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ABSTRACT8

Large scale white matter brain connections quantified via the structural connectome (SC) act as the backbone for the flow of
functional activation, which can be represented via the functional connectome (FC). Many studies have used statistical analysis
or computational modeling techniques to relate SC and FC at a global, whole-brain level. However, relatively few studies
have investigated the relationship between individual cortical and subcortical regions’ structural and functional connectivity
profiles, here called SC-FC coupling, or how this SC-FC coupling may be heritable or related to age, sex and cognitive abilities.
Here, we quantify regional SC-FC coupling in a large group of healthy young adults (22 to 37 years) using diffusion-weighted
MRI and resting-state functional MRI data from the Human Connectome Project. We find that while regional SC-FC coupling
strengths vary widely across cortical, subcortical and cerebellar regions, they were strongest in highly myelinated visual and
somatomotor areas. Additionally, SC-FC coupling displayed a broadly negative association with age and, depending on the
region, varied across sexes and with cognitive scores. Specifically, males had higher coupling strength in right supramarginal
gyrus and left cerebellar regions while females had higher coupling strength in right visual, right limbic and right cerebellar
regions. Furthermore, increased SC-FC coupling in the right lingual gyrus was associated with worse cognitive scores. Finally,
we found SC-FC coupling to be highly heritable, particularly in the visual, dorsal attention, and fronto-parietal networks, and,
interestingly, more heritable than FC or SC alone. Taken together, these results suggest regional structure-function coupling in
young adults decreases with age, varies across sexes in a non-systematic way, is somewhat associated with cognition and is
highly heritable.

9

Introduction10

The question of how anatomy and physiology are related is one of the fundamental questions in biology, particularly in11

neuroscience where studies of form and function have led to fundamental discoveries. In the last few decades, the invention of12

MRI has enabled in vivo investigation of whole-brain, anatomical (white matter) and physiological (functional co-activation)13

brain networks in human populations. Studies analyzing multi-modal connectivity networks have produced a consensus that,14

to some extent, alignments exist between the brain’s anatomical structural connectome (SC) and its physiological functional15

connectome (FC)1–5. Recent work has focused on implementing computational models, including neural mass models, network16

diffusion models, graph theoretical or statistical approaches, that formalize the global relationship between SC and FC in17

both normal and pathological populations6–9. Some of the main goals in joint structure-function connectome modeling are to18

understand how neural populations communicate via the SC backbone7, how functional activation spreads through the structural19

connectome8, to increase the accuracy of noisy connectivity measurements, to identify function-specific subnetworks10, to20

predict one modality from the other1 or to identify multi-modal mechanisms of recovery after injury11, 12. While useful, these21

modeling approaches are global in nature and ignore the regional variability in the structure-function relationship that, to date,22

has not been adequately quantified in adult populations.23

Recent publications mapping connectome properties to cognitive abilities have focused on using either FC or SC alone,24

or concatenating both together to reveal brain-behavior relationships13–17. Some recent studies have identified relationships25

between global, whole-brain SC-FC correlations and cognitive abilities or states of awareness. One such paper showed that26

stronger global SC-FC correlations were related to worse cognitive function in older adults with cognitive impairment18.27

Another study showed disorders of consciousness patients with fewer signs of consciousness had longer dwell times in dynamic28

FC states that were most similar to SC19. It has also been shown that SC-FC similarity decreases with increasing awareness29

levels in anesthetized monkeys20 and, similarly, decreases from deep sleep to wakefulness in humans21. Two studies, in severe30

brain injury and mild traumatic brain injury, revealed that increasing "distance" between SC and FC was related to better31
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recovery after injury11, 12. These studies all suggest a weaker coupling of SC and FC is related to better cognitive performance32

and increasing awareness/consciousness. In contrast, however, a recent study showed increased cognitive flexibility was33

associated with increased alignment of FC and SC22. Therefore, how SC-FC coupling relates to various cognitive functions,34

awareness or other brain states may vary with the behavioral measure and population in question.35

Even fewer studies have explored how the strength of the relationship between SC and FC may vary with age and sex.36

One such study in a small number of subjects (N = 14, 18 months to 18 years of age) showed increasing age was strongly37

related to higher global correlations between SC and FC (r = 0.74, p < 0.05)23. In one of the few studies to date of regional38

SC-FC coupling, Baum et. al (2020) studied a large number of developing subjects (N = 727, aged 8− 23 years old) and39

showed that the relationship between age and SC-FC coupling varied across brain regions, with some regions showing positive40

and fewer regions showing negative relationships. Furthermore, they showed that stronger SC-FC coupling in rostrolateral41

prefrontal cortex specifically was associated with development-related increases in executive function24. Another of regional42

