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Abstract 
While all individuals are susceptible to age-related cognitive decline, significant inter- and            
intra-individual variability exists. However, the sources of this variation remain poorly understood. Here,             
we examined the association between 30-year trajectories of cognitive decline and multimodal indices of              
brain microstructure and morphology in older age. We used the Whitehall II Study, an extensively               
characterised cohort using 3T brain magnetic resonance images acquired at older age (mean age = 69.52               

4.9) and 5 repeated cognitive performance assessments between mid-life (mean age = 53.2 4.9 years)±               ±   
and late-life (mean age = 67.7 4.9). Using non-negative matrix factorization, we identified 10 brain      ±          
microstructural components that integrate measures of cortical thickness, surface area, fractional           
anisotropy, and mean and radial diffusivities. We observed two modes of variance that describe the               
association between cognition and brain microstructure. The first describes variations in 5 microstructural             
components associated with low mid-life performance across multiple cognitive domains, decline in            
reasoning abilities, but a relative maintenance of lexical and semantic fluency from mid-to-late life. The               
second describes variations in 5 microstructural components that are associated with low mid-life             
performance in lexical fluency, semantic fluency and short-term memory performance, but a retention of              
abilities in multiple domains from mid-to-late life. The extent to which a subject loads onto a latent                 
variables predicts their future cognitive performance 3.2 years later (mean age = 70.87 4.9). This             ±   
data-driven approach highlights a complex pattern of brain-behavior relationships, wherein the same            
individuals express both decline and maintenance in function across cognitive domains and in brain              
structural features.  

Significance Statement 
Although declines in cognitive performance are an established aspect of aging, inter- and intra-individual              
variation exists. Nevertheless, the sources of this variation remain unclear. We analyse a unique sample to                
examine associations between 30-year trajectories of cognitive decline and multimodal indices of brain             
anatomy in older age. Using data-driven techniques, we find that age-related cognitive decline is not               
uniform. Instead, each individual expresses a mixture of maintenance and decline across cognitive             
domains, that are associated with a mixture of preservation and degeneration of brain structure. Further,               
we find the primary determinants of late-life cognitive performance are mid-life performance and higher              
brain surface area. These results suggest that early and mid-life preventative measures may be needed to                
reduce age-related cognitive decline. 

1.0 Introduction 
Cognitive decline is a well-established aspect of the aging process. Age-related impairments which             
impact everyday functioning have been reported across a range of cognitive domains (1, 2). However,               
significant inter-individual variability has also been observed across cognitive domains including           
memory, spatial functioning, processing speed and reasoning. While some individuals experience           
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accelerated rates of deterioration, others experience a relative maintenance of cognitive functioning into             
old age (3–5). Even within the same individual, some cognitive domains may remain intact whereas other                
domains are more vulnerable to decline (6). It is unclear whether this intra- and inter-individual variation                
arises from underlying changes already present in early-to-mid life, or if they are established in older age.                 
Improving our understanding of the sources of this variability is an important step in understanding               
aging-related changes in cognition. 
 
Numerous studies have used structural and diffusion magnetic resonance imaging (MRI) techniques to             
assess the structural substrates of brain aging. In particular, MRI provides macro- and microstructural              
measures such as volume, thickness, surface area, diffusivity and fractional anisotropy, each of which              
convey complementary information about the local morphology, axonal density, organization and           
myelination of the cerebral cortex (7, 8). In healthy aging, these techniques have demonstrated              
widespread age-related degeneration of brain structure via decreases in overall brain volume (9), cortical              
thickness (10–12), and fractional anisotropy as well as increases in diffusivity (7, 13–15). Further to this,                
the reserve hypothesis suggests differences in brain structure, be it through differences in neurobiological              
capital at a given time (brain reserve) or in development of age-related brain changes over time (brain                 
maintenance), may partially explain variation in cognitive function (16). This proposed brain-cognition            
link in aging individuals has been supported by various studies, for example by previously established               
associations between episodic memory performance with volumes and diffusivity of the medial temporal             
lobe (17–20), and between decline in executive functioning and widespread grey matter atrophy (18).              
However, most studies to date have considered these micro- and macro-structural MRI metrics             
individually, without considering the complementary information multiple metrics provide on brain           
structure, or their potential overlap and interdependencies.  
 
