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Abstract
Cortical circuits generate excitatory currents that must be cancelled by strong inhibition to
assure stability. The resulting excitatory-inhibitory (E-I) balance can generate spontaneous
irregular activity but, in standard balanced E-I models, this requires that an extremely strong
feedforward bias current be included along with the recurrent excitation and inhibition. The
absence of experimental evidence for such large bias currents inspired us to examine an
alternative regime that exhibits asynchronous activity without requiring unrealistically large
feedforward input. In these networks, irregular spontaneous activity is supported by a
continually changing sparse set of neurons. To support this activity, synaptic strengths must
be drawn from high-variance distributions. Unlike standard balanced networks, these sparse
balance networks exhibit robust nonlinear responses to uniform inputs and non-Gaussian
statistics. In addition to simulations, we present a mean-field analysis to illustrate the
properties of these networks.

Introduction 1

A typical cortical pyramidal cell receives thousands of excitatory inputs [1] that, without the 2

influence of inhibition, would drive extremely high firing rates. It has been suggested that 3

the inhibition that moderates these rates sets up a balanced condition that causes neurons to 4

operate in a regime where fluctuations, not the mean, of their inputs drive spiking, resulting 5

in irregular sequences of action potentials [2–5]. A number of theoretical models have been 6

developed to address E-I balance and the irregular firing of cortical neurons (see [6] for a 7

review). In one class of balanced models [7, 8], the input to each neuron has three strong 8

components – recurrent excitation, recurrent inhibition and feedforward excitation. These 9

balance automatically as part of the network dynamics, leaving residual fluctuations that 10

drive neuronal firing at reasonable rates. Although the presence of strong excitation and 11

inhibition is compatible with the data, there is no evidence for the strong feedforward inputs 12

required in these models [9], and some evidence against them [10–13]. For this reason, we 13

examine the consequences of removing strong feedforward input in balanced models. 14

In balanced models, synaptic strengths are drawn independently from two probability 15

distributions, one for excitation and another for inhibition. For standard recurrent models to 16

generate spontaneous irregular (chaotic) activity, the synaptic weight distributions must 17

have a variance of order 1/K, where K is the in-degree, i.e., the number of synapses per 18

neuron [8, 14–16]. The excitatory (inhibitory) distributions are only non-zero for 19
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non-negative (non-positive) values, and typically their mean is of the same order as the 20

square-root of their variance, with both being of order 1/
√
K. Summing this mean over the 21

K synapses to each neuron gives a total input, which for reasons of stability is inhibitory, of 22

order
√
K. This large mean input must be cancelled and, in conventional models, this is 23

done by adding constant feedforward excitation that is also of order
√
K. This is the large 24

feedforward input that we aim to avoid. 25

A first question to ask is what happens if the order
√
K input is simply left out of the 26

standard models, and replaced by an input of order 1. This results in a constraint on the 27

firing rates; specifically, the average firing rate in the network must be of order 1/
√
K. This 28

implies that, although there can be irregular spontaneous activity without strong feedforward 29

input, it involves neurons firing at very low rates. One way around this problem is to note 30

that a small average firing rate is not incompatible with having individual neurons with 31

significant firing rates if the activity is sparse. In other words, the average rate can be of 32

order 1/
√
K if, as in the standard models, activity is dense and individual rates are of order 33

1/
√
K, or if individual rates are of order 1 and the fraction of active neurons is of order 34

1/
√
K. Here, we explore this latter possibility. 35

We mentioned above that standard balanced models require synaptic distributions with 36

variance of order 1/K to generate irregular spontaneous activity. More precisely, the 37

requirement is that, for each neuron, the sum of the variances of the strengths of its active 38

inputs must be of order 1. In the standard model, this is satisfied because the product of K, 39

the order of magnitude of the number of active inputs, and 1/K, the variance per synapse, 40

is 1. In the sparse models proposed in the previous paragraph, the number of active inputs is 41

only of order
√
K, so the total variance computed in this way would be

√
K/K = 1/

√
K, 42

which is not sufficient to generate irregular activity. To solve this problem, we consider 43

distributions of synaptic strength with means of order 1/
√
K, as in the standard model, but 44

with much larger variances of order 1/
√
K. In this case, the total variance is of order 45√