SC-FC coupling analyzed data from a group of around 100 young adults and showed that, overall, regional SC-FC coupling43

was stronger in females than in males and that there were sex-specific correlations of SC-FC coupling with cognitive scores25.44

Some recent work has revealed the varying degrees to which the brain’s FC is heritable26–28. Most studies have focused on45

FC; however, some recent preliminary work investigated the relationships between gene co-expression, FC, SC and behavior in a46

developmental cohort29. In that pre-print, the authors showed that FC, rather than SC, was more related to genetic co-expression,47

and, furthermore, that the brain’s FC architecture is potentially the mediating factor between genetic variance and cognitive48

variance across the developing population. However, none of these studies have investigated the heritability of regional SC-FC49

coupling.50

These studies of global, whole-brain SC-FC correlations, while informative, largely ignore regional variability of SC-FC51

coupling that may provide a more detailed picture of how anatomy and physiology vary with age, sex, genetics and cognitive52

abilities. There are only two studies to date investigating regional SC-FC coupling. The first used task-based FC in an adolescent53

population, focused on the cortex and did not assess heritability or sex differences24 while the second used a data from a54

moderately sized sample of young adults, did not consider the cerebellum and did not investigate the heritability of SC-FC55

coupling25. In this work, for the first time, we quantify the cortical, subcortical and cerebellar topography of SC-FC coupling at56

rest in a group of young adults, verify its reproducability and quantify its association with age, sex and cognition. Moreover,57

due to the nature of the HCP data, we were also able to assess the patterns of heritability of regional SC-FC coupling. Accurate58

quantification of the relationship between the brain’s structural and functional networks at a regional level is imperative so we59

can understand how interacting brain circuits give rise to cognition and behavior, and how these relationships can vary with age,60

sex, cognition and genetics.61

Results62

We begin by presenting the regional SC-FC coupling values across unrelated young adults and demonstrating this measure’s63

within-subject and out-of-sample reliability. We then map the regional relationships between SC-FC coupling and age, sex64

and cognition. Finally, we demonstrate the heritability of the SC-FC coupling. Our data is comprised of MRI, demographic,65

cognitive and familial relationship data from a group of 941 young and healthy adults, curated by the Human Connectome66

Project30 (HCP). Individuals from the HCP’s S1200 release were included if they had four functional MRI scans, a diffusion67

MRI scan and a Total Cognition test score. A fine-grained atlas (CC400)31 was used to partition the brain into 392 spatially68

contiguous, functionally defined cortical and subcortical regions. Two 392× 392 weighted adjacency matrices were then69

constructed, representing whole brain SC and FC. Here, we calculated FC using a regularized precision approach, which aims70

to capture only the "direct" connections between brain regions. We chose to use precision-based FC as it was recently shown71

to result in FC matrices that had stronger correlations with SC than more conventional Pearson correlation-based FC32. For72

completeness and comparison to previous work24, 25, Pearson correlation-based FC results are provided in the Supplemental73

Information. SC matrices were constructed using anatomically constrained probabilistic tractography; entries in the SC matrices74

were then a sum of the global filtering weights (SIFT2) of streamlines connecting pairs of regions, divided by the sum of the75

volumes of the two regions. Once the FC and SC were constructed, the regional SC-FC coupling vector was calculated for each76

individual in the following way. Each row in the SC matrix, representing a region’s SC to the rest of the brain, was correlated77

with the same region’s row in the FC, providing a regional SC-FC coupling vector of length 392 for each subject (Figure 1).78

SC-FC coupling varies spatially, is consistent over time and is reproducible79

The group average SC-FC coupling over 420 unrelated individuals is shown in Figure 2a. We found that, at the group level,80

regional SC-FC coupling was always positive and varied greatly across cortical and subcortical areas, ranging from 0−0.61.81

Visual, and somatomotor areas had significantly higher SC-FC coupling than the other networks (except for dorsal attention82

network when comparing with somatomotor, see Figure 2b and c, all FDR corrected p < 0.05), with average SC-FC coupling83