This study builds on previous analyses in two important ways. We integrate multiple MRI based indices                
of cortical microstructure, and explore individual differences in brain-cognition relationships without a            
priori designations of cognitive trajectories. Incorporating data from multiple MRI modalities is useful as              
each conveys complementary information, such that the resulting multimodal assessments query a wider             
range of biological phenomena (7). This approach has enabled fine grained assessments of the cerebral               
cortex. Glasser et al., for example, incorporated data from structural and functional MRI to delineate a                
novel parcellation of the cortex, including the identification of de novo areas distinguishable as a result of                 
this strategy (21). Seidlitz et al. integrated multimodal MRI indices of cortical microstructure to identify               
morphometric networks, such that areas of the cortex displaying morphometric similarity shared            
cytoarchitectonic and transcriptional features (22). These findings demonstrate the specificity of           
associations demonstrated using multimodal MRI. Here, we leverage multivariate techniques and           
multimodal MRI to investigate patterns of covariance and their relationship to cognition. By modelling              
shared covariance across MRI metrics, as opposed to separately analysing each piece of information, this               
allows for a more comprehensive assessment of differences across subjects (23). To this end, we use                
non-negative matrix factorization (NMF), a matrix decomposition technique previously used in our group             
to probe microstructural properties of the hippocampus (24). Applied to MRI data, NMF highlights              
regions of the brain in which shared patterns of microstructural variation occur, as well as subject-specific                
measurements describing individual microstructural features within the highlighted brain regions.          
(24–26).  
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Previous approaches investigating brain-cognition relationships have defined subject groupings based on           
cognitive trajectories and then assessed group differences in brain structure (18, 27). For example,              
individuals have been categorised as cognitive “maintainers”, or “decliners” (28). A common strategy is              
to categorize the most severe decliners and compare them to the rest of a cohort (18). This approach                  
usually involves arbitrary cut-offs, and may be biased by the extremes of the decline-maintain dimension,               
neglecting individuals demonstrating neither sharp decline nor strong maintenance (29). Furthermore,           
broad categorisations of maintainers/decliners may also ignore intra-individual heterogeneity and the           
differential impact of age across cognitive domains (30–32).  
 
In this study, we analyse data from the Whitehall II cohort. This ongoing study was established in 1985 at                   
University College London and initially included 10,308 British civil servants (33). Longitudinal            
follow-up occurred at multiple timepoints (defined throughout as Waves) roughly every five years at              
Wave 5 (1997-1999), 7 (2002-2004), 9 (2007-2009), 11 (2012-2013), and 12 (2015-2016). At each Wave,               
information on social, cognitive, and biological data was collected, resulting in a unique source of               
information to study aging. Eight hundred individuals from Wave 11 were randomly selected to              
participate in the Whitehall II Imaging sub-study (Imaging Wave, 2012-16) in which structural, diffusion,              
and functional MRI was collected (34). In this work, we integrate the longitudinal cognitive assessments               
and MRI data to study relationships between late life cortical microstructure and cognitive performance              
trajectories from mid to late life. 

2.0 Results 
Using the comprehensive lifespan data from the Whitehall II Imaging sub-study, we analyse longitudinal              
cognitive trajectories across multiple domains and assess their relationship with late-life cortical            
microstructure using surface area (SA), cortical thickness (CT), mean diffusivity (MD), fractional            
anisotropy (FA) and radial diffusivity (RD). Across multiple microstructural MRI indices, we model             
shared covariance using NMF, and employ mixed effects modeling to extract person specific indices of               
baseline performance and change in performance across multiple cognitive tests. We then use partial least               
squares (PLS), a multivariate technique capable of identifying patterns of covariance between            
microstructure and longitudinal cognitive performance (35, 36). Finally, we use each individual’s            
expression of the identified patterns to predict cognitive function at a follow-up timepoint, approximately              
3.2 years after the MRI scan (Wave 12) (Figure 1). 
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Figure 1. Identifying microstructural-cognition relationships in aging using data-driven techniques. A) We            
analysed data from the Whitehall II Imaging Sub-Study. Participants were tested across multiple cognitive domains               
at ~5-year intervals since 1997, with structural and diffusion MRI collected between Waves 11 and 12. B) We                  
applied non-negative matrix factorization (NMF) to five metrics of cortical morphology: cortical thickness (CT),              
surface area (SA), fractional anisotropy (FA), and mean and radial diffusivity (MD, RD) to identify patterns of                 
variance. Using cognitive data from Wave 5-11, we applied mixed effects modelling to identify baseline and slope                 
measurements for each individual across a range of cognitive tests. We then used a partial least squares (PLS)                  
analysis to identify latent variables describing covarying patterns between longitudinal cognitive trajectories and late              
life cortical morphology. C) We grouped participants based on their expression of brain-cognition relationships, and               
these groupings were indicative of future cognitive performance at Wave 12. 

2.1 Sample 
The final analysis sample included 398 individuals who passed quality control for motion and cortical               
thickness processing, and had whole brain DWI available (mean age = 69.5 years ± 4.2, 92 females                 
(23%), mean education years = 14.2 ± 3). Comparison of the analysis and initial samples is shown in                  
Table 1. For further details on sample selection, see SI Methods and Figure S1. 
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Table 1: Demographic characteristics for the analysis and starting samples including mean and standard              
deviations for age, years of education, and MOCA score at the MRI Phase. Number of women, as well as                   
number of individuals with MOCA score >=26, indicative of no major cognitive impairments, is shown as                
well. Statistical tests (t-test or chi-squared) show no differences between the analysis sample and full               
starting sample. 