K/
√
K = 1, and irregular activity is restored. 46

Another feature of standard balanced models that seems at odds with the data is that 47

they have attenuated linear responses to input that is uniform across neurons [9, 17]. This 48

linearity is not present in the networks we study. In summary, the combination of small 49

feedforward inputs and broadly distributed synaptic strengths gives rise to a novel E-I regime 50

that exhibits asynchronous irregular sparse firing. In the following, we illustrate prominent 51

features of this regime, such as nonlinear response to feedforward input and non-Gaussian 52

current distributions, and we highlight the mechanisms that maintain sparsity and 53

distributed firing across network neurons. 54

Results 55

The model 56

A common simplification for analyzing E-I networks is to consider a single population of 57

inhibitory units driven by excitatory input from an external source [15, 16]. After analyzing 58

such purely inhibitory networks, we will show that our results apply to networks with both 59

excitatory and inhibitory units. We consider standard ’rate’ models. The inhibitory networks 60

we study have currents xi for i = 1, 2, . . . , N and firing rates φ(xi) that obey 61

τx
dxi
dt

= −xi −
N∑
j=1

Jijφ(xj) + I0 , (1)

where φ is a nonlinear function and Jij ≥ 0. We call the variable x a current because it 62

represents the total current generated by the recurrent synaptic and feedforward inputs in 63

the second and third terms on the right side of the above equation, and because it 64
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determines the firing rate through the ‘F-I’ function φ(x). We also use the terms ‘response’ 65

or ’firing rate’ for φ(x) and ‘activity’ for non-zero rates. In our plots, we measure time in 66

units of τx, making it a dimensionless variable. Connectivity can be all to all (K = N) or 67

we can restrict the connectivity so that only K < N of the elements in each row of J are 68

non-zero. I0 is a positive bias input that is identical for all units; it is the feedforward input 69

discussed in the Introduction. Standard balanced models assume the unrealistically large 70

scaling I0 ∼
√
K; we consider, instead, models with I0 of order 1. 71

The non-zero elements of J are drawn independently from a distribution with mean 72

J0/
√
K, with J0 an order 1 parameter. We express the variance of this distribution as 73

g2/Kν , where g is another parameter of order 1, and ν allows us to vary the scaling with K. 74

The standard scaling is ν = 1, which we call low variance. As we will show, the novel sparse 75

balance regime we explore comes about from setting ν = 1/2, which we call high variance. 76

It is awkward to use clipped Gaussians for sign-constrained synapses, especially in the 77

large-variance case we consider. We use, instead, distributions with positive support, such as 78

lognormal and gamma, focusing particularly on gamma-distributed synapses for reasons 79

given below. This specific choice is not essential; network behavior remains qualitatively the 80

same across a range of weight distributions, including a binary distribution (Fig S1). 81

We begin (Fig 1) by setting the response nonlinearity φ to a rectified hyperbolic tangent, 82

φ(x) =
{

tanh(x) x > 0
0 x ≤ 0

(2)

but later we also consider 83

φ(x) =
{
xλ x > 0
0 x ≤ 0

(3)

focusing, in particular, on the case λ = 0 (Heaviside function) for the analysis, but we also 84

consider λ = 1 (rectified linear), and λ = 2 (rectified quadratic). 85

Throughout, [·] denotes averages over units, 〈·〉 denotes averages over time, and an 86

overline represents averages across both units and time. For fixed K, the results we present 87

are independent of network size N , provided that the networks are large enough. For this 88

reason and because we are interested in large K, we restrict our studies to the case K = N , 89

but the results reported extend to partially-connected networks as well (K < N ; Fig S2). 90

Simulation results 91

With the usual I0 ∼
√
K bias reduced to an input of order 1, the network behaves very 92

differently in the low- (ν = 1) and high- (ν = 1/2) variance cases (Fig 1). For low variance, 93

many units are active, but their responses are small (Fig 1A). In contrast, for high variance, 94

activity in the network is sparse but individual units exhibit robust responses (Fig 1B). 95