values of 0.44 and 0.41, while limbic and subcortical areas had significantly weaker SC-FC coupling than the other networks84
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Figure 1. Workflow for quantifying regional SC-FC coupling. The CC400 atlas was used to parcellate the gray matter
into 392 cortical and subcortical brain regions31. SC matrices were constructed based on probabilistic tractography aimed at
reconstructing white matter pathways. FC matrices, representing similarity of functional activation over time, were considered
in two ways. The Pearson correlation-based FC matrices were computed by correlating pairwise BOLD time series from the
defined regions, while regularized precision-based FC matrices were computed by Tikhonov regularization of the inverse
covariance matrix. For each subject, corresponding rows in the SC and FC matrices were correlated to obtain that region’s
SC-FC coupling value. The result is a vector of regional SC-FC coupling, of length 392, for each individual.
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Figure 2. Regional SC-FC coupling varies spatially across the brain. a displays the SC-FC coupling for each cortical and
subcortical region in the CC400 atlas. b shows the distribution of SC-FC coupling over regions grouped into nine different
networks (7 Yeo networks, subcortical and cerebellum/brain stem). c shows the t-statistics for all pairwise comparisons of
SC-FC coupling across networks, calculated as the network on the y-axis versus the network on the x-axis. Those comparisons
with FDR corrected p > 0.05 are marked with n.s.. Visual, somatomotor and dorsal attention networks have higher SC-FC
coupling than other networks while limbic and subcortical areas have weaker SC-FC coupling than other networks.
Abbreviations: VIS - visual, SOM - somatomotor, DATTN - dorsal attention, VATTN - ventral attention, LIM - limbic, FPN -
frontoparietal, DMN - default mode, SUB - subcortical, CER/BS - cerebellum and brain stem.

(see Figure 2b and c, all FDR corrected p < 0.05), with average SC-FC coupling values of 0.16 and 0.14. SC-FC coupling85

calculated using Pearson correlation-based FC was similar to, but generally weaker than, precision-based SC-FC coupling86

(Pearson’s r = 0.85, p < 1e−109), see Supplementary Information Figure S1 . All networks, except subcortical, limbic and87

cerebellum/brain stem, had significantly higher SC-FC coupling when the measure was calculated using the precision-based FC88

compared to when SC-FC was calculated using Pearson correlation-based FC (FDR corrected p < 0.05).89

Next, we tested the reliability and reproducibility of SC-FC coupling by examining its consistency within individuals over90

time and across different populations of individuals. To test for consistency over time within the same individuals, we used91

data from a subset of 41 HCP subjects who had a second MRI scan about 6 months after the first. SC-FC coupling was indeed92

highly consistent across time, with a mean difference of µ = −0.004, limits of agreement LoA = µ±0.028, see Figure 3a,93

and a test-retest correlation of 0.99 (Pearson’s r, p < 1e−307). Furthermore, we examined out-of-sample, across population94

reliability in SC-FC coupling using a subset of 346 unrelated HCP subjects (age, 28.78±3.80 y; 148 males and 198 females),95

distinct from the initial set of 415 unrelated subjects. It should be noted that, while each set of subjects did not contain relatives96

within them, there may be some familial relationships across the two sets of subjects which could result in an overestimation of97

the out-of-sample reliability. Still, out-of-sample reliability was high, with a small mean difference µ = 0.005 and limits of98

agreement LoA = µ±0.017, see Figure 3b, and high correlation (Pearson’s r = 0.99, p < 1e−307).99

Age, sex and cognition have region-specific, significant associations with SC-FC coupling100

We used a generalized linear model (GLM) to quantify the association between different characteristics of interest and SC-FC101

coupling. Specifically, subjects’ age, sex, total cognition score, intracranial volume (ICV), in-scanner head motion as well as the102

two-way interactions terms of age*cognition, sex*cognition and ICV*motion were included in the model. The most prominent103

relationship observed was a broadly negative association between age and SC-FC coupling, particularly in subcortical structures104

(mean β = −3.13), including the caudate, putamen and thalamus, visual areas (mean β = −3.15) and somatomotor areas105
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Figure 3. SC-FC coupling is consistent over time and is reproducible. a Bland-Altman plot shows good agreement
between the SC-FC coupling calculated in the same set of 41 subjects across two MRI scans taken 6 months apart (mean
difference µ =−0.004 and limits of agreement LoA = µ±0.028). b Bland-Altman plot shows good agreement between the
SC-FC coupling calculated from the original set of 415 subjects and another out-of-sample set of 346 subjects (mean difference
µ = 0.005 and limits of agreement LoA = µ±0.017).

