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The ventral visual stream (VVS) is a hierarchically connected series of cortical areas1 1

known to underlie core object recognition behaviors, enabling humans and non-human2 2

primates to effortlessly recognize objects across a multitude of viewing conditions. While3 3

recent feedforward convolutional neural networks (CNNs) provide quantitatively accurate4 4

predictions of temporally-averaged neural responses throughout the ventral pathway, they5 5

lack two ubiquitous neuroanatomical features: local recurrence within cortical areas and6 6

long-range feedback from downstream areas to upstream areas. As a result, such models7 7

are unable to account for the temporally-varying dynamical patterns thought to arise from8 8

recurrent visual circuits, nor can they provide insight into the behavioral goals that these9 9

recurrent circuits might help support. In this work, we augment CNNs with local recur-10 10

rence and long-range feedback, developing convolutional RNN (ConvRNN) network mod-11 11

els that more correctly mimic the gross neuroanatomy of the ventral pathway. Moreover,12 12
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when the form of the recurrent circuit is chosen properly, ConvRNNs with comparatively13 13

small numbers of layers can achieve high performance on a core recognition task, com-14 14

parable to that of much deeper feedforward networks. We then compared these models15 15

to temporally fine-grained neural and behavioral recordings from primates to thousands16 16

of images. We found that ConvRNNs better matched these data than alternative models,17 17

including the deepest feedforward networks, on two metrics: 1) neural dynamics in V418 18

and inferotemporal (IT) cortex at late timepoints after stimulus onset, and 2) the varying19 19

times at which object identity can be decoded from IT, including more challenging im-20 20

ages that take longer to decode. Moreover, these results differentiate within the class of21 21

ConvRNNs, suggesting that there are strong functional constraints on the recurrent con-22 22

nectivity needed to match these phenomena. Finally, we find that recurrent circuits that23 23

attain high task performance while having a smaller network size as measured by number24 24

of units, rather than another metric such as the number of parameters, are overall most25 25

consistent with these data. Taken together, our results evince the role of recurrence and26 26

feedback in the ventral pathway to reliably perform core object recognition while subject27 27

to a strong total network size constraint.28 28

1 Introduction29 29

The visual system of the brain must discover meaningful patterns in a complex physical world1.30 30

Within 200ms, primates can quickly identify objects despite changes in position, pose, contrast,31 31

background, foreground, and many other factors from one occasion to the next: a behavior32 32

known as “core object recognition”2,3. It is known that the ventral visual stream (VVS) under-33 33

lies this ability by transforming the retinal image of an object into a new internal representation,34 34

in which high-level properties, such as object identity and category, are more explicit3.35 35

Task-optimized, deep convolutional neural networks (CNNs) are currently the most quanti-36 36
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tatively accurate models of encoding in primate visual cortex4,5,6. This observed correspondence37 37

is due to their cortically-inspired architecture, which consists of a cascade of spatially-tiled lin-38 38

ear and nonlinear operations; and their being optimized to perform the same behaviors that39 39

animals must perform to survive, such as object recognition7. CNNs trained to recognize ob-40 40

jects in the ImageNet dataset predict the time-averaged neural responses of cortical neurons41 41

better than any other model class. Model units from early, intermediate, and higher convolu-42 42

tional layers, respectively, provide the best-known linear predictions of time-averaged visual43 43

responses in neurons of early (area V15,8), intermediate (area V44), and higher visual cortical44 44

areas (inferotemporal cortex, IT4,5).45 45

While these results are promising, it is not obvious how to extend the architecture and task-46 46

optimization of CNNs to the case where responses change over time. Non-trivial dynamics47 47

result from biological features not present in purely feedforward CNNs, including synapses48 48

that facilitate or depress, dense local recurrent connections within each cortical region, and49 49

long-range connections between different regions, such as feedback from higher to lower visual50 50

cortex9. Furthermore, the behavioral roles of recurrence and dynamics in the visual system51 51

are not well understood. Several conjectures are that recurrence “fills in” missing data,10,11,12,13
52 52

such as object parts occluded by other objects; that it “sharpens” representations by top-down53 53

attentional feature refinement, allowing for easier decoding of certain stimulus properties or54 54

performance of certain tasks9,14,15,16,17; that it allows the brain to “predict” future stimuli (such55 55

as the frames of a movie)18,19,20; or that recurrence “extends” a feedforward computation, re-56 56

flecting the fact that an unrolled recurrent network is equivalent to a deeper feedforward net-57 57

work that conserves on neurons (and learnable parameters) by repeating transformations several58 58

times21,22,23,12. Formal computational models are needed to test these hypotheses: if optimizing59 59

a model for a certain task leads to accurate predictions of neural dynamics, then that task may60 60

be a primary reason those dynamics occur in the brain.61 61
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We therefore broaden the method of goal-driven modeling from solving tasks with feedfor-62 62

ward CNNs7 or RNNs24 to explain dynamics in the primate visual system, resulting in con-63 63

volutional recurrent neural networks (ConvRNNs). We show that with the appropriate choice64 64

of layer-local recurrence and feedback connections, ConvRNNs can match the performance of65 65

much deeper feedforward CNNs on ImageNet but with far fewer parameters and a more anatom-66 66

ically consistent number of layers. Furthermore, we found that such task-optimized ConvRNNs67 67

better match the VVS than feedforward CNNs by two metrics: 1) they are able to match the68 68

fine-timescale trajectories of neural responses in the visual pathway across the entirety of stim-69 69

ulus presentation with a fixed linear mapping, and 2) they provide a better match to primate70 70

behavior in the form of object solution times. Specifically, we observe that ConvRNNs that71 71

attain high task performance but low network size, as measured by number of units, are most72 72

consistent with both of these metrics. These results indicate that very deep feedforward models73 73

are overall a less consistent match to primate VVS than shallower feedforward networks with74 74

added recurrence. This in turn implies that the role of recurrence in core object recognition75 75

is consistent with the hypothesis of extending a shallower feedforward network across time in76 76

order to perform a categorization task while obeying a physical size constraint.77 77

2 Results78 78

2.1 An evolutionary architecture search yields specific layer-local recur-79 79

rent circuits and long-range feedbacks that improve task performance.80 80

We first tested whether augmenting CNNs with standard RNN circuits from the machine learn-81 81

ing community, SimpleRNNs and LSTMs, could improve performance on ImageNet object82 82

recognition (Figure 2a). We found that these recurrent circuitsa added a small amount of ac-83 83

curacy when introduced into the convolutional layers of a 6-layer feedforward backbone (“FF”84 84

aAdapting other recurrent cell structures to ConvRNNs from the literature, including the UGRNN and Inter-
sectionRNN25, had similar effects.
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in Figure 2b) based off of the AlexNet26 architecture, which we will refer to as a “BaseNet”85 85

(see Section A.3 for architecture details). However, there were two problems with these re-86 86

sultant recurrent architectures: first, these ConvRNNs did not perform substantially better than87 87

parameter-matched, minimally unrolled controls – defined as the minimum number of timesteps88 88

after the initial feedforward pass whereby all recurrence connections were engaged at least89 89

once. This control comparison suggested that the observed performance gain was due to an in-90 90

crease in the number of unique parameters added by the implanted ConvRNN cells rather than91 91

temporally-extended recurrent computation. Second, making the feedforward model wider or92 92

deeper yielded an even larger performance gain than adding these standard RNN cells, but with93 93

fewer parameters. This suggested that standard RNN circuits, although well-suited for a range94 94

of temporal tasks, are less well-suited for inclusion within deep CNNs to solve challenging95 95

object recognition tasks.96 96

We speculated that this was because standard circuits lack a combination of two key proper-97 97

ties, each of which on their own have been successful either purely for RNNs or for feedforward98 98

CNNs: (1) Gating, in which the value of a hidden state determines how much of the bottom-up99 99

input is passed through, retained, or discarded at the next time step; and (2) Bypassing, where100 100

a zero-initialized hidden state allows feedforward input to pass on to the next layer unaltered,101 101

as in the identity shortcuts of ResNet-class architectures (Figure 2a; top left). For example,102 102

LSTMs employ gating, but no bypassing, as their inputs must pass through several nonlinear-103 103

ities to reach their output; whereas SimpleRNNs do bypass a zero-initialized hidden state, but104 104

do not gate their input (Figure 2a).105 105

We thus implemented recurrent circuits with both features to determine whether they func-106 106

tion better than standard cells within CNNs. One example of such a structure is the “Reciprocal107 107

Gated Cell” (RGC)27, which bypasses its zero-initialized hidden state and incorporates LSTM-108 108

style gating (Figure 2a, bottom right; see Section A.3.7 for the cell equations). Adding this109 109
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cell to the 6-layer BaseNet improved performance substantially relative to both the feedforward110 110

baseline and minimally unrolled, parameter-matched control version of this model. Moreover,111 111

the RGC used substantially fewer parameters than the standard cells to achieve greater accuracy112 112

(Figure 2b).113 113

However, it has been shown that different RNN structures can succeed or fail to perform a114 114

given task because of differences in trainability rather than differences in capacity25. Therefore,115 115

we designed an evolutionary search to jointly optimize over both discrete choices of recurrent116 116

connectivity patterns as well as continuous choices of learning hyperparameters and weight117 117

initializations (search details in Section A.4). While a large-scale search over thousands of con-118 118

volutional LSTM architectures did yield a better purely gated LSTM-based ConvRNN (“LSTM119 119

Opt”), it did not eclipse the performance of the smaller RGC ConvRNN. In fact, applying the120 120

same hyperparameter optimization procedure to the RGC ConvRNNs equally increased that ar-121 121

chitecture class’s performance and further reduced its parameter count (Figure 2b, “RGC Opt”).122 122

If the primate visual system uses recurrence in lieu of greater network depth to perform123 123

object recognition, then a shallower recurrent model with a suitable form of recurrence should124 124

achieve recognition accuracy equal to a deeper feedforward model, albeit with temporally-fixed125 125

parameters21. We therefore tested whether our search (depicted in Figure 2c) had identified such126 126

well-adapted recurrent architectures by fully training a representative ConvRNN, the model127 127

with the median five-epoch performance after 7000 samples. This median model (“RGC Me-128 128

dian”) reached a final ImageNet top-1 validation accuracy nearly equal to a ResNet-34 model129 129

with nearly twice as many layers, even though the ConvRNN used only ∼ 75% as many pa-130 130

rameters. The fully unrolled model from the random phase of the search (“RGC Random”) did131 131

not perform substantially better than the BaseNet, though the minimally unrolled control did132 132

(Figure 2d). This observation suggests that our evolutionary search strategy yielded effective133 133

recurrent architectures beyond the initial random phase of the search.134 134
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We also considered a control model (“Time Decay”) that produces temporal dynamics by135 135

learning time constants on the activations independently at each layer, rather than by learning136 136

connectivity between units. In this ConvRNN, unit activations have exponential rather than137 137

immediate falloff once feedforward drive ceases. These dynamics could arise, for instance,138 138

from single-neuron biophysics (e.g. synaptic depression) rather than interneuronal connections.139 139