Scaling of the firing rate as a function of connectivity K can be quantified by computing 96

φ = [〈φ〉] = 1
N

N∑
j=1
〈φj〉 . (4)

We can break down this average by writing it as the product of f , the fraction of units that 97

are active (φ > 0), and µ, the average firing rate of the active units, φ = fµ. In both the 98

low- and high-variance cases, the average firing rate φ scales as 1/
√
K (Fig 1C) but, for low 99

variance, f is fairly independent of K (Fig 1D) and µ scales as 1/
√
K (Fig 1E). The scaling 100

is different for high variance where f scales closer to 1/
√
K (Fig 1D) and µ is relatively 101

independent of K (Fig 1E). Thus, the high-variance case, which we call sparse balance, 102

results in networks in which activity is sparse but individual units have appreciable responses. 103
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Fig 1. Comparison of low- and high-variance networks. A) Cartoon of network
dynamics in time. Light (dark) gray corresponds to low (high) firing rates. With low
synaptic variance, fluctuations in firing rates are small, and a relatively fixed and dense
subset of units contribute to firing. Right: firing rate traces of five example units (each with
a distinct color). Gray arrow indicates the extent of fluctuations in the network. B) Same as
A except for the high-variance model. The network exhibits a small and shifting ensemble of
cells that respond robustly at any given time. The magnitude of fluctuations is increased
substantially (right). C) Mean response in both networks follows a 1/

√
K scaling (fits to

the data yield φ ∼ 1/K0.503 for high variance and ∼ 1/K0.513 for low variance; J0 is
adjusted so that φ values in the two networks overlaps). D) Fraction of active units (inverse
sparsity). High-variance model exhibits a rapid sparsening in K while, in the low-variance
network, this fraction remains roughly constant. E) Mean response of the active subset. The
trend in D is flipped: the low-variance network demonstrates a rapidly vanishing µ, which is
not the case in the high-variance model. Input current I0 is set to one. F) Network’s
response to the external input current I0 with K = 1000. (continued on next page)
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Fig 1. G) Despite similar φ values, the high-variance network is more sparsely active by
more than twofold. H) Active neurons respond more robustly in the high-variance network
than in its low-variance counterpart. (Model parameters: J0 = 2 for high variance and 1.05
for low variance, g = 2, Jij ∼ gamma, φ = [tanh]+).

A well-known distinctive feature of standard balanced networks (I0 ∼
√
K and 104

J-variance ∼ 1/K) is that the average firing rate φ is a linear function of the bias input I0 105

despite the presence of a nonlinear response function in the model. This feature extends to 106

the low bias model (I0 ∼ 1) in the case of low variance but, for high J-variance (∼ 1/
√
K), 107

the average response φ has a nonlinear dependence on I0 (Fig 1F). In both the low- and 108

high-variance cases, f is insensitive to I0 (Fig 1G), meaning that the mean firing rate of the 109

active units µ is also linear for low variance and nonlinear for high variance (Fig 1H). Thus, 110

the restriction to linear responses for uniform input does not apply to the sparse balance 111

networks. 112

We also examined the distribution of x values in these networks (Fig 2). In the 113

low-variance case, these distributions are Gaussian, and both their mean and variance 114

decrease with K (Fig 2A). The result of these two effects is that the fraction of the x 115

distribution above threshold (x = 0) remains fairly constant as a function of K, 116

corresponding to the roughly constant fraction of active units (Fig 1D), but the range of the 117

distribution above threshold drops with K, matching the drop in activity (Fig 1E). For high 118

variance (Fig 2B), the distribution is non-Gaussian, the fraction above threshold drops with 119