(mean β =−3.12), see Figure 4a,b and c. Males had higher SC-FC coupling in the left cerebellum and right supramarginal106

gyrus, while females had higher SC-FC coupling in right fusiform gyrus, right cerebellum and right temporal areas (Figure 4d,107

e and f). The association between cognition and SC-FC coupling was weaker when compared with age and sex. Higher total108

cognition scores were related to decreased SC-FC coupling in right lingual gyrus areas (Figure 4g, h and i). Similar results were109

found when using Pearson correlation-based FC to calculate SC-FC coupling, see Figure S2 in Supplementary Information.110

There were some associations found between SC-FC coupling and both ICV and in-scanner head motion (see Supplementary111

Information Figure S5 for the precision-based FC results and Supplementary Information Figure S6 for the correlation-based112

FC results). ICV had more positive than negative associations, while head motion was a mix of both positive and negative113

associations. For both covariates, most of the coefficients reaching significance were positive, indicating increasing SC-FC114

coupling with increased head size and motion.115

SC-FC coupling is more heritable than FC or SC116

Next, we assessed the heritability of SC-FC coupling using a recently developed modeling approach that considers the level of117

measurement error of the imaging biomarker in question26. Specifically, a linear mixed effect (LME) model was designed to118

independently estimate the inter- and intrasubject variation (representing the unstable, transient component and measurement119

error) of the total phenotype variability. Heritability was defined as the proportion of intersubject variation attributable to120

genetics. Overall, SC-FC coupling was highly heritable, particularly in the dorsal attention, visual and fronto-pareital networks121

(mean heritability 0.56, 0.54 and 0.53, respectively), see Figure 5a and b). SC-FC coupling in limbic and subcortical areas122

were significantly less heritable (mean heritability 0.16 and 0.18) than the other seven networks (see Figure 5b and c, all FDR123

corrected p < 0.05). For comparison, we calculated the heritability of the node strength (l1 norm of each row) of the SC and FC124

matrices independently, see Figure 5d and g. First, precision-based FC had overall relatively low levels of heritability and was125

significantly negatively correlated with heritability of SC (Pearson’s r =−0.282, p < 1e−7). Furthermore, SC-FC coupling126

heritability was not reflective of just SC or FC heritability, being significantly correlated with both (in opposite directions), but127

was more driven by FC. This is evidenced by the moderate, negative correlation between SC-FC coupling and SC heritability128

(Pearson’s r =−0.294, p < 1e−8) and the significant, larger positive correlation between SC-FC coupling and FC heritability129

(Pearson’s r = 0.822 ,p < 1e−96), see (Figure 5j and k).130
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Figure 4. Associations between regional SC-FC coupling and age, sex and total cognition. a, d and g display regional β

values from the GLM quantifying associations between SC-FC coupling and age, sex (blue indicates higher SC-FC coupling in
females, red higher in males) and total cognition, respectively. Areas with significant β values (after correction) are outlined in
black. b, e and h show the network-wise β values for age, sex and total cognition, respectively. c, f and i show the t-statistics
for all pairwise comparisons. Those comparisons with FDR corrected p < 0.05 are marked with ∗.
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Figure 5. SC-FC coupling heritability estimates. a, d and g Regional heritability estimates of SC-FC coupling, SC node
strength and precision-based FC node strength. b, e and h Rregional heritability estimates of SC-FC coupling, grouped by
functional network, for SC-FC coupling, SC node strength and precision-based FC node strength, respectively. c, f and i
Comparisons of heritability values between networks (t-statistics); those with FDR corrected p > 0.05 are marked with n.s.. j
and k Regional heritability estimates of SC-FC coupling are significantly negatively correlated with regional heritability of SC
node strength (Pearson’s r =−0.294, p < 1e−8) and significantly positively correlated with regional heritability of FC node
strength (Pearson’s r = 0.882, p < 1e−96).
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Discussion131

In this paper, we quantified the strength of coupling between the structural and functional connectivity profiles of cortical,132

subcortical and cerebellar brain regions in a large sample of healthy young adults. We demonstrate that SC-FC coupling is133

strongest in visual and somatomotor areas, weakest in limbic and subcortical regions and is consistent across time and different134

sample populations. Furthermore, we show SC-FC coupling has a broadly negative relationship with age, varies across sexes,135

although not in uniform manner across brain regions, and that stronger SC-FC coupling, particularly in the right lingual gyrus, is136

related to lower total cognition scores. Finally, we show SC-FC coupling is highly heritable, particularly in the dorsal attention,137

visual and fronto-parietal control networks, demonstrating stronger values across the brain compared to SC or FC alone.138

The ordering of cortical regions into anatomical hierarchies, wherein primary sensory regions are at the bottom and139

higher-order association areas are at the top, provides a way to organize brain regions. Anatomical hierarchies defined by140

myelination and white matter connectivity patterns have been shown to reflect functional and transcriptome specialization33–35.141

