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Abstract

The goal of this work is to study how brain volume loss at old age is affected by factors such as
age, APOE gene, sex, and school level. The study of brain volume loss at old age relative to young age
requires at least in principle two MRI scans performed at both young and old age. There is, however, a
way to address the problem by having only one MRI scan at old age. We compute the total brain loss
of elderly subjects as the ratio between the estimated brain volume and the estimated total intracranial
volume. Magnetic resonance imaging (MRI) scans of 890 healthy subjects aged 69 to 85 were assessed.
The causal analysis of factors affecting brain atrophy was performed using Probabilistic Bayesian Modeling
and the mathematics of Causal Inference. We find that healthy subjects get into their seventies with an
average brain volume loss of 30% from their maximum brain volume at a young age. Both age and sex
are causally related to brain atrophy, with women getting to elderly age with 1% larger brain volume
relative to intracranial volume than men. How the brain ages and what are the reasons for sex differences
in adult lifespan are causal questions that need to be addressed with causal inference and empirical data.
The graphical causal modeling presented here can be instrumental in understanding a puzzling scientific
inquiry -the biological age of the brain.

I. Introduction

The historical investigation of brain volume variation with age has at least three well defined
periods: the era of autopsies, followed by the era of magnetic resonance imaging (MRI) to the
present time dominated by computational anatomy making use of MRI leveraged by data-analytical
methods.

Early evidence of the effect of aging on brain size and structure comes from autopsy studies in
the XIX century that indicated that brain weight reduced surely but slowly with age [Boyd, 1861],
[Marshall, 1892]. Autopsies helped to solidify the commonly held belief that brain weight is stable
between the ages of 20 and 50 to progressively decay thereafter. Large sample autopsy-based
studies, still prior to the MRI era, suggest that brain weight reaches its maximum in the late teens
and declines very slowly (0.1− 0.2% a year) till the age of 60s-70s, after that the decline is faster
[Miller and Corsellis, 1977],[Esiri, 2007]. In a 1980 study [Ho et al., 1980], weights of fresh brains
of 1,261 subjects aged 25 to 80, showed that the brain mass decreases rapidly after age 80. It also
indicated different atrophy patterns based on ethnicity and sex: "the rate of decrease for the brain
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weight after age 25 years is highest for white men, followed by black women, white women, and black men,
and, except that between white men and white women, the differences are statistically insignificant." Around
the same time, brain autopsies indicated that progressive decline in brain weight begins at about
45 to 50 years of age to reach its lowest values after the age of 86 [Dekaban and Sadowsky, 1978],.
The study postulated that the maximum brain weight attained in young adults was reached at 19
years of age, estimating an accumulated loss of brain weight of 11% between the ages 19 and 86.
The study regressed brain weights versus age and sex groups and showed clear differential rates
of change in brain weights depending on age and less affected by sex. However, studies based
on autopsies present problems of reliability, selection bias and most importantly, they can’t tell
us anything about cerebral atrophy in living individuals. The advent of non-invasive imaging
changed this.

Magnetic Resonance Imaging and before that computed tomography created the possibility of
assessing cerebral volume in-vivo, non-invasively, and repeatedly [Fox and Schott, 2004]. Imaging
studies revealed global volume loss and regional variation as major effects of aging in the brain.
Nevertheless, the estimates of volume and tissue loss were prone to error because they required
manual outlining and furthermore included a strong bias since the brain areas are selected a priori
[Wenger et al., 2014], [Despotović et al., 2015].

The advent of new computerized methods sensitive to variations in size, shape, and tissue
characteristics of brain structures, set the final stage in the study of brain anatomy in aging, offering
a new set of tools unknown to previous researchers who needed to rely upon autopsies and manual
outlining of MRI and tomographies [Ashburner et al., 2003]. Specifically, the game-changer event
was Voxel-Based-Morphometry (VBM), a whole-brain, an unbiased technique for characterizing
regional cerebral volume and tissue concentration differences in structural magnetic resonance
images. MRI studies with automatic segmentation of in vivo aging brains have proliferated since
then. In [Good et al., 2001], a tissue-based segmentation study of the effects of aging on gray and
white matter and cerebral spinal fluid (CSF) in 465 normal adults, showed that gray matter volume
decreased linearly with age, with a significantly steeper decline in males. Global white matter, on
the other hand, did not decline with age. In addition to this, the study found that brain aging
behaves locally, from areas with accelerated loss such as the insula, superior parietal gyri, central
sulci, and cingulate sulci to areas with little age effect, notably the amygdala, hippocampi, and
entorhinal cortex. Sowell and colleagues [Sowell et al., 2003], in a study of 176 normal individuals
ranging in age from 7 to 87 years, found that areas known to myelinate early showed a more linear
pattern of aging atrophy than the frontal and parietal neocortices, which continue myelination
into adulthood. Along these lines, the study suggested that areas involved in language functions
such as the left posterior temporal cortices, have a more protracted course of maturation than any
other cortical region.

Overall, cross-sectional imaging studies of brain aging seem to agree that the aging brain losses
volume in a non-linear and regional dependent way, with prefrontal cortical volume declining
more rapidly than other brain regions [Thompson et al., 2003]. However, cross-sectional studies
have important limitations, including large inter-individual variation in brain anatomy, and most
importantly, since only one scan is made per subject, it necessarily assumes that progression
dynamics of brain aging are similar between individuals. Longitudinal studies, on the other hand,
by making scans at different points in time for the same individual, make possible, at least in
principle, to quantify the progression of brain atrophy for each individual using the first scan as
the baseline or initial condition in the nomenclature of dynamic system modeling.

There is growing evidence that age imposes a stronger influence on brain structure in older
than in younger adults, but the onset and the type of decline (linear, non-linear) depends on
tissue and brain region. The common understanding of tissue atrophy points to gray matter
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atrophy onset may start in young adulthood, around 18, white matter, on the other hand, remains
relatively stable until old age. Although we are lacking a theory of human brain aging capable
of making robust predictions about brain growth and atrophy, we know that rapid growth
occurs during childhood/adolescence, with a particularly dramatic growth rate during the first
3 months, approximately 1%per day, reaching the half of elderly adult brain volume by the end
of the first 3 months [Holland et al., 2014]. Between 18 and 35 years old, the brain experience
a period of consolidation with no brain tissue loss. After 35 years, Hedman and colleagues
[Hedman et al., 2012] have suggested a steady volume loss of 0.2% per year, which accelerates
gradually to an annual brain volume loss of 0.5% at age 60. After 60 years of age, the same study
indicates a steady volume loss of more than 0.5%

Fjell et al. [Fjell and Walhovd, 2010] found nonlinear decline across chronological age in the
hippocampus, caudate but linear decline slopes for thalamus and accumbens. In [Rast et al., 2017],
cortical thinning was found to be significantly altered by hypertension and Apolipoprotein-
Ee4 (APOEe4), with frontal and cingulate cortices thinning more rapidly in APOEe4 carri-
ers. Additional longitudinal studies have found different brain atrophy patterns according
to clinical conditions, including cognitive decline and Alzheimer’s disease [Rusinek et al., 2003],
[Chételat et al., 2005], [Misra et al., 2009] and multiple sclerosis [Ghione et al., 2019] to cite a few.
Nonetheless, small sample size and the lower reliability for segmenting small structures are
important caveats in longitudinal studies [Oschwald et al., 2019].

