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Abstract 1 

 2 

Reinforcement learning is a fundamental mechanism displayed by many species from 3 

mice to humans. However, adaptive behaviour depends not only on learning 4 

associations between actions and outcomes that affect ourselves, but critically, also 5 

outcomes that affect other people. Existing studies suggest reinforcement learning 6 

ability declines across the lifespan and self-relevant learning can be computationally 7 

separated from learning about rewards for others, yet how older adults learn what 8 

rewards others is unknown. Here, using computational modelling of a probabilistic 9 

reinforcement learning task, we tested whether young (age 18-36) and older (age 60-10 

80, total n=152) adults can learn to gain rewards for themselves, another person 11 

(prosocial), or neither individual (control). Detailed model comparison showed that a 12 

computational model with separate learning rates best explained how people learn 13 

associations for different recipients. Young adults were faster to learn when their 14 

actions benefitted themselves, compared to when they helped others. Strikingly 15 

however, older adults showed reduced self-bias, with a relative increase in the rate at 16 

which they learnt about actions that helped others, compared to themselves. 17 

Moreover, we find evidence that these group differences are associated with changes 18 

in psychopathic traits over the lifespan. In older adults, psychopathic traits were 19 

significantly reduced and negatively correlated with prosocial learning rates. 20 

Importantly, older people with the lowest levels of psychopathy had the highest 21 

prosocial learning rates. These findings suggest learning how our actions help others 22 

is preserved across the lifespan with implications for our understanding of 23 

reinforcement learning mechanisms and theoretical accounts of healthy ageing. 24 

 25 

Keywords: Prosocial behaviour, ageing, reinforcement learning, computational 26 

modelling  27 
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Learning associations between actions and their outcomes is fundamental for adaptive 28 

behaviour. To date, the majority of studies examining reinforcement learning have 29 

tested how we learn associations between actions and outcomes that affect ourselves, 30 

and largely focused on these processes in young age, both in humans and other 31 

species1–5. However, such self-relevant learning may be computationally separable 32 

from learning about actions that help other people. Studies suggest slower learning of 33 

associations between actions and outcomes when they are about6 or affect others7, 34 

henceforth referred to as ‘prosocial learning’.  35 

 36 

Senescence is associated with a multitude of changes including declines in cognitive 37 

functioning and perception, but perhaps preservation of affective processing8. It is 38 

largely unknown how ageing affects social functioning, despite the critical importance 39 

of this question. Social isolation has been found to be as damaging to physical health 40 

as smoking or excessive drinking9. Prosocial behaviours, or actions intended to benefit 41 

others, have a key role in maintaining vital social interactions and relationships10 42 

across the lifespan. In addition to the benefits for others, prosociality has been linked 43 

to improved life satisfaction11, mental wellbeing12, and physical health13 for the person 44 

being prosocial, all of which could contribute to healthy ageing. A key aspect of 45 

prosocial behaviour is the ability to learn associations between our own actions and 46 

outcomes for other people7. Here, we use computational models of reinforcement 47 

learning in young and older participants to examine the mechanisms that underpin 48 

self-relevant and prosocial learning and associations with healthy individual 49 

differences in socio-cognitive ability.  50 

 51 

Reinforcement Learning Theory (RLT) provides a powerful framework for 52 

understanding and precisely modelling learning14. In RLT, prediction errors signal the 53 

unexpectedness of outcomes and affect the choices we make in the future. The 54 

influence that prediction errors have on choices can be modelled individually through 55 

the learning rate, which quantifies the effect of past outcomes on subsequent 56 

behaviour. The plausibility of reinforcement learning as a core biological mechanism 57 

for action-outcome associations is bolstered by our understanding of neurobiology, 58 

with prediction errors encoded by single neurons in the ventral tegmental area15. 59 

Although essential for successful adaptive behaviour, some studies have found that 60 

our propensity for reinforcement learning declines in later life8. For example, Mell et 61 
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al. (2005) showed that older adults are impaired at learning and reversing action-62 

outcome associations, compared to younger adults. This decline could be due to the 63 

significant age-related decrease in dopamine transmission17–19, which has been 64 

suggested to code prediction errors2,20,21. Indeed, one study showed that 65 

administering L-DOPA, a dopamine precursor, to older adults increased their learning 66 

rate22. Therefore, if reinforcement learning in general declines in older age, we would 67 

hypothesise lower learning rates for both self-relevant and prosocial learning in older, 68 

compared to younger, adults. 69 

 70 

Alternatively, prosocial learning may depend not only on our learning ability, but also 71 

our motivation to help others. Results from experiments using economic games to 72 

measure prosociality have found that older adults tend to be more generous23,24. There 73 

is also evidence of an age-related increase in charitable donations to individuals in 74 

need25. At work, older adults engage in more prosocial behaviours than younger 75 

adults, according to both self-report data and colleagues’ ratings26. Finally, self-76 

reported altruism and decisions to donate to others have been shown to increase with 77 

age27. However, one limitation of these studies is that the paradigms often place self 78 

and other reward preferences in conflict. Money for the other person depends on less 79 

money for oneself. Moreover, older adults generally have higher accumulated wealth, 80 

which would be an important confound in studies of monetary exchange28. 81 

Nevertheless, if older adults are indeed more prosocial, we might expect that whilst 82 

self-relevant learning declines with ageing, prosocial learning could be preserved.   83 

 84 

While studies point to potential group differences between young and older adults, 85 

there is also substantial variability in self and other reward sensitivity. For example, 86 

psychopathy is a key trait associated with decreased prosocial behaviour and altered 87 

self and other reward processing29,30. Psychopathy has dysfunctional affective-88 

interpersonal features at its core31,32 but is also characterised by lifestyle and antisocial 89 

traits33. At the extreme, psychopathy is a severe personality condition linked to poor 90 

life outcomes, violence, and criminality34–36. However, several studies suggest similar 91 

behavioural and neural profiles between community samples with high levels of 92 

psychopathic traits37 and those with clinical diagnoses of psychopathy, consistent with 93 

the Research Domains of Criteria (RDoC) conceptualisation of a dimensional 94 

approach to psychiatry38. 95 
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 96 

Intriguingly, ageing is also associated with changes in psychopathic traits. Criminal 97 

activity increases during adolescence then declines in older adulthood39. Antisocial 98 

and aggressive behaviours also significantly decrease in older age, with young adults 99 

(age 16-24 years) having the highest rates of homicide40. Even within violent male 100 

offenders, psychopathic traits linked to an antisocial lifestyle are negatively correlated 101 

with age41. In community samples, ageing is associated with a decrease in both the 102 

antisocial lifestyle and affective interpersonal elements of psychopathic traits42.  103 

 104 

Taken together, previous research supports opposing hypotheses for how ageing is 105 

associated with self-relevant and prosocial reinforcement learning. On the one hand, 106 

evidence suggests that older adults should be impaired at learning, regardless of the 107 

recipient, consistent with ageing-related declines in learning ability and dopamine 108 

availability. On the other hand, potential increases in valuing outcomes for others in 109 

older, compared to younger, adults would predict preserved prosocial learning ability 110 

but reduced self-relevant learning ability. Finally, we expected variation in 111 

psychopathic traits to be associated with learning for others but not self in both age 112 

groups.  113 

 114 

To distinguish between these competing hypotheses, we tested 75 young (aged 18-115 

36, mean=23.07, 44 females) and 77 older (aged 60-80, mean=69.84, 40 females) 116 

adults carefully matched on gender, years of education, and IQ. Participants 117 

completed a probabilistic reinforcement-learning task (Figure 1) designed to separate 118 

self-relevant (rewards for self) from prosocial learning (rewards for another person), 119 

as well as controlling for the general valence of receiving positive outcomes (rewards 120 

for neither self or other). 121 

 122 

Detailed model comparison showed that a computational model with separate learning 123 

rates best explained how people learn associations for different recipients (Figure 2). 124 