However, this model did not perform any better than the feedforward BaseNet, implying that140 140

ConvRNN performance is not a trivial result of outputting a dynamic time course of responses.141 141

We further implanted other more sophisticated forms of ConvRNN cells into the BaseNet, and142 142

while this improved performance over the Time Decay model, it did not outperform the RGC143 143

Median ConvRNN despite having many more parameters (Figure 2d). Together, these results144 144

demonstrate that the RGC Median ConvRNN uses recurrent computations to subserve object145 145

recognition behavior and that particular motifs in its recurrent architecture (Figure S1), found146 146

through an evolutionary search, are required for its improved accuracy. Thus, given suitable147 147

local recurrent circuits and patterns of long-range feedback connectivity, a physically more148 148

compact, temporally-extended ConvRNN can do the same challenging object recognition task149 149

as a deeper feedforward CNN.150 150

2.2 ConvRNNs provide an improved explanation of neural dynamics.151 151

ConvRNNs naturally produce a dynamic time series of outputs given an unchanging input152 152

stream, unlike feedforward networks. While these recurrent dynamics could be used for tasks153 153

involving time, here we optimized the ConvRNNs to perform the “static” task of object classi-154 154

fication on ImageNet. It is possible that the primate visual system is optimized for such a task,155 155

because even static images produce reliably dynamic neural response trajectories at temporal156 156

resolutions of tens of milliseconds20. The object content of some images becomes decodable157 157

from the neural population significantly later than the content of other images, even though an-158 158
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imals recognize both object sets equally well. Interestingly, late-decoding images are not well159 159

characterized by feedforward CNNs, raising the possibility that they are encoded in animals160 160

through recurrent computations17. If this were the case, we reason then that recurrent networks161 161

trained to perform a difficult, but static object recognition task might explain neural dynamics162 162

in the primate visual system, just as feedforward models explain time-averaged responses4,5.163 163

Prior studies28 have directly fit recurrent parameters to neural data, as opposed to optimizing164 164

them on a task. While it is natural to try to fit recurrent parameters to the temporally-varying165 165

neural responses directly, we found that this approach suffers from a fundamental overfitting166 166

issue to the particular image statistics of the neural data collected. Specifically, we directly167 167

fit these recurrent parameters (implanted into the task-optimized feedforward BaseNet) to the168 168

dynamic firing rates of primate neurons recorded during encoding of visual stimuli. However,169 169

while these non-task optimized dynamics generalized to held-out images and neurons (Fig-170 170

ure S2a,b), they had no longer retained performance to the original object recognition task171 171

(Figure S2c). Therefore, to avoid this issue, we instead asked whether fully task-optimized172 172

ConvRNN models (including the ones introduced in Section 2.1) could predict these dynamic173 173

firing rates from multi-electrode array recordings from the ventral visual pathway of rhesus174 174

macaques29.175 175

We began with the feedforward BaseNet and added a variety of ConvRNN cells, including176 176

the RGC Median ConvRNN and its counterpart generated at the random phase of the evolu-177 177

tionary search (“RGC Random”). All of the ConvRNNs were presented with the same images178 178

shown to the primates and collected the time series of features from each model layer. To decide179 179

which layer should be used to predict which neural responses, we fit linear models from each180 180

feedforward layer’s features to the neural population and measured where explained variance on181 181

held-out images peaked (see Section A.6 for more details). Units recorded from distinct arrays182 182

– placed in the successive V4, posterior IT (pIT), and central/anterior IT (cIT/aIT) cortical areas183 183
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of the macaque – were fit best by the successive layers of the feedforward model, respectively.184 184

Finally, we measured how well ConvRNN features from these layers predicted the dynamics185 185

of each unit. In contrast with feedforward models fit to temporally-averaged neural responses,186 186

the linear mapping in the temporal setting must be fixed at all timepoints. The reason for this187 187

choice is that the linear mapping yields “artificial units” whose activity can change over time,188 188

but the identity of these units should not change over the course of 260ms, as would be the case189 189

if a separate linear mapping was fit at each 10ms timebin. This choice of a temporally-fixed190 190

linear mapping therefore maintains the physical relationship between real neurons and model191 191

neurons.192 192

As can be seen from Figure 3, with the exception of the RGC Random ConvRNN, the Con-193 193

vRNN feature dynamics fit the neural response trajectories as well as the feedforward baseline194 194

features on early phase responses (Wilcoxon test p-values in Table 1) and better than the feed-195 195

forward baseline features for late phase responses (Wilcoxon test with Bonferroni correction196 196

p < 0.001), across V4, pIT, and cIT/aIT on held-out images. This observation is due to the197 197

fact that any feedforward model has the same square wave dynamics as its 100ms visual input,198 198

so it cannot predict neural responses after image offset plus a fixed delay, corresponding to the199 199

number of layers (Figure S3, purple lines). In contrast, the activations of ConvRNN units have200 200

persistent dynamics, yielding predictions of the entire neural response trajectories.201 201

Crucially, these predictions result from the task-optimized nonlinear dynamics from Ima-202 202

geNet, as both models are fit to neural data with the same form of temporally-fixed linear model203 203

with the same number of parameters. Since the initial phase of neural dynamics was well-fit by204 204

feedforward models, we asked whether the later phase could be fit by a much simpler model205 205

than any of the ConvRNNs we considered, namely the Time Decay ConvRNN with ImageNet-206 206

trained time constants at convolutional layers. If the Time Decay ConvRNN were to explain207 207

neural data as well as the other ConvRNNs, it would imply that interneuronal recurrent con-208 208
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nections are not needed to account for the observed dynamics; however, this model did not fit209 209

the late phase dynamics of intermediate areas (V4 and pIT) as well as the other ConvRNNsb.210 210

Thus, the more complex recurrence found in ConvRNNs is generally needed both to improve211 211

object recognition performance and to account for neural dynamics in the ventral stream, even212 212

when animals are only required to fixate on visual stimuli. In fact, not all forms of complex213 213

recurrence are equally predictive of temporal dynamics. We found among these that the RGC214 214

Median, UGRNN, and GRU ConvRNNs attained the highest median neural predictivity for each215 215

visual area in both early and late phases, but in particular significantly outperformed the Sim-216 216

pleRNN ConvRNN at the late phase dynamics of these areasc. We will explore this observation217 217

further in Section 2.3.218 218

A natural follow-up question to ask is whether recurrent processing explains any more of219 219

the variance at any individual timebins than feedforward models, especially in light of the ob-220 220

servation that there is a drop in explained variance for feedforward models from early to late221 221

timebins17. It is well-known that recurrent neural networks can be viewed as very deep feed-222 222

forward networks with weight sharing across layers that would otherwise be recurrently con-223 223

nected21. In Figure 3, we present the feedforward BaseNet with a constant stream of inputs in224 224

order for it to have a consistent output throughout time, despite the ConvRNNs and the primates225 225

only being provided with a 100ms stimulus presentation. We find that while the BaseNet in this226 226

setting can slightly outperform the best ConvRNNs at the late phase dynamics (Wilcoxon test227 227

with Bonferroni correction p < 0.001), it underperforms relative to itself and the best Con-228 228

vRNNs at the early phase dynamics (Wilcoxon test with Bonferroni correction p < 0.001),229 229

providing not as consistent predictions under a temporally-fixed mapping. Thus, to address this230 230

question, we compare feedforward models of varying depths (with a constant input stream) to231 231

bWilcoxon test with Bonferroni correction p < 0.001 for each ConvRNN vs. Time Decay, except for the
SimpleRNN p ≈ 0.46 for pIT.

cWilcoxon test with Bonferroni correction between each of these ConvRNNs vs. the SimpleRNN on late phase
dynamics, p < 0.001 per visual area.
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ConvRNNs across the entire temporal trajectory under a varying linear mapping at each time-232 232

bin, in contrast to the above. Specifically, as can be seen in Figure S4a, we observe a drop233 233

in explained variance from early (130-140ms) to late (200-210ms) timebins for the shallower234 234

BaseNet and ResNet-18 models, across multiple neural datasets. Models with increased feed-235 235

forward depth (such as ResNet-101 or ResNet-152), along with our performance-optimized236 236

RGC Median ConvRNN, exhibit a similar drop in median population explained variance as the237 237

shallower feedforward models. The benefit of model depth with respect to increased explained238 238

variance of late IT responses might be only noticeable while comparing very shallow models239 239

(< 7 nonlinear transforms) to much deeper (> 15 nonlinear transforms) models17. Our results240 240

suggest that the amount of variance explained in the late IT responses is not a monotonically241 241

increasing function of model depth.242 242

As a result, an alternative hypothesis is that the drop in explained variance from early to243 243

late timebins could instead be attributed to task-orthogonal dynamics specific to an individ-244 244

ual primate as opposed to iterated nonlinear transforms, resulting in variability unable to be245 245

captured by any task-optimized model (feedforward or recurrent). To explore this possibility,246 246

we examined whether the model’s neural predictivity at these early and late timebins was rel-247 247

atively similar in ratio to that of one primate’s IT neurons mapped to that of another primate248 248

(see Section A.7 for more details). As shown in Figure S4b, across various hyperparameters249 249

of the linear mapping, we observe a ratio close to one between the neural predictivity (of the250 250

target primate neurons) of the feedforward BaseNet to that of the source primate mapped to251 251

the same target primate. Therefore, as it stands, temporally-varying linear mappings to neu-252 252

ral responses collected from an animal during rapid visual stimulus presentation (RSVP) may253 253

not sufficiently separate feedforward models from recurrent models any better than one animal254 254

to another – though more investigation is needed to ensure tight estimates of the inter-animal255 255

consistency measure we have introduced here with neural data recorded from many primates.256 256
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Nonetheless, this observation motivates us to look beyond neural response predictions and turn257 257

to temporally-varying behavioral metrics in order to further separate these model classes, which258 258

we do next.259 259

2.3 ConvRNNs better match temporal dynamics of primate behavior than260 260

feedforward models.261 261

To address whether recurrent processing is engaged during core object recognition behavior, we262 262

turn to behavioral data collected from behaving primates. There is a growing body of evidence263 263

that current feedforward models fail to accurately capture primate behavior30,17. We therefore264 264

reasoned that if recurrence is critical to core object recognition behavior, then recurrent net-265 265

works should be more consistent with suitable measures of primate behavior compared to the266 266

feedforward model family. Given that the identity of different objects is decoded from the IT267 267

population at different times, we considered the first time at which the IT neural decoding accu-268 268

racy reaches the (pooled) primate behavioral accuracy of a given image, known as the “object269 269

solution time (OST)”17. Given that our ConvRNNs also have an output at each 10ms timebin,270 270

the procedure for computing the OST for these models is computed from its “IT-preferred” lay-271 271

ers, and we report the “OST consistency” which we define as the Spearman correlation between272 272

the model OSTs and the IT population’s OSTs on the common set of images solved by the given273 273

model and IT.274 274

Unlike our ConvRNNs, which exhibit more biologically plausible temporal dynamics, eval-275 275

uating the temporal dynamics in feedforward models poses an immediate problem. Given that276 276

recurrent networks repeatedly apply nonlinear transformations across time, we can analogously277 277

map the layers of a feedforward network to timepoints, observing that a network with k dis-278 278

tinct layers can produce k distinct OSTs in this manner. Thus, the most direct definition of a279 279

feedforward model’s OST is to uniformly distribute the timebins between 70-260ms across its k280 280
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layers. For very deep feedforward networks such as ResNet-101 and ResNet-152, this number281 281

of distinct layers will be as fine-grained as the 10ms timebins of the IT responses; however,282 282

for most other shallower feedforward networks this will be much coarser. Therefore to enable283 283

shallow feedforward models to be maximally temporally expressive, we also randomly sample284 284

units from consecutive feedforward layers to produce a more graded temporal mapping, de-285 285

picted in Figure 4b. This graded mapping is ultimately what we use for the feedforward models286 286

in Figure 4d, providing the highest OST consistency for that model classd.287 287