 
 

2.2 Non-negative matrix factorization identifies 10 stable       
microstructural components 
Each subject’s T1-weighted image was processed using the CIVET algorithm (37, 38) to obtain              
measurements of CT and SA at each of 77122 vertices across the mid-surface (located halfway between                
inner and outer grey matter boundaries) mesh. Diffusion weighted imaging derived maps of FA, MD, and                
RD were co-registered to the T1-weighted image to allow for mid-surface sampling of these metrics. For                
each of the five microstructural metrics a 77122 x 398 (number of vertices x number of subjects) matrix                  
was constructed, each of which was then concatenated to build a 77122 x 1990 (number of vertices x                  
(number of subjects*5) multimodal input matrix which was input to NMF (24, 26). NMF is a                
decomposition technique which identifies spatial components and subject weightings, together identifying           
regions of the brain where microstructural variation is observed (spatial components) as well as each               
individual’s microstructural profile in a given component (subject weightings). Together, these outputs            
localize individual variability to specific brain regions in a data-driven manner. 
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 Analysis sample  
(N=398) 

Starting sample 
(N=775) 

Test Statistic p 

Age (years) 69.52  4.9±  69.81 5.19±  .95t = 0  0.35 

Education (years) 15.84 3.54±  15.72 3.53±  − .58t = 0  0.57 

MOCA score  27.29 2.23±  27.18 2.26±  − .80t = 0  0.42 

Women, N (%) 92 (23.1%) 150 (19.3%) chi-squared
.27= 2  

0.13 

MOCA>=26, N 
(%) 

322 (80.9%) 614 (79.2%) chi-squared
.46= 0  

0.49 

N (%) of 
participants 
scanned on Verio 
MRI scanner 

281 (70.6%) 552 (71.2%) chi-squared
.49= 0  

0.82 
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Split half stability analysis (24) identified 10 components as a suitable balance between spatial stability               
and reconstruction error (see SI Methods and Figure S2). The 10 spatial components and associated               
weightings are displayed in Fig 2. Each component identifies a group of vertices which share a covariance                 
pattern for CT, SA, MD, FA, and RD. The components are largely bilateral and non-overlapping, and                
their regional descriptions and naming conventions are described below.  
 

1. Component 1: (Fronto-Temporal) is localized in the superior frontal and posterior temporal            
regions.  

2. Component 2: (Motor) is localized to primary and supplementary motor cortices, with some             
spread to adjacent posterior frontal and superior parietal regions.  

3. Component 3: (Visual) is strongly localized in the medial and lateral occipital lobe, as well as the                 
cingulate cortex and inferior temporal lobe.  

4. Component 4: (Parietal) occupies most of the parietal cortex, with some spread to the lateral               
temporal regions.  

5. Component 5: (Inferior Frontal) is most prominent in the inferior, medial frontal lobe, but also               
shows some presence in the inferior temporal lobe, anterior cingulate regions, and inferior lateral              
frontal lobe.  

6. Component 6: (Anterior Frontal) occupies the anterior frontal regions as well as the temporal              
pole.  

7. Component 7: (Cingulate) occupies much of the midline regions but with a strong preference to               
the cingulate cortex and shows some spread to insular cortices.  

8. Component 8: (Postcentral) is heavily localized to the postcentral gyrus but shows considerable             
presence in the lateral inferior frontal lobe and superior temporal gyrus.  

9. Component 9: (Right lateralized) is the only component showing a laterality effect, including             
bilateral medial parietal anterior temporal regions, but most prominent in right superior temporal             
and lateral inferior frontal regions.  

10. Component 10: (Temporal Pole) is most prominent in the temporal pole, but also shows some               
presence in medial temporal and ventromedial frontal areas.  
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Figure 2. 10 microstructural components derived from the NMF decomposition. A) Cortical mappings of each               
of the spatial patterns for each of the 10 components. For each component, lateral and medial views of both left and                     
right hemispheres are shown. Components are identified using the putative descriptors from the main text (e.g.,                
Fronto-temporal) as well as lettering at the centre of each set of surface views (e.g., C1). Red areas indicate vertices                    
loading heavily onto a particular component (thresholded at 25% to max value). Each component identifies a                
selection of vertices sharing a microstructural variance pattern. Together, components cover the entire brain, are               
largely bilateral (with exception of component 9) and are not spatially overlapping. B) Subject-specific weightings               
associated with each of the displayed 10 components. Each row corresponds to a specific component’s NMF                
weightings for each subject-metric combination, describing the CT, SA, MD, FA and RD patterns of each subject in                  
each component. Together these two outputs describe the morphological patterns of each subject within each spatial                
component. Each element of the matrix is displayed as a fraction of its row mean, such that values below 0 indicate                     
a below average weight for a given component and vice versa. 
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2.3 Specific Patterns of Cortical Morphology Relate to Baseline and          
Longitudinal Cognitive Function 
We next related the variation in cortical microstructure captured by the NMF subject weightings to               
variability in cognitive performance over time. For each participant we derived the intercept and slope for                
the change in performance across each of seven cognitive tests: lexical and semantic fluency, short-term               
memory, verbal, mathematical and inductive reasoning, and vocabulary (described in Methods) . The            
intercept describes the estimated baseline (i.e., mid-life) performance while the slope describes the linear              
rate of change in performance over time (i.e., from mid-life to late-life). We then performed a                
brain-cognition PLS with NMF component weightings as “brain” data and intercept and slope             
measurements as “cognition” data. PLS is a multivariate technique which identifies latent variables             
describing covarying relationships between two sets of data (35, 36, 39), and here captures distributed               
brain-cognition patterns. PLS analysis identified two significant latent variables (LVs), explaining 57.1%            
and 20% of shared brain-cognitive covariance respectively. Each LV identifies a distinct pattern of              
longitudinal cognitive trajectories across the 30-year follow up that relate to patterns of late-life              
microstructural characteristics (Figure 3).  
 