Young adults were faster to learn when their actions benefitted themselves, compared 125 

to when they helped others. Strikingly however, older adults showed a reduced self-126 

bias, with a relative increase in the rate at which they learnt about actions that helped 127 

others, compared to themselves (Figure 3a & b). These group differences were 128 

associated with changes in psychopathic traits over the lifespan. In older adults, 129 
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psychopathic traits were significantly reduced and correlated with prosocial learning 130 

rates (Figure 4a & b). These effects were not explained by individual differences in IQ, 131 

memory or attention abilities. Overall, we show that older adults are less self-biased 132 

in reinforcement learning than young adults, and this change is associated with a 133 

decline in psychopathic traits. These findings suggest learning how our actions help 134 

others is preserved across the lifespan.  135 
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 136 

Figure 1. Prosocial learning task and social role assignment. (a) The role assignment 137 

procedure involved the participant (dark blue), confederate (light blue) and two experimenters 138 

(green). Top: from above showing the positioning of the participant and two experimenters 139 

inside the testing room, and the confederate the other side of the door. Bottom: the participant 140 

and confederate wore a glove to disguise their identity and waved to each other from either 141 

side of the door. Participants were instructed that they would be assigned to roles of ‘Player 142 

1’ and ‘Player 2’. After this procedure they were informed that they would play a game where 143 

they could gain rewards for themselves, the other participant (Player 2) or neither participant. 144 

They were told that Player 2 would not play the same game for them and that Player 2 would 145 

not know that they may receive an additional bonus based on the choices the participants. 146 

This meant that participants’ choices were made anonymously and should not be affected by 147 

reputational concerns. (b) Participants performed a reinforcement learning task (‘prosocial 148 

learning task’) in which they had to learn the probability that abstract symbols were rewarded 149 

to gain points. At the beginning of each block, participants were told who they were playing 150 

for, either themselves, for the other participant, or in a condition where no one received the 151 

outcome. Points from the ‘self’ condition were converted into additional payment for the 152 

participant themselves, points from the ‘other’ condition were converted into money for Player 153 

2 and points from the ‘no one’ condition were displayed but not converted into any money for 154 

anyone.  155 
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Results 156 

 157 

We analysed the behaviour of 75 younger adults and 77 older adults who completed 158 

the probabilistic reinforcement learning task (Figure 1b), neuropsychological tests, and 159 

trait psychopathy measure (see Methods). To ensure comparability, older adults with 160 

dementia, as diagnosed by the Addenbrooke’s Cognitive Examination (ACE)43, were 161 

not included in the study. The two age groups were matched on gender (χ2(1)=0.45, 162 

p=0.5) and did not differ in years of education or IQ (Supplementary Table 1). IQ was 163 

quantified using age-standardised scores on the Wechsler Test of Adult Reading 164 

(WTAR)44. We conducted additional analyses controlling for IQ (standardised WTAR 165 

score, measured for young and older adults), and memory and attention (memory and 166 

attention subscales of the ACE, older adults only). These control analyses showed 167 

that our results are not accounted for by general intelligence or executive function (see 168 

Methods and Supplementary Information).  169 

 170 
Learning occurs for all recipients for both age groups 171 

 172 

We first examined whether participants were able to learn for all three recipients to 173 

validate their ability to complete the task. We quantified performance as selecting the 174 

option associated with a high chance of receiving reward. Participants in both age 175 

groups were able to learn to obtain rewards for themselves, another person, and no 176 

one. This was demonstrated through average performance above chance level (50%; 177 

all ts>15, all ps<0.001) and a significant effect of trial number in predicting trial-by-trial 178 

performance (all zs>4.48, ps<0.001) for each separate recipient and age group 179 

combination. 180 

 181 

Learning rate depends on who receives reward 182 

 183 

Next, to quantify learning, we used computational models of reinforcement learning to 184 

estimate learning rates () and temperature parameters (), key indices for the speed 185 

by which people update their estimates of reward, and the precision with which they 186 

make choices, respectively. Models were fitted using a hierarchical approach and 187 

compared using Bayesian model selection as used previously by Huys et al.45 and 188 

Wittmann et al.46 (see Methods). We tested multiple models that varied with respect 189 
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to whether learning could be explained by shared or separate free parameters across 190 

recipient (self, other, no one). Based on our previous results7, we examined whether 191 

shared or separate learning rates in particular resulted in a better model fit. We used 192 

four candidate models:  193 

 194 

(i) 11: one  for all three recipients & one  for all three recipients;  195 

(ii) 31: self, other & no one, one ; 196 

(iii) 21: self & not-self [other + no one], one ; 197 

(iv) 33: self, other, no one, self, other & no one (see Supplementary Table 2). 198 

 199 

Initially, we aimed to establish that both our experimental schedule and our models 200 

were constructed in a way that allowed us to disentangle recipient-specific learning 201 

rates. To this end, we created synthetic choices using simulations based on each of 202 

our four models (see Methods). We fitted the models to the data and assured that the 203 

best fitting model was the one that had been used to create the data. In such a way, 204 

we established model identifiability, both when considering the exceedance probability 205 

(Figure 2a and see Methods) and the number of times a model was identified as the 206 

best one (Figure 2b). As a second prerequisite for testing for agent-specific learning 207 

rates, we performed parameter recovery using our key model of interest, the 31 208 

model. Over a wide parameter space, we were able to recover the parameters 209 

underlying our choice simulation (Figure 2c). 210 

 211 

Having established the models were identifiable and parameters recoverable, we 212 

performed Bayesian model selection on the data from our participants. Participant’s 213 

choices were best characterised by the 31 model. This indicated that the learning 214 

process underlying the choices is most accurately captured by assuming separate 215 

learning rates for each recipient (self, other & no one). This model fit the data best 216 

(exceedance probability=97%; BICint=122; Figure 2d) and predicted choices well 217 

(R2=51%; see Methods for further details).  218 
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 219 

Figure 2. Model identifiability and parameter recovery. (a) Model identifiability average 220 

exceedance probability confusion matrix and (b) model identifiability best model selection 221 

confusion matrix. Data were simulated from 150 synthetic participants with each of our four 222 

models then Bayesian model selection was applied, and this procedure was repeated 10 223 

times. Identifiability is shown by strong diagonals. (c) Parameter recovery was performed on 224 

data simulated by the winning 31 model from 1296 synthetic participants. Confusion matrix 225 

represents correlations between simulated and fitted parameters. Strong correlations on the 226 

diagonal show parameters can be recovered. (d) The 3α1β model (▲) is the best model on 227 

both exceedance probability and integrated Bayesian Information Criterion (BIC) fit measures.   228 
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 229 

Figure 3. Age-group differences in accuracy and learning rates. (a) Comparison of 230 

learning rates from the computational model. Bars show group median. Between-group and 231 

within-group Wilcoxon t-tests show older adult’s prosocial learning was preserved: learning 232 

rates in the other condition did not differ from the self condition or from young adult’s prosocial 233 

learning rates. Only young participants showed self-bias, n=150 (75 young, 75 older). (b) 234 

Median difference between learning rates in the other and self conditions illustrates the larger 235 

self-bias in young, compared to older, adults, n=150. Asterisks represent significant 236 

differences (p<0.05). (c) Group-level learning curves showing choice behaviour in the three 237 

recipient conditions for each age group. Trials are averaged over the three blocks (48 trials 238 

total per recipient presented in three blocks of 16 trials) for the self, other, and no one 239 

recipients, n=152 (75 young, 77 older).  240 
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Older adults show a reduced self-bias in learning rates 241 

 242 

Next, we used this validated model to test our hypotheses as to whether there were 243 

group differences in learning rates when learning to reward self, other or no one. Two 244 

participants had learning rates for two of the three recipients more than three standard 245 

deviations (SDs) above the mean (self 6.68 & no one 9.64; self 7.96 & other 3.78 SDs 246 

above the mean) and were excluded from all analysis of learning rates.  247 

 248 

Across age groups, participants showed a higher learning rate when rewards were for 249 

themselves, compared to for another person (b=-0.024, 95% confidence interval [-250 