With model OST defined across both model families, we compared various ConvRNNs and288 288

feedforward models to the IT population’s OST in Figure 4d. Among shallower and deeper289 289

models, we found that ConvRNNs were generally able to better explain IT’s OST than their290 290

feedforward counterparts. Specifically, we found that ConvRNN cells without any multi-unit291 291

interaction such as the Time Decay ConvRNN only marginally, and not always significantly,292 292

improved the OST consistency over its respective BaseNet modele. On the other hand, consis-293 293

tent with our prior observation in Figure 3, ConvRNNs with multi-unit interactions generally294 294

provided the greatest match to IT OSTs than even the deepest feedforward modelsf .295 295

Consistent with our observations in Figures 2 and 3 that different recurrent cells with multi-296 296

unit interactions were not all equally effective when embedded in CNNs (despite outperforming297 297

the simple Time Decay model), we similarly found that this observation held for the case of298 298

matching IT’s OST. Given recent observations31 that inactivating parts of macaque ventrolat-299 299

eral PFC (vlPFC) results in behavioral deficits in IT for late-solved images, we reasoned that300 300

additional decoding procedures employed at the categorization layer during task optimization301 301

dWilcoxon test on uniform vs. graded mapping OST consistencies across feedforward models, p < 0.001; see
also Figure S5.

ePaired t-test with Bonferroni correction: Shallow Time Decay vs. “BaseNet” in blue, t(9) ≈ 3.23, p < 0.025;
Deeper Time Decay vs. “BaseNet” in red, t(9) ≈ 1.73, p ≈ 0.11.

f Paired t-test with Bonferroni correction: Shallow RGC vs. “BaseNet” in blue, t(9) ≈ 6.08, p < 0.001; Deeper
UGRNN vs. ResNet-152, t(9) ≈ 7.55, p < 0.001; Deeper GRU vs. ResNet-152, t(9) ≈ 7.71, p < 0.001; RGC
Median vs. ResNet-152, t(9) ≈ 3.44, p < 0.01.
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might meaningfully impact the model’s OST consistency, in addition to the choice of recur-302 302

rent cell used. We designed several decoding procedures (defined in Section A.5), motivated303 303

by prior observations of accumulation of relevant sensory signals during decision making in304 304

primates32. Overall, we found that ConvRNNs with different decoding procedures, but with305 305

the same layer-local recurrent cell (RGC Median) and long-range feedback connectivity pat-306 306

terns, yielded significant differences in final consistency with the IT population OST (Friedman307 307

test, p < 0.05). Moreover, the simplest decoding procedure of outputting a prediction at the308 308

last timepoint, a strategy commonly employed by the computer vision community, had a lower309 309

OST consistency than each of the more nuanced Max Confidenceg and Threshold decoding310 310

proceduresh that we considered. Taken together, our results suggest that the type of multi-unit311 311

layer-wise recurrence and downstream decoding strategy are important features for OST con-312 312

sistency with IT, suggesting that specific, non-trivial connectivity patterns further downstream313 313

the ventral stream may be important to core object recognition behavior over timescales of a314 314

couple hundred milliseconds.315 315

2.4 ConvRNNs mediate a tradeoff between task performance and net-316 316

work size.317 317

Why might a suitably shallower feedforward network with temporal dynamics be desirable for318 318

the ventral visual stream? We reasoned that recurrence mediates a tradeoff between network319 319

size and task performance; a tradeoff that the ventral stream also maintains. To examine this320 320

possibility, in Figure 5, we compared each network’s task performance versus its size, mea-321 321

sured either by parameter count or unit count. Across models, we found unit count (related322 322

to the number of neurons) to be more consistent with task performance than parameter count323 323

(related to the number of synapses). In fact, there are many models with a large parameter324 324

gPaired t-test with Bonferroni correction, t(9) ≈ −4.52, p < 0.01.
hPaired t-test with Bonferroni correction, t(9) ≈ −4.41, p < 0.01.
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count but not very good task performance, indicating that adding synapses is not necessarily as325 325

useful for performance as adding neurons. For shallower recurrent networks, task performance326 326

seemed to be more strongly associated with OST consistency than network size, though gener-327 327

ally having fewer parameters at a given performance level resulted in higher OST consistency328 328

(e.g. UGRNN vs. SimpleRNN and RGC vs. IntersectionRNN). This tradeoff became more329 329

salient for deeper feedforward models and the deeper ConvRNNs, as the very deep ResNets330 330

(ResNet-34 and deeper) attained an overall lower OST consistency compared to the deeper331 331

ConvRNNs, using both much more units and parameters compared to small relative gains in332 332

task performance. Similarly, deeper ConvRNNs with high task performance and minimal unit333 333

count, such as the UGRNN, GRU, and RGCs attained both the highest OST consistency overall334 334

(Figures 4 and 5) along with providing the best match to neural dynamics across visual areas335 335

(Figure 3). This observation indicates that suitably-chosen recurrence can provide a means for336 336

maintaining this fundamental tradeoff.337 337

Given that specific forms of task-optimized recurrence are more consistent with IT’s OST338 338

than iterated feedforward transformations (with unshared weights), we asked whether it was339 339

possible to approximate the effect of recurrence with a feedforward model. This approxima-340 340

tion would allow us to better describe the additional “action” that recurrence is providing in341 341

its improved OST consistency. Furthermore, a crucial difference between this metric and the342 342

explained variance metric evaluated on neural data in the prior section is that the latter uses a343 343

linear transform from model features to neural responses, whereas the former operates directly344 344

on the original model features. Therefore, a related question is whether the use of a linear trans-345 345

form for mapping from model units to neural responses masks the improvement that recurrent346 346

processing can have over deep feedforward models in their original feature space.347 347

To address these questions, we trained a separate linear mapping from each model layer to348 348

the corresponding IT response at the given timepoint, on a set of images distinct from those on349 349
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which the OST consistency metric is evaluated on. Overall, as depicted in Figure S5, we found350 350

that models with less temporal variation in their source features (namely those under a uniform351 351

mapping with few “IT-preferred” layers) had significantly improved OST consistency with their352 352

linearly transformed features (Wilcoxon test, p < 0.001), whereas models with the maximum353 353

amount of temporal variation such as ResNet-101, ResNet-152, and the ConvRNNs had a sig-354 354

nificant reduction in OST consistency with their linearly transformed features (Wilcoxon test,355 355

p < 0.001), indicating the harmful dimensionality reduction of the linear mapping. On the356 356

other hand, the linearly transformed shallower variants of deeper feedforward models were not357 357

significantly different from task-optimized ConvRNNs that achieved high OST consistencyi,358 358

suggesting that the action of suitable task-optimized recurrence approximates that of a shal-359 359

lower feedforward model with linearly induced neural dynamics.360 360

Discussion361 361

The overall goal of this study is to determine what role recurrent circuits may have in the ex-362 362

ecution of core object recognition behavior in the ventral stream. By broadening the method363 363

of goal-driven modeling from solving tasks with feedforward CNNs to ConvRNNs that include364 364

layer-local recurrence and feedback connections, we first demonstrate that appropriate choices365 365

of these recurrent circuits which incorporate specific principles of “gating” and “bypassing”366 366

lead to matching the task performance of much deeper feedforward CNNs with fewer units367 367

and parameters. Moreover, unlike deep feedforward CNNs, the mapping from the early, in-368 368

termediate, and higher layers of these shallower ConvRNNs to corresponding cortical areas is369 369

neuroanatomically consistent and reproduces prior quantitative properties of the ventral stream.370 370

We further find that these task-optimized ConvRNNs can reliably produce dynamic neural re-371 371

iPaired t-test with Bonferroni correction: RGC Median vs. PLS Uniform BaseNet, t(9) ≈ −0.86, p ≈ 0.41;
RGC Median with Threshold Decoder vs. PLS Uniform ResNet-18, t(9) ≈ 0.82, p ≈ 0.43; RGC Median with
Max Confidence Decoder vs. PLS Uniform ResNet-34, t(9) ≈ 0.02, p ≈ 0.99.
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sponse trajectories at temporal resolutions of tens of milliseconds throughout the ventral visual372 372

hierarchy, unlike feedforward models or certain other choices for recurrence adapted to solving373 373

visual recognition problems such as Temporal Decay or the LSTM circuit.374 374

In fact, ConvRNNs with high task performance but small network size (as measured by375 375

number of neurons rather than synapses) are not only the most quantitatively accurate models376 376

of neural response trajectories during passive viewing but also are most consistent with the tem-377 377

poral evolution of primate IT object identity solutions during active task performance. Taken378 378

together, our results suggest that recurrence in the ventral stream mediates a tradeoff between379 379

task performance and neuron count, suggesting that the computer vision community’s solution380 380

of stacking more feedforward layers to solve challenging visual recognition problems approx-381 381

imates what is compactly implemented in the primate visual system by leveraging additional382 382

nonlinear temporal transformations to the initial feedforward IT response. This work therefore383 383

provides a quantitative prescription for the next generation of dynamic ventral stream mod-384 384

els, addressing the call to action in a recent previous study17 for a change in architecture from385 385

feedforward models.386 386

Many hypotheses about the role of recurrence in vision have been put forward, particu-387 387

larly in regards to overcoming certain challenging image properties10,11,12,13,9,14,15,16,17,18,19,20.388 388

We believe this is the first work to address the role of recurrence at scale by connecting novel389 389

task-optimized recurrent models to temporal metrics defined on high-throughput neural and be-390 390

havioral data. Moreover, these metrics are well-defined for feedforward models (unlike prior391 391

work33) and therefore meaningfully demonstrate a separation between the two model classes.392 392