K, and the range remains constant, again corresponding to the dependence of the average 120

firing-rate response on K (Fig 1D & E). The mean of the x distribution for the sparse 121

balance network is insensitive to K and lies below threshold. The mean of the distribution 122

for low variance is also negative, but it moves toward zero as K increases. 123

Fig 2. Sparse balance yields non-Gaussian dynamics and a subthreshold mean.
Distribution of currents x (over time and units) for gamma-distributed synapses. Dashed
lines denote the mean of each distribution, i.e., x. Area above threshold (set to zero; solid
line) corresponds to the fraction of active units f . A) With low synaptic variance (ν = 1),
the distribution of x is a Gaussian centered around a mean that tends to zero for larger K.
B) Same as in A except for high synaptic variance (ν = 1/2). Note the larger range of the
horizontal axis compared to B. The distribution is no longer Gaussian. x is relatively
insensitive to K and lies below threshold. (Model parameters are g = J0 = 2, I0 = 1,
Jij ∼ gamma, φ = [tanh]+)

The results for networks with small input biases and large synaptic-weight variances, 124
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shown in Fig 1 for a rectified hyperbolic tangent nonlinearity, extend to other nonlinear 125

response functions as well (Fig 3A-B). The response in these networks is distributed across 126

almost all of the units, but at any given time only a sparse distinct subset of units is active 127

(Fig 3C). This active population constantly changes, and firing rates appear chaotic. The 128

fraction of time that units are active is skewed toward small values (Fig 3D), indicating that 129

the majority of units respond infrequently. For all choices of φ, the distribution of x is 130

non-Gaussian with only a small fraction of units above threshold (Fig 3E), consistent with 131

the sparsity of the firing. Finally, the dynamics in these networks can be characterized by 132

the population-averaged autocorrelation function of the currents (Fig 3F), which we consider 133

in more detail in a later section. 134

In summary, these simulations illustrate an alternative regime for E-I networks in which 135

the activity of individual units remains robust, despite the absence of order
√
K feedforward 136

bias inputs. Furthermore, in these networks, mean firing rate exhibits a nonlinear dependence 137

on bias input. We now analyze in detail the features illustrated in these simulations. 138

Analysis of sparse balance networks 139

How does high-variance connectivity support sparse but robust activity with low bias input, 140

and what is the nature of this activity? Addressing these questions is simplified by 141

considering a Heaviside response function (Eq (3) with λ = 0; we comment on extensions to 142

other nonlinearities in the Materials & Methods). For a Heaviside nonlinearity, the firing rate 143

of an active unit is always one, so µ = 1 and the average response is equal to the sparsity, 144

φ = f . We consider a general J-variance scaling, 1/Kν , so that we can compare results to 145

the low-variance ν = 1 case, but we are primarily interested in the high-variance case 146

ν = 1/2. 147

We begin the analysis by defining the recurrent synaptic input as 148

ηi(t) =
N∑
j=1

Jij φ(xj) , (5)

so that Eq (1) can be written as 149

τx
dxi
dt

= −xi(t)− ηi(t) + I0 . (6)

We consider non-zero weights drawn from a gamma distribution, gamma(κ, θ), where κ 150

and θ are the ’shape’ and ’scale’ parameters of the gamma distribution in terms of which its 151

mean is κθ, and its variance is κθ2. To achieve a mean J0/
√
K and variance g2/Kν we set 152

κ = J2
0
g2 K

ν−1, θ = g2

J0
K1/2−ν . (7)

For a Heaviside nonlinearity, the sum in Eq (5) is only over active units with φ = 1, and the 153

probability of a unit being active is equal to the sparsity f . This means that of the K 154

non-zero elements of J for each unit, fK will be active. As a result, η is given by the sum 155

of fK random variables drawn independently from the distribution gamma(κ, θ). The sum 156

of random variables that are gamma-distributed with the same scale parameter is itself 157

gamma-distributed with that scale parameter and a shape parameter equal to the sum of 158

the shape parameters of the variables being summed [18]. Thus, 159

η ∼ gamma(α, θ) (8)

with α = fKκ, which has mean 160

[η] = αθ = fKκθ = J0f
√
K (9)

6/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.433027doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433027
http://creativecommons.org/licenses/by/4.0/