0.034, -0.014], z=-4.79, p<0.001). Importantly however, this pattern differed between 251 

age groups. The difference between self and other learning rates was reduced in older 252 

adults, consistent with a reduced self-bias (recipient [self vs. other] * age group 253 

interaction: b=0.016 [0.002, 0.03], z=2.29, p=0.022). To explore this interaction, we 254 

ran planned between-group comparisons between the older and young group, in each 255 

recipient condition. Comparing self between age groups showed older adults learnt 256 

significantly more slowly for themselves (W=3512, Z=-2.6, r(150)=0.21 [0.06, 0.73], 257 

p=0.009). In contrast, prosocial learning was maintained in older adults, with a Bayes 258 

factor suggesting strong evidence in favour of no difference in other, compared to 259 

young adults (W=3042, Z=-0.86, r(150)=0.07 [0.003, 0.23], p=0.39, BF01=4.26). As 260 

expected, across age groups learning was slower for no one than self (recipient [self 261 

vs. no one] main effect: b=-0.023 [-0.033, -0.013], z=-4.57, p<0.001). no one did not 262 

significantly differ between groups, although there was not strong evidence in support 263 

of the null (W=3241, Z=-1.6, r(150)=0.13 [0.008, 0.29], p=0.11, BF01=2.04). 264 

 265 

We also ran planned within-subject comparisons between recipients for each age 266 

group separately. As predicted, young adults learnt preferentially for themselves (vs. 267 

other V=659, Z=-4.0, r(75)=0.47 [0.27, 0.63], p<0.001; vs. no one V=928, Z=-2.62, 268 

r(75)=0.30 [0.09, 0.51], p=0.009) and did not differentiate between another person and 269 

no one (V=1533, Z=-0.57, r(75)=0.067 [0.003, 0.30], p=0.57, BF01=5.08). In contrast, 270 

for older adults, there was no significant difference between self and other (V=1150, 271 

Z=-1.4, r(75)=0.17 [0.01, 0.37], p=0.15, BF01=1.08) but learning rates were slower for 272 

no one (vs. self V=901, Z=-2.8, r(75)=0.32 [0.10, 0.52], p=0.006; vs. other V=976, Z=-273 
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2.4, r(75)=0.27 [0.05, 0.50], p=0.02). This demonstrates specificity of the age-related 274 

change to prosocial learning. In other words, older adults showed a relative increase 275 

in the willingness to learn about actions that helped others. Finally, we also observed 276 

a main effect of age on both learning rates and temperature parameters. Older adults 277 

showed slower learning overall compared to younger adults (b=-0.019 95% CI [-0.028, 278 

-0.009], Z=-3.73, p<0.001) and higher levels of exploration of choice options (median 279 

 young: 0.05, older: 0.19, W=1511, Z=-4.9, r(150)=0.4 [0.25, 0.54], p<0.001). 280 

 281 

Participants perform better for themselves, compared to no one 282 

 283 

For completeness, we also tested the effects of recipient and age group on trial-by-284 

trial tendency to pick the high reward stimuli (Figure 3c). In addition to the main effect 285 

of trial number (b=1.71 [1.29, 2.13], z=7.97, p<0.001), showing learning, these models 286 

revealed older adults chose the high reward option less frequently (mean for young: 287 

80%, older: 64%, b=-1.18 [-1.65, -0.70], z=-4.84, p<0.001), and improved less during 288 

the task (trial number * age group interaction b=-0.81 [-1.34, -0.27], z=-2.95, p=0.003) 289 

across recipients. When averaging across age groups, performance was better for the 290 

self (75%), compared to no one (70%; b=-0.36 [-0.05, 0.16], z=-2.28, p=0.02). 291 

However, there was no difference between accuracy for other (72%) and self (b=-0.22 292 

[-0.49, 0.05], z=-1.63, p=0.10), or any significant interactions between age group and 293 

recipient (bs<0.16, zs<0.96, ps>0.34). 294 

 295 

Psychopathic traits are lower in older adults and explain variance in prosocial 296 

learning 297 

 298 

Finally, we examined individual variability in psychopathic traits, considering age-299 

related differences and influence on prosocial learning. Several studies have 300 

suggested that individual differences in psychopathic traits can be meaningfully and 301 

accurately captured in community samples and often parallel findings in criminal 302 

offenders37. Critically, psychopathic traits are most closely linked to alterations in 303 

social behaviour and willingness to help others. Therefore, we also asked participants 304 

to complete the Self-report Psychopathy Scale33, a measure of psychopathic traits that 305 

robustly capture its latent structure (see Methods). One participant in each age group 306 
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had missing questionnaire data and are not included in these analyses. Psychopathic 307 

traits are consistently divided into two components that this scale measures: core 308 

affective-interpersonal traits, which capture lack of empathy and guilt; and lifestyle-309 

antisocial traits, which capture impulsivity and antisocial tendencies. Comparing the 310 

two age groups on these scales showed that older participants had significantly lower 311 

scores than young participants on both the affective-interpersonal (W=3558, Z=-3.1, 312 

r(148)=0.26 [0.11, 0.41], p=0.002) and the lifestyle-antisocial subscales (W=3471, Z=-313 

2.8, r(148)=0.23 [0.07, 0.38], p=0.005). These findings suggest that both components 314 

of psychopathic traits were reduced in older, compared to younger, adults. 315 

 316 

Next we sought to test our hypothesis that individual differences in core psychopathic 317 

traits would explain variability in learning rates, specifically for prosocial learning. We 318 

observed a significant negative relationship between other and core psychopathic 319 

traits among older participants (rs(74)=-0.33 [-0.52, -0.11], p=0.005). Intriguingly, this 320 

relationship was significantly more negative (Z=3.3, p=0.001) than the equivalent 321 

correlation in young adults, which had a positive sign (rs(74)=0.21 [-0.02, 0.42], p=0.07; 322 

Figure 4a). This pattern of results was the same when correlating the relative 323 

difference between other - self (rather than the raw other) with core psychopathic traits 324 

(Figure 4b). We also conducted control analyses, correlating the same pairs of 325 

variables but using partial correlations controlling for . The negative relationship 326 

between prosocial learning (when quantified as other or other - self) and psychopathic 327 

traits was still present for older adults, showing that the correlations with learning rates 328 

were independent of individual choice exploration (all ps<0.05; see Supplementary 329 

Table 3). The negative relationship between other and core psychopathic traits for 330 

older adults also remained significant after applying false discovery rate correction for 331 

multiple comparisons across this correlation and the five other age group & recipient 332 

combinations (see Supplementary Table 4). Moreover, the finding that no significant 333 

correlations were apparent between psychopathy and self or no one (ps>0.15; 334 

Supplementary Table 4) suggests a specificity in the relevance of psychopathy to 335 

prosocial learning in older adults. 336 
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 337 

Figure 4. Correlations between prosocial learning rates (other) and scores on 338 

the affective interpersonal subscale of the Self Report Psychopathy scale. (a) 339 

For older adults, trait psychopathy levels are negatively correlated with prosocial 340 

learning rates (rs=-0.33 [-0.52, -0.11], p=0.005). (b) There is no significant relationship 341 

for young adults (rs=0.21 [-0.02, 0.42], p=0.07) and the correlation is significantly more 342 

negative (Z=3.3, p=0.001) for older than young adults. This pattern of results is the 343 

same when considering correlations between trait psychopathy and the lack of self-344 

bias in learning (other - self; not shown). This measure of prosocial learning is also 345 

negatively correlated with trait psychopathy scores in older adults (rs=-0.25 [-0.45, -346 