Though our results help to clarify the role of recurrence during core object recognition be-393 393

havior, many major questions remain. Our work addresses why the visual system may leverage394 394

recurrence to subserve visually challenging behaviors, replacing a physically implausible archi-395 395

tecture (deep feedforward CNNs) with one that is ubiquitously consistent with anatomical ob-396 396
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servations (shallower ConvRNNs). However, our work does not address gaps in understanding397 397

either the loss function or the learning rule of the neural network. Specifically, we intentionally398 398

implant layer-local recurrence and long-range feedback connections into feedforward networks399 399

that have been useful for supervised learning via backpropagation on ImageNet. A natural next400 400

step would be to connect these ConvRNNs with unsupervised objectives, as has been done for401 401

feedforward models of the ventral stream in concurrent work34. The question of biologically402 402

plausible learning targets is similarly linked to biologically plausible mechanisms for learning403 403

such objective functions. Recurrence could play a separate role in implementing the propaga-404 404

tion of error-driven learning, obviating the need for some of the issues with backpropagation405 405

(such as weight transport), as has been recently demonstrated at scale35,36. Therefore, building406 406

ConvRNNs with unsupervised objective functions optimized with biologically-plausible learn-407 407

ing rules would be essential towards a more complete goal-driven theory of visual cortex.408 408

Additionally, high-throughput experimental data will also be critical to further separate hy-409 409

potheses about recurrence. While we see evidence of recurrence as mediating a tradeoff between410 410

network size and task performance for core object recognition, it could be that recurrence plays411 411

a more task-specific role under more temporally dynamic behaviors. Not only would it be an412 412

interesting direction to optimize ConvRNNs on more temporally dynamic visual tasks than Im-413 413

ageNet, but to compare to neural and behavioral data collected from such stimuli, potentially414 414

over longer timescales than 200ms while the animal is performing a task. Such models and415 415

experimental data would synergistically provide great insight into how rich visual behaviors416 416

proceed, while also inspiring better computer vision algorithms.417 417
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Figure 1: ConvRNNs as models of the primate ventral visual stream. Performance-optimized re-
currence. Convolutional recurrent networks (ConvRNNs) have a combination of local recurrent cells
(green) and long-range feedback connections (red) added on top of a feedforward CNN “BaseNet” back-
bone (blue). In our implementation displayed on the top, propagation along each arrow takes one time
step (10ms) to mimic conduction delays between cortical layers. In addition, we consider particular
choices of “light-weight” (in terms of parameter count) decoding strategy that determines the final ob-
ject category of that image. Linear mapping to temporal averages. We stipulated that units from each
multi-unit array must be fit by features from a single model layer. To determine which one, we fit the fea-
tures from the feedforward backbone to the unit’s time-averaged response, and counted how many units
had minimal loss for a given model layer, detailed in Section A.6.2. Temporally-fixed linear mapping
to 10ms binned dynamics. The ConvRNN model features produce a temporally-varying output that is
mapped linearly to temporally-varying neural responses in V4 and IT, under a temporally-fixed mapping
whose parameters are reused throughout the entire timecourse of stimulus presentation.
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Figure 2: Suitably-chosen ConvRNNs can match the object recognition performance of much
deeper feedforward models. (a) Architectural differences between ConvRNN cells. Standard ResNet
blocks and SimpleRNN cells have bypassing but no gating. The LSTM cell has gating, denoted by T-
junctions, but no bypassing. The Reciprocal Gated Cell has both. (b) Performance of various Con-
vRNN and feedforward models as a function of number of parameters. Colored points incorporate
the respective ConvRNN cell into the the 6-layer feedforward BaseNet architecture (“FF”). Here “T”
denotes number of timesteps the model is unrolled for, corresponding to the propagation of a single layer
to the next. Hyperparameter-optimized versions of the LSTM (“LSTM Opt”) and Reciprocal Gated Cell
ConvRNNs (“RGC Opt”) are connected to their non-optimized versions by black lines. (c) ConvRNN
cell search. Each blue dot represents a model, sampled from hyperparameter space, trained for 5 epochs.
The orange line is the average performance of the last 50 models up to that time. The red line denotes
the top performing model at that point in the search. Search space schematic: Question marks denote
optional connections, which may be conventional or depth-separable convolutions with a choice of ker-
nel size. (d) Performance of models fully trained on ImageNet. We compared the performance of an
11-layer feedforward base model (“BaseNet”) modeled after ResNet-18, a control ConvRNN model with
trainable time constants (“Time Decay”), along with various other common RNN architectures implanted
into this BaseNet, as well as the median Reciprocal Gated Cell (RGC) model from the search (“RGC
Median”) with or without global feedback connectivity, and its minimally-unrolled control (T = 12).
The “RGC Random” model was selected randomly from the initial, random phase of the model search.
Parameter and unit counts (total number of neurons in the output of each layer) in millions are shown on
top of each bar.
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Figure 3: Suitably-chosen ConvRNN circuits provide consistent predictions of primate ventral
stream neural dynamics. The y-axis indicates the median across neurons of the explained variance
between predictions and ground-truth responses on held-out images divided by the square root of the
internal consistencies of the neurons, defined in Section A.6.3. Error bars indicates the s.e.m across neu-
rons (N = 88 for V4, N = 88 for pIT, N = 80 for cIT/aIT) averaged across 10ms timebins (N = 4
each for the “Early” and “Late” designations). As can be seen, the feedforward BaseNet model (first
bars) is incapable of generating a response beyond the feedforward pass, but certain types of ConvRNN
cells (such as “RGC Median”, “UGRNN”, and “GRU”) added to the feedforward model are overall
best predictive across visual areas at late timepoints (Wilcoxon test (with Bonferroni correction) with
feedforward BaseNet, p < 0.001 for each visual area). “BaseNet (Constant)” refers to the same feedfor-
ward model but presented with a constant image presentation, in contrast to the other models which are
given the same 100ms stimulus presentation as the primate. See Figure S3 for the full timecourses at the
resolution of 10ms bins.
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Figure 4: ConvRNNs explain the object solution times (OST) of IT across images. (a) Mapping
model layers to timepoints. In order to compare to primate IT object solution times, namely the first
time at which the neural decode accuracy for each image reached the level of the (pooled) primate
behavioral accuracy, we first need to define object solution times for models. This procedure involves
identification of the “IT-preferred” layer(s) via a standard linear mapping to temporally averaged IT
responses. (b) Choosing a temporal mapping gradation. These “IT-preferred” model layer(s) are
then mapped to 10ms timebins from 70-260ms in either a uniform or graded fashion, if the model is
feedforward. For ConvRNNs, this temporal mapping is always one-to-one with these 10ms timebins.
(c) Defining model OSTs. Once the temporal mapping has been defined, we train a linear SVM at
each 10ms model timebin and compute the classifier’s d

′
(displayed in each of the black dots for a given

example image). The first timebin at which the model d
′

matches the primate’s accuracy is defined as
the model OST for that image (obtained via linear interpolation). (d) Proper choices of recurrence best
match IT OSTs. Mean and s.e.m. are computed across train/test splits (N = 10) when that image (of
1320 images) was a test-set image, with the Spearman correlation computed with the IT object solution
times (analogously computed from the IT population responses) across the imageset solved by both the
given model and IT, constituting the “Fraction of IT Solved Images” on the x-axis. We start with either a
shallower base feedforward model consisting of 5 convolutional layers and 1 layer of readout (“BaseNet”
in blue) as well as a deeper variant with 10 feedforward layers and 1 layer of readout (“BaseNet” in red),
detailed in Section A.2.1. From these base feedforward models, we embed recurrent cells, resulting in
either “Shallow ConvRNNs” or “Deeper ConvRNNs”.
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Figure 5: ConvRNNs with highest OST consistency conserve on network size while maintaining
task performance. Across all models considered, the Deeper ConvRNNs (denoted by “x”) that at-
tain high categorization performance (x-axis) while maintaining a low unit count (panel B) rather than
parameter count (panel A) for their given performance level, achieve the highest mean OST consis-
tency (Spearman correlation with IT population OST, averaged across N = 10 train/test splits). The
colorbar indicates this mean OST consistency (monotonically increasing from light to dark), binned
into 6 equal ranges (0.04478253 − 0.0769489, 0.0769489 − 0.10911527, 0.10911527 − 0.14128164,
0.14128164 − 0.17344802, 0.17344802 − 0.20561439, and 0.20561439 − 0.23778076). Models with
a larger size at a fixed performance level are less consistent with primate object recognition behavior
(e.g. deep feedforward models, denoted by boxes), with recurrence maintaining a fundamental tradeoff
between network size and task performance.
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A Methods587 587

A.1 Model framework588 588

A.1.1 Software package589 589

To explore the architectural space of ConvRNNs and compare these models with the primate590 590

visual system, we used the Tensorflow library37 to augment standard CNNs with both local591 591

and long-range recurrence (Figure 1). Conduction from one area to another in visual cortex592 592

takes approximately 10ms38, with signal from photoreceptors reaching IT cortex at the top of593 593

the ventral stream by 70-100ms. Neural dynamics indicating potential recurrent connections594 594

take place over the course of 100-260ms20. A single feedforward volley of responses thus595 595

cannot be treated as if it were instantaneous relative to the timescale of recurrence and feedback.596 596

Hence, rather than treating each entire feedforward pass from input to output as one integral time597 597

step, as is normally done with RNNs10, each time step in our models corresponds to a single598 598

feedforward layer processing its input and passing it to the next layer. This choice required599 599

an unrolling scheme different from that used in the standard Tensorflow RNN library, the code600 600

for which (and for all of our models) can be found at in our TNN Github repository: https:601 601

//github.com/neuroailab/tnn.602 602

A.1.2 Defining ConvRNNs603 603

Within each ConvRNN layer, feedback inputs from higher layers are resized to match the spatial604 604

dimensions of the feedforward input to that layer. Both types of input are processed by standard605 605