There is, however, an approach that to our knowledge has not been undertaken with the
sufficient sample size and the proper methodology. We are referring to quantify the brain loss at
older age relative to the brain’s maximum size reached at some point in her young age. Although
the global brain volume lacks the required granularity to map onto its cognitive processes of
interest such as memory or language, it posses, on the other hand, the singular property that it is
possible to infer approximately its maximum volume via the intra cranial volume (ICV). The ICV
acts as a scaffolding of the brain and sets an upper bound for the brain’s volume. Accordingly, it
is possible to build a proxy of the brain atrophy that an elder person went through her adult life
by means of computing the ratio between the brain volume (BV) estimation at the moment of the
MRI scan and the ICV which represents the upper limit of brain volume. Thus, Brain2ICV = BV

ICV .
By quantifying, even if in an approximative way, the brain volume loss at older age relative to

its upper bound at a young age (Brain2ICV), we can make educated guesses about the effect of
brain aging in a person. The mismatch between the actual brain volume and the expected brain
volume according to the person’s age might contain valuable information to better understand
brain aging dynamics.

II. Methods

The dataset used here comes from a single-center, observational, longitudinal cohort study of
1,213 subjects [Gómez-Ramírez et al., 2019], [Fernández-Blázquez et al., 2020]. The participants
of the study are home-dwelling elderly volunteers, aged 69 to 85, without relevant psychiatric,
neurological, or systemic disorders. Of the initial 1,213 subjects, those that were diagnosed with
MCI or dementia plus those lacking a brain MRI were excluded from our analysis, resulting
in a cohort of 890 healthy elderly subjects. After signing informed consent, the participants
undertake a yearly systematic clinical assessment including medical history, neurological and
neuropsychological exam, blood collection and brain MRI. Ethical approval was granted by the
Research Ethics Committee of Instituto de Salud Carlos III and written informed consent was
obtained from all the participants. The authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national and institutional committees on human

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391623
http://creativecommons.org/licenses/by-nc/4.0/


The aging human brain • Gomez-Ramirez et al. (2020)

experimentation, and with the Helsinki Declaration of 1975 and its later amendments.
The level of education was encoded as 0 no formal education, 1 primary education, 2 middle or

high school degree and 3 university degree. Cognitive status was determined with the Mini-Mental
Status Examination (MMSE), Free and Cued Selective Reminding Test (FCSRT), Semantic fluency,
Digit-Symbol Test and Functional Activities Questionnaire (FAQ). APOE genotype was studied
with total DNA isolated from peripheral blood following standard procedures. The APOE variable
was coded 1 for the ε4-carriers, and 0 for non-carriers. Family history of AD was coded as 0 for
subjects with no parents or siblings diagnosed with dementia and 1 for those with at least one
parent or a sibling diagnosed with dementia.

The imaging data were acquired in the sagittal plane on a 3T General Electric scanner (GE
Milwaukee, WI) utilizing T1-weighted inversion recovery, supine position, flip angle 12◦, 3-
D pulse sequence: echo time Min. full, time inversion 600 ms., Receiver Bandwidth 19.23
kHz, field of view = 24.0 cm, slice thickness 1 mm and Freq × Phase 288× 288. The brain
volume loss at the moment of having the MRI compared to the maximum brain volume is
computed as the Brain Segmentation Volume to estimated Total Intracranial Volume (eTIV)
[estimated Total Intracranial Volume aka ICV, 2020] ratio. The postprocessing was performed
with FreeSurfer [Fischl, 2012], version freesurfer-darwin-OSX-ElCapitan-dev-20190328-6241d26
running under a Mac OS X, product version 10.14.5.

Figure 1 the intracranial volume with brain segmentation of two subjects. The eTIV estimated
by FreeSurfer has previously been reported to have linear correlations of 0.9 with manually
estimated intracranial volume [Shen et al., 2010], [Malone et al., 2015]. Depending on whether
CSF is included or not, one can dissociate the total brain volume (TBV) from the intracranial
volume (ICV). The normalized TBV (NBV) is widely used as an index for brain atrophy, as the
head size remains stable across the life span and serves as a good measure to reduce between-
subject differences with regard to maximum brain size. Whole-brain volume, on the other hand,
changes throughout the life span of an individual. Measurements of total brain volume (TBV)
with FreeSurfer are robust across field strength [Heinen et al., 2016]. It might be noted that the
estimated intracranial volume (eTIV) from FreeSurfer is not segmentation-based but calculated
from the alignment to the MNI305 brain atlas [Klasson et al., 2018]. FreeSurfer exploits the
relationship between the ICV and the linear transform to MNI305 space rather than counting
pixels inside the cranium which would be prone to errors because the skull and the Cerebral
Spinal Fluid are both dark on a T1 image [Buckner et al., 2004].

Table 1 includes the description of the variables considered in this study, providing the mean
and the standard deviation for the continuous variables -Age, Memory Test Score and the ratio
brain volume and intracranial volume (Brain2ICV)- and the classes together with the number of
elements for each class for the categorical variables -Sex, APOE, Family history of AD, and School
level. In order to assess the strength of the linear association between Brain2ICV and the predictor
variables, we perform Pearson’s correlation, point biserial correlation, and analysis of variance
depending on whether the variable is continuous, dichotomous as in Sex, Family history of AD,
and APOE or discrete with more than two values as in School level.

i. Causal analysis

Correlation is the degree to which two variables show a tendency to vary together. Causality,
on the other hand, is about the relationship between an observed effect and what caused it. For
variable C to cause another variable E, (C → E), there must be a flow of information from the
cause C to the effect E. Here, we want to identify the causal paths built on top of correlation paths
that link one or more causes with an effect, specifically the variables that causally affect Brain2ICV.
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(a) Male subject, 74 years old, Brain2ICV = 71.96% (b) Female subject, 76 years old, Brain2ICV = 69.97%.