A

B

C

D

E

F

Fig 3. Asynchronous irregular activity in the sparse balance model. A) Responses of
network neurons in time for four different nonlinear response functions: Heaviside step
function, rectified tanh, rectified linear, and rectified quadratic. B) Rates φ(x) (dark)
superimposed on the currents x (light) for four example units. Cells respond robustly and
infrequently across choices of the response functions. C) Fractions of active neurons, or the
inverse sparsity. D) Normalized distributions for the fraction of ON-time, defined as the
fraction of (simulation) time a unit spends above threshold. For better visualization,
histograms are smoothened using kernel density estimation. E) Normalized distributions of
x, showing non-Gaussian dynamics. F) Population-averaged autocorrelation functions of x.
At this fixed value of in-degree (K = 1000), all response functions produce qualitatively
similar results. (Model parameters: g = J0 = I0 = 2, Jij ∼ gamma).

and variance 161

var(η) = αθ2 = fKκθ2 = g2fK1−ν . (10)

To maintain a finite mean input as K grows, Eq (9) implies that we must have f ∼ 1/
√
K, 162
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which implies, from Eq (10), that the fluctuations in the synaptic input scale as K1/2−ν . 163

Thus, the only solution with finite fluctuations as K grows is the high-variance case, 164

ν = 1/2. For ν = 1/2 and with f ∼ 1/
√
K, Eqs (9) and (10) show that the distribution of 165

synaptic inputs is independent of K with var(η) = g2f
√
K. This feature may appear 166

surprising given that the sparseness of network activity is proportional to 1/
√
K. We resolve 167

this paradox in a later section. 168

A naive application of the central limit theorem would suggest that for sufficiently large 169

K, the synaptic input would be normally distributed. Independent of θ, the larger the shape 170

parameter, the closer a gamma distribution approximates a Gaussian (in particular, the 171

approximation is good for shape parameters ∼20 or larger). The shape parameter for the 172

distribution of η, from Eq (8), is fKκ = fJ2
0 g
−2K−ν ∼ K0. Thus, unless J0 is large or g 173

is small, even in the limit of large K, the η distribution remains non-Gaussian (Fig S4). 174

If we average Eq (6) over both units and time and use η = J0f
√
K, we obtain 175

x = J0f
√
K + I0 or, equivalently, 176

f = φ = I0 − x√
KJ0

. (11)

In the standard balanced model and in the low-variance case considered above, I0 � x, so 177

the mean response is linear in I0. This is no longer true for high synaptic variance (ν = 1/2) 178

for which I0 and x are both of order 1. The nonlinear mean response seen in Fig 1F arises 179

because the dependence of x on I0 is nonlinear. Depending on the choice of φ, the sparse 180

balance model exhibits sublinear or subralinear mean population response (Fig S5). 181

These analyses show that when feedforward bias input is of order one, large synaptic 182

variance is required to generate robust fluctuations, with a synaptic variance of order 1/
√
K 183

producing order-one fluctuations. 184

Sparse activity arises from network dynamics 185

We noted in the previous section that the distribution of synaptic inputs is independent of 186

K, and yet the mean network firing rate φ varies as 1/
√
K. Network currents x are 187

generated through Eq (6), which involves low-pass filtering of the synaptic input. This 188

suggests that the response sparseness is related not to the distribution of synaptic inputs but 189

rather to their dynamics. 190

To explore these dynamics, we consider the population-averaged autocorrelation function 191

of η, 192

Rη(τ) = [〈(ηi(t)− 〈ηi〉)(ηi(t+ τ)− 〈ηi〉)〉] (12)

which captures the extent to which η at time t+ τ is affected by η at time t. Rη is a 193

decaying function of the lag τ (Fig 4A), and its decay defines a correlation time-scale 194

denoted by τη. One way to define this correlation time-constant is by considering the 195

normalized area underneath the autocorrelation function, 196

τη = 1
Rη(0)

∫ ∞
0

dτRη(τ) (13)

We characterize the dynamics of η using the dimensionless constant β = τx/τη, and find 197

that β increases logarithmically with K, an increase that does not occur in the low-variance 198