2-D convolutions. If there is any local recurrence at that layer, the output is next passed to the606 606

recurrent cell as input. Feedforward and feedback inputs are combined within the recurrent cell607 607

by spatially resizing the feedback inputs (via bilinear interpolation) and concatenating these608 608

with the feedforward input across the channel dimension. We let ⊕ denote this concatenation609 609

along the channel dimension with appropriate resizing to align spatial dimensions. Finally, the610 610
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output of the cell is passed through any additional nonlinearities, such as max-pooling. The611 611

generic update rule for the discrete-time trajectory of such a network is thus:612 612

h`t = C`

(
F`

(⊕
j 6=`

rjt

)
, h`t−1

)
r`t = A`(h

`
t),

(1)

where r`t is the output of layer ` at time t, h`t−1 is the hidden state of the locally recurrent cell C`613 613

at time t − 1, and A` is the activation function and any pooling post-memory operations. The614 614

learned parameters of such a network consist of F`, comprising any feedforward and feedback615 615

connections coming into layer ` = 1, . . . , L, and any of the learned parameters associated with616 616

the local recurrent cell C`.617 617

In this work, all forms of recurrence add parameters to the feedforward base model. Because618 618

this could improve task performance for reasons unrelated to recurrent computation, we trained619 619

two types of control model to compare to ConvRNNs:620 620

1. Feedforward models with more convolution filters (“wider”) or more layers (“deeper”) to621 621

approximately match the number of parameters in a recurrent model.622 622

2. Replicas of each ConvRNN model unrolled for a minimal number of time steps, defined623 623

as the number that allows all model parameters to be used at least once. A minimally un-624 624

rolled model has exactly the same number of parameters as its fully unrolled counterpart,625 625

so any increase in performance from unrolling longer can be attributed to recurrent com-626 626

putation. Fully and minimally unrolled ConvRNNs were trained with identical learning627 627

hyperparameters.628 628

A.1.3 Training Procedure629 629

All models (both feedforward and ConvRNN) used the standard ResNet preprocessing provided630 630

by TensorFlow here: https://github.com/tensorflow/tpu/blob/master/models/631 631
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official/resnet/resnet_preprocessing.py. Furthermore, they were trained on632 632

224 pixel ImageNet with stochastic gradient descent with momentum (SGDM)39, using a mo-633 633

mentum value of 0.9.634 634

We allowed the base learning rate, batch size, and L2 regularization strength to vary for each635 635

model, depending on what was optimal in terms of top-1 validation accuracy for that model. All636 636

models (except for AlexNet) used the ResNet training schedule40, whereby the base learning637 637

rate is decayed by 90% at 30, 60, and 80 epochs, training for 90 epochs total. The AlexNet had638 638

its base learning rate of 0.01 subsequently decayed to 0.005, 0.001, and 0.0005, at 30, 60, and639 639

80 epochs, respectively. We list these values for each model in the table below:640 640

641 641

Model Class Base Learning Rate Batch Size L2 Regularization
AlexNet 0.01 1024 5× 10−4

6-layer BaseNet 0.01 256 1× 10−4

Shallow ConvRNNs 0.01 256 1× 10−4

11-layer BaseNet 0.0025 64 1× 10−4

ResNets 0.025 64 1× 10−4

Deeper ConvRNNs 0.0025 64 1× 10−4

642 642

643 643

The only exceptions to the above are the models that are the result of the large-scale hyper-644 644

parameter searches, detailed in Section A.4. Here the learning rate and batch size are allowed645 645

to vary, and the L2 regularization is not uniform across the model, but is also allowed to vary646 646

for both the feedforward backbone and each layer’s ConvRNN cell. We list the learning rates647 647

and batch sizes for these models below:648 648

649 649

Model Base Learning Rate Batch Size
Shallow LSTM (“LSTM Opt” in Figure 2b) 7.587× 10−3 64
RGC Random 5.184× 10−3 64
RGC Median 6.736× 10−3 64

650 650

651 651

Since these model hyperparameters are non-standard, we manually drop the learning rate652 652

(using the same decay factor of 90%) once the top-1 validation accuracy saturates at that given653 653
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learning rate.654 654

A.2 Feedforward model architectures655 655

A.2.1 BaseNet architectures656 656

Here we provide the architectures of the feedforward CNNs we developed in this paper, re-657 657

ferred to as “BaseNet” when they are later implanted with ConvRNN cells. For all of these658 658

architectures, we use ELU nonlinearities41.659 659

The 6-layer BaseNet (into which we implanted ConvRNN cells to form the orange “Shallow660 660

ConvRNN” model class in Figure 4d), referenced as “FF” in Figure 2b, referred to as “BaseNet”661 661

among the blue “Shallow Feedforward” models in Figure 4d, and “Feedforward” in Figure S2c,662 662

had the following architecture:663 663

664 664

Layer Kernel Size Channels Stride Max Pooling
1 7× 7 64 2 2× 2
2 3× 3 128 1 2× 2
3 3× 3 256 1 2× 2
4 3× 3 256 1 2× 2
5 3× 3 512 1 2× 2
6 2× 2 1000 1 No

665 665

666 666

The 11-layer BaseNet used for the “Deeper ConvRNNs” (green models in Figure 4d) and667 667

modeled after ResNet-1840 (but using MaxPooling rather than stride-2 convolutions to perform668 668

downsampling) is given below:669 669

670 670
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Block Kernel Size Depth Stride Max Pooling Repeat
1 7× 7 64 2 2× 2 ×1
2 3× 3 64 1 None ×2
3 3× 3 64 1 None ×2
4 3× 3 128 1 2× 2 ×2
5 3× 3 128 1 None ×2
6 3× 3 256 1 2× 2 ×2
7 3× 3 256 1 2× 2 ×2
8 3× 3 512 1 None ×2
9 3× 3 512 1 None ×2
10 3× 3 512 1 2× 2 ×2
11 None (Avg. Pool FC) 1000 None None ×1

671 671

672 672

This is the BaseNet used in Figure 3, among the red “Deeper Feedforward” models in Fig-673 673

ure 4d, Figure S4, and Figure S5.674 674

The variant of the above 6-layer feedforward CNN, referenced in Figure 2b as “FF Wider”675 675

is given below:676 676

677 677

Layer Kernel Size Channels Stride Max Pooling
1 7× 7 128 2 2× 2
2 3× 3 512 1 2× 2
3 3× 3 512 1 2× 2
4 3× 3 512 1 2× 2
5 3× 3 1024 1 2× 2
6 2× 2 1000 1 None

678 678

679 679

The “FF Deeper” model referenced in Figure 2b is given below:680 680

681 681
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Layer Kernel Size Depth Stride Max Pooling
1 7× 7 64 2 2× 2
2 3× 3 64 1 None
3 3× 3 64 1 None
4 3× 3 128 1 2× 2
5 3× 3 128 1 None
6 3× 3 256 1 2× 2
7 3× 3 256 1 2× 2
8 3× 3 512 1 None
9 3× 3 512 1 None
10 3× 3 512 1 2× 2
11 None (Avg. Pool FC) 1000 None None

682 682

683 683

A.2.2 AlexNet684 684

We use the standard AlexNet architecture, which uses local response normalization26. We note685 685

that we are able to attain a higher than reported top-1 validation accuracy of 63.9% (compared686 686

to 57% accuracy) by using the ResNet preprocessing mentioned in Section A.1.3.687 687

A.2.3 ResNet Architectures688 688

For the ResNet architectures, we used the original v1 versions40 for ResNet-18 and ResNet-689 689

34. For deeper ResNets (ResNet-50, ResNet-101, and ResNet-152), we used the v2 variants690 690

of ResNets, as this gave them a slightly higher increase in top-1 ImageNet validation accuracy.691 691

Specifically, the v2 variants of ResNets use the pre-activation of the weight layers rather than692 692

the post-activation used in the original versions. Furthermore, the v2 variants of ResNets apply693 693

batch normalization42 and ReLU to the input prior to the convolution, whereas the original vari-694 694

ants apply these operations after the convolution. We use the TensorFlow Slim implementations695 695

for these two variants provided here: https://github.com/tensorflow/models/696 696

tree/master/research/slim.697 697
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A.3 ConvRNN Cell Equations698 698

Here we provide the explicit update equations for each of the ConvRNN cells referenced in the699 699

barplot in Figure 2d (C` in (1)), where σ denotes the sigmoid function.700 700

Throughout these sections, we let ◦ denote Hadamard (elementwise) product, let ∗ denote701 701

convolution, let h`t denote the output of the cell, let s`t denote the propagated memory of the cell702 702

(also known as the hidden state), and let x`t =
⊕

j 6=` r
j
t denote the input to the cell at layer ` (this703 703

is the concatenation of feedforward and feedback inputs to layer `, defined in Section A.1.2).704 704

In the following table, we provide the number of timesteps the ConvRNNs were unrolled705 705

for, and the timestep at which the image presentation was replaced by a mean gray stimulus706 706

during model training:707 707

708 708

Model Class Unroll Timesteps Image Presentation Off Timestep
Shallow ConvRNNs 16 12
Deeper ConvRNNs 17 12
RGC Random 26 10

709 709

710 710

These parameters were chosen based on what yielded high performance for that model class711 711

and also what was able to feasibly fit into TPU memory for training (more unroll timesteps re-712 712

quires more memory, but can also lead to instability during training, as is common with training713 713

RNNs43).714 714

For the “Shallow ConvRNNs”, ConvRNN cells were implanted into convolutional layers 3,715 715

4, and 5 of the 6-layer BaseNet. For the “Deeper ConvRNNs”, ConvRNN cells were implanted716 716

into convolutional layers 4, 5, 6, 7, 8, 9, and 10 of the 11-layer BaseNet.717 717
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A.3.1 Time Decay718 718

This is the simplest form of recurrence that we consider and has a discrete-time trajectory given719 719

by720 720

s`t = F`
(
x`t
)
+ τ`s

`
t−1

h`t = s`t,
(2)

where τ` is the learned time constant at a given layer `. This model is intended to be a control721 721

for simplicity, where the time constants could model synaptic facilitation and depression in a722 722

cortical layer.723 723

For the TensorFlow implementation of this cell, see the GenFuncCell() class and its724 724

associated memory() function in the cell.py file of our TNN Github repository.725 725

A.3.2 SimpleRNN726 726

The update equations in this case are given by:727 727

a`t = W `
s ∗ s`t−1 + b`s

i`t = W `
i ∗ x`t + b`i

s`t = elu(LN(i`t + a`t))

h`t = s`t,

(3)

where LN denotes the layer normalization operation44 with offset parameter β initialized to 0728 728

and scale parameter γ initialized to 1. For the shallow SimpleRNN (among the orange “Shallow729 729

ConvRNN” models in Figure 4d), we use layer normalization but omit its usage in the deeper730 730

ConvRNN as it was not able to train with that operation.731 731

For the TensorFlow implementation of this cell, see the ConvNormBasicCell() class732 732

in the convrnn.py file of our TNN Github repository.733 733
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A.3.3 GRU734 734

We adapt the standard GRU cell45 to the convolutional setting:735 735

r`t = σ(W `
r ∗ x`t + U `

r ∗ s`t−1 + b`r + 1)

u`t = σ(W `
u ∗ x`t + U `

u ∗ s`t−1 + b`u)

c`t = tanh(W `
c ∗ x`t + U `

c ∗ (r`t ◦ s`t−1) + b`c)

s`t = u`t ◦ s`t−1 + (1− u`t) ◦ c`t

h`t = s`t.