Figure 1: Figure 1a and Figure 1b show the intracranial volume of two subjects in the study.
The Brain2ICV or ratio brain volume and intracranial volume is Brain2ICV = BV/ICV =
929035/1460465 = 0.7196 for left figure, and Brain2ICV = BV/ICV = 929035/1327593 = 0.6997
for the right figure.

Variables Mean SD

Age 74.72 3.86
Memory Score 9.41 2.66
Brain2ICV 0.70 0.03

N %

Sex
Males 303 34.04
Females 587 65.96

APOE
Non-carriers 726 81.57
Heterozygous ε4 157 17.64
Homozygous ε4 7 0.79

School level
No formal education 170 19.10
Primary education 265 25.17
High School 224 25.17
University 231 25.96

Family history of AD
No 670 75.28
Yes 220 24.72

Table 1: Summary of the variables used in the study: Age, Sex, APOE, School Level, Family
history of AD, Memory Test Score and the estimated ratio between brain and intracranial volumes
(Brain2ICV). The mean and the standard deviation is displayed for the continuous variables and
the size of each class for categorical variables.
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Thus, we aim at studying causal connections between correlated variables using Probabilistic
Bayesian Modeling [Davidson-Pilon, 2015] and the mathematics of causal inference, do-calculus,
proposed by Pearl [Pearl and Mackenzie, 2018].

Bayesian data analysis relies upon generative models that can be used to postulate how the
available data was generated. Thus, Bayesian data analysis imposes a model-based approach
upon the observed data. Models are the mathematical formulation of the observed events and
the model parameters are the factors in the model affecting the observed data. While frequentist
hypothesis testing is based on the squared error one would expect in many identical repetitions
of the experiment, Bayesian inference defies this notion for unrealistic. As a matter of fact,
on many occasions, it is not only impractical but impossible to replicate experiments which
invalidate the frequentist’s notion of using averages for judging an estimator [Samaniego, 2010],
[Benjamin et al., 2018].

To determine the evidence for hypothesis H1 versus the alternative null hypothesis H0, we
need a model of H0 and a model of H1. Bayesian model selection aims at computing the
posterior distribution which contains all the information needed about the model parameters.
The posterior distribution also allows us to generate predictions based on actual data and the
estimated parameters. Once we have the posterior distribution we can use it to make predictions,
ŷ, based on data y and the estimated parameters, θ. The posterior predictive distribution is an
average of conditional predictions over the posterior distribution of θ (Equation 1).

p(ŷ|y) =
∫

p(ŷ|θ)p(θ|y)dθ (1)

Bayesian Networks are probabilistic graphical models that represent the dependencies, of a
set of variables and their joint distribution [Pearl, 2009]. Specifically, a Bayesian Network is a
graph with directed edges (associations) and with acyclic structure, that is, a node can’t be its
own ancestor or descendant. Directed Acyclic Graphs or DAG for short provides a graphical
representation of the causal relationships between variables. In a DAG, contrary to statistical
models, it is possible to detect the conditional independence between variables.

Figure 2 shows the DAG used to model the causal relationships between the variables in
the study. We are particularly interested in clarifying the causal structure in the colored nodes
depicted in Figure 2, that is, how Sex and Age affect Brain2ICV. Sex and Age are according to the
DAG, the only two relevant variables that directly influence the Brain2ICV. It is worth remarking
that a DAG cannot be directly generated from observational data alone, the structure of the DAG
makes use of expert knowledge. Once the DAG is in place, it can be used to guide interventions
that substantiate the causal reasoning that emanate from the DAG.

While the association between age and brain atrophy is indisputable, how sex mediates in
brain atrophy is unclear. Furthermore, whether Brain2ICV is associated with one predictor (e.g.
Age) after conditioning on the other (e.g. Sex) deserves also attention. As we have previously
stated, since the questions are causal they cannot be answered from data alone and a model of the
process that generate the data is required, in actuality one model for each question. The questions
we need to answer are explicitly stated next.

Q1: Is there a direct causal relationship between Sex and Brain2ICV?
Q2: Is there additional value for Brain2ICV in knowing Sex if we already know

Age?

Let us start with Q1, in order to investigate the relationship between Sex and Brain2ICV we
build the probabilistic Bayesian model shown in the system of Equations 2.
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Figure 2: Directed Acyclic Graph (DAG) that postulates possible causal relationships between
the variables in the study. A variable C in a causal diagram can only causally affect a variable E
when there is a directed path from C to E. Based on the DAG, Sex directly influences Brain2ICV
and School, Age directly influences Brain2ICV and Memory and School Level directly influences
Memory. The correlation coefficient according to the correlation matrix shown in Figure 4 The
strength of the arrows, thin or thick, denotes the correlation coefficient according to the correlation
matrix shown in Figure 4.
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Bi ∼ N(µi, σ) (2a)

µi = γX[i] (2b)

γj ∼ N(0, 1), for j = 1, 2 (2c)

σ ∼ Hal f Normal(1) (2d)

where Bi denotes the variable Brain2ICV or the ratio between brain volume at elderly age
and maximum brain volume at a young age for subject i, the index variable for Sex γX[i], with
index j = 1, 2, represent the average of Brain2ICV for male (j = 1) and female (j = 2) (no order
implied), which are normally distributed using the same prior, N(0, 1), for both male and female
subjects. The prior σ is assumed to be normally distributed, half-normal to be exact with standard
deviation equal to 1 (half-normal distribution can be directly sampled from a Normal distribution
by taking the absolute value of each sampled value). Other prior distributions e.g. Exponential or
Uniform can also be used.

Lastly, Q2 requires a multiple regression model with two predictors Sex and Age. We aim at
understanding the following point: Once we know the Sex of an individual, Is there additional
predictive power for Brain2ICV in also knowing her Age? And similarly for knowing Sex once
we know Age. Thus, we need to quantify each effect and how the three variables are associated
finding the conditional independence among them. Formally, Y ⊥⊥ X|Z, where Y is Brain2ICV
and X is Age (or Sex) and Z is Sex orAge. The model that predicts Brain2ICV using both Sex and
Age is described in the system of Equations 3.

Bi ∼ N(µi, σ) (3a)

µi = α + βA Ai + γX[j] (3b)

α ∼ N(0, 1) (3c)

βA ∼ N(0, 1) (3d)

γX ∼ N(0, 1), for j=1,2 (3e)

σ ∼ Hal f Normal(1) (3f)

As in the previous equation, Bi denotes the variable Brain2ICV, γj represents the average of
Brain2ICV for (j = 1) male and (j = 2) female and the prior distribution of σ is half-normal. Ai is
the Age of subject i. Since all three variables are standardized, we expect the intercept α and the
parameter βA to be around zero.