The cortical SC-FC coupling pattern found in our young adult population, which closely tracks with cortical myelination,142

further supports the argument that regional SC-FC coupling is reflective of anatomical hierarchies24. In fact, the Spearman143

correlation of the population average SC-FC coupling and regional average myelination from the HCP subjects was 0.42 for144

precision-based FC (p < 1e−15) and 0.53 for Pearson-correlation based FC (p < 1e−25). Lower-order areas of high cortical145

myelination, including primary visual, somatosensory and motor regions, tend to have functional activation patterns that are146

strongly aligned to their white matter connectivity profiles. Higher-order association areas with lower myelination tend to147

have complex, dynamic functional profiles that are less anchored to their structural connectivity profiles. Furthermore, we148

showed relatively low SC-FC coupling in subcortical and limbic structures, which could be reflective of their diverse structural149

connections and their role as relay stations for functional signals traveling between cerebellar, sensory and other cortical regions.150

Subcortical and limbic structures also tend to have lower signal-to-noise ratio due to MR imaging artifacts36 which could also151

contribute to lower SC-FC coupling.152

Functional activation flows not only through direct SC but also indirect, multi-synaptic white matter connections, which153

likely contributes to divergence of SC and FC to varying degrees37. Statistical, communication, biophysical and machine154

learning models have been applied to better align FC and SC3, 7, 8, 38. Recent work has also found the strength of global155

SC-FC correlation depends on how FC is calculated32. In particular, this work showed FC calculated using partial correlation156

(precision), which aims to isolate direct and remove the effect of indirect functional connections, had stronger correlations with157

SC than standard FC calculated using full (Pearson) correlation. Largely, our results are consistent with the global findings in158

that regional SC-FC coupling is generally larger when using precision-based FC compared to using full Pearson correlation159

FC. However the overall intra-areal patterns across the brain (see Supplementary Information Figure S1), heritability (see160

Figure Supplementary Information Figure S3) and relationships of SC-FC coupling with age, sex, cognition (see Supplementary161

Information Figure S2) were similar across the FC types.162

We showed largely negative associations of SC-FC coupling with age in this young adult population, which we hypothesize163

could reflect an increase in functional diversity over young adulthood compared against a relatively static myelination pattern.164

Interestingly, Baum et al. (2020) found mostly age-related increases and some decreases in SC-FC coupling during adolescence165

which they interpreted as possibly reflecting both functional diversification and increase in myelination in development. We also166

show sex differences in SC-FC coupling, with males having higher coupling in right supramarginal gyrus and left cerebellar167

regions and females having higher coupling in right fusiform gyrus, right cerebellum, right parahippocampus/medial temporal168

structures, and right lingual gyrus. This disagrees somewhat with recent findings in young adults that females had overall169

greater SC-FC coupling than their male counterparts, particularly in left inferior frontal gyrus, left inferior parietal lobe, right170

superior frontal gyrus and right superior parietal gyrus25. They furthermore found higher SC-FC coupling in males in right171

insula, left hippocampus and right parahippocampal gyrus25. Both studies did agree on males having larger SC-FC coupling172

in right supramarginal gyrus, but the rest of the results diverge. We hypothesize this may be due to differences in sample173

size/characteristics or imaging acquisition/preprocessing strategies; particularly important when investigating sex differences in174

FC is the use of global signal regression which can remove non-neuronal signals like motion39 and respiration that are known to175

have sex-specific effects40. Our GLM framework additionally controlled for covariates like in-scanner motion and intracranial176

volume which have known sex differences and a complex relationship with BOLD signals41, 42.177

Most previous publications investigating SC-FC relationships and their cognitive implications have explored correlations178

between impairment or cognition with the strength of the correlation between global, whole-brain SC and FC19, 22, 43, 44. Studies179

in controls have revealed worse cognitive performance in healthy aging was associated with longer latency in dynamic FC180

states that are more similar to SC44 and that cognitive flexibility was associated with FC’s alignment with SC22. Studies in181

individuals with neurological disorders have shown that SC-FC similarity increases with dementia diagnosis and individuals’182

performance on memory tasks43 and that increasing awareness levels in individuals with disorders of consciousness are related183

to longer latency in dynamic FC states less similar to SC19. Regional SC-FC coupling was found to be differently correlated184

with cognitive function in females and males; specifically, poorer working memory in females was related to weaker SC-FC185
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coupling in local (non-hub/feeder) connections and better reasoning ability in males was related to stronger SC-FC coupling in186

rich-club hub connections25. In their adolescent population, Baum et al. (2020) found mostly positive correlations between187

executive function and SC-FC coupling, particularly in lateral frontal and right medial occipital regions; the only region to188

show the negative associations with cognitive scores was the right primary motor cortex24. In the present study, we observe a189

generally negative association of regional SC-FC coupling across the brain, indicating stronger SC-FC coupling was related to190