(4)

For the TensorFlow implementation of this cell, see the ConvGRUCell() class in the736 736

convrnn.py file of our TNN Github repository.737 737

A.3.4 LSTM738 738

We adapt the standard LSTM cell46 to the convolutional setting, with some slight modifications739 739

such as added layer normalization for stability in training.740 740

We first make the gates convolutional as follows:741 741

i`t = LN(W `
i ∗ x`t + U `

i ∗ h`t−1 + b`i)

j`t = LN(W `
j ∗ x`t + U `

j ∗ h`t−1 + b`j)

f `t = LN(W `
f ∗ x`t + U `

f ∗ h`t−1 + b`f )

o`t = LN(W `
o ∗ x`t + U `

o ∗ h`t−1 + b`o),

(5)

where LN denotes the layer normalization operation44 with offset parameter β initialized to 0742 742

and scale parameter γ initialized to 1.743 743

Next, the LSTM update equations are as follows:744 744

s`t = LN(s`t−1 ◦ σ(f `t + f `b ) + σ(i`t) ◦ tanh(j`t ))

h`t = tanh(s`t) ◦ σ(o`t),
(6)
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where f `b is the forget gate bias, typically set to 1, as recommended by others47. When peephole745 745

connections48 are allowed, these update equations are augmented to become:746 746

s`t = LN(s`t−1 ◦ σ(f `t + f `b + V `
f ◦ s`t−1) + σ(i`t + V `

i ◦ s`t−1) ◦ tanh(j`t ))

h`t = tanh(s`t) ◦ σ(o`t + V `
o ◦ s`t−1).

(7)

In the shallow LSTM (among the orange “Shallow ConvRNN” models in Figure 4d), we use747 747

peepholes and layer normalization, as that was found in the LSTM search for shallow models748 748

(described in Section A.4.1) to be useful for performance. We found, however, that neither of749 749

these augmentations are needed in the deeper variant (among the green “Deeper ConvRNN”750 750

models in Figure 4d) in order to achieve high top-1 validation accuracy on ImageNet.751 751

For the TensorFlow implementation of this cell, see the ConvLSTMCell() class in the752 752

convrnn.py file of our TNN Github repository.753 753

A.3.5 UGRNN754 754

We adapt the UGRNN25 to the convolutional setting. The update equations are as follows:755 755

c`t = tanh(W `
c ∗ x`t + U `

c ∗ s`t−1 + b`c)

g`t = σ(W `
g ∗ x`t + U `

g ∗ s`t−1 + b`g + 1)

s`t = g`t ◦ s`t−1 + (1− g`t) ◦ c`t

h`t = s`t.

(8)

For the TensorFlow implementation of this cell, see the ConvUGRNNCell() class in the756 756

convrnn.py file of our TNN Github repository.757 757
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A.3.6 IntersectionRNN758 758

We adapt the IntersectionRNN25 to the convolutional setting. The update equations are as759 759

follows:760 760

m`
t = tanh(W `

m ∗ x`t + U `
m ∗ s`t−1 + b`m)

n`t = relu(W `
n ∗ x`t + U `

n ∗ s`t−1 + b`n)

p`t = σ(W `
p ∗ x`t + U `

p ∗ s`t−1 + b`p + 1)

y`t = σ(W `
y ∗ x`t + U `

y ∗ s`t−1 + b`y + 1)

s`t = p`t ◦ s`t−1 + (1− p`t) ◦m`
t

h`t = y`t ◦ x`t + (1− y`t) ◦ n`t.

(9)

For the TensorFlow implementation of this cell, see the ConvIntersectionRNNCell()761 761

class in the convrnn.py file of our TNN Github repository.762 762

A.3.7 Reciprocal Gated Cell (RGC)763 763

Here we provide the explicit update equations for the Reciprocal Gated Cell27, diagrammed in764 764

Figure 2a (bottom right). The update equation for the output of the cell, h`t , is given by a gating765 765

of both the input and memory s`t:766 766

a`t+1 = (1− σ(W `
sh ∗ s`t)) ◦ x`t + (1− σ(W `

hh ∗ h`t)) ◦ h`t

h`t = elu
(
a`t
)
.

(10)

The update equation for the memory s`t is given by a gating of the input and the output of767 767

the cell h`t:768 768

s̃`t+1 = (1− σ(W `
hs ∗ h`t)) ◦ x`t + (1− σ(W `

ss ∗ s`t)) ◦ s`t

s`t = elu(s̃`t).
(11)

For the TensorFlow implementation of this cell, see the ReciprocalGateCell() class769 769

in the reciprocalgaternn.py file of our TNN Github repository.770 770
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A.4 ConvRNN Searches771 771

We employed a form of Bayesian optimization, a Tree-structured Parzen Estimator (TPE),772 772

to search the space of continuous and categorical hyperparameters49. This algorithm con-773 773

structs a generative model of P [score | configuration] by updating a prior from a maintained774 774

history H of hyperparameter configuration-loss pairs. The fitness function that is optimized775 775

over models is the expected improvement, where a given configuration c is meant to optimize776 776

EI(c) =
∫
x<t

P [x | c,H]. This choice of Bayesian optimization algorithm models P [c | x] via777 777

a Gaussian mixture, and restricts us to tree-structured configuration spaces.778 778

Models were trained synchronously 100 models at a time using the HyperOpt package50,779 779

which implements the above Bayesian optimization. Each model was trained on its own Tensor780 780

Processing Unit (TPUv2), and during the search, ConvRNN models were trained by stochastic781 781

gradient descent on 128 pixel ImageNet for efficiency. The top performing ConvRNN models782 782

were then fully trained out on 224 pixel ImageNet.783 783

A.4.1 LSTM search784 784

The search for better LSTM architectures involved searching over training hyperparameters785 785

and common structural variants of the LSTM to better adapt this local structure to deep con-786 786

volutional networks, using hundreds of second generation Google Tensor Processing Units787 787

(TPUv2s). We searched over learning hyperparameters (e.g. gradient clip values, learning rate)788 788

as well as structural hyperparameters (e.g. gate convolution filter sizes, channel depth, whether789 789

or not to use peephole connections, etc.).790 790

Specifically, we implanted LSTMs into convolutional layers 3, 4, and 5, of the 6-layer791 791

BaseNet described in Section A.2. At each of these layers, the parameters of the LSTM cell792 792

(defined in Section A.3.4) were allowed to vary per layer, as follows:793 793

• The discrete number of convolutional channels was chosen from {64, 128, 256}.794 794
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• The discrete choice of convolutional filter sizes were chosen from {1, 4}.795 795

• The binary choice of whether or not to use layer normalization.796 796

• The strength of the L2 regularization of all LSTM parameters in that layer ∈ [10−7, 10−3],797 797

sampled log-uniformly.798 798

• The scale of the He-style initialization51 of the convolutional filter weights ∈ [0.25, 2],799 799

sampled uniformly.800 800

• The value of the constant initialization of the biases ∈ [−2, 2], sampled uniformly.801 801

• The forget gate bias f `b ∈ [0, 6], sampled uniformly (defined in (6)).802 802

• The binary choice of whether or not to use peephole connections (as defined in (7)).803 803

Outside of the LSTM cell at each layer, we additionally searched over the following param-804 804

eters as well:805 805

• The number of discrete timesteps the model is unrolled ∈ [12, 26], sampled uniformly in806 806

consecutive groups of size 2.807 807

• The timestep at each the image presentation is “turned off” and replaced with a mean808 808

gray stimulus ∈ [8, 12], sampled uniformly in consecutive groups of 2.809 809

• The discrete choice of batch size used for the training the entire model ∈ {64, 128, 256}.810 810

• The learning rate for training the entire model ∈ [10−3, 10−1], sampled log-uniformly.811 811

• The binary choice of whether or not to use Nesterov momentum52.812 812

• The gradient clipping value ∈ [0.3, 3], sampled log-uniformly.813 813
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• The scale of the He-style initialization51 of the convolutional filter weights of the feed-814 814

forward base model ∈ [0.25, 2], sampled uniformly.815 815

• The strength of the L2 regularization of the feedforward base model parameters∈ [10−7, 10−3],816 816

sampled log-uniformly.817 817

Each search point is a sampled value from the above described search space and trained for 1818 818

epoch on ImageNet, in order to sample as many models as much as possible with the compu-819 819

tational resources available. More than 1600 models were sampled in total, and we trained out820 820

the top ones and the median performing one after 1 epoch were trained out fully on 224 pixel821 821

ImageNet. The median model from this search attained the best top-1 validation accuracy on822 822

ImageNet, which is the resultant “LSTM Opt” model in Figure 2b.823 823

A.4.2 Reciprocal Gate Cell (RGC) search824 824

From the Reciprocal Gated Cell equations in (10) and (11), there are a variety of possibilities825 825

for how h`t−1, x
`
t, s

`
t , and h`t can be connected to one another (schematized in Figure 2c).826 826

Mathematically, the search in Figure 2c can be formalized in terms of the following update

equations. First, we define our input sets and building block functions:

minin = {h`−1t−1, x
`
t, s

`
t−1, h

`
t−1}

minina = minin ∪ {s`t}

mininb = minin ∪ {h`t}

Sa ⊆ minina

Sb ⊆ mininb

Affine(x) ∈ {+, 1× 1 conv, K ×K conv, K ×K depth-separable conv}

K ∈ {3, . . . , 7}
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With those in hand, we have the following update equations:

τa = vτ1 + vτ2σ(Affine(Sa))

τb = vτ1 + vτ2σ(Affine(Sb))

gatea = vg1 + vg2σ(Affine(Sa))

gateb = vg1 + vg2σ(Affine(Sb))

a`t = {gatea} · in`t + {τa} · h`t−1

h`t = f(a`t)

b`t = {gateb} · in`t + {τb} · s`t−1

s`t = f(b`t)

f ∈ {elu, tanh, σ}.