0.02], p=0.03) but not younger adults (rs=0.11 [-0.12, 0.33], p=0.36; difference Z=2.1, 347 

p=0.03). 348 

 349 

 350 

Discussion 351 

 352 

Reinforcement learning is a fundamental process for adaptive behaviour in many 353 

species. However, existing studies have largely focused on young people and self-354 

relevant learning, but the decisions we make often occur in a social context47 and our 355 

actions affect outcomes for others. Here, for the first time, we apply computational 356 

models of reinforcement learning to the question of ageing-related changes in self-357 

relevant and prosocial learning. We found a clear decrease in learning rates for self-358 

relevant rewards in older, compared to younger, adults. Intriguingly, despite this 359 

reduction in self-relevant learning, learning rates for outcomes that affected others did 360 

not differ between older and young adults, with Bayesian analyses supporting no 361 

difference. Moreover, not only did older adults have a relative increase in their 362 
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prosocial learning rates, ageing was also associated with lower psychopathic traits, 363 

which were specifically linked to prosocial learning ability.  364 

 365 

Models of learning are a powerful tool for understanding prosocial behaviour. By 366 

isolating the learning rate, we can precisely examine the influence of reward history 367 

on learning. We robustly replicated previous findings that self-relevant learning can be 368 

computationally separated from prosocial learning7, with different learning rates for 369 

different recipients providing the best explanation of behaviour. Including separate 370 

learning rates improved the model fit and, on average across participants, there was 371 

a self-bias, learning rates were higher for self-relevant rewards, compared to when 372 

someone else or no one received the reward. However, this self-bias was reduced in 373 

older adults, who showed a relative increase in prosocial learning rates. As expected, 374 

older adults learnt more slowly for themselves than young adults but in the prosocial 375 

condition, the learning rates did not significantly differ between the age groups. 376 

Bayesian analyses additionally confirmed that prosocial learning was preserved 377 

between young and older adults.  378 

 379 

As with much research on age-related changes on cognitive and social tasks, our key 380 

finding that self-bias in learning is reduced in older adults could be interpreted as due 381 

to changes in ability, motivation, or a combination of these factors. Importantly, 382 

learning rates were not associated with executive function or an age-standardised 383 

measure of intelligence. We also show that our results remain the same after 384 

controlling for these measures. These findings suggest that the observed decline in 385 

self-relevant learning rates, but relative increase in prosocial learning rates, for older 386 

adults are not explained by changes in these broad abilities. Considering learning 387 

more specifically, a recent comparison of motivation and ability as explanations for 388 

ageing-related reductions in model-based strategies during self-relevant learning 389 

supported the limited cognitive abilities account48. Our finding that learning rates for 390 

self-relevant outcomes were reduced in older adults is in line with a degeneration in 391 

the neurocognitive systems required for successful learning. Research combining 392 

models of learning with neuroimaging and pharmacological manipulations suggests 393 

ageing reduces the ability to generate reward prediction errors49 due to declines in 394 

dopamine functioning22,50. Differences in motivation could also be applicable for self-395 
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relevant learning as the subjective value of financial outcomes is also likely to 396 

decrease in older age, due to changes in wealth across the lifespan28. 397 

Our findings suggest that despite declines in learning ability associated with ageing, 398 

motivation could play a role in preserving learning to help others. This interpretation 399 

aligns with an emerging literature showing older adults may be more prosocial and 400 

less self-biased than younger adults23,24,51. The assertion that relatively preserved 401 

prosocial learning is related to increased prosocial motivation is supported by our 402 

observed link between learning rates and psychopathic traits. Psychopathic traits were 403 

significantly reduced in our older adult sample, dovetailing with similar previous 404 

findings on this trait41,42 and broader trait benevolence27. Importantly, we found 405 

psychopathic traits in older adults negatively correlated with prosocial learning rates. 406 

Self-bias in learning rates (i.e. higher learning rate for self compared to other) was 407 

most reduced, and even reversed, in the older people lowest on psychopathic traits. 408 

Notably, this negative correlation between psychopathy and prosocial learning was 409 

only found for older adults. This suggests that age-related differences in prosocial 410 

learning could be linked to basic shifts in individual traits and motivations over the 411 

lifespan, not just to domain-general reductions in cognitive abilities. 412 

 413 

Moreover, our task included a control condition where no one benefitted. This was 414 

important to establish that the lack of difference between self and other learning rates 415 

for older adults was not simply due to an age-related reduction in the absolute dynamic 416 

range as maximum learning rates decrease. Older adults had higher learning rates for 417 

both others and themselves, compared to this control condition. In contrast, young 418 

adults did not differentiate another person from no one (if anything they learned faster 419 

for no one). Older adults therefore showed a relative increase in learning rates that 420 

was specific to the prosocial condition. This is also evidence against the idea that 421 

lower learning rates in older people are reflective of a general reduced sensitivity to 422 

who gets the reward. It is interesting to note that the magnitude of the decrease in 423 

learning rates associated with being older, compared to younger, is similar to the 424 

decrease associated with a young person learning for someone else, compared to 425 

themselves. The preservation of prosocial learning rates between age groups may 426 

seem at odds with the decreased self-relevant learning rates in our sample of older 427 

adults and existing evidence of underlying neurobiological deterioration. However, 428 

learning from outcomes for self and other have been linked to distinct regions of the 429 
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brain in humans, shown though neuroimaging7,52, and causally in monkeys with focal 430 

lesions53. 431 

 432 

Taken together, our results add to a growing body of literature suggesting age-related 433 

increases in prosocial motivation. If this is the case, the next question is how and why 434 

this happens, as there are many possible reasons to be prosocial. For example, 435 

prosocial behaviours can be motivated by reputational concerns54, the ‘warm glow’ of 436 

helping55–57, or vicarious reinforcement from positive outcomes for others58. In our 437 

procedure, we were very careful to prevent reputational concerns influencing learning 438 

to help others. Participants underwent an extensive procedure to introduce them to 439 

another participant but to hide information about their age and identity. This meant we 440 

could assess tendency for prosocial learning in a situation where reputational 441 

motivations were excluded, and identity-based influences were controlled. Using a 442 

reinforcement learning task, in which performance generates positive outcomes for 443 

others also focusses on vicarious rewards from the outcome, rather than warm glow 444 

associated with the action of helping. Thus, the relative increase in prosocial learning 445 

rates suggests older adults are reinforced by outcomes for others and themselves 446 

more similarly than younger adults. Many prosocial measures such as the dictator 447 

game59 are costly, requiring direct trade-offs between outcomes for oneself and 448 

others. This also makes it hard to detect whether changes are in the value of outcomes 449 

for oneself, or outcomes for others, or both. In contrast, separating self-relevant 450 

learning, prosocial learning, and the control condition allows us to differentiate 451 

increases in the value of prosocial outcomes from decreases in the value of outcomes 452 

for the self. Our results are consistent with older adults having both decreased self-453 

relevant learning rates (compared to young adults) and increased prosocial learning 454 

rates (compared to their performance in the control condition). 455 

 456 

While our procedure and task have many benefits, it is important to also recognise 457 

limitations. To test for age-related differences in prosocial learning, we recruited a 458 

group of older adults and a group of younger adults. This increases power to detect 459 

differences, but we are unable to assess at what age or how quickly changes take 460 

place. Further research with participants of all ages is required to address these 461 

outstanding questions. Moreover, future studies could manipulate the identity of the 462 

recipient as we show a preservation in tendency to help others when there are no 463 
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particular characteristics known about the other person, but these effects might 464 

additionally be modulated by factors such as perceived social distance. 465 

 466 

To conclude, we find new evidence that despite declines in self-relevant learning in 467 

older adults, the ability to learn which actions benefit others is preserved. Moreover, 468 

the bias with which people favour self-relevant outcomes is reduced. Not only do older 469 

adults have relatively preserved prosocial learning they also report lower levels of core 470 

psychopathic traits that index lack of empathy and guilt, and this trait difference is 471 

linked to the changes in prosocial learning. These findings could have important 472 

implications for our understanding of reinforcement learning and theoretical accounts 473 

of healthy ageing.   474 
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Materials and Methods 475 

