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Abstract 

Poor outcomes after SARS-CoV-2 infection are difficult to predict. Survivors may develop 

pulmonary fibrosis. We previously identified a 52-gene signature in peripheral blood, predictive of 

mortality in Idiopathic Pulmonary Fibrosis. In this study, we analyzed this signature in SARS-CoV-2 

infected individuals and identified genomic risk profiles with significant differences in outcomes. 

Analysis of single cell expression data shows that monocytes, red blood cells, neutrophils and dendritic 

cells are the cellular source of the high risk gene signature. 

Main 

SARS-CoV-2 infection is associated with increased mortality and poor outcome in individuals at 

risk. Unfortunately, it is difficult to predict which patient will deteriorate, require ICU admission and 

mechanical ventilation. While patients who receive invasive mechanical ventilation are more likely to be 

males, obese, and to have elevated values of liver-function tests and inflammatory markers (ferritin, d-

dimer, C-reactive protein, and procalcitonin)1, reliable, peripheral blood biomarkers of disease severity 

and poor outcomes are still necessary to better triage patients and improve utilization of resources. 

Given the fact that pulmonary fibrosis can be seen in certain SARS-CoV-2 survivors2, we hypothesized 

that a 52-gene signature, previously shown to predict mortality in Idiopathic Pulmonary Fibrosis (IPF)3,4 

could be repurposed to predict poor outcomes in SARS-CoV-2 infection.  

To test our hypothesis, we analyzed peripheral blood gene expression levels of 50 genes of the 

52-gene signature from SARS-CoV-2 infected subjects from a discovery (11 subjects)5 and validation (100 

subjects)6 cohorts. A cellular-source cohort (7 subjects)7 was used to identify the cellular source of the 

50-gene signature. Two non-coding RNAs were not found in some of the datasets and excluded from the 
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original signature for consistency. This signature consisted of seven genes with increased expression and 

43 genes with decreased expression. The scoring algorithm of molecular phenotypes (SAMS)4 (see 

methods section) was used to identify high and low genomic risk profiles based on the 50-gene 

signature in each cohort (Figure 1A and 1B). Subjects with a high risk genomic profile were more likely to 

have severe disease (P=0.045) in the discovery cohort. In the validation cohort, subjects with a high risk 

genomic profile were significantly older with higher Apache II and Charlson Disease Severity Index 

scores. They were more likely to be admitted to ICU, to be on mechanical ventilation, to have shorter 

ventilator-free days, hospital-free days, higher lactate, CRP and d-dimer levels (see Table 1).  

To identify the cellular source of the 50-gene signature, we conducted both cell-type and 

subject-level analysis using eight, single-cell data measurements from seven SARS-CoV-2 infected 

subjects. For the subject-level analysis, SAMS classified five low risk and three high risk profiles using the 

average expression levels of each gene across all cell types. We then compared the proportions of 

different cell types between high and low risk profiles and identified that subjects with high risk profiles 

had higher proportion of CD14+ monocytes, red blood cells, CD16+ monocytes, neutrophils and dendritic 

cells. Subjects with low risk profiles had higher proportions of  CD4 and CD8 T cells, natural killer, B cells 

and immunoglobulin-producing plasmablasts (Figure 2A). To validate these findings, we conducted cell-

type-level analysis. Specifically, we estimated the average expression levels of each gene, for each cell 

type producing 155 cell-type-specific expression profiles, among which SAMS identified 46 high risk 

profiles and 109 low risk profiles (Figure 2B). Cell types with high risk profiles included dendritic cells, 

CD16+ monocytes, neutrophils, eosinophils, CD14+ monocytes, red blood cells and plasmacytoid 

dendritic cells. Cell types with low risk profiles were mostly CD4 and CD8 T cells, natural killer, B cells 

and immunoglobulin producing plasmablasts (Figure 2C) further confirming that these cells are likely the 

cellular source of the risk profiles, based on the 50-gene signature. 

In summary, we repurposed a 50-gene signature previously shown to predict mortality in IPF 

and demonstrated that it is predictive of poor outcomes in SARS-CoV-2 infected subjects from two 

independent cohorts. The biomarker implications of this discovery are significant since the identification 

of SARS-Cov-2 genomic risk profiles based on the 50-gene signature, in addition to other biomarker and 

clinical variables, can aid with healthcare utilization such as triage of patients to most appropriate 

location (home, ward, ICU), reduce cost of inappropriate hospitalization, decrease personal protective 

equipment use and allow for proper allocation of limited resources. It may also serve for clinical trial 

purposes since high risk subjects may respond differently to prolonged courses of Remdesivir, higher 

doses of dexamethasone or new therapies. 