lower total cognition scores. However, SC-FC coupling associations with cognition were generally weaker than associations191

with age and sex; we hypothesize this is due to the many covariates considered in the model compared to previous work. The192

only region that achieved significance after all the other covariates were considered was right lingual gyrus in the medial193

occipital cortex, which has been associated with visual memory and word recognition45, 46. Interestingly, this region was also194

one identified in the adolescent study as having an association between SC-FC coupling and executive function, although the195

association was in the opposite direction24.196

For the first time, we show that regional SC-FC coupling is highly heritable across the brain (with values up to 0.78),197

particularly in the visual, fronto-parietal control and dorsal attention network. Interestingly, we found regional SC-FC coupling198

to be more heritable than SC or FC alone, and furthermore, that it was not driven entirely by one modality or the other. Previous199

studies have shown heritability of FC profiles, with the default mode network having highest heritability (estimates ranging200

from 0.42−0.8) and motor and visual areas having lowest heritability estimates (0.2−0.3)26, 47. Both our precision-based201

and Pearson-based FC results are very similar to these previous findings; however the precision-based FC demonstrates lower202

levels of heritability than Pearson-based FC (p < 1e−10). We hypothesize this could be due to the procedure for calculating203

the precision matrix. First, the inversion of the covariance matrix is ill-posed so inverting it may introduce noise. Second, the204

regularization parameter is chosen to minimize the difference between individuals’ precision matrices and the population-level205

mean unregularized precision matrix, which could obscure individual (heritable) characteristics. Furthermore, for the first206

time, we show regional SC heritability estimates, which are lower than both the heritability of the precision-based FC and207

the heritability of the Pearson-based FC. One consideration for the SC heritability is that our statistical model uses estimates208

of between-measure variability based on repeat measurements to account for noise in the heritability estimate. However, we209

only had one SC per subject so the these estimates could be lower relative to the FC heritability estimates. Interestingly, we210

found highest SC heritability in limbic and subcortical networks, which were the networks with the lowest heritability in FC211

and SC-FC coupling. Previous work has suggested different genetic signatures underlying brain anatomy and physiology47.212

However, these areas do tend to have the most noise in fMRI which could also contribute to lower FC heritability estimates.213

While no other studies have investigated the heritability of SC, one recent preprint quantifying heritability of the size of cortical214

areas showed unimodal motor/sensory networks had higher heritability (0.44) relative to heteromodal association networks215

(0.33)48. We do show general agreement with their findings in that unimodal visual and motor networks had the highest SC216

heritability across cortical networks.217

Limitations218

The results of the analyses in this work are limited by the characteristics of the individuals in the HCP young adult data set. As219

seen in previous work, SC-FC coupling relationships may vary differently with age across the lifespan, so interpretations of our220

current findings should be restricted to young adult populations. In addition, we chose to perform global signal regression when221

processing the fMRI data, as it has been shown that doing so can mitigate systematic non-neuronal shifts in the intensity of the222

BOLD signal that are not reflective of brain activity39. However, a few groups have advocated that performing global signal223

regression results in anti-correlations that are not straightforwardly interpretable49. Finally, tractography algorithms are known224

to produce streamlines that are not fully reflective of actual anatomical connections50, 51. Here, we somewhat mitigate this225

effect by using a global filtering algorithm, which has been shown to result in streamlines that are more reflective of underlying226

anatomy52.227

Conclusions228

Understanding how macroscopic anatomical and physiological connectomes are intertwined and can influence behavior or be229

influenced by an individual’s characteristics or environment is an important, unanswered question in human neuroscience. Here,230

we use neuroimaging, demographic/familial relationship information and cognitive measures in a large population of young231

healthy adults to begin to uncover some of these associations. We show that regional structure-function coupling is strongest in232

highly myelinated visual and somatomotor networks, decreases with age, varies with sex, is related to cognition and is highly233

heritable. Taken together, these results demonstrate that investigating structure-function relationships at a macroscopic scale234

can reveal important knowledge in the study of brain form and function.235
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Methods236

Data Description237

The data for this study comes from the publicly available HCP database containing high-resolution, preprocessed anatomical,238

diffusion and resting-state functional MRI data. Specifically, we use WU-Minn HCP minimally processed S1200 release which239

includes high-resolution 3T MR scans, demographics, behavioral and cognitive scores for a large population of young healthy240

adults (age 22 to 37 years). For the SC-FC coupling results shown in Figure 2, we used the subset of 420 unrelated subjects241

that had all four fMRI scans and a complete dMRI scan. For the GLM analyses shown in Figure 4, we selected 415 unrelated242

subjects from them that had all cognitive scores (age, 28.69±3.69 years; 213 males, 202 females). For the heritability analysis243

shown in Figure 5, we analyzed 941 subjects (age, 28.67±3.70 years; 441 males, 500 females) from 425 different families. In244

this set of 941 subjects that had all four fMRI scans and a dMRI scan, there were 116 MZ twin pairs, 61 DZ twin pairs, 455 full245

siblings and 132 singletons (single-birth individuals without siblings).246

Construction of the Structural Connectomes247

HCP subjects were scanned on a customized Siemens 3T “Connectome Skyra” housed at Washington University in St. Louis.248