LV1 describes a pattern in which low baseline performance across all tests, accelerated 30-year decline in                
inductive, verbal, and mathematical reasoning abilities, but slow 30-year decline in verbal and semantic              
fluency are associated with global decreases in late-life SA, lower CT (cingulate/insular), lower FA              
(visual, temporal, right lateral), higher MD and RD (temporal pole), and paradoxically higher FA in               
posterior temporal and superior frontal regions. (Figure 3A, Table 2). LV2 describes a pattern in which                
low baseline performance in each of lexical fluency, semantic fluency, and short term memory, but slower                
decline in each of lexical fluency, semantic fluency, inductive reasoning, verbal reasoning, and numeric              
reasoning is associated with global increases in SA, higher CT and lower RD in the temporal pole,                 
increased MD and RD in motor, anterior frontal, and cingulate cortices, and decreased FA (anterior               
frontal, cingulate/insular) (Figure 3B, Table 2). 
 
In summary, we observed a mixed distribution for cognitive decline and maintenance, as well as               
degeneration and preservation of cortical microstructure. This mixed pattern suggests, rather than            
cognitive decline being linked with uniform cortical degeneration, that individuals display degrees of             
degeneration and preservation of cortical microstructure that is linked with decline and maintenance             
across diverse cognitive functions.. 
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Figure 3: Two brain-cognition latent variables identified by PLS . PLS analysis identified two (LV1: A, LV2: B)                 
significant latent variables (p<0.05), each identifying a pattern of correlation between NMF weightings, and              
cognitive intercept and slopes. Bar plots describe contribution of cognitive intercepts and slopes. The y-axis denotes                
correlation of each cognitive variable within a given LV. Error bars denote the 95% confidence interval, only                 
variables with a non-zero confidence interval are described as contributing to a given LV (marked with *). For each                   
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bar plot, cortical maps (right) show the spatial patterns of the components contributing to the LV. The fingerprint of                   
each map describes whether a given metric is identified as being decreased (blue) or increased (red) in the spatial                   
component in relation to the cognitive pattern shown in bar plots.  
 
 
Table 2: Correlations of the contributing cognitive variables to each latent variable, including the mixed               
effects modelling parameter (intercept or slope), cognitive test, R and its 95% confidence interval (CI). 
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Latent Variable Parameter Cognitive Test R [95% CI] 

1 Intercept Lexical Fluency -0.22 [ -0.34 , -0.17 ] 

Semantic Fluency -0.25 [ -0.37 , -0.2 ] 

Short Term Memory -0.16 [ -0.28 , -0.09 ] 

Inductive Reasoning -0.34 [ -0.44 , -0.3 ] 

Verbal Reasoning -0.32 [ -0.42 , -0.29 ] 

Mathematical Reasoning -0.34 [ -0.45 , -0.29 ] 

Vocabulary -0.33 [ -0.43 , -0.25 ] 

Slope Lexical Fluency 0.17 [ 0.07 , 0.27 ]  

Semantic Fluency 0.25 [ 0.19 , 0.36 ] 

Inductive Reasoning -0.25 [ -0.37 , -0.19 ] 

Verbal Reasoning -0.25 [ -0.36 , -0.2 ] 

Mathematical Reasoning -0.15 [ -0.27 , -0.08 ] 

2 Intercept Lexical Fluency -0.08 [ -0.2 , -0.01 ] 
  

Semantic Fluency -0.12 [ -0.23 , -0.05 ] 

Short Term Memory -0.15 [ -0.25 , -0.09 ] 

Slope Lexical Fluency 0.13 [ 0.07 , 0.24 ] 

Semantic Fluency 0.14 [ 0.08 , 0.25 ] 

Inductive Reasoning 0.14 [ 0.09 , 0.26 ] 
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2.4 Brain-Cognition Patterns Predict Cognitive Performance at Future        
Timepoint 
To further investigate the subject-level variation in the microstructural-cognition relationships identified           
by the two significant LVs, we stratified individuals into four groups based on the degree to which they                  
expressed each LV. We then assessed how these groupings predicted cognitive performance at a future               
time point (Wave 12, 2015-16, on average 3.2 years post MRI collection). Within each LV, a behavior                 
score was computed for each subject. For example, a subject with a positive LV1 behavior score would                 
express the LV1 cognitive phenotype, whereas a subject with a negative LV1 behavior score would               
express the inverse cognitive pattern (Figure 4A). We plotted LV1 vs LV2 behaviors scores for each                
subject and created groupings within each quadrant such that the four groups (A-D) represent all pairwise                
positive/negative LV1/LV2 combinations (Figure 4B).  
 