III. Results

We show first the results of the statistical and correlation analysis in Section i, next in Section ii we
describe the causal inference results using probabilistic programming and causal diagrams.

i. Statistical and Correlation Analysis

Figure 3 shows the violin plot of Age grouped by Sex (Figure 3a) and Brain2ICV grouped by Sex
(Figure 3b). Hypothesis testing of the age of males and females gives no difference between the
two groups p = 0.572 (Figure 3a). On the other hand, the t-test for the means of the Brain2ICV of
males and females (Figure 3b) gives a p = 2.583−8 less than the threshold of 1%, disproving the
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null hypothesis. According to Figure 3b, females, on average, get to old age (70 or older) with
1.076% less brain atrophy than males as explained by the brain to intracranial volume ratio variable
(Brain2ICV). This finding is in agreement with previous work that identified sex differences in
the brain during aging and in neurodegenerative diseases. In particular, the thesis that females
might have more youthful brains as compared to males is supported by forensic and postmortem
studies [Dekaban and Sadowsky, 1978], [Ho et al., 1980]. And only very recently, this hypothesis
has been tested in vivo with PET imaging, showing a more persistent metabolic youth in the aging
female brain compared to the male brain [Goyal et al., 2019].

(a) Plot of the Age of the participants grouped by
sex. The distribution of age for men is µM ± σM =
74.64± 3.83 and for women, µF ± σF = 74.79± 3.91.

(b) Plot of Brain2ICV grouped by sex. The Brain2ICV
distribution for men is µM ± σM = 0.697± 0.026 and
for females is µF ± σF = 0.708± 0.028.

Figure 3: Violin plots of sex distribution (left) and the Brain2ICV grouped by sex (right). The
t-test for the means of the two independent samples of scores composed of the age of males and
females gives no difference between the groups p = 0.572. (Figure 3a). The t-test for the means of
the Brain2ICV of males and females gives a p-value 2.583−8 < 0.01 (Figure 3b).

Table 2 shows the Analysis of Variance (ANOVA) with a linear ordinary least squares (OLS)
model [Seabold and Perktold, 2010] which includes the sum of squares, the F statistic and the
value of Prob(F) or the probability that the null hypothesis for the null model is true. We are
interested in the variables that may have an effect on Brain2ICV which according to the DAG
depicted in Figure 2 are: Age, APOE, FamilyAD, Sex and School Level. As Table 2 shows, both
Age and Sex have a p-value for F statistics less than the significance level of 1%, therefore the
null hypothesis -Age, Sex- have no effect on the brain to ICV volume- is therefore rejected. The
variable Memory Test is not included since we are interested in variables that potentially cause
Brain2ICV, that is to say, the directionality of the arrow must be directed towards Brain2ICV. (The
complete summary table of the OLS model Brain2ICV = Age + Sex + Apoe + School Level + Familial
AD is shown in Supplementary Material, Table 5.)

Before going into the causal analysis results, we show the linear correlation between the
variables in the study. The variables with larger Pearson’s correlation coefficient with Brain2ICV
are Age (ρ = −.33), Sex (ρ = .19) and Memory score test (ρ = .14) which are also uncorrelated
among them as the correlation matrix indicates (Figure 4).

ii. Causal Analysis

Here we will find the answers to the two questions posed in Section II. To answer Q1 -Is there
a direct causal relationship between Sex and Brain2ICV?- we proceed by studying the difference in
Brain2ICV between the male and female groups. We are thus, interested in the difference between
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Table 2: Analysis of Variance with a linear OLS Model. Both Age and Sex score show a p-value for
F statistic less than the significance level 0.01 to reject the null hypothesis (i.e. age/sex have no
effect on the brain to ICV volume). The APOE gene, familial AD and the school level, on the other
hand, do not have statistical effect on brain atrophy.

sum sq F PR(>F)

Age 0.077388 119.694321 **3.242352e-26
Sex 0.021172 32.745601 **1.437815e-08

APOE 0.000710 1.098909 2.947922e-01
Family history of AD 0.000660 1.021550 3.124283e-01
School Level 0.002283 3.530481 6.057913e-02

Figure 4: Correlation matrix of the variables used in the study. The variable of interest, brain
volume to intracranial volume (Brain2ICV), is depicted in the last row. Age shows the strongest
linear correlation with Brain2ICV (ρ = −.33) with Brain2ICV, followed by Sex (ρ = −.19) and
Memory test score (ρ = −.14). School level, APOE and Family history of AD show no correlation
with Brain2ICV.

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391623
http://creativecommons.org/licenses/by-nc/4.0/


The aging human brain • Gomez-Ramirez et al. (2020)

the two groups rather than in the expected brain atrophy for each sex group which was already
shown in Figure 3b. To compute this contrast, we use samples from the posterior distribution,
that is to say we fit the model shown in Equation 2 to the data to have access to the posterior
distribution of the difference or contrast between the male and female groups.

Table 3 shows the posterior distribution of the three parameters declared in Equation 2
(µ1, µ2, σ) and the posterior of the difference between the mean of brain atrophy between the
male group and the female group or µ1 − µ2. The interpretation of the parameters in Table 3
is straightforward, the mean and standard deviation of the posterior distribution of Brain2ICV
males is 0.697± 0.002 while for females is 0.708± 0.001. More importantly, the difference between
the posterior distribution of the means shows that females get at old age with around 1% less
atrophy than males, −0.011± 0.002. The high posterior density interval (HDI) 1 is always negative,
that is to say, when comparing the distribution of males and females, the area of the distribution
Brain2ICV of females is larger than that of males. This confirms that sex plays a role in brain
volume atrophy, with women getting into elderly age with slightly less brain loss volume relative
to the maximum volume reached at a young age than men.