The HCP diffusion data (1.25mm isotropic voxels, TR/TE = 5520/89.5ms, 3x multiband acceleration, b=1000,2000,3000, 90249

directions/shell, collected with both left-right and right-left phase encoding) were first minimally preprocessed to correct for250

motion, EPI and eddy-current distortion, and registered to each subject’s T1 anatomical scan53. A multi-shell, multi-tissue251

constrained spherical deconvolution (CSD) model was computed in MRtrix3 to estimate the orientation distribution function54.252

We used a probabilistic (iFOD255), anatomically constrained (ACT56) tractography algorithm with dynamic seeding to create253

individual, whole-brain tractograms containing 5 million streamlines. To better match the whole brain tractogram to diffusion254

properties of the observed data, we also computed streamline weights that are designed to reduce known biases in tractography255

data (SIFT252). Finally, the tractograms were used to estimate SC weights for the CC40031 atlas. The SC between any two256

regions was the SIFT2-weighted sum of streamlines connecting those regions divided by the sum of the gray matter volume of257

those regions. The result was an ROI-volume normalized pairwise SC matrix for each subject.258

Construction of the Functional Connectomes259

There were four gradient-echo EPI resting-state fMRI runs (2.0mm isotropic voxels, TR/TE = 720/33.1ms, 8x multiband
acceleration, FoV = 208×180 mm2, FA = 52◦, 72 slices) of approximately 15 minutes each, with two runs in one session and
two in a second session, where each session included both right-left and left-right phase encoding. There were 1200 volumes
for each run and a total of 4800 volumes (1200 volumes × 4 runs) for each subject. The data were minimally preprocessed53

and ICA+FIX57, 58 denoised by the HCP consortium59. In scanner motion for each individual was quantified by averaging the
overall frame-wise displacement for each of the four fMRI scans. We further regressed out the effect of global gray matter
signal and its temporal derivative60. To calculate the FC matrices, we first variance-normalized and concatenated the four
fMRI runs and calculated the Pearson correlation between each region-pair’s average time series in the CC400 atlas31; the
result was a single Pearson correlation-based FC matrix Σ for each subject. To compute precision-based FC, we first computed
the unregularized inverse of the correlation matrix for each individual, and averaged them over the population to obtain the
population-level precision matrix. We then calculated the individuals’ precision matrices using Tikhonov regularization, which
adds a full-rank regularization term (scaled identity) to the correlation matrix before inversion32:

Preg = (Σ+λ · I)−1

where I is the identity matrix and λ is the regularization parameter. The regularization parameter λ ∈ [0,1] was chosen via grid260

search to be the value that minimized the sum of the Frobenius norms between the regularized subject precision matrices and261

the group-averaged unregularized precision matrix, resulting in λopt = 0.3. For heritability analysis, the process outlined above262

was repeated for each of the individual’s 4 scans independently, as the LME model uses between-measurement variability in its263

estimates of heritability26. For consistency, we used the same λopt = 0.3 for individual scans. For the Pearson correlation-based264

FC results in the Supplemental Materials, FC matrices were calculated for each of the 4 scans independently and then the265

average FC over those 4 scans was taken.266

Calculation of SC-FC Coupling267

SC-FC coupling was constructed by calculating the Pearson correlation between a row of the SC matrix, representing the268

connectivity fingerprint of that region to every other region in the brain, with the corresponding row of the FC matrix (excluding269

the self-connection). The result of this step in the analysis is, for each individual, a vector of length 392 that represents the270

regional SC-FC coupling strength, or similarity of a region’s structural and functional connectivity fingerprints, for each of the271

392 regions in the atlas.272
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Quantifying relationships between SC-FC coupling, age, sex and cognition273