Groups A and B had a significantly higher proportion of cognitively impaired individuals (defined as               
MoCA < 26 at the time of the MRI scan) than Groups C and D (chi-squared Figure               5.359, p .01,= 3  < 0  
4C). Groups differed in terms of sex and education, but not age (SI Results and Figure S3). We next                   
performed linear models, covarying for age, sex and years of education to examine if subject groupings                
differed in future cognitive performance at Wave 12. Across tests of semantic fluency, lexical fluency,               
and short-term memory, groups A and B (positive LV1) performed significantly worse than groups C and                
D (negative LV1). On tests of reasoning, groups A and B again performed significantly worse than groups                 
C and D, but group C (negative LV1, positive LV2) outperformed group D (negative LV1, negative LV2)                 
(Figure 4C). 
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Verbal Reasoning 0.1 [ 0.04 , 0.22 ] 
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Figure 4: Individual expression of PLS derived brain-cognition phenotype is indicative of cognitive status and               
future performance . We used each subject’s expression of LV1 and LV2 to predict their cognitive performance at a                  
future wave (Wave 12, 3.2 years post Imaging Wave, on average). A) An illustration of the utility of LV behavior                    
scores. Top row: a histogram shows the distribution of LV1 behavior scores, which quantify the degree to which                  
each subject expresses the phenotype described by LV1. Plots of LV1 versus semantic fluency baseline and decline                 
measures show positive and negative relationships, respectively. These match that described in LV1 in Figure 3,                
demonstrating that LV behavior scores can be used to describe the cognitive phenotype of subjects. Bottom row:                 
equivalent plots for LV2 including the histogram, and plots of LV2 behavior scores vs verbal reasoning baseline (no                  
relation) and verbal reasoning decline (positive relation). B) A plot of LV1 vs. LV2 behavior score for each                  
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individual. Using this data, we defined four groups as each pairwise combination of positive/negative LV1/LV2.               
These groups differed significantly in terms of MOCA status (chi-squared = 35.359, p<0.01). C) This data driven                 
group assignment is predictive of future cognitive performance. Each box plot shows the wave 12 cognitive                
performance of each of the four LV groupings. Colours correspond to the groupings in B. Main effect of LV Group                    
was significant in each of the 6 tests at a bonferroni threshold of p < 0.0083 (0.05/6), and pairwise comparisons were                     
assessed using Tukey’s. 

3.0 Discussion 
In this study, we used a data-driven approach to identify microstructural-cognition patterns of covariance              
linking individual variation in cognitive decline over a period of 30-years from mid-to-late life, with               
later-life patterns of cortical microstructure. We integrated multimodal MRI data to fully capitalize on the               
complementary information conveyed by these indices of cortical microstructure. Importantly, we           
assessed this brain-cognition association without defining groups of maintainers or decliners beforehand,            
so as not to obscure intra-individual variation in cognitive ageing. We identified two significant latent               
variables describing patterns of covariance between longitudinal cognitive performance and cortical           
microstructure. Notably, these patterns did not reveal a homogenous or directionally uniform link between              
cognitive decline and degeneration of cortical microstructure. Instead we observed a more complex             
pattern whereby individuals presented a mixed distribution of 30-year cognitive decline and maintenance             
which were associated with both degeneration and preservation of cortical microstructure in older age.              
Finally, we found that the primary determinant of late-life cognitive performance was mid-life cognitive              
performance and an associated microstructural pattern dominated by cortical surface area. 

3.1 Brain-Cognition relationships include a mixture of maintenance and         
decline 
The brain-cognition relationships identified in this work contain a mixture of positive and negative              
features across both brain and cognition. LV1 describes a pattern of low midlife performance across all                
tests, accelerated decline in reasoning, but relatively maintained fluency associated with a multimodal             
pattern of low SA in all areas of the brain except for the primary and supplementary motor cortices,                  
decreased CT in cingulate and insular cortex, increased diffusivity in the temporal pole, decreased FA in                
visual, temporal, and right lateral cortex but increased FA in superior frontal and lateral temporal regions.                
Meanwhile, LV2 links low baseline fluency and memory performance, but slower fluency and reasoning              
declines with increased diffusivities in nearly all regions except occipital cortex, increased surface area in               
cingulate, insular and right lateral areas, increased temporal pole thickness, and decreased FA in frontal,               
cingulate and insular regions. Thus, across both brain and cognition, we observe that each pattern includes                
a mix of what studies have traditionally characterised as adaptive and maladaptive characteristics. While              
it may be tempting to infer patterns of overall cognitive or neuroanatomical maintenance, our work               
suggests that by refraining from a priori definitions of maintenance or decline groups, including baseline               
and decline measures across a range of tests, and analysing multimodal indices of cortical microstructure               
simultaneously, we can identify subtle, complex brain-cognition relationships which show a mix of             
maintenance and decline features across both cognitive and anatomical measures. These findings thus             
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discourage the use of a ‘one size fits all’ approach, and instead encourage the consideration of cognitive                 
domains and regional, multivariate anatomy at the individual level. 
 