Table 3: The table shows the posterior distribution of the model’s parameters in Equation 2. The
first two rows are the expected Brain2ICV (ratio between the brain volume (BV) at an elderly age
and the intracranial volume (ICV) which works as a proxy of the maximum brain volume at a
young age) in each sex group (1 for Male, 2 for Female), the third row is the standard deviation
and the last row denotes the expected difference in Brain2ICV between (1) males and (2) females.
The contrast, µ1 − µ2, is always negative which is indicative of less atrophy in women’s brain
compared to men. This finding confirms previous studies in sex difference in the brain during
aging, but here for the first time, via Bayesian statistical inference and posterior analysis rather
than point estimates [Gamerman and Lopes, 2006], [Patil et al., 2010]

mean sd HDI 3% HDI 97%

µ1 0.697 0.002 0.694 0.70
µ2 0.708 0.001 0.706 0.71
σ 0.027 0.001 0.026 0.028

µ1 − µ2 -0.011 0.002 -0.014 -0.007

Figure 5 shows graphically the posterior distribution and the sampling for the three unobserved
variables in the model (µ1, µ2, σ). The variable Brain2ICV, Bi, is the observed data and therefore
we do not need to sample its values. On the left-hand of Figure 5, we show the kernel density
estimation of the marginal distributions of each parameter and on the right hand we show the
individual sampled values.

Figure 6a makes the comparison between the posteriors for male and female Brain2CV easy to
visualize. As we can see, µ1 is negative and µ2 is positive with the HDI for the Male group slightly
wider than the Female group. Since we have computed the posterior, we can use it to simulate
data to assess the predictive quality of the model by comparing how consistently the simulated
data match the observed data. Figure 6b shows the posterior predictive checks which allows us to
evaluate the model by comparing the observed data and the model predictions (100 posterior
predictive samples). The figure shows a good match between the mean and the variance of the
simulated data and the actual data.

1The High Posterior Density interval (HDI) is the shortest interval containing a give portion e.g 97% of the probability
density. Note that HPI is not the same as a confidence interval, HDI is the probability of a variable having some vale while
a frequentist confidence interval contains or does not contain the true value of a parameter [Martin, 2018].
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Figure 5: Posterior distribution (left-hand) and sampling (right-hand) for parameters µ1, µ2, σ
(from top to bottom, Brain2ICV mean for men, Brain2ICV mean for women and Brain2ICV
standard deviation) using PyMC3 [Salvatier et al., 2016]. Males get into older age with a more
brain volume loss or less Brain to ICV ratio than women. The values have been normalized and
standardized with mean 0 an standard deviation 1.

Figure 6: The black line is a KDE of the observed data, and cyan lines are KDEs computed from
each one of the 100 posterior predictive samples. The cyan lines reflect the uncertainty about
the inferred distribution of the predicted data. The mean and the variance of the simulated data
properly match the actual data.

(a) Plot that compares the posterior of the parame-
ters µ1 (Males) and µ2 (Females). The mean of the
Brain2ICV in females is 0.133 and -0.259 for males,
the standard deviation for males (0.058) is larger
than in females (0.041).

(b) The black line is a KDE of the observed data, and
the cyan lines are KDEs computed from each one of
the 100 posterior predictive samples. The cyan lines
reflect the uncertainty about the inferred distribution
of the predicted data. The mean and the variance of
the simulated data properly match the actual data.
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Now we are in a position to answer affirmatively Question 1:

Q1: Is there a direct causal relationship between brain atrophy -calculated as
the ratio between brain size at an elderly age and maximum brain size at a young
age- and sex? Yes. According to the Causal Diagram shown in Figure 2 Age has
a direct effect on Brain2ICV. The expected difference or contrast between a female
and a male in the sample shows that the expected Brain2ICV is larger for females.

We address next Q2 or Is there additional value for Brain2ICV in knowing Sex if we already know Age?
The system of equations described in Equation 3 defines a multiple regression aimed at inferring
the influence of Age on Brain2ICV while controlling for Sex and is represented in Equation 4 for
convenience.

µi = αSex[i] + βA Ai (4)

Table 4 shows the posterior distribution (mean standard deviation and HDI) of the multiple
regression parameters declared in Equation 3 (γ1, γ2, βA, σ not shown for easiness). The first two
rows denote the linear relationship between Brain2ICV and each sex group (1 for Male, 2 for
Female), and the last row the linear relationship between Brain2ICV and Age. Each parameter in
Table 4 controls the slope of the linear relationship and thus can be interpreted as the change in the
outcome (Brain2ICV) per unit change in the predictor variables (Age and Sex). Thus, one standard
deviation change in Age produces a change of one-third decrease in the standard deviation in
Brain2ICV.

Table 4: Posterior distributions of the model’s parameters in Equation 3. Posterior of the average
Brain2ICV for males µ1, posterior of the average Brain2ICV for females µ2 and Posterior of the
age coefficient βA.

The βA coefficient describes a negative influence of the Age predictor on the outcome, Brain2ICV
(negative mean). Similarly, there is a negative association between being Male and Brain2ICV.

Thus, both Age and Masculine Sex are negatively associated with brain preservation at old age,
computed as the ratio between the estimated brain volume (BV) and the estimated total

intracranial volume (ICV). The Female Sex group, on the other hand, is positively associated with

brain preservation.

mean sd HDI 3% HDI 97%

µ1 -0.266 0.052 -0.369 -0.177
µ2 0.138 0.037 0.070 0.208
βA -0.33 0.031 -0.392 -0.277

Based on the results show in Table 4 it is possible to graphically qualify, both in direction
and magnitude, the weight that Sex and Age have separately on Brain2ICV. Figure 7 represents
the mean and the standard deviation of the posteriors in the multiple regression shown in Table
4. The expected change per unit in Brain2ICV for elderly males is -0.266 and 0.138 for females.
The expected change per unit in Brain2ICV for Age is -0.33, that is, an increase of one standard
deviation in age reduces brings down the Brain2ICV by one third.

Finally, Figure 8 allows to visually inspect the results of the multiple regression of the effect
of both Age and Sex on Brain2ICV, Age + Sex → Brain2ICV, compared with the simple linear
regressions Sex → Brain2ICV, and Age → Brain2ICV (shown in the Supplementary Materials).
The main piece of information to extract from the figure is that once we know one of the two
predictors, knowing the other one does not provide additional information about Brain2ICV. For
instance, βA has a very similar mean and standard deviation in the bivariate case (green bar) as in
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Figure 7: Direction and magnitude(µ and σ) of the posterior distribution of the parameters in the
multiple regression model (Equation 4). Age and Male Sex are both negatively associated with
brain preservation in older age, being Age, the stronger association. Female Sex is, on the other
hand, positively associated although with a smaller effect than both Male Sex and Age.

the multivariate regression case (blue bar). Or more easily put, if we know the Age, there is no
additional gain in knowing also the Sex if we care about inferring Brain2ICV. Accordingly, we can
answer Q2 in the negative.

Q2: Is there additional value for Brain2ICV in knowing Sex if we already know
Age? No. Once we know the age of a subject knowing also her age conveys little
information in predicting her Brain2ICV.