 476 

Participants 477 

 478 

We recruited 80 young participants and 80 older participants through university 479 

databases, social media and the community. This sample size gave us 88% power to 480 

detect a medium size effect (d=0.5). Exclusion criteria included previous or current 481 

neurological or psychiatric disorder, non-normal or non-corrected to normal vision and, 482 

for the older sample, scores on the Addenbrooke’s Cognitive Examination that indicate 483 

potential dementia (cut-off score 82)43. 484 

 485 

Five young and three older participants were excluded due to: diagnosis of a 486 

psychiatric disorder at the time of testing (1 young participant); previous study of 487 

psychology (2 young participants); and incomplete or low-quality data (2 young and 3 488 

older participants). This left a final sample of 152 participants, 75 young adults (44 489 

females aged 18-36, mean=23.07) and 77 older adults (40 females aged 60-80, 490 

mean=69.84). Two older participants were excluded from all analyses involving 491 

learning rates due to each having two learning rate estimates more than three 492 

standard deviations (SDs) above the mean (for one self was 6.68 SDs above the mean 493 

& no one 9.64 SDs above the mean; for the second self was 7.96 & other 3.78 SDs 494 

above the mean). One further participant from each age group was missing data on 495 

the SRP measure so are not included in the relevant analyses. 496 

 497 

Participants were paid at a rate of £10 per hour plus an additional payment of up to £5 498 

depending on the number of points they earned for themselves during the task. They 499 

were also told the number of points that they earned in the prosocial condition would 500 

translate into an additional payment of up to £5 for the other participant (see details of 501 

the task below). All participants provided written informed consent and the study was 502 

approved by the Oxford University Medical Sciences Inter Divisional Research Ethics 503 

Committee and National Health Service Ethics.  504 
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Prosocial learning task 505 

 506 

The prosocial learning task is a probabilistic reinforcement learning task, with rewards 507 

in one of three recipient conditions: for the participant themselves (self), for another 508 

participant (other; prosocial condition), and for no one (control condition). Each trial 509 

presents two symbols, one associated with a high (75%) probability of gaining points 510 

and the other with a low (25%) probability of gaining points. The two symbols were 511 

randomly assigned to the left or right side of the screen and selected via a 512 

corresponding button press. Participants select a symbol then receive feedback on 513 

whether they obtained points or not (see Figure 1b) so learn over time which symbol 514 

maximises rewards. The experiment was subdivided into blocks, i.e. 16 trials pairings 515 

the same two symbols for the same recipient. Participants completed three blocks, a 516 

total of 48 trials, in each recipient condition, resulting in 144 trials overall (see 517 

Supplementary Information for trial structure). Blocks for different recipients were 518 

pseudo-randomly ordered such that the same recipient block did not occur twice in a 519 

row.  520 

 521 

On trials in the self condition, points translated into increased payment for the 522 

participant themselves. These blocks started with “play for you” displayed and had the 523 

word “you” at the top of each screen. Blocks in the no one condition had “no one” in 524 

place of “you” and points were not converted into any extra payment for anyone. In 525 

the prosocial ‘other’ condition, participants earned points that translated into additional 526 

payment for a second participant, actually a confederate. Participants were told that 527 

this payment would be given anonymously, they would never meet the other person, 528 

and that the person was not even aware of them completing this task (see 529 

Supplementary Information). The name of the confederate, gender-matched to the 530 

participant, was displayed on these blocks at the start and on each screen (Figure 1b). 531 

Thus, participants were explicitly aware who their decisions affected on each trial. 532 

Stimuli were presented using Presentation (Neurobehavioral Systems – 533 

https://www.neurobs.com/).  534 
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Questionnaire measures 535 

 536 

Dementia screening and executive function. Older adults were screened for 537 

dementia using the Addenbrooke’s Cognitive Examination (ACE-III)43. The ACE 538 

examines five cognitive domains; attention, memory, language, fluency and 539 

visuospatial abilities. The ACE-III is scored out of 100 and as a screening tool, a cut-540 

off score of 82/100 denotes significant cognitive impairment. We also used scores on 541 

the attention and memory domains in control analyses as proxies for executive 542 

function in older adults. 543 

 544 

General intelligence. All participants completed the Wechsler Test of Adult Reading 545 

(WTAR)44 as a measure of IQ. The WTAR requires participants to pronounce 50 words 546 

that have unusual grapheme-to-phoneme translation. This means the test measures 547 

reading recognition or existing knowledge of the words, rather than ability to apply 548 

rules for pronunciation. The WTAR was developed and standardised with the 549 

Wechsler Memory and Adult Intelligence Scales and correlates highly with these 550 

measures60. Standardisation involves adjusting for healthy age-related differences. 551 

The test is suitable for participants aged 16-89, covering our full sample, and scores 552 

in older age have been shown to correlate with cognitive ability earlier in life61. 553 

 554 

Psychopathic traits. Participants completed the short form of the Self-Report 555 

Psychopathy Scale 4th Edition (SRP-IV-SF)33. This scale consists of 29 items, 7 each 556 

measuring: interpersonal, affective, lifestyle and antisocial tendencies (plus ‘I have 557 

been convicted of a serious crime’). We used the two-factor grouping, summing the 558 

core, affective-interpersonal items and separately, the lifestyle-antisocial items for use 559 

in analysis. The robust psychometric properties of this measure have been established 560 

in community62 and offender populations through construct and convergent validity63, 561 

internal consistency, and reliability33. 562 

 563 

  564 
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Procedure 565 

 566 

Role assignment. To enhance belief that points earned in the prosocial recipient 567 

benefitted another person, we conducted a role assignment procedure based on set-568 

up used in several studies of social decision-making64,65. Participants were instructed 569 

not to speak and wore a glove to hide their identity. A second experimenter brought 570 

the confederate, also wearing a glove, to the other side of the door. Participants only 571 

ever saw the gloved hand of the confederate, but they waved to each other to make it 572 

clear there was another person there (Figure 1a). The experimenter tossed a coin to 573 

determine who picked a ball from the box first and then told the participants which 574 

roles they had been assigned to, based on the ball they picked. Our procedure 575 

ensured that participants always ended up in the role of the person performing the 576 

prosocial learning experiment. Participants were unaware of the age of the other 577 

person, but the experimenter used a name for them suggesting their gender was the 578 

same as the participant. 579 

 580 

Task procedure. Participants received instructions for the learning task and how the 581 

points they earned would be converted into money for themselves and for the other 582 

participant. Instructions included that the two symbols were different in how likely it 583 

was that choosing them lead to points but that which side they appeared on the screen 584 

was irrelevant. Participants then completed one block of practice trials before the main 585 

task and were aware outcomes during the practice did not affect payment for anyone. 586 

After the task, participants completed measures of psychopathic traits and the 587 

dementia screening 588 

 589 

Computational modelling 590 

 591 

We modelled learning during the task with a reinforcement learning algorithm14, 592 

creating variations of the models through the number of parameters used to explain 593 

the learning rate and temperature parameters in the task66. The basis of the 594 

reinforcement learning algorithm is the expectation that an action (or stimulus) a will 595 

provide reward on the following trial. This expected value, Qt+1(a) is quantified as a 596 
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function of current expectations Qt(a) and the prediction error 𝛿t, which is scaled by 597 

the learning rate α: 598 

 599 

𝑄𝑡+1(𝑎)  =  𝑄𝑡(𝑎)  +  𝛼 ×  [𝑟𝑡  −  𝑄𝑡(𝑎)]⏟        
Prediction error 𝛿𝑡

 600 

 601 

Where 𝛿t, the prediction error, is the difference between the actual reward experienced 602 

on the current trial rt (1 for reward and 0 for no reward) minus the expected reward on 603 

the current trial Qt(a). 604 

 605 

The learning rate α therefore determines the influence of the prediction error. A low 606 

learning rate means new information affects expected value to a lesser extent. The 607 

softmax link function quantifies the relationship between the expected value of the 608 

action Qt(a) and the probability of choosing that action on trial t : 609 

 610 

𝑝𝑡[(𝑎|𝑄𝑡(𝑎))]  =  
𝑒(𝑄𝑡(𝑎)∕𝛽)