Ascertaining the neurobiological underpinnings of the MRI derived features of LV1 and LV2 remains              
challenging. Histological evidence links CT reductions in old age with decreased dendritic arborization             
(40, 41). A recent application of virtual histology supports this, having found cortical thinning is related to                 
increased expression of CA1 pyramidal cell gene sets enriched with processes related to dendritic              
arborization approach correlated longitudinal CT changes with cell type expression levels (42, 43).             
Corresponding studies of SA remain uninvestigated, though see our discussion in Section 3.2 for more on                
our SA findings. DWI metrics may relate to a range of age-related alterations as decline in small diameter                  
myelinated fibers, alterations in the myelin sheath, and inflammatory processes (13, 44). Increased             
diffusivity is a common finding in aging studies, and may relate to enlarged interstitial spaces or axon                 
swelling (45–47). Rodent studies incorporating imaging and histology demonstrate that demyelination of            
axons leads to increased RD (48–51), while reductions in FA relate to degradation of structure and                
preferential orientation of fibers (48, 52). Thus we may hypothesize that LV1 has a neurobiological               
pattern of widespread reductions in cortical area, dendritic branching, demyelination, and axonal            
degeneration while LV2 is associated with near global demyelination and axonal degeneration, but             
relatively maintained cortical area in cingulate, insular, right lateral cortex and dendritic morphology in              
the temporal pole. However, while plausible, these interpretations are complicated by the fact that each               
MRI metric is sensitive to a large range of cellular level alterations (7, 53) as well as the interrelated                   
nature of the DWI metrics analysed (45). While joint analyses of all metrics, as is a focus of this work,                    
may help alleviate some concerns (54), caution is still warranted in absence of direct histological               
evidence.  

3.2 Late Life Cognitive Performance is Driven by Mid Life Phenotypes 
In our study sample and within the timeframe examined, the strongest predictor of later life (>65 years)                 
cognitive performance across a range of tests was performance in midlife (at mean age of 40 years).                 
Individuals scoring high on LV1 performed relatively worse across all cognitive domains in later life than                
those who expressed the inverse behavioral pattern. When stratifying subjects by their expression of both               
LV1 and LV2, a subset of individuals showed slower declines in reasoning and fluency, in addition to low                  
midlife performance. However again, we found that the low midlife performance dominated late life              
performance on all tests, and better maintenance over time was not enough to compensate for a poor start.                  
This finding has relevance to the concept of cognitive reserve. High levels of cognitive reserve, often                
probed through proxies such as education or occupational attainment, have been strongly linked to better               
cognitive function in aging (55). Whether this is driven by a maintenance of previously developed               
advantages, moderation of the effects of aging on cognition and hence cognitive decline, or a combination                
however remains unclear (55, 56). Our findings altogether suggest that midlife differences in cognitive              
performance were the most prominent predictors. However, it may be that individuals in our study sample                
have not yet reached a point of drastically accelerated decline and therefore showed relatively less               
profound differences in cognitive trajectories (57). 
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While the MRI data is cross sectional and collected only in late life, in the context of mid life dominance                    
we find the widespread involvement of SA to be of particular interest. SA is commonly assessed in                 
parallel with CT, though the contribution of each to cortical volume, as well as their neurobiological and                 
genetic underpinnings (58–61), varies. For example, while each of SA, CT, and cortical volume decrease               
with age, CT and volume change are positively correlated while changes between CT and SA tend to be                  
inversely related (60). SA decreases during aging are also of smaller magnitude than those observed for                
CT (60), and the primary determinant of SA, cortical column generation, occurs during prenatal and               
perinatal periods (58, 59). These findings suggest SA may be more temporally fixed than CT between mid                 
and late life, and throughout the full lifespan. In this context, the pronounced influence of LV1 mid life                  
cognitive performance and late life SA on late life cognition lends credence to a lifespan perspective in                 
which developmental and mid-life events play a significant role in cognitive health in late life. In a unique                  
study involving the Lothian Birth Cohort, positive cognitive ageing between childhood (age 11) and late               
life (age 73) was associated with higher SA in late life (62). In another unique study involving multiple                  
samples, Walhovd et al. identified a large region of the cortex in which increased general cognitive ability                 
was associated with increased surface area in a developmental sample (aged 4-12) and noted that this                
association persisted throughout the lifespan (63). Our findings, along with others, support the idea that               
stable advantages may give certain individuals a ‘head start’ in terms of cognitive function in aging. They                 
also support the need for early and mid-life preventative measures of cognitive decline to maintain               
cognitive performance in older ages, though the potential role of reserve mechanisms on cognitive decline               
warrant further investigation. The mixed, complex relationships identified also support the development            
of individualized preventative strategies. Interestingly, within a subset of the Whitehall II cohort, previous              
work has identified similar mid to late life relationships across different biological domains such that               
midlife cardiovascular health was predictive of indicative of cerebral hypoperfusion in late life (64).  

