulus condition, and then compute the posterior
p(x | n) « p(n | x)p(x) by brute-force normalization of p(n | x)p(x). When training the encoding
model used for our Bayesian encoders, we only trained them to maximize encoding performance
as previously described, and not to maximize decoding performance.

We considered two decoding models, namely the linear network and the artificial neural net-
work (ANN) with sigmoid activation functions. In both cases the input of the network was a neural
response vector, and the output the natural parameters 6, of a categorical distribution. The form
of the linear network was 6 (n) = 0, + O, -n, and is otherwise fully determined by the structure
of the data. For the ANN on the other hand, we had to choose both the number of hidden layers,
and the number of neurons per hidden layer. We cross-validated the performance of both 1 and 2
hidden layer models, over a range of sizes from 100 to 2000 neurons. We found the performance
of the networks with 2 hidden layers generally exceeded that of those with 1 hidden layer, and that
700 and 600 hidden neurons was optimal for the awake and anaesthetized networks, respectively.

Given a dataset (nV, xM), ..., (nr), xD)), we optimized the linear network and the ANN by max-
imizing 2;’; log p(x® | n”) via stochastic gradient ascent. We again used the Adam optimizer with
default momentum parameters, and used a fixed learning rate of 0.0003, and randomly divided
the dataset into minibatches of 500 data points. We also used early stopping, where for each fold
of our 10-fold cross-validation simulation, we partitioned the dataset into 80% training data, 10%
test data, and 10% validation data, and stopped the simulation when performance on the test data
declined from epoch to epoch.

Experimental design

Throughout this paper we demonstrate our methods on two sets of parallel response recordings
in macaque primary visual cortex (V1). The stimuli were drifting full contrast gratings at 9 distinct
orientations spread evenly over the half-circle from 0° to 180° (2° diameter, 2 cycles per degree,
2.5 Hz drift rate). Stimuli were generated with custom software (EXPO by P. Lennie) and displayed
on a cathode ray tube monitor (Hewlett Packard p1230; 1024 x 768 pixels, with ~ 40 cd/m? mean
luminance and 100 Hz frame rate) viewed at a distance of 110 cm (for anaesthetized dataset) or
60 cm (for awake dataset). Grating orientations were randomly interleaved, each presented for 70
ms (for anaesthetized dataset) or 150 ms (for awake dataset), separated by a uniform gray screen
(blank stimulus) for the same duration.

For each electrode, we extracted waveform signals (sampled at 30 kHz) whenever the extracel-
lular voltage exceeded a user defined threshold (typically 5x the root mean square signal on each
channel). We then sorted waveforms manually using the Plexon Offline Sorter, and isolated both
single and multi-unit clusters, here both referred to as neurons. We computed spike counts in a
fixed window with length equal to the stimulus duration, shifted by 50 ms after stimulus onset. We
excluded from further analyses all neurons that were not driven by any stimulus above baseline +
3std.

In the first dataset the monkey was awake, and there were d, = 3168 trials of the responses of
72 neurons; due to the presence of cross-talk between a small subset of electrodes, we removed
all pairs of neurons in the dataset that exhibited correlations greater than 0.5, which left d, = 43
neurons in the dataset. We refer to this dataset as the awake V1 dataset. After familiarization with
the restraining chair, headpost surgery, and postoperative recovery time (methods and protocols
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described in Festa et al. (2020)), the animal was trained to fixate in a 1.3° x 1.3° window. Eye posi-
tion was monitored with a high-speed infrared camera (Eyelink, 1000 Hz). A second surgery was
performed over V1 to implant a 96 channel microelectrode array into V1 (electrode length 1 mm).
After postoperative recovery, the spatial receptive fields of the sampled neurons were mapped by
presenting small patches of drifting full contrast gratings (0.5° diameter; 4 orientations, 1 cycle per
degree, 3 Hz drift rate, 250 ms presentation) at 25 distinct positions spanning a 3° x 4° region of
visual space. Subsequent stimuli were centered in the aggregate receptive field of the recorded
units.

In the second dataset the monkey was anaesthetized and there were d; = 10,800 trials of the
responses of dy, = 70 neurons; we refer to this dataset as the anaesthetized V1 dataset. The
protocol and general methods employed for the anaesthetized experiment have been described
previously (Smith and Kohn, 2008). In short, anaesthesia was induced with ketamine (10 mg/kg) and
maintained during surgery with isoflurane (1.5-2.5% in 95% 02), switching to sufentanil (6-18 ug/kg
per h, adjusted as needed) during recordings. Eye movements were reduced using vecuronium
bromide (0.15 mg/kg per h). Temperature was maintained in the 36 -37 C° range, and relevant vital
signs (EEG, ECG, blood pressure, end-tidal PCO2, temperature, and lung pressure) were monitored
continuously to ensure sufficient level of anaesthesia and well-being. A 10x 10 multielectrode array
(400 um spacing, T mm length) was implanted into the upper layers of primary visual cortex, at a
depth of 0.6-0.8 mm.

All procedures were approved by the Albert Einstein College of Medicine and followed the guide-
lines in the United States Public Health Service Guide for the Care and Use of Laboratory Animals.
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