The analysis of single cell data in SARS-CoV-2 infected subjects uncovered the cellular source of 

the 50-gene signature and pointed at CD14+ monocytes and neutrophils as critical cell types 

differentiating high versus low risk individuals (Figure 2A). Previous reports have shown that severe 

COVID-19 is marked by the occurrence of neutrophil precursors and increased circulating levels of CD14+ 

monocytes with high expression of alarmins S100A8/9/12 and low expression of HLA-DR8 . Our single 

cell analysis also confirmed the presence of increased number of neutrophil precursors, mature 

neutrophils and CD14+ monocytes with high expression of S100A12 and low expression of HLA-DPB1 and 

HLA-DBP1 as part of the high risk genomic profile (Figure 2A, 2B and 2C). We have previously shown 
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increased circulating levels of CD14+ monocytes in IPF patients with a high risk genomic profile based on 

the 52-gene signature9. We also showed that increase circulating levels of CD14+ monocytes were 

predictive of transplant-free survival and mortality in IPF and other fibrotic diseases such as, 

scleroderma-associated interstitial lung disease (SSc-ILD), hypertrophic cardiomyopathy and 

myelofibrosis9. Our single cell analysis also showed increased proportion of CD4 and CD8 T cells and 

Immunoglobulin producing plasmablast in individuals with a low risk profile, suggesting that strong T 

cell10  and distinct antibody responses11 may be responsible for milder COVID-19 infection seen in 

individuals with a low risk genomic profile. Future studies correlating genomic risk profiles with 

immunophenotyping will be required to better understand the gene expression changes seen in subjects 

with a low risk genomic profile.  

Despite the reproducibility of our biomarker results we need to acknowledge some limitations 

of our study. First, given the experimental differences in discovery and validation cohorts, we need to 

rely on gene expression normalization within cohorts to identify genomic risk profiles based on the 50-

gene signature. Second, this study was retrospective and our results will need further validation using 

the same gene expression platform, multiple and larger patient cohorts with samples collected 

prospectively. Lastly, future studies will be needed to address whether the 50-gene signature can 

predict mortality in SARS-CoV-2 infected individuals.  

In conclusion, our study shows that a 50-gene signature in peripheral blood, previously shown to 

predict mortality in IPF, is able to distinguish two genomic risk profiles with significant differences in 

outcomes in patients infected with SARS-CoV-2 virus. It also provided evidence regarding the cellular 

source of the signature. A blood test based on the 50-gene signature should be further developed and 

validated to be used in clinical practice for risk stratification in COVID-19 infection. 

 

Methods: 

Gene expression data of SARS-CoV-2 infected individuals were analyzed using discovery (11 subjects 

with mild or severe SARS-CoV-2, single cell gene expression, GEO: GSE149689), validation (100 subjects, 

bulk cell RNA-seq gene expression, GEO Accession: GSE1571036) and cellular source (7 subjects, single 

cell gene expression, GEO accession: GSE1507287) cohorts. All analyses were performed in R software 

(version 4.0.2)12. For the single cell dataset in the discovery cohort, we used R package “Seurat” to 

preprocess the feature-barcode matrices obtained from the GEO database.  Specifically, we discarded 

cells that expressed less than 200 genes or expressed mitochondrial genes in >15% of their total gene 

expression, and discarded genes that expressed in less than 10 cells. NormalizeData function was used 

to obtain normalized gene expression levels. Subject-level expression profile was estimated using the 

average expression level across all cells.  For the RNA-seq data in the validation cohort, we obtained the 

Transcripts Per Million (TPM) matrix from the GEO database and used log(1+TPM) to normalize the gene 

expression levels. For the single cell data in the cellular source cohort, we used the preprocessed and 

normalized data provided in the published paper8.  
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To identify high and low genomic risk profiles for subjects and cells in each one of these cohorts, we 

used the Scoring Algorithm for Molecular Subphenotypes (SAMS). SAMS is a classification algorithm 

developed to identify molecular subphenotypes based on the expression of a predefined set of 

increased and decreased genes in a given patient. The up and down score of SAMS are calculated using 

the product of two variables: the proportion of genes expected to be increased or decreased per subject 

and their normalized expression levels. The calulation steps of SAMS have been described elsewhere4. In 

this study, we calculated up and down scores based on seven increased genes (PLBD1, TPST1, MCEMP1, 