For clarity, the following matrix summarizes the connectivity possibilities (with ? denoting the827 827

possibility of a connection), schematized in Figure 2c:828 828



h`−1
t−1 x`t s`t−1 s`t h`t−1 h`t

h`−1
t−1 0 1 0 ? 0 ?
x`t 0 0 0 ? 0 ?
s`t−1 0 0 0 ? 0 ?
s`t 0 0 0 0 0 ?
h`t−1 0 0 0 ? 0 ?
h`t 0 0 0 ? 0 0


Each search point is a sampled value from the above described search space and trained829 829

for 5 epochs on ImageNet, in order to sample as many models as much as possible with the830 830

computational resources available. Around 6000 models were sampled in total over the course831 831

of the search. The top and median models from this search were then fully trained out on832 832

224 pixel ImageNet with a batch size of 64 (which was maximum that we could fit into TPU833 833

memory). Moreover, as explicated in the table in Section A.1.3, the ResNet models were also834 834

trained using this same batch size, with the standard ResNet learning rate of 0.1 for a batch835 835

size of 256 linearly rescaled to accomodate, to ensure fair comparison between these two model836 836
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classes. The median model from this search attained the best top-1 validation accuracy on837 837

ImageNet of all models selected to be trained out fully on ImageNet from the search, producing838 838

the resultant “RGC Median” model in Figure 2d (note that this designation also includes the839 839

long-range feedback connections). The “RGC Random” model is from the random phase of840 840

this search (400th sampled model, since models sampled earlier than that failed to train out841 841

fully on ImageNet).842 842

A.5 Decoders843 843

In addition to choice of ConvRNN cell, we consider particular choices of “light-weight” (in844 844

terms of parameter count) decoding strategy that determines the final object category of that845 845

image. By construction, the model will output category logit probabilities at each timestep,846 846

given by the softmax function softmax(z; β) =
eβzi∑C
j=1 e

βzj
, where C = 1000 is the number of847 847

ImageNet categories. This will then be passed to a decoding function which can take one of848 848

several forms:849 849

1. Default: Use the logits at the last timestep and discard the remaining, with β = 1.850 850

2. Threshold Decoder: Select the logits from the first timepoint at which the maximum851 851

logit value at that timepoint crosses a fixed threshold (set to 0.9), with β = 1.852 852

3. Max Confidence Decoder: For the most confident category, find the timepoint at which853 853

that confidence peaks, and return the logits at that timepoint, where β is a trainable scalar854 854

parameter initialized to 1.855 855

“RGC Median” therefore refers to the model trained using the default decoder, but when using856 856

the other two decoders with the “RGC Median” model, we append it to the name (as is done in857 857

Figures 4d, S4a, and S5).858 858
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A.6 Model prediction of neural responses859 859

A.6.1 Neural data860 860

Neural responses came from three multi-unit arrays per primate (rhesus macques): one im-861 861

planted in V4, one in posterior IT (pIT), and one in central and anterior IT (cIT/aIT)29. Each862 862

image was presented approximately 50 times, using rapid visual stimulus presentation (RSVP).863 863

Each stimulus was presented for 100ms, followed by a mean gray stimulus interleaved between864 864

images. Each trial lasted 260ms. The image set consisted of 5120 images based on 64 ob-865 865

ject categories. These objects belonged to 8 high-level categories (tables, planes, fruits, faces,866 866

chairs, cars, boats, animals), each of which consisted of 8 unique objects. Each image consisted867 867

of a 2D projection of a 3D model added to a random background. The pose, size, and x- and868 868

y-position of the object was varied across the image set, whereby 2 levels of variation were869 869

used (corresponding to medium and high variation29). Multi-unit responses to these images870 870

were binned in 10ms windows, averaged across trials of the same image, and normalized to871 871

the average response to a blank image. This produced a set of 5120 images x 256 units x 25872 872

timebins responses, which were the targets for our model features to predict. There were 88873 873

units from V4, 88 units from pIT, and 80 units from cIT/aIT.874 874

A.6.2 Fitting procedure875 875

Generating train/test split. The 5120 images were split 75%-25% within each object category876 876

into a training set and a held-out testing set. All images were presented to the models for 10877 877

time steps (corresponding to 100ms), followed by a mean gray stimulus for the remaining 15878 878

time steps, to match the image presentation to the primates. The images are matched to the879 879

procedure when used to validate the models on ImageNet, namely they are bilinearly resized to880 880

224× 224 and normalized by the ImageNet mean ([0.485, 0.456, 0.406]) and standard deviation881 881

([0.229, 0.224, 0.225]), applied per channel.882 882
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Model layer determination. We stipulated that units from each multi-unit array must be883 883

fit by features from a single model layer. To determine which one, we fit the features from884 884

the relevant feedforward BaseNet (either the 6-layer BaseNet or 11-layer BaseNet) to unit’s885 885

time-averaged response, and counted how many units had minimal loss for a given model layer,886 886

schematized in Step 2 of Figure 1. This yielded a mapping from the V4 array to model layer 3887 887

of the 6-layer BaseNet and model layers 5 & 6 of the 11-layer BaseNet, pIT mapping to model888 888

layer 4 of the 6-layer BaseNet and model layers 7 & 8 of the 11-layer BaseNet, and cIT/aIT889 889

mapping to layer 5 of the 6-layer BaseNet and model layers 9 & 10 of the 11-layer BaseNet.890 890

Mapping transform from models to neural responses. Model features from each image891 891

(i.e. the activations of units in a given model layer) were linearly fit to the neural responses892 892

by stochastic gradient descent with a standard L2 loss using a spatially factored mapping53,893 893

where each of the 256 units was fit independently. This spatially factored mapping is defined as894 894

follows: Given a model feature f ` ∈ Rx,y,c from layer `, where x and y are the number of units895 895

in the spatial extent and c is the number of channels, we fit a spatial mask wspace ∈ Rx,y and896 896

a channel mask wchannels ∈ Rc for each neuron n to predict the ground-truth neuron’s response897 897

ri,n,t at image i and timebin t. The predicted response can be written as:898 898

r̂i,n,t;w =
x∑
i=1

y∑
j=1

c∑
k=1

wspace[i, j]wchannels[k]f
`[i, j, k]. (12)

This mapping is implemented in the factored fc() function of the cell.py file of our899 899

TNN Github repository.900 900

Loss function. After these layers were determined, model features were then fit to the entire901 901

set of 25 timebins for each unit using a shared linear model: that is, a single set of regression902 902

coefficients was used for all timebins, as schematized in Step 3 of Figure 1. The loss for this903 903

fitting was the average L2 loss across training images and 25 timebins for each unit, given by904 904

L(r̂i,n,t;w, ri,n,t) =
1

|B|

25∑
t=6

∑
i∈B

256∑
n=1

(r̂i,n,t;w − ri,n,t)2 . (13)
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Note that t indexes model timesteps, which correspond to 10ms timebins, so t = 6 refers to the905 905

60-70ms timebin, t = 7 refers to the 70-80ms timebin, and so forth.906 906

We trained the temporally-fixed parameters w = [wspace;wchannels] of the mapping using the907 907

Adam optimizer54 with a learning rate of 1 × 10−4 and a training batch size |B| = 64 images.908 908

Additionally, we used a dropout55 level of 0.5 on the model features, prior to the mapping, as909 909

further regularization.910 910

A.6.3 Metrics911 911

To estimate a noise ceiling for each neuron’s response at each timebin, we computed the912 912

Spearman-Brown corrected split-half reliability ρn of neuron n, averaged across 900 bootstrap913 913

iterations of split-half trials.914 914

Let “Neural Predictivity” (used in Figure S2) refer to915 915

Corr(r̂test, rtest
n ), (14)

namely the Pearson correlation across test set images of the model’s response r̂test to the of any916 916

neuron n’s response rtest
n at a given timebin (or time-averaged).917 917

The “Neural Predictivity (Noise Corrected)” (used in Figure 3 and Figure S4) for neuron n918 918

is given by919 919

Corr(r̂test, rtest
n )

√
ρn

. (15)

A.7 Inter-animal consistency920 920

We provide the definition and justification of the inter-animal consistency metric mentioned in921 921

Figure S4b. Suppose we have neural responses from two primates A and B. Let tpi be the vector922 922

of true responses (either at a given timebin or averaged across a set of timebins) of primate923 923

p ∈ {A,B} on stimulus set i ∈ {train, test}. Of course, we only receive noisy observations of924 924

tpi , so let spj,i be the j-th set of n trials of tpi . Finally, let M(x)i be the predictions of a mapping925 925
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M (e.g. PLS) when trained on input x and tested on stimulus set i. For example, M (tptrain)test926 926

is the prediction of the mapping M on the test stimulus trained on the true neural responses927 927

from primate p on the train stimulus, and correspondingly, M
(
sp1,train

)
test

is the prediction of the928 928

mapping M on the test stimulus trained on the (trial-average) of noisy sample 1 on the train929 929

stimulus from primate p.930 930

With these definitions in hand, the inter-animal mapping consistency from one primate A to931 931

another primate B corresponds to the following true quantity to be estimated:932 932

Corr
(
M
(
tAtrain

)
test , t

B
test

)
, (16)

where Corr is the Pearson correlation across test stimuli. In what follows, we argue that this933 933

true quantity can be approximated with the following ratio of measurable quantities where we934 934

divide the noisy trial observations into two sets of equal samples:935 935

Corr
(
M
(
tAtrain

)
test , t

B
test

)
∼

Corr
(
M
(
sA1,train

)
test
, sB2,test

)
√

Corr
(
M
(
sA1,train

)
test
,M

(
sA2,train

)
test

)
× Corr

(
sB1,test, s

B
2,test

) .
(17)

In words, the inter-animal consistency corresponds to the predictivity of the mapping on the test936 936

set stimuli from primate A to B on two different (averaged) halves of noisy trials, corrected by937 937

the square root of the mapping reliability on primate A’s test stimuli responses on two different938 938

halves of noisy trials and the internal consistency of primate B.939 939

We justify the approximation in (17) by gradually eliminating the true quantities by their940 940

measurable estimates, starting from the original quantity in (16). First, we make the approxi-941 941

mation that942 942

Corr
(
M
(
tAtrain

)
test , s

B
2,test

)
∼ Corr

(
M
(
tAtrain

)
test , t

B
test

)
× Corr

(
tBtest, s

B
2,test

)
. (18)

by transitivity of positive correlations (which is reasonable assumption when the number of943 943

stimuli is large). Next, by normality assumptions in the structure of the noisy estimates and944 944
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since the number of trials (n) between the two sets is the same, we have that945 945

Corr
(
sB1,test, s

B
2,test

)
∼ Corr

(
tB2 , s

B
2,test

)2
. (19)

Namely, the correlation between the average of two sets of noisy observations of n trials each946 946

is approximately the square of the correlation between the true value and average of one set of947 947

n noisy trials. Therefore, from (18) and (19) it follows that948 948

Corr
(
M
(
tAtrain

)
test , t

B
test

)
∼

Corr
(
M
(
tAtrain

)
test , s

B
2,test

)√
Corr

(
sB1,test, s

B
2,test

) . (20)

We have gotten rid of tB2 , but we still need to get rid of the M
(
tAtrain

)
test term. We apply the

same two steps by analogy though these approximations may not always be true (though are

true for additive Gaussian noise):

Corr
(
M
(
sA1,train

)
test
, sB2,test

)
∼ Corr

(
sB2,test,M

(
tAtrain

)
test

)
× Corr

(
M
(
tAtrain

)
test ,M

(
sA1,train

)
test

)
Corr

(
M
(
sA1,train

)
test
,M

(
sA2,train

)
test

)
∼ Corr

(
M
(
sA1,train

)
test
,M

(
tAtrain

)
test

)2
,

which taken together implies949 949

Corr
(
M
(
tAtrain

)
test , s

B
2,test

)
∼

Corr
(
M
(
sA1,train

)
test
, sB2,test

)
√

Corr
(
M
(
sA1,train

)
test
,M

(
sA2,train

)
test

) . (21)

Equations (20) and (21) together imply the final estimated quantity given in (17).950 950