IV. Discussion

The goal of this work is to study how brain atrophy is affected by factors such as age, APOE gene,
sex, or school level among others. The study of brain volume loss at old age relative to young
age requires, at least in principle, to have available MRI scans performed at either young and
old age. There is, however, a way to address this problem having, as it is our case, only MRI
scans at old age (70 years old or older). We compute the total brain loss of elderly subjects as the
ratio between the estimated brain volume (BV) and the estimated total intracranial volume (ICV),
called Brain2ICV for short. Thus, having only one MRI it is possible to ascertain the diminution of
brain volume within the cranium relative to brain volume at a young age. We conceptualize the
brain as a dynamic system inside a fossil container which sets the upper limit of brain volume.
Accordingly, Brain2ICV represents the percentage of the volume occupied by the brain (BV) inside
the cranium (ICV) which is used as a proxy of the maximum brain volume reached at a young age.

We find out that for the variables considered in this study -Age, APOE, Family history of AD,
Sex, School Level- only Age and Sex affect Brain2ICV. Age is, as expected, negatively associated
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Figure 8: Forest plot to compare the effect of Age and Sex on Brain2ICV, separately and together
in multiple regression. From top to bottom, the first two bars (in blue) represent the contrast in
the multiple regression model, Age + Sex→ Brain2ICV. The two middle bars (in orange) represent
the posterior of Sex in the simple linear regression model Sex→ Brain2ICV. The blue bottom bar
depicts the posterior of Age in the multiple regression model, Age + Sex→ Brain2ICV, and the
green bar the posterior of Age but this time for the simple regression model, Age→ Brain2ICV.
Once we know Age (green bar at the bottom) there is no additional information in knowing also
Sex (blue bar at the bottom) because the mean and the uncertainty remain mostly unchanged.
Likewise, if we know Sex (orange bars) there is no significant information gain in also knowing
Sex (blue bars at the top).

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391623
http://creativecommons.org/licenses/by-nc/4.0/


The aging human brain • Gomez-Ramirez et al. (2020)

with Brain2ICV, the older the brain gets the smaller is the ratio between the brain volume and
the intracranial volume. More interestingly, we find that Sex plays a role in brain atrophy with
Females having on average 1% larger Brain2ICV than males. In order of importance, Age is the
most important factor for brain volume loss, followed by masculine sex, and lastly feminine sex
which is protective (Figure 7).

Methodologically speaking, this work departs from the approach of comparing differences
between groups via point estimates and statistical testing. The pitfalls and difficulties as-
sociated with the statistical testing approach have been described both abundantly and con-
vincingly [Association et al., 2016], [Benjamin et al., 2018], [Wasserstein et al., 2019] and we will
therefore do not linger more on this point. Here, we follow a Bayesian approach to esti-
mate posterior probability distributions rather than point estimates. It is worth reminding
that under the Bayesian outlook, probabilities are tools to quantify uncertainty [Jaynes, 2003],
[Gomez-Ramirez and Sanz, 2013]. Thus, we use probability distributions to summarize the entire
plausibilities of each possible value of the parameter defined in the model. For example, the
posterior distribution of the mean Brain2ICV in the female group entirely lies on the positive side,
that is, we are certain that female sex and Brain2ICV are positively associated, while the opposite
occurs for males, the posterior fully lies on the negative side which tells us that masculine sex and
Brain2ICV are negatively associated.

The questions that are being addressed here are simple to pose; Do age affects brain atrophy?
Which factors are causally connected with the loss of brain volume found in old age, sex, years
of school, others? These questions are essentially causal and therefore cannot be responded to
with correlations and data alone. We must postulate first a causal model which can be seen as the
generator of the observed data. The causal diagram is postulated in Figure 2 and discussed in
depth in Section ii.

The final goal of our methodological undertaking is no other than to achieve a causal under-
standing of the factors at play in the variability of brain volume loss in aging. To state that age
causes aging is a platitude. However, behind this innocuous statement hides one of the defining
scientific challenges of our time, Is aging inevitable? and Can we devise interventions aimed at
modifying the aging process? Since we lack a theory of aging, what causes aging and how it
progresses is ridden in uncertainty.

There at least two major reasons for the lack of attention that causal reasoning has re-
ceived in the scientific literature. One is historical and obeys to reasons not other than the
personal preferences that leading scientists. As magisterially recounted by Judea Pearl in
[Pearl and Mackenzie, 2018], causality was deliberately removed from statistics by Karl Pear-
son who considered cause and effect as animistic and unscientific concepts to be replaced by
Contingency Tables which in Pearson’s mind were "the ultimate statement of the scientific de-
scription between two things" [Pearson, 1892]. The second and most important reason for the
neglect of causality is that correlations, contrary to causal conclusions, do not require a controlled
experiment and are therefore easy to compute.

The algebra created by Pearl, do-calculus [Pearl, 2009], [Pearl et al., 2016], can be treated as an
extension of probability theory to investigate causal statements where before was only possible to
perform observational analysis. While correlations have proved to be an extraordinarily successful
tool to quantify pairwise relationships, correlations are lacking in situations where variables
cannot be isolated. In such a scenario, we need to understand how the different variables interact
with each other, which entails incorporating the direction in the association between two variables.
A variable may cause another and this cannot be accounted for with correlations which are by
definition symmetric.

We hope that the utility and promise of causal analysis have been rendered clear at this point.
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It is however worth recalling that causal analysis requires to postulate upfront the process that
generates the data, that is to say, it requires the modeler’s input. The identification of causal
associations will be consequently dependent on the model’s complexity. For example in our
case, since we are interested in the effect of Sex and Age on Brain2ICV and the predictors are
conditional independent, the causal analysis is fairly simple. Formally and in the language of
do-calculus, Brain2ICV is a collider, X → Y ← Z. In a collider situation conditioning on, for
example, Z could induce a statistical association between X and Y misleading us into thinking
that Age changes with Sex which is not the case. This is addressed in the multiple regression
model (System of Equations 3) where we quantify each effect -Age on Brain2ICV and Sex on
Brain2ICV- to find that the variables are conditionally independent Y ⊥⊥ X|Z, (Y is not associated
with X, after conditioning on Z) and Y ⊥⊥ Z|X (Y is not associated with Z, after conditioning on
X). Importantly, the same methodological framework can be used in more convoluted analysis,
for example, the effect of Brain2ICV, Age, Sex, and School years on Memory Test Scores (Figure
2). There is no a direct causal path from Age to Memory or from Brain2ICV to Memory, the
associations are in reality spurious and caused by the influence of variable(s) not included in the
model (Supplementary Material).