(Fig 4B) or for conventional balanced networks. As K increases, the time-scale of the 199

fluctuations in η becomes more rapid, although their variance remains constant. This makes 200

it increasingly harder for x to keep up with the fluctuations, due to the low-pass filtering in 201

Eq (6). As a result, the fraction of x above threshold decreases and the overall activity 202

decreases with K. Thus, interestingly, it is the dynamics of the recurrent synaptic inputs, 203

not their size, that leads to sparse activity at large K. 204
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Fig 4. Time-scale of fluctuations adjusts to maintain sparse activity. A)
Population-averaged autocorrelation function of the synaptic input normalized by its
zero-lag value. Note the faster decay of the autocorrelation for increasing K. B) The
decorrelation rate β is constant in the low-variance network but increases logarithmically
with K in the sparse balance model, resembling the (inverted) trends of sparsity (Fig 1D).
C) β also exhibits a nonlinear dependence on I0 similar, but opposite to, that of the sparsity
(inset). Error bars indicate the 95% confidence interval around the mean, averaged over 10
random realizations of the connectivity. (Model parameters: g = J0 = 2, I0 = 1, K = 1000,
Jij ∼ gamma, φ = [x]λ+ for λ sweeps in C, [tanh]+ otherwise.)

Consistent with the argument above that links the time-scale of dynamics to the level of 205

currents above threshold, we find that changes in β account for the degree of sparsity 206

(Fig 4C). In particular, trends in β are opposite to those in f , with sparser activity (smaller 207

f) corresponding to faster time-scale (larger β) and vice versa. These results highlights how 208

the time-scale of synaptic fluctuations dynamically adjust to maintain sparse activity. 209

Mean-field analysis 210

In a previous section we noted that, for a Heaviside response nonlinearity and 211

gamma-distributed synaptic weights, the recurrent synaptic input η is gamma distributed 212

with shape parameter (for the high-variance ν = 1/2 case) α = fJ2
0
√
K/g2 and scale 213

parameter θ = g2/J0. Although θ is completely determined by parameters characterizing J 214

(g and J0), α is not determined because it depends on the fraction of active units f or, 215

equivalently, on the mean firing rate φ. We begin our mean-field analysis by deriving a 216

self-consistent equation for the mean response that determines α and, thereby, the full 217

distribution of recurrent synaptic inputs. For this purpose, we introduce the variable m, 218

which is the mean-field approximation for φ. The above equations imply that α is given in 219

terms of m by 220

α = mJ2
0
√
K

g2 . (14)

Our goal is therefore to compute m as a function of α so that the above equation becomes 221

a closed self-consistent condition for determining α. 222

Conventionally, in a dynamic mean-field approach, the full autocorrelation of η is 223

computed self-consistently [15, 16, 19, 20]. This computation is difficult in the high-variance 224

case because of the non-Gaussian statistics of η. Instead, we consider a ’static’ mean-field 225

approximation motivated by the logarithmic scaling of the decorrelation rate β in the sparse 226

balance model. When β is small, x roughly tracks the slow fluctuations in η. This tracking 227
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holds particularly well for β � 1. On the contrary, for β � 1, x cannot keep up with the 228

fluctuations in η and averages them. As Fig 4B suggests, for in-degrees of interest, 229

K ∼ 103, the network operates closer to the tracking regime, allowing us to make the 230

approximation x ≈ −η+ I0. Indeed, for K ∼ 500−1000, the distribution of x resembles that 231

of η, except for a rightward shift by I0 (Fig 5A). Note that this approach differs from 232

mean-field approaches in which the limit K →∞ is assumed. Here K is considered large 233

but finite. In both cases, however, the limit N →∞ is assumed. 234

When x tracks η, we can use the distribution of η values, η ∼ gamma(α, θ), to perform 235

averages over x. For example, for the mean-field calculation of [〈φ(x)〉], we can make the 236

substitution φ(x)→ φ(I0 − η) and write 237

m =
∫ ∞

0
dη pγ(η;α, θ)φ(I0 − η) , (15)

where pγ is the probability density function of the gamma distribution with shape and scale 238

parameters α and θ. Eqs (14) and (15) together form a closed self-consistent condition that 239

determines α, with results that are in decent agreement with numerical simulations (Fig 5B). 240