There are several different covariates that we hypothesized may have significant relationships with SC-FC coupling, namely,
age, sex, total cognition, intracranial volume (ICV) and in-scanner head motion. The Total Cognition score, measured using
the tests in the NIH toolbox, is the average of the crystallized score (including Picture Vocabulary and Reading Recognition
measures) and fluid score (including Dimensional Change Card Sort, Flanker Inhibitory Control and Attention, Picture Sequence
Memory, List Sorting, and Pattern Comparison measures). To calculate in-scanner head motion for each subject, we averaged
the frame-wise displacement over each volume in the fMRI time series, and then took the average across the four fMRI
scans. Finally, using a generalized linear model (GLM) approach, we assessed regional associations between SC-FC coupling
and in-scanner motion, demographics and cognitive scores, plus three interaction terms (age*cognition, sex*cognition and
ICV*motion). The three interaction terms we included in the GLM were those pairs of variables that we hypothesized may
have non-negligible interactions.

yk = β0 +
8

∑
i=1

βixi

where yk is the SC-FC coupling of length n (number of subjects) for region k = 1,2, ...392, β0 is the intercept and βi are the274

coefficients for each covariate xi, also a vector of length n. SC-FC coupling values were Fisher r-to-z transformed for improving275

normality. All p values for the regression coefficients were FDR corrected for multiple corrections and analyzed for significance276

at a level of α = 0.05.277

Quantifying the heritability of SC-FC coupling278

LME models were developed to disentangle inter- versus intra-subject variation61, 62. This LME approach was recently adapted
for and applied to HCP data to quantify heritability of functional connectome fingerprints with respect to the inter-subject
component, while removing the effect of transient changes across observations of a single subject26. This approach allows
examination of the association between the genetic relationship and phenotypic similarity, while accounting for shared
environment of siblings. Specifically, we write the following:

yi j = xi jβ + γi + εi j

where i = 1,2, ...,n and j = 1,2, ...mi. mi is the total number of repeated measures for subject i. The variable yi j is the phenotype
measurement for subject i for measurement j, xi j contains all the q covariates while the vector β , also of length q, contains the
unknown fixed population-level effects. The scalar γi donates the subject-specific deviation from the population mean and εi j
describes denotes the intra-subject measurement error (transient component) of yi j and is assumed to be independent of the
random effects and independent between repeated measurements. Stacking all subjects and all repeated observations into a
single vector, we have

y = xT
β +Tγ + ε,

where y is the phenotype vector of length ntotal = ∑
n
i=1 mi, x is the covariate matrix of dimension q×ntotal , T is a block diagonal

matrix of dimension ntotal×nsub j, γ is a vector of length nsub j and ε is a vector of length ntotal . We consider γ to be the sum of
three different effects: additive genetic effect g∼ N(0,σ2

AK), shared (common) environmental effect c∼ N(0,σ2
CΛ) and unique

(subject-specific) environmental effect e ∼ N(0,σ2
EIntotal). Here, σ2

A, σ2
C and σ2

E are the additive genetic variance, common
environmental variance and unique environmental variance, respectively. The matrix K is the m×m genetic similarity matrix
derived from the pedigree information where Ki j is 1 for monozygotic twins, 1/2 for dizygotic twins and full siblings and 0
for unrelated individuals. The matrix Λ is an nsub j×nsub j matrix indicating shared environment, that is, if the two subjects i
and j have the same parents then Λi j is set to 1, otherwise it is set to 0. Finally, the matrix Intotal is the identity matrix of size
nsub j×nsub j. Intra-subject variation is assumed to follow a Gaussian distribution, ε ∼ N(0,σ2

MIntotal). Thus, the covariance
matrix of y is

cov[y] = σ
2
ATKTT +σ

2
CTΛTT +σ

2
ETTT +σ

2
MIntotal .

Finally, we can define the non-transient heritability of a given trait as the proportion of stable, non-transient inter-subject
variation that can be explained by genetic variation in the population as

h2 =
σ2

A

σ2
A +σ2

C +σ2
E
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Unbiased estimates of the variance components σ2
A , σ2

C, σ2
E and σ2

M were obtained using the ReML algorithm63. We estimated279

the nontransient heritability of regional SC-FC coupling (4 measurements per subject), SC node strength as calculated via the280

sum of rows, excluding the diagonal (1 measurement per subject) and FC node strength as calculated via the sum of absolute281

value of rows, excluding the diagonal (4 measurements per subject). SC-FC coupling, FC node degree and SC node degree282

were standardized before calculating heritability. Age, sex and handedness were taken as fixed-effect covariates in each of the283

heritability models.284

Data availability285

HCP data are publicly available at www.humanconnectome.org. Certain HCP data are restricted to protect subject privacy,286

such as genetic, medical, and neuropsychiatric information.287

Code availability288

Python code to reproduce the main results of this paper is publicly available at https://github.com/zijin-gu/289

scfc-coupling. Preprocessing code is available upon request.290
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