A.8 Object solution times (OSTs)951 951

A.8.1 Generating model OSTs952 952

Here we describe how we defined object solution times from both feedforward models and953 953

ConvRNNs. As depicted in Figure 4a, this is a multi-stage process that involves first identifying954 954

the most “IT-preferred” layers of each model.955 955
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Determining “IT-preferred” model layers. These are identified by a standard4,17 linear map-956 956

ping using 25 component partial least squares regression (PLS), from model layer units to time-957 957

averaged IT (namely, pIT/cIT/aIT) responses from the neural data described in Section A.6.1,958 958

and corroborates the results obtained by the same procedure described in Section A.6.2. We959 959

use this neural data as it has both V4 and IT responses, and demonstrates a disjoint set of layers960 960

between the preferred V4 model layers and preferred IT layers.961 961

Mapping model timepoints to IT timepoints. Once these “IT-preferred” model layers are962 962

identified, we then map these model timepoints to 10ms timebins as in the IT data. For Con-963 963

vRNNs with intrinsic temporal dynamics, this mapping is one-to-one, we simply concatenate964 964

the model layers at each timepoint to construct an entire IT pseudopopulation, and each time-965 965

point of the ConvRNN corresponds to a 10ms timebin between 70-260ms. For feedforward966 966

models, we map each “IT-preferred” layer to a 10ms timebin between 70-260ms. If the number967 967

of “IT-preferred” layers for a feedforward model matches the total number of timebins (19),968 968

then there is only one admissible mapping, corresponding to the “uniform” mapping, whereby969 969

the earliest (in the feedforward hierarchy) layer is matched to the earliest 10ms timebin of 70ms,970 970

and so forth. On the other hand, if the number of “IT-preferred” layers is strictly less than the971 971

total number of timebins, then we additionally consider a “graded” mapping that picks a ran-972 972

dom sample of units from one layer to the next so that the number of feedforward layers exactly973 973

matches the total number of timebins.974 974

Obtaining model d
′

values. Once a timepoint mapping is selected, we compute the model975 975

object solution time (OST) in the same manner as the OST is computed for IT17. Specifically,976 976

we train an SVM (C = 5×104) separately for each model timepoint after it has been dimension977 977

reduced through PCA (with 1000 components) to solve the ten-way categorization task for each978 978

image. The ten categories are apple, bear, bird, car, chair, dog, elephant, person, plane, and979 979

zebra. 1000 images constitute the training set of the SVM (100 images per category) and 320980 980
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images are randomly chosen to be in the test set. We perform 20 trials each of 10 train/test981 981

splits to get errorbars, where each image is in the test set at least once. The (model or IT) d′982 982

for that image is only computed from the SVM when it has been in the test set, and is bounded983 983

between -5 and 5. Since this dataset consists of 1,320 grayscale images presented centrally to984 984

behaving primates for 100ms, there are therefore 1,320 d′ values (one for each image) for any985 985

given model, consituting its “I1” vector30.986 986

Correlating model OST with IT OST. The OST of the model therefore is the first model987 987

timepoint in which the d′ reaches the recorded primate d′ for that image. Using the Leven-988 988

berg–Marquardt algorithm, we further linearly interpolate between 10ms bins to determine the989 989

precise millisecond that the response surpassed the primate’s behavioral output for that image990 990

(as was done analogously with the IT population’s OST). Finally, we compare the model OST991 991

to the IT OST via a Spearman correlation across the common set of images solved by both the992 992

model and IT.993 993

A.8.2 Relating the linear mapping to neural responses with the OST behavioral metric994 994

The IT population OST was computed from primarily anterior IT (aIT) responses17. Therefore,995 995

to isolate the interaction a linear mapping of model features to neural responses (as we do in996 996

neural response prediction described in Section A.6) might have compared to directly comput-997 997

ing the OST from the original model features, we turned to neural data collected from 486 aIT998 998

units on 1100 greyscale images.999 999

For each model, we train a linear mapping on this dataset, with 550 images used for training1000 1000

the mapping and 550 images are held-out for the test set. We observe similar conclusions as with1001 1001

the original neural data in Section A.6 for both the temporally-fixed linear mapping in Figure S31002 1002

(in the “aIT” panel), and with a temporally-varying PLS mapping in Figure S4 (“aIT” in panel1003 1003

(a) as well as the data used in panel (b)), all from layer 10 of the 11-layer BaseNet/ConvRNNs.1004 1004
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With these observations, we then proceeded to evaluate the effect of the linear mapping1005 1005

on OST correlations in Figure S5. Crucially, in this setting, we train a 100 component PLS1006 1006

mapping on the 526 images for which an IT d′ is not defined, in order to ensure that the images1007 1007

from Section A.8.1 that the OST correlation is evaluated on are not the same images the PLS1008 1008

mapping was trained with.1009 1009
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Extended Data1010 1010

Model Visual Area Wilcoxon test p-value
Time Decay V4 < 0.001
IntersectionRNN V4 < 0.001
LSTM V4 < 0.001
UGRNN V4 < 0.001
GRU V4 < 0.001
SimpleRNN V4 < 0.001
RGC Random V4 < 0.001
RGC Median V4 < 0.01

Time Decay pIT 0.022
IntersectionRNN pIT < 0.001
LSTM pIT < 0.001
UGRNN pIT < 0.001
GRU pIT < 0.001
SimpleRNN pIT < 0.001
RGC Random pIT 0.31
RGC Median pIT < 0.001

Time Decay aIT < 0.001
IntersectionRNN aIT < 0.001
LSTM aIT 0.47
UGRNN aIT 0.09
GRU aIT 0.16
SimpleRNN aIT < 0.001
RGC Random aIT < 0.001
RGC Median aIT < 0.01

Table 1: Wilcoxon test (with Bonferroni correction) p-values for comparing each Deeper ConvRNN’s
neural predictivity at the “early” timepoints (Figure 3) to the (11-layer) BaseNet.

Supplementary Figures1011 1011
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Figure S1: Optimal local recurrent cell motif and global feedback connectivity. (a) RNN Cell struc-
ture from the top-performing search model. Red lines indicate that this hyperparameter choice (con-
nection and filter size) was chosen in each of the top unique models from the search. K × K denotes
a convolution and dsK × K denotes a depth-separable convolution with filter size K × K. (b) Long-
range feedback connections from the search. (Top) Each trace shows the proportion of models in a
100-sample window that have a particular feedback connection. (Bottom) Each bar indicates the differ-
ence between the median performance of models with a given feedback and the median performance of
models without that feedback. Colors correspond to the same feedbacks as above.
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Figure S2: (a) Both local recurrence and global feedbacks are needed to best fit neural data. Among
a wide range of architectures with different local recurrent motifs and global feedback patterns, the best
architecture was one with both gated local recurrence and a global feedback. Local recurrent circuits
were particularly useful for improving fits to IT neurons (N = 168), whereas both local recurrence and
global feedback were critical for improving fits to V4 neurons (N = 88). Except for “temporally-varying
mapping”, fixed model-unit-to-neuron linear mappings were fixed across all time bins, constraining tra-
jectories to be produced by actual dynamics of the network. In contrast, “temporally-varying mapping”
indicates an independent PLS regression for each time bin. The fact that models with local recurrence
and global feedbacks are better than “temporally-varying mapping” suggests that some nonlinear dy-
namics at earlier layers contributed meaningfully to network fits. S.e.m. across four splits of held-out
test images. (b) Held-out neural predictivity. At both 100ms and 200ms, this direct fitting procedure
to the dynamics generalizes to neurons held-out (right bars) in the fitting procedure, a stronger test of
generalization than held-out images depicted in the left bars. (c) Underfitting to the task. However,
a subtle overfitting to the neural image distribution occurs, whereby the task-optimized network whose
dynamics are trained on the V4 and IT neural dynamics no longer transfers to ImageNet.
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Figure S3: Modeling primate ventral stream neural dynamics with ConvRNNs. Fitting model fea-
tures of ConvRNNs with a temporally-fixed linear mapping to neural dynamics approaches the noise
ceiling of these responses in most cases. The y-axis indicates the median across neurons of the explained
variance between predictions and ground-truth responses on held-out images. Error bars indicates the
s.e.m across neurons (N = 88 for V4, N = 88 for pIT, N = 80 for cIT/aIT, and N = 486 for aIT).
Note that “aIT” refers to a separate neural dataset from primarily anterior IT neurons, detailed in Sec-
tion A.8.2. As can be seen, the feedforward BaseNet model (purple) is incapable of generating a response
beyond the feedforward pass, and certain types of ConvRNN cells added to the feedforward model are
less predictive than others.
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Figure S4: (a) Increasing feedforward depth does not account for drop in median explained vari-
ance from early to late timepoints. We observe a similar drop in median explained variance from 130-
140ms to 200-210ms, between the ConvRNN and deeper feedforward models, where we fix each model’s
training image size and batch size to be able compare across depths. To compare these two models, we
subselect for high reliability neurons (above 0.3 split-half consistency) and use a temporally-varying
mapping (PLS 25 components). We plot the median and s.e.m. predictivity in both panels per timebin
(N = 108, 113, 117, 123, 118, 118, 116, 115, 108, 99, 86 neurons for each timebin in the “pIT/cIT/aIT”
panel, and N = 247, 313, 378, 441, 437, 411, 397, 391, 392, 384, 380 neurons for each timebin in the
“aIT” panel). (b) Drop in explained variance may be exhibited in inter-animal consistency. Using
the neural data described in Section A.8.2, we see a similar inter-animal consistency (metric detailed
in Section A.7) at 130-140ms and 200-210ms, as we do with the 11-layer BaseNet. Median and s.e.m.
across aIT neurons (N = 441 at 130-140ms and N = 380 at 200-210ms) from the dataset described in
Section A.8.2. 60
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Figure S5: Behaviorally harmful effect of dimensionality reduction due to linear transform. Mean
and s.e.m. are computed across train/test splits (N = 10) when that image (of 1320 images) was a test-set
image, with the Spearman correlation computed with the IT solution times across the imageset mutually
solved by the given model and IT. As can be seen, a temporally-graded mapping directly from the model
features of feedforward models always attains higher OST consistency than a uniform one (“Graded” vs.
“Uniform” comparison). We additionally train a 100 component PLS regression to IT responses at each
defined model timepoint, where the responses are to a different set of images than used to evaluate the
OST metric. This procedure, detailed in Section A.8.2, results in an image-computable model on which
the OST metric is evaluated on and corresponds to “PLS” prepended to the name of each point on this
plot, for any given model and associated temporal mapping. As can be seen, “PLS Uniform” for the
BaseNet and ResNet-34 match the OST consistency of the RGC Median ConvRNNs from their original
model features. However, “PLS Uniform” for the ConvRNNs and ResNet-101 and ResNet-152 have a
significant decrease in OST consistency compared to when evaluated on their original model features,
indicating the behaviorally harmful effect of dimensionality reduction due to PLS.
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