IL1R2, HP, FLT3, S100A12) and 43 decreased genes (LCK, CAMK2D, NUP43, SLAMF7, LRRC39, ICOS, CD47, 

LBH, SH2D1A, CNOT6L, METTL8, ETS1, C2orf27A, P2RY10, TRAT1, BTN3A1, LARP4, TC2N, GPR183, 

MORC4, STAT4, LPAR6, CPED1, DOCK10, ARHGAP5, HLA-DPA1, BIRC3, GPR174, CD28, UTRN, CD2, HLA-

DPB1, ARL4C, BTN3A3, CXCR6, DYNC2LI1, BTN3A2, ITK, SNHG1, CD96, GBP4, S1PR1, NAP1L2, KLF12, 

IL7R) of the original 52-gene signature. To study the associations bewteen risk profiles and outcomes, 

we used one-sided Fisher’s exact test for the discovery cohort, and used chi-squared test for categorical 

outcomes and two-sample t-test for continuous outcomes (skewed variables were log-transformed) for 

the validation cohort. 
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Figure 1 

 

Figure 1. Genomic risk profiles based on the 50-gene signature are predictive of poor outcomes in SARS-

CoV-2. Clustering of SARS-CoV-2 infected individuals based on genomic risk profiles (high vs low) derived 

from the 50-gene signature using SAMS in discovery (A) and validation cohorts (B). Every column 

represents a subject and every row represents a gene. Log-based two color scale is shown next to 

heatmaps; red denotes increase expression over the geometric mean of samples and green, decrease. 

S=SARS-CoV-2 severe disease. M=SARS-CoV-2 mild disease  
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Table 1 

Validation cohort 

 
High Risk 
(Mean) 

Low Risk 
(Mean) 

Sample 
Size P value 

Age 68.3 57 99 0.0001633 

APACHE II 23.48 18.42 57 0.01467 

Charlson Score 4 2.87 100 0.03815 

Ventilator-Free Days 12.94 23.67 100 3.51E-05 

Hospital-Free Days 8.58 29.69 100 5.12E-12 

Lactate 1.45 1.09 63 0.008982 
CRP (mg/l) 179  119 92 0.01611 

D Dimer (mg/l) 14.8 9.6 85 0.00282 

ICU admission     100 0.000002 

Yes 30 6 100   

No 20 44     

Mechanical 
Ventilation     100 3.00E-05 

Yes 25 17     

No 11 47     
Hospital-Free days were calculated post 45 days follow up 

 

 

 

 

 

 

 

 

Figure 2 
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Figure 2: (A) Analysis of subject-level, single cell expression of the 50-gene signature from the cellular 

cohort demonstrates differences in cell proportions in high versus low risk individuals. Y axis represents 

cell types and X axis represents cell proportions.  B: B Cell, CD4m T: Memory CD4 T Cell, CD4n T: Naive 

CD4 T Cell, CD8m T: Memory CD8 T Cell, DC: Conventional Dendritic Cell, gd T:  Gamma Delta T cells, IFN-

stim CD4 T: Interferon-stimulated CD4 T cell, IgA PB: IgA (Immunoglobulin-A) Plasmablast, IgG PB: IgG 

(Immunoglobulin-G) Plasmablast, IgM PB: IgM (Immunoglobulin-M) Plasmablast, NK: Natural Killer Cell, 

pDC: Plasmacytoid Dendritic Cell, RBC: Red Blood Cell, SC & Eosinophil: Stem Cells and Eosinophil. (B) 

Cell-type-level analysis. Heatmap shows cell types with low versus high risk expression profiles based on 

the 50-gene signature. Every column represents a single cell and every row represents a gene. Log-based 

two color scale is shown next to heatmaps; red denotes increase expression over the geometric mean of 

samples and green, decrease. (C) Cell-type-level expression analysis of the 50-gene signature showed 

that the high-risk cell cluster mainly consisted of Dendritic cells, CD16+ monocytes, Neutrophils, 

Eosinophils, CD14+ monocytes, Red Blood Cells and pDC. Low risk cell clusters mainly consisted of CD4 

and CD8 T cells, Natural Killer cells and Immunoglobulin producing plasmablasts. 
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