∑ 𝑒(𝑄𝑡(𝑎′)∕𝛽) 
𝑎′

 611 

The temperature parameter β represents the noisiness of decisions – whether the 612 

participant explores or always chooses the option with the highest expected value. A 613 

high value for β means choices seem random as they are equally likely irrespective of 614 

the expected value of each option. A low β leads to choosing the option with the 615 

greatest expected value on all trials. 616 

 617 

Model fitting 618 

 619 

We used MATLAB 2019b (The MathWorks Inc) for all model fitting and comparison. 620 

To fit the variations of the learning model (see below) to (real and simulated) 621 

participant data we used an iterative maximum a posteriori (MAP) approach previously 622 

described45,46. This method provides a better estimation than a single-step maximum 623 

likelihood estimation (MLE) alone by being less susceptible to the influence of outliers. 624 

It does this via implementing two levels: the lower level of the individual subjects and 625 

the higher-level reflecting our full sample. For the real participant data, we fit the model 626 

across groups to provide the most conservative comparison, so this full sample 627 

combined young and older participants. 628 
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For the MAP procedure, we initialized group-level Gaussians as uninformative priors 629 

with means of 0.1 (plus some added noise) and variance of 100. During the 630 

expectation, we estimated the model parameters (α and β) for each participant using 631 

an MLE approach calculating the log-likelihood of the subject’s series of choices given 632 

the model. We then computed the maximum posterior probability estimate, given the 633 

observed choices and given the prior computed from the group-level Gaussian, and 634 

recomputed the Gaussian distribution over parameters during the maximisation step. 635 

We repeated expectation and maximization steps iteratively until convergence of the 636 

posterior likelihood summed over the group, or a maximum of 800 steps. Convergence 637 

was defined as a change in posterior likelihood <0.001 from one iteration to the next. 638 

Note that bounded free parameters were transformed from the Gaussian space into 639 

the native model space via appropriate link functions (e.g. a sigmoid function in the 640 

case of the learning rates) to ensure accurate parameter estimation near the bounds. 641 

The detailed code for the models and implementation of the fitting algorithm can be 642 

found here: https://osf.io/xgw7h/. 643 

 644 

Model comparison 645 

 646 

Our hypotheses generated four models to compare which differed in whether the 647 

model parameters (α and β) for each participant had one value across recipient 648 

conditions or depended on the recipient (self, other and no one). For model 649 

comparison, we calculated the Laplace approximation of the log model evidence 650 

(more positive values indicating better model fit; MacKay, 2003) and submitted these 651 

to a random-effects analysis using the spm_BMS routine68 from SPM 8 652 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). This generates the exceedance 653 

probability: the posterior probability that each model is the most likely of the model set 654 

in the population (higher is better, over .95 indicates strong evidence in favour of a 655 

model). For the models of real participant data, we also calculated the integrated BIC 656 

(lower is better45,46) and R2 as additional measures of model fit. To calculate the model 657 

R2, we extracted the choice probabilities generated for each participant on each trial 658 

from the winning model. We then took the squared median choice probability across 659 

participants. The 3α1β model had the best evidence on all measures (see 660 

Supplementary Table 2). 661 
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Simulation experiments 662 

 663 

We used simulation experiments to assess that our experiment allowed us to 664 

dissociate models of interest, as well as parameters of interest within the winning 665 

model. We simulated data from all four models to establish that our model comparison 666 

procedure (see above) could accurately identify the best model across a wide range 667 

of parameter values. For this model identifiability analysis, we simulated data from 150 668 

participants, drawing parameters from distributions commonly used in the 669 

reinforcement learning literature69,70. Learning rates (α) were drawn from a beta 670 

distribution (betapdf(parameter,1.1,1.1)) and softmax temperature parameters (β) 671 

from a gamma distribution (gampdf(parameter,1.2,5)). We fitted the models to this 672 

simulated data set using the same MAP process as applied to the experimental 673 

participants’ data and repeated this whole procedure 10 times. By plotting the 674 

confusion matrices of average exceedance probability (across the 10 runs; Figure 2a) 675 

and how many times each model won (Figure 2b), we show the models are identifiable 676 

using our model comparison process. 677 

 678 

Our winning model contained 4 free parameters (αself, αother, αno one, β). To assess the 679 

reliability of this model and the interpretability of the free parameters, we also 680 

performed parameter recovery on simulated data (see Supplementary Information for 681 

procedure) as recommended for modelling analyses that use a ‘data first’ 682 

approach66,71. We simulated choices 1296 times using our experimental schedule and 683 

fitted them using MAP. We found strong Pearson’s correlations between the true 684 

simulated and fitted parameter values (all rs>0.7, see Figure 2c), suggesting our 685 

experiment was well suited to estimate the model’s parameters. 686 

 687 

Statistical analysis 688 

 689 

Analysis of group and recipient differences in the fitted model parameters and 690 

behavioural data was run in R72 with R Studio73. Correlations of learning rates with 691 

trait psychopathy (Supplementary Table 3 & 4) and neuropsychological measures 692 

(Supplementary Table 5) were calculated with Spearman’s Rho nonparametric tests. 693 

We used robust linear mixed-effect models (rlmer function; robustlmm package74 to 694 
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predict learning rates and generalised linear mixed-effects models (glmer function; 695 

lme4 package75) for the trial-by-trial data (binary outcome of choosing the high vs. low 696 

reward option). Each included fixed effects of age group, recipient (self, other, no one), 697 

and their interaction, plus a random subject-level intercept. Analysis of trial-by-trial 698 

choices also included trial number in the fixed terms, interacting with recipient and 699 

group (including the three-way interaction), and in the random terms, interacting with 700 

recipient. In the analysis of learning rates controlling for IQ, standardised scores on 701 

the WTAR were also included as a fixed term (Supplementary Table 6). To control for 702 

IQ and executive function in the associations between older adults’ prosocial learning 703 

rates and trait psychopathy, we ran partial correlations each controlling for one of 704 

WTAR, ACE memory and ACE attention scores (Supplementary Table 7). 705 

 706 

For simple and post hoc comparisons, we used nonparametric tests when measures 707 

violated normality assumptions, which included learning rates. Effect sizes and 708 

confidence intervals for paired and independent nonparametric comparisons were 709 

calculated using the cohens_d and wilcox_effsize functions respectively from the 710 

rstatix package76. Bayes factors (BF01) for non-significant results were calculated 711 

using nonparametric paired and independent t-tests in JASP77 with the default prior. 712 

BF01 corresponds to how many times more likely the data are under the null hypothesis 713 

of no difference than under the alternative hypothesis that there is a difference. A BF01 714 

larger than 3 (equal to BF10 less than 1/3) is considered substantial evidence in favour 715 

of the null hypothesis whereas a BF01 between 1/3 and 3 indicates the data cannot 716 

clearly differentiate between hypotheses78.  717 
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Data availability 718 

 719 

Data are available at: https://osf.io/xgw7h/. 720 
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Code availability 722 
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Code for modelling and analysis is available at: https://osf.io/xgw7h/. 724 

 725 

Acknowledgements 726 

 727 

This work was supported by a Medical Research Council Fellowship (MR/P014097/1), 728 

a Christ Church Junior Research Fellowship, and a Christ Church Research Centre 729 

Grant to PL; a Wellcome Trust Principal Fellowship to MH; NIHR Biomedical Research 730 

Centre, Oxford. The Wellcome Centre for Integrative Neuroimaging is supported by 731 

core funding from the Wellcome Trust (203139/Z/16/Z).  732 

 733 

We are grateful to Craig Neumann for assistance with the Self-Report Psychopathy 734 

Scale. We are also grateful to the many people who acted as confederates for us 735 

during the study. 736 

 737 

Author contributions 738 

 739 

PL designed the study. AA, LH, DD & PL collected the data. JC, MW & PL analysed 740 

the data. JC, MW, MH & PL wrote the paper. 741 

 742 

Competing interests 743 

 744 

The authors declare no competing interests 745 

  746 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407718doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407718
http://creativecommons.org/licenses/by/4.0/