This study is not without limitations. First, we are using whole-brain segmentation data
without differentiating between brain tissues or brain anatomical structures. Second, in positing
as we do a causal model, we are describing the causal mechanisms involved in brain aging, a
complex biological process, lacking even a universally accepted definition [Viña et al., 2007]. The
causal diagram postulated in Figure 2 may be incomplete as it is the case, for example, in the
causal relationships between variables related to memory. Nevertheless, our focus on the direct
effect on brain volume atrophy makes both limitations not particularly concerning. Although a
more granular data acquisition of brain anatomy would convey information that is missing in this
study, the approach used here makes it uniquely possible to investigate the shrinkage of the brain
using only one measurement (a single MRI). Since the brain is contained within the scaffolding of
the cranium, we can estimate the total brain volume loss taking the intracranial volume as the
asymptotic volume. This method is impractical for structures inside the cerebrum since we would
be missing the fossil-like container that the cranium provides for the entire organ.

Part of the novelty and interest of the study relies upon its methodological underpinning,
which departs from point estimates and linear associations between variables. We use Bayesian
probabilistic programming to study in a principled way causal inference, combining the flexibility
of Bayesian probability and the applicability of sampling theory in a coherent decision theoretical
framework. Although it is beyond reach to verify the validity or completeness of causal diagrams,
a causal diagram together with the appropriate algebra (do-calculus) enable causal reasoning,
paving the way from hypothesis testing and correlations to interventions and counterfactual
reasoning, reaching thus the proper epistemological ladder required to capture the structure that
generates events in nature.
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V. Supplementary Material

Table 5 shows the summary table of the OLS model brain2icv age + sex + apoe + school level +
familial AD with the values normalized.

Table 5: Summary table of OLS model brain2icv age + sex + apoe + school level + familial AD
[Seabold and Perktold, 2010].)

Dep. Variable: fr_BrainSegVol_to_eTIV_y1 R-squared: 0.153
Model: OLS Adj. R-squared: 0.148
Method: Least Squares F-statistic: 31.82
Date: Sat, 04 Jul 2020 Prob (F-statistic): 7.27e-30
Time: 20:24:27 Log-Likelihood: 2008.2
No. Observations: 890 AIC: -4004.
Df Residuals: 884 BIC: -3976.
Df Model: 5

coef std err t P> |t| [0.025 0.975]

Intercept 0.8805 0.017 52.363 0.000 0.848 0.914
edad_visita1 -0.0024 0.000 -10.940 0.000 -0.003 -0.002
sexo 0.0105 0.002 5.722 0.000 0.007 0.014
apoe -0.0022 0.002 -1.048 0.295 -0.006 0.002
familial_ad 0.0020 0.002 1.011 0.312 -0.002 0.006
nivel_educativo -0.0015 0.001 -1.879 0.061 -0.003 6.81e-05

Omnibus: 22.145 Durbin-Watson: 1.960
Prob(Omnibus): 0.000 Jarque-Bera (JB): 25.003
Skew: 0.328 Prob(JB): 3.72e-06
Kurtosis: 3.494 Cond. No. 1.48e+03

Figure 9 shows graphically the posterior distribution and the sampling for the three unobserved
variables in the model (Age→ Brain2ICV). The variable Brain2ICV, Bi, is the observed data and
therefore we do not need to sample its values. On the left-hand of Figure 9, we show the kernel
density estimation of the marginal distributions of each parameter and on the right hand we show
the individual sampled values.

Figure 10a shows the posterior distribution of the parameters in the Age→ Brain2ICV model.
Figure 10b shows the posterior predictive checks which allows us to evaluate the model by comparing
the observed data and the model predictions (100 posterior predictive samples). The figure shows
a good match between the mean and the variance of the simulated data and the actual data.

i. Causal analysis of memory performance

We investigate the direct causal relationship between three predictors of memory test performance,
brain atrophy, school level and age (Figure 2).

The system of Equations 5 shows the model such that Brain2ICV regressed on Memory
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Figure 9: Posterior distribution (left-hand) and sampling (right-hand) for parameters α, βA, σ using
PyMC3 [Salvatier et al., 2016]. The slope (βA) is -0.33 (one standard deviation in age induces one
third of change in the opposite direction in Brain2ICV) and α is as expected 0 since the data are
normalized.

Figure 10: HDI of the posterior and posterior predictive samples of the Age → Brain2ICV
regression model.

(a) HDI of the posterior of the parameter βA in
Age → Brain2ICV model. As expected Age has
a negative effect on Brain2ICV

(b) The black line is a KDE of the observed data, and
the cyan lines are KDEs computed from each one of
the 100 posterior predictive samples. The cyan lines
reflect the uncertainty about the inferred distribution
of the predicted data. The mean and the variance of
the simulated data properly match the actual data.
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performance, B→ M.

Mi ∼ N(µi, σ) (5a)

µi = α + βBBi (5b)

α ∼ N(0, 1) (5c)

βB ∼ N(0, 1) (5d)

σ ∼ Exp(1) (5e)

where M represents the mean of memory performance score which is not estimated but computed
as a linear function of a predictor variable Brain2ICV (B) and three additional parameters, α, βB
and σ which are unknown and therefore we need to postulate a prior distribution for each of them
-Normal, Normal and Exponential. The variables have been previously standarized.

Equation 6 shows the model Age regressed on Memory performance, A→ M.

Mi ∼ N(µi, σ) (6a)

µi = α + βA Ai (6b)

α ∼ N(0, 1) (6c)

βA ∼ N(0, 1) (6d)

σ ∼ Exp(1) (6e)

where M is the memory performance given by the recall test which is computed as a linear
function of the predictor variable Age (A) and three additional parameters, α, βA and σ which
are unknown and therefore we need to postulate a prior distribution as Equation 6 shows. The
variables M and A are standarized.

Finally, we explore what happens when both predictors are included in a multivariate regres-
sion model A + B→ M, that is, Age and Brain2ICV are regressed on Memory as described in the
system of Equations 7.

Mi ∼ N(µi, σ) (7a)

µi = α + βA Ai + βBBi (7b)

α ∼ N(0, 1) (7c)

βA ∼ N(0, 1) (7d)

βB ∼ N(0, 1) (7e)

σ ∼ Exp(1) (7f)

where M is the memory performance given by the recall test which is now computed as a linear
function of the two predictor variables, Age (A) and Brain2ICV (B) and four additional parameters,
α, βA, βB and σ which are unknown and therefore we need to postulate a prior distribution as
Equation 7 shows. As we did in the two previous models (Equation 5 and Equation 6), the
variables M, B and A are standarized and we use vague priors to make sure that priors do not
introduced any undesirable bias in the results.