3.3 Strengths and Limitations 
A key strength of this study is the use of multimodal MRI data to characterize cortical morphology. Use                  
of multiple MRI metrics provides complementary information regarding anatomical properties of the            
brain in comparison to unimodal analyses. We take this further by employing NMF to analyse multimodal                
data simultaneously to capture shared patterns of covariance across measures. This approach allows us to               
identify 10 major components which are spatially contiguous and highlight relevant regions in which              
cortical morphology varies across subjects. We relate this variability to longitudinal cognitive            
performance using PLS. This approach does not limit us to broad categorizations of decliners or               
maintainers, rather, we obtain continuous measures for each individual identifying the degree of             
expression of each of the identified brain-cognition patterns. The use of multimodal data and longitudinal               
cognitive measures is made possible by the unique dataset analysed. However, our study is limited by a                 
smaller sample size in comparison to large scale neuroimaging analyses. It may be that more               
brain-cognition relationships would be identifiable in a larger sample. Our study also lacks an out of                
sample validation, as the unique longitudinal data makes a compatible out of sample dataset difficult to                
find. In addition to this, the Whitehall II Imaging Sub-study cohort contains a higher proportion of men                 
compared to the general population and is relatively more educated. Thus, generalizability of our findings               
to the wider population is limited. While we were able to quantify 30-year cognitive trajectories, MRI                
data is currently available at a single time-point which limits investigations of longitudinal             
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brain-cognition relationships. Furthermore, while a combination of structural and diffusion MRI was used             
to provide a more comprehensive assessment of cortical microstructure, the limitations of MRI, in              
particular its resolution in comparison to the neural substrates under study, preclude us from inferring the                
cellular mechanisms which may be at play (65). 

4.0 Conclusion  
This work provides new information on brain-cognition relationships in a healthy elderly population. We              
uncover complex brain-cognition relationships using an unbiased data-driven approach, free of a priori             
definitions of cognitive maintainers or decliners and including a rich and comprehensive longitudinal             
cognitive data and multimodal MRI measures. This supports future works including multimodal data as              
well as cognitive trajectories to capture the full range of brain-cognition relationships. We also find the                
largest determinant of late life cognition is mid life cognition, as opposed to the rate of decline over time.                   
This, and the associated link with widespread surface area measurements, support early and mid-life              
preventative measures of cognitive decline. 
 

5.0 Methods 

5.1 Sample 
We used data from the Whitehall II Imaging Sub-Study (34), a random sample of 800 individuals from                 
the Whitehall II Study of British civil servants, of which 775 received an MRI scan (33). These                 
individuals have been assessed longitudinally since 1985 across a total of 12 waves thus far. Cognitive                
performance was assessed at 5 timepoints at University College London: Wave 5 (1997-1999), Wave 7               
(2002-2004), Wave 9 (2007-2009), Wave 11 (2012-2013), and Wave 12 (2015-2016). Structural and             
diffusion weighted magnetic resonance imaging (MRI) was conducted at the University of Oxford             
between 2012-2016 (Figure 1). Participant inclusion criteria and sample selection are presented in the SI               
Methods.  

5.2 MRI Acquisition 
MRI data was acquired on one of two scanners - a 3T Siemens Magnetom Verio (Erlangen, Germany)                 
(n=552) or a 3T Siemens Magnetom Prisma scanner (Erlangen, Germany) (n=223) at the FMRIB Centre               
in the Wellcome Centre for Integrative Neuroimaging (WIN), Oxford. T1 weighted images were acquired              
using a Multi-Echo MPRAGE (MEMPR) sequence (1mm3, TR = 2530ms, TE = 1.79/3.65/5.51/7.37ms)             
on the Verio scanner and a closely-matched MPRAGE sequence on the Prisma scanner (1mm3,              
TR=1900ms, TE=3.97ms). Diffusion weighted imaging (DWI) was acquired with an identical sequence            
across both scanners, using monopolar diffusion encoding gradients with parallel imaging at 2mm             
isotropic (60 directions, b=1500s/mm2). Detailed acquisition descriptions have been described elsewhere           
(34). 
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5.3 Obtaining Brain Microstructural Metrics 
T1w images were preprocessed using the minc-bpipe-library       
(https://github.com/CoBrALab/minc-bpipe-library), including bias field correction, adaptive non-local       
means denoising (66), head masking and brain extraction (67) The resulting bias field corrected,              
head-masked images and brain masks of each subject were input into the CIVET algorithm (37, 38)                
(version 2.1.0) in order to obtain cortical mid-surfaces and vertex wise measures of cortical thickness               
(CT) and surface area (SA), describing CT and SA estimates at a total of 81924 points across the cortical                   
mid-surface. Vertex wise CT and SA were blurred using 30 mm and 40 mm geodesic surface kernel,                 
respectively. We masked out 4802 vertices located along the left and right midline as CT and SA                 
estimates in this region are unreliable or nonexistent, resulting in a total of 77122 vertices valid for                 
analysis. CIVET outputs were quality controlled for registration quality, grey/white matter classification            
accuracy, and surface abnormalities by RP. 
 