 

 

References 747 

1. Cohen, M. X. Neurocomputational mechanisms of reinforcement-guided learning 748 

in humans: A review. Cogn. Affect. Behav. Neurosci. 8, 113–125 (2008). 749 

2. Glimcher, P. W. Understanding dopamine and reinforcement learning: The 750 

dopamine reward prediction error hypothesis. Proc. Natl. Acad. Sci. U. S. A. 108, 751 

15647–15654 (2011). 752 

3. Niv, Y. Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154 753 

(2009). 754 

4. O’Doherty, J. P., Lee, S. W. & McNamee, D. The structure of reinforcement-755 

learning mechanisms in the human brain. Curr. Opin. Behav. Sci. 1, 94–100 756 

(2015). 757 

5. Schultz, W. Neuronal Reward and Decision Signals: From Theories to Data. 758 

Physiol. Rev. 95, 853–951 (2015). 759 

6. Lockwood, P. L. et al. Neural mechanisms for learning self and other ownership. 760 

Nat. Commun. 9, 4747 (2018). 761 

7. Lockwood, P. L., Apps, M. A. J., Valton, V., Viding, E. & Roiser, J. P. 762 

Neurocomputational mechanisms of prosocial learning and links to empathy. 763 

Proc. Natl. Acad. Sci. 113, 201603198–201603198 (2016). 764 

8. Samanez-Larkin, G. R. & Knutson, B. Decision making in the ageing brain: 765 

changes in affective and motivational circuits. Nat. Rev. Neurosci. 16, 278–289 766 

(2015). 767 

9. Holt-Lunstad, J., Smith, T. B., Baker, M., Harris, T. & Stephenson, D. Loneliness 768 

and social isolation as risk factors for mortality: a meta-analytic review. Perspect. 769 

Psychol. Sci. J. Assoc. Psychol. Sci. 10, 227–237 (2015). 770 

10. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 771 

(2003). 772 

11. Buchanan, K. E. & Bardi, A. Acts of Kindness and Acts of Novelty Affect Life 773 

Satisfaction. J. Soc. Psychol. 150, 235–237 (2010). 774 

12. Raposa, E. B., Laws, H. B. & Ansell, E. B. Prosocial Behavior Mitigates the 775 

Negative Effects of Stress in Everyday Life. Clin. Psychol. Sci. 4, 691–698 776 

(2016). 777 

13. Post, S. G. Altruism, Happiness, and Health: It’s Good to Be Good. Int. J. Behav. 778 

Med. 12, 66–77 (2005). 779 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407718doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407718
http://creativecommons.org/licenses/by/4.0/


 

 

14. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction. (MIT Press, 780 

2011). 781 

15. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. 782 

Neurosci. 30, 259–288 (2007). 783 

16. Mell, T. et al. Effect of aging on stimulus-reward association learning. 784 

Neuropsychologia 43, 554–563 (2005). 785 

17. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C. & Farde, L. The correlative 786 

triad among aging, dopamine, and cognition: Current status and future prospects. 787 

Neurosci. Biobehav. Rev. 30, 791–807 (2006). 788 

18. Dreher, J.-C., Meyer-Lindenberg, A., Kohn, P. & Berman, K. F. Age-related 789 

changes in midbrain dopaminergic regulation of the human reward system. Proc. 790 

Natl. Acad. Sci. 105, 15106–15111 (2008). 791 

19. Li, S.-C., Lindenberger, U. & Bäckman, L. Dopaminergic modulation of cognition 792 

across the life span. Neurosci. Biobehav. Rev. 34, 625–630 (2010). 793 

20. Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229–794 

238 (2013). 795 

21. Schultz, W. Dopamine reward prediction-error signalling: a two-component 796 

response. Nat. Rev. Neurosci. 17, 183–195 (2016). 797 

22. Chowdhury, R. et al. Dopamine restores reward prediction errors in old age. Nat. 798 

Neurosci. 16, 648–653 (2013). 799 

23. Engel, C. Dictator games: a meta study. Exp. Econ. 14, 583–610 (2011). 800 

24. Matsumoto, Y., Yamagishi, T., Li, Y. & Kiyonari, T. Prosocial Behavior Increases 801 

with Age across Five Economic Games. PLOS ONE 11, e0158671 (2016). 802 

25. Sze, J. A., Gyurak, A., Goodkind, M. S. & Levenson, R. W. Greater Emotional 803 

Empathy and Prosocial Behavior in Late Life. Emotion 12, 1129–1140 (2012). 804 

26. Ng, T. W. H. & Feldman, D. C. The relationship of age to ten dimensions of job 805 

performance. J. Appl. Psychol. 93, 392–423 (2008). 806 

27. Hubbard, J., Harbaugh, W. T., Srivastava, S., Degras, D. & Mayr, U. A general 807 

benevolence dimension that links neural, psychological, economic, and life-span 808 

data on altruistic tendencies. J. Exp. Psychol. Gen. 145, 1351–1358 (2016). 809 

28. Cheung, F. & Lucas, R. E. When Does Money Matter Most? Examining the 810 

Association between Income and Life Satisfaction over the Life Course. Psychol. 811 

Aging 30, 120–135 (2015). 812 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407718doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407718
http://creativecommons.org/licenses/by/4.0/


 

 

29. Buckholtz, J. W. et al. Mesolimbic Dopamine Reward System Hypersensitivity in 813 

Individuals with Psychopathic Traits. Nat. Neurosci. 13, 419–421 (2010). 814 

30. White, B. A. Who cares when nobody is watching? Psychopathic traits and 815 

empathy in prosocial behaviors. Personal. Individ. Differ. 56, 116–121 (2014). 816 

31. White, S. F. et al. Reduced Amygdala Response in Youths With Disruptive 817 

Behavior Disorders and Psychopathic Traits: Decreased Emotional Response 818 

Versus Increased Top-Down Attention to Nonemotional Features. Am. J. 819 

Psychiatry 169, 750–758 (2012). 820 

32. Marsh, A. A. et al. Empathic responsiveness in amygdala and anterior cingulate 821 

cortex in youths with psychopathic traits. J. Child Psychol. Psychiatry 54, 900–822 

910 (2013). 823 

33. Paulhus, D. L., Neumann, C. S., Hare, R. D., Williams, K. M. & Hemphill, J. F. 824 

Self-report Psychopathy Scale 4th Edition (SRP 4) Manual. (MHS, Multi-Health 825 

Systems Incorporated, 2017). 826 

34. Leistico, A.-M. R., Salekin, R. T., DeCoster, J. & Rogers, R. A large-scale meta-827 

analysis relating the Hare measures of psychopathy to antisocial conduct. Law 828 

Hum. Behav. 32, 28–45 (2008). 829 

35. Blais, J., Solodukhin, E. & Forth, A. E. A Meta-Analysis Exploring the 830 

Relationship Between Psychopathy and Instrumental Versus Reactive Violence. 831 

Crim. Justice Behav. 41, 797–821 (2014). 832 

36. Asscher, J. J. et al. The relationship between juvenile psychopathic traits, 833 

delinquency and (violent) recidivism: A meta-analysis. J. Child Psychol. 834 

Psychiatry 52, 1134–1143 (2011). 835 

37. Seara-Cardoso, A., Neumann, C., Roiser, J., McCrory, E. & Viding, E. 836 

Investigating associations between empathy, morality and psychopathic 837 

personality traits in the general population. Personal. Individ. Differ. 52, 67–71 838 

(2012). 839 

38. Insel, T. R. The NIMH Research Domain Criteria (RDoC) Project: Precision 840 

Medicine for Psychiatry. Am. J. Psychiatry 171, 395–397 (2014). 841 

39. Liberman, A. The long view of crime: A synthesis of longitudinal research. 842 

(Springer, 2008). 843 

40. Homicide in England and Wales - Office for National Statistics. 844 

https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/articles/845 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407718doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407718
http://creativecommons.org/licenses/by/4.0/