Figure 11 shows the scatter plot of memory and the predictors Brain2ICV (rBM = 0.14), Age
(rAM = −0.18) and School Level (rSM = 0.24). According to correlation analysis shown in Section
i, brain atrophy (Brain2ICV), School Level and Age are predictors, even if modest, of Memory
performance.
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(a) Brain atrophy is associated
with memory performance,
rBM = 0.14.

(b) Age is associated with mem-
ory performance,
rAM = −0.18

(c) School level is associated with
memory performance,
rSM = 0.24

Figure 11: Scatter plot of memory test score and Brain2ICV (a), memory test score and Brain2ICV
(b) and memory test score and School level (c). Brain2ICV, Age and Memory test score are
standarized i.e. centered around the mean with a unit standard deviation.

Figure 12: Trace plot of the regression model of B on M including the two non deterministic
variables in the model α and βB (µ is deterministic). On the left, the distribution of each parameter
(4 chains) and on the right the sampling. The posterior mean of Brain2ICV (0.141) is positive, which
means the larger Brain2ICV the larger the memory score. Importantly, the posterior distribution
lies entirely on the positive side, the high density interval [3%, 97%] of the variable is defined in
the range [0.074, 0.202].

.

Figure 13: Trace plot of the regression model of Age on Memory including the two non determin-
istic variables in the model α and βA. On the left, the distribution of each parameter (4 chains)
and on the right, the sampling The posterior mean of Age (−0.171, Figure 13) is negative, which
means the older the subject the less the memory score. The posterior lies entirely on the negative
side, the high density interval [3%, 97%] of the variable is defined in the range [−0.235,−0.1].
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(a) Trace plot of the regression model of School level
on Memory including the non deterministic variables
in the model α and βSi , i = leq3. On the left, the
distribution of each parameter (4 chains) and on the
right, the sampling.

(b) Plot for the 4 estimated means, one per school level,
0:no formal education, 1: primary education, 2: middle
or high school degree, 3:university degree. There is a
shark contrast between levels 0-1 and levels 1-2, the
former have a negative association with the test score
and the last a positive one, or simply said those with
high school and university school do better on average
in the memory score tests than those that lack formal
education or have only primary education.

Figure 14: .

Figures 12, 13 and 14 shows the distribution (kernel density estimates) and sampled values of
the parameters defined in Equations 5, 6 and 7, respectively.

Table 6 shows the posterior distribution of the model’s parameters of the three regression
models: Age on Memory M = α + βA ∗ A (Equation 6); Brain2ICV on Memory M = α + βB ∗ B
(Equation 5) and School level on Memory M = α + βS ∗ S (Equation 7).

Table 6: the table describes the mean, standard deviation and high posterior density interval (hdi)
for the parameters described in the regression models described in Equations 5, 6 and 7.

mean sd hdi 3% hdi 97%

µA -0.170 0.034 -0.237 -0.111
σA 00.987 0.025 0.941 1.033

µB 0.141 0.034 0.074 0.202
σB 0.991 0.023 0.952 1.036

µS0 -0.261 0.072 -0.391 -0.125
µS1 -0.243 0.060 -0.358 -0.137
µS2 0.203 0.065 0.084 0.329
µS3 0.275 0.065 0.159 0.404
σS 0.971 0.024 0.927 1.015

So far, the three linear regression models built above, B → M in Equation 5, A → M in
Equation 6, S → M in Equation 7 and the posterior distribution of parameters (βB, βA and βS),
support the findings in the correlation analysis (rBM = 0.14, rAM = −0.18,rSM = −0.18).

Nevertheless, Pearson’s correlation provides a single number (the correlation coefficient r),
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while here we are computing the posterior distribution of the parameters in the model and we are
therefore able to state whether the distribution lies on one side or the other of zero. For example,
as the first two rows in Table 6 shows, the high density interval of µA lies entirely on the negative
side, that is, we are certain that age and memory score are negatively associated, that is the older,
the smaller the memory score. Similarly, the linear regression model that relates memory with
Brain2ICV M = α+ βB ∗ B (Equation 5) the posterior is always positive in the high density interval,
that is, the larger the Brain2ICV (brain volume more preserved with age) the larger the memory
score and likewise for the school level in the last two rows of Table 6, the high density interval of
µS is always positive, i.e. school level and memory score are positively associated the higher the
school level the larger the memory score.

Since we are interested in what causes the memory performance observed in subjects, we need
to perform a multiple regression to answer the following question: once we know the median
age in a subject, Is there additional predictive power in also knowing the Brain2ICV? Figure 15
answers to that question, since it shows the behavior of the posterior of the parameters βA and βB
for either the bivariate and multivariate cases. Based on Figure 15, the posterior mean for both
Age, βA, and Brain2ICV, βB, in the multivariate case move closer to zero. The way to interpret
this result is as follows: once we know the median Age of a person, there is little or no additional
predictive power in also knowing her Brain2ICV (model 7). Likewise, once we know the median
Brain2ICV of a person (model 6), there is little or no additional predictive power in also knowing
her Age.

Age and Brain2ICV are correlated, so we have introduced multicollinearity in the multivariate
regression model. Age and Brain2ICV, individually helps in predicting memory score but neither
helps much when you know the other. For example, βB went from 0.141± 0.034 to 0.093± 0.035
(green to blue bar in Figure 15) and βA went from −0.171± 0.034 to −0.139± 0.036 (orange to
blue bar in Figure 15).

Note that this result by any means signifies that Age or Brain2ICV have no information about
cognition (i.e. memory performance score). The way to interpret the result is that there is no a
direct causal path from Age to Memory or to Brain2ICV to Memory, the associations are in reality
spurious and caused by the influence of variable(s) not included in the model. Thus, we answer in
the negative the question stated above; Is there a direct causal relationship between brain atrophy
(or age) and memory performance? No. The hypothesized causal link between brain and memory
test lacks intermediate components. Corticohippocampal circuit need to incorporated in the DAG
so that the do-calculus inference for causal effects can take place.
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Figure 15: Posterior distribution of the parameters βA (Age) and βB (Brain2ICV) for either the
bivariate and the multivariate model. In orange the mean and the spread of βA in model 5
and in green of βB in model 6. The posterior distribution when adding an additional predictor
(multivariate regression) shown in blue adds little or no information, that is, the mean moves closer
to zero in both cases. This implies that there is no direct causal link between Age or Brain2ICV
and Memory.
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