DWI data were preprocessed using the FMRIB’s diffusion toolbox (FDT), with a generative model              
approach to estimate and correct for distortions due to susceptibility, eddy currents, and head motion               
simultaneously. DTIFit (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) was used to generate maps of mean          
diffusivity (MD), fractional anisotropy (FA), and radial diffusivity (RD) for each subject. For each              
subject, MD, FA, and RD images were registered to their T1w image using a multispectral affine                
registration. The resulting transformations were used to transform the cortical mid-surface to the DWI              
space. Vertex wise samples of each of MD, FA, and RD were obtained using the transformed surfaces to                  
correspond with the previously obtained vertex wise CT and SA measures. Like CT and SA data, left and                  
right midline data was masked out resulting in a total of 77122 data points for each of MD, FA, and RD. 

5.4 Identifying Components using Non-negative Matrix Factorization 
We used non-negative matrix factorization (NMF) to identify microstructural components. NMF is a             
matrix approximation decomposition technique which decomposes an input matrix into two matrices            
describing components and weights. As the name suggests, NMF requires non negativity in both inputs               
and outputs, leading to an additive parts-based representation (25). Given an input matrix of dimensions               
m x n, NMF outputs a component matrix W (m x k), and a weight matrix H (k x n). The number of                       
components, k, is defined by the user.  
 
In this implementation, NMF input matrix is constructed by stacking the vertex x subject matrices of each                 
microstructural metric together, forming a matrix with 77122 rows and 1990 columns (77122 vertices,              
398 subjects * 5 metrics = 1990 columns). At each vertex, and for each microstructural metric, we model                  
out the effect of scanner using linear regression and then perform z-scoring on the residuals. This                
minimizes any local scanner bias, and spatially normalizes each measure. The resulting residualized and              
z-scored matrices are then stacked side by side to form a matrix containing z-scored and residualized data                 
across all microstructural metrics. This matrix is shifted by it’s minimum value to create a non-negative                
input matrix for NMF. We used sklearn (version 0.23.1) to implement NMF with a non-negative singular                
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value decomposition initialization to improve sparsity (68). Granularity was selected through a split half              
stability analysis and a balance of spatial stability and model reconstruction accuracy (24). 

5.5 Cognitive Function Trajectories 
We used a total of 5 tests to measure cognitive performance. These include semantic fluency (in one                 
minute, recall as many animals as possible), lexical fluency (in one minute, recall as many words starting                 
with “S” as possible), short term memory (20 word free recall, recall within two minutes), inductive                
reasoning through the Alice-Heim 4-I (AH4) test (69), and vocabulary using the Mill Hill test (70, 71).                 
We included the total AH4 score (inductive reasoning) as well as mathematical and verbal reasoning sub                
scores. For each test, a linear mixed effects model was performed with an interaction of baseline age and                  
time since baseline as a fixed effect, a random slope of time since baseline, and random intercept for each                   
subject (1).  
 

estScore aseline Age ime (1 T ime|Subject) (1)T ~ B * T +  +   
 
Models were implemented in R (version 3.6.3) using the nlme (version 3.1-149) package and              
implemented continuous autoregressive moving-average correlation structure to consider correlations         
between repeated measures on the same individual. Importantly, cognitive test data prior to the MRI time                
point (Wave 5-11 but excluding Wave 12) was included in the linear mixed effects modelling. For each                 
model we extracted subject-specific intercepts and slopes (using the R coef() function), describing             
estimated performance in midlife as well as magnitude of decline over time. Wave 12 cognitive               
performance in each test except for the Mill Hill vocabulary test (not acquired at Wave 12) was then                  
assessed as a function of the obtained brain-behavior patterns. 

5.6 Partial Least Squares 
To investigate microstructural cognition relationships, we performed a brain-behavior partial least squares            
analysis (PLS). PLS is a multivariate technique which aims to maximize the covariance between two sets                
of variables (35, 36, 39). In this implementation, brain variables correspond to a 398 x 50 matrix                 
containing weightings of each subject within each of 10 components, for each of 5 microstructure metrics.                
behavioral data corresponds to a 398 X 14 matrix containing intercept and slope measures for each                
subject, for each of the 7 cognitive tests. PLS outputs latent variables (LV), each describing a pattern of                  
covariance between microstructural NMF weights and cognitive intercepts and slopes. Each LV includes             
a singular value used to compute the proportion of total covariance explained, and statistical significance               
is assessed through permutation testing (n=10000). Bootstrap resampling is used to assess the contribution              
of each variable to a given LV (35, 39, 72, 73). 
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