 

 

homicideinenglandandwales/yearendingmarch2018#what-do-we-know-about-846 

suspects. 847 

41. Huchzermeier, C. et al. Are there age-related effects in antisocial personality 848 

disorders and psychopathy? J. Forensic Leg. Med. 15, 213–218 (2008). 849 

42. Gill, D. J. & Crino, R. D. The Relationship between Psychopathy and Age in a 850 

Non-Clinical Community Convenience Sample. Psychiatry Psychol. Law 19, 851 

547–557 (2012). 852 

43. Hsieh, S., Schubert, S., Hoon, C., Mioshi, E. & Hodges, J. R. Validation of the 853 

Addenbrooke’s Cognitive Examination III in frontotemporal dementia and 854 

Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 36, 242–250 (2013). 855 

44. The Psychological Corporation. Wechsler test of adult reading. (Harcourt 856 

Assessment, 2001). 857 

45. Huys, Q. J. et al. Disentangling the roles of approach, activation and valence in 858 

instrumental and pavlovian responding. PLoS Comput Biol 7, e1002028 (2011). 859 

46. Wittmann, M. K. et al. Global reward state affects learning and activity in raphe 860 

nucleus and anterior insula in monkeys. Nat. Commun. 11, 3771 (2020). 861 

47. Olsson, A., Knapska, E. & Lindström, B. The neural and computational systems 862 

of social learning. Nat. Rev. Neurosci. 21, 197–212 (2020). 863 

48. Bolenz, F., Kool, W., Reiter, A. M. & Eppinger, B. Metacontrol of decision-making 864 

strategies in human aging. eLife 8, e49154 (2019). 865 

49. Eppinger, B., Hämmerer, D. & Li, S.-C. Neuromodulation of reward-based 866 

learning and decision making in human aging. Ann. N. Y. Acad. Sci. 1235, 1–17 867 

(2011). 868 

50. Nieuwenhuis, S. et al. A computational account of altered error processing in 869 

older age: dopamine and the error-related negativity. Cogn. Affect. Behav. 870 

Neurosci. 2, 19–36 (2002). 871 

51. Mayr, U. & Freund, A. M. Do We Become More Prosocial as We Age, and if So, 872 

Why?: Curr. Dir. Psychol. Sci. (2020) doi:10.1177/0963721420910811. 873 

52. Lockwood, P. L., O’Nell, K. C. & Apps, M. A. J. Anterior cingulate cortex: A brain 874 

system necessary for learning to reward others? PLOS Biol. 18, e3000735 875 

(2020). 876 

53. Basile, B. M., Schafroth, J. L., Karaskiewicz, C. L., Chang, S. W. C. & Murray, E. 877 

A. The anterior cingulate cortex is necessary for forming prosocial preferences 878 

from vicarious reinforcement in monkeys. PLOS Biol. 18, e3000677 (2020). 879 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407718doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407718
http://creativecommons.org/licenses/by/4.0/


 

 

54. Izuma, K. The social neuroscience of reputation. Neurosci. Res. 72, 283–288 880 

(2012). 881 

55. Andreoni, J. Giving with impure altruism: Applications to charity and ricardian 882 

equivalence. J. Polit. Econ. 97, 1447–1447 (1989). 883 

56. Andreoni, J. Impure altruism and donations to public goods: A theory of warm-884 

glow giving. Econ. J. 100, 464–477 (1990). 885 

57. Kuss, K. et al. A reward prediction error for charitable donations reveals outcome 886 

orientation of donators. Soc. Cogn. Affect. Neurosci. 8, 216–223 (2013). 887 

58. Mobbs, D. et al. A key role for similarity in vicarious reward. Science 324, 900–888 

900 (2009). 889 

59. Camerer, C. F. & Fehr, E. Measuring social norms and preferences using 890 

experimental games: A guide for social scientists. Found. Hum. Sociality Econ. 891 

Exp. Ethnogr. Evid. Fifteen Small-Scale Soc. 97, 55–95 (2004). 892 

60. Venegas, J. & Clark, E. Wechsler Test of Adult Reading. in Encyclopedia of 893 

Clinical Neuropsychology (eds. Kreutzer, J. S., DeLuca, J. & Caplan, B.) 2693–894 

2694 (Springer, 2011). doi:10.1007/978-0-387-79948-3_1500. 895 

61. Dykiert, D. & Deary, I. J. Retrospective validation of WTAR and NART scores as 896 

estimators of prior cognitive ability using the Lothian Birth Cohort 1936. Psychol. 897 

Assess. 25, 1361–1366 (2013). 898 

62. Gordts, S., Uzieblo, K., Neumann, C., Van den Bussche, E. & Rossi, G. Validity 899 

of the Self-Report Psychopathy Scales (SRP-III Full and Short Versions) in a 900 

Community Sample. Assessment 24, 308–325 (2017). 901 

63. Neumann, C. S. & Pardini, D. Factor Structure and Construct Validity of the Self-902 

Report Psychopathy (SRP) Scale and the Youth Psychopathic Traits Inventory 903 

(YPI) in Young Men. J. Personal. Disord. 28, 419–433 (2012). 904 

64. Crockett, M. J. et al. Dissociable Effects of Serotonin and Dopamine on the 905 

Valuation of Harm in Moral Decision Making. Curr. Biol. 25, 1852–1859 (2015). 906 

65. Lockwood, P. L. et al. Prosocial apathy for helping others when effort is required. 907 

Nat. Hum. Behav. 1, 0131 (2017). 908 

66. Lockwood, P. L. & Klein-Flügge, M. C. Computational modelling of social 909 

cognition and behaviour—a reinforcement learning primer. Soc. Cogn. Affect. 910 

Neurosci. (2020) doi:10.1093/scan/nsaa040. 911 

67. MacKay, D. J. C. Information Theory, Inference and Learning Algorithms. 912 

(Cambridge University Press, 2003). 913 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407718doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407718
http://creativecommons.org/licenses/by/4.0/


 

 

68. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. 914 

Bayesian Model Selection for Group Studies. NeuroImage 46, 1004–1017 915 

(2009). 916 

69. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-917 

Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron 69, 918 

1204–1215 (2011). 919 

70. Palminteri, S., Khamassi, M., Joffily, M. & Coricelli, G. Contextual modulation of 920 

value signals in reward and punishment learning. Nat. Commun. 6, 8096 (2015). 921 

71. Palminteri, S., Wyart, V. & Koechlin, E. The Importance of Falsification in 922 

Computational Cognitive Modeling. Trends Cogn. Sci. 21, 425–433 (2017). 923 

72. R Core Team. R: A language and environment for statistical computing. R 924 

Foundation for Statistical Computing. (2017). 925 

73. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc. (2015). 926 

74. Koller, M. robustlmm: An R Package for Robust Estimation of Linear Mixed-927 

Effects Models. J. Stat. Softw. 75, 1–24 (2016). 928 

75. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects 929 

Models Using lme4. J. Stat. Softw. 67, 1–48 (2015). 930 

76. Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R 931 

package version 0.5.0. (2020). 932 

77. JASP Team. JASP (Version 0.12.2). (2020). 933 

78. Marsman, M. & Wagenmakers, E.-J. Bayesian benefits with JASP. Eur. J. Dev. 934 

Psychol. 14, 545–555 (2017). 935 

 936 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407718doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407718
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Results
	Learning occurs for all recipients for both age groups
	Learning rate depends on who receives reward
	Older adults show a reduced self-bias in learning rates
	Participants perform better for themselves, compared to no one
	Psychopathic traits are lower in older adults and explain variance in prosocial learning

	Discussion
	Materials and Methods
	Participants
	Prosocial learning task
	Questionnaire measures
	Procedure
	Computational modelling
	Model fitting
	Model comparison
	Simulation experiments
	Statistical analysis

	Data availability
	Code availability
	Acknowledgements
	Author contributions
	Competing interests
	References