In particular, the nonlinear relationship between α and I0 is captured by the theory. Larger 241

values of K exhibit slightly larger deviations from the theory, which hints at the violation of 242

the static assumption. However, even with K ∼ 103, which is in the range of interest, the 243

theoretical α is close to the empirical results (Fig 5B). 244

Although we have computed α and thereby determined the distribution of η values, this 245

does not completely characterize the nature of the fluctuations in the recurrent synaptic 246

input. The total variance of the recurrent synaptic input can be divided into temporal and 247

quenched parts by writing 248

var(η) =
[〈

(η − [〈η〉])2
〉]

= σ2
T + σ2

Q , (16)

where 249

σ2
T =

[〈
(η − 〈η〉)2

〉]
(17)

and 250

σ2
Q =

[
(〈η〉 − [〈η〉])2

]
. (18)

The quenched variance arises because the different units of the network fluctuate around 251

different time-averaged values. To analyze this quenched variance, we need to specify how 252

the total variance is divided into temporal and quenched components. For this purpose, we 253

decompose η as 254

η︸︷︷︸
∼gamma(α, θ)

= ηT︸︷︷︸
∼gamma(α−b, θ)

+ ηQ︸︷︷︸
∼gamma(b, θ)

(19)

where ηT is a time-dependent variable with no quenched variance, and ηQ is a static 255

variable that embodies the influence of quenched disorder. The shape parameters of the 256

temporal and quenched components must add up to α, and the variance of the quenched 257

component determines b through 258

σ2
Q = bθ2 , (20)

where b is the scaled quenched variance. This decomposition assumes that the 259

time-averaged synaptic input in the full model is gamma-distributed (Fig S6). 260

Our mean-field analysis of the quenched variance, b, is based on computing a mean-field 261

approximation, s, of [〈φ〉2]. Using the decomposition into temporal and quenched 262

components of the gamma distribution, we can write the mean-field approximation of s as 263

s =
∫ ∞

0
dηQ pγ(ηQ; b, θ)

(∫ ∞
0

dηT pγ(ηT ;α− b, θ)φ
(
I0 − ηT − ηQ

))2
. (21)
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This expression depends on the parameter α computed above and, in addition, on b, so we 264

need a self-consistency condition to determine the value of this second parameter. Using 265

standard mean-field approximations, we can write 266

[
〈η〉2

]
=

∑
j

∑
k

JijJij〈φj〉〈φk〉

 ≈ K [J2] [〈φ〉〈φ〉] +K2 [J ]2 [〈φ〉]2 (22)

Inserting now [J2] ≈ g2/
√
K and [J ]2 = J2

0/K gives 267[
〈η〉2

]
≈ g2

√
K [〈φ〉〈φ〉] + J2

0K [〈φ〉]2 = bθ2 + [〈η〉]2 . (23)

Finally, using [〈η〉]2 = J2
0Km

2 and [〈φ〉] = m, this yields 268

s = bθ2

g2
√
K
. (24)

Eqs (21) and (24) form a closed system that can be used to determine b (Materials & 269

Methods). Fig 5C depicts this self-consistent solution. Notably, the theory captures the 270

nonlinear relationship between b and I0 as well as the trend with K. Since the mean-field 271

solution to α is used in computing b, any error in the estimate for α is carried over to the 272

solution for b. The primary source of error is the violation of the assumption that the 273

distribution of time-averages are gamma-distributed, which is used in the decomposition of 274

η in Eq (19). The deviation is pronounced for larger bias inputs but for I0 ∼ 1, which is 275

closer to the range of input currents of interest, the theory is in decent agreement. 276

Fig 5. Mean-field approximation captures the mean and quenched variance of the
synaptic input. A) Distribution of the recurrent synaptic input η (gray) and current x
(blue) for two K values. C-D) α and b as functions of input current I0. The nonlinear
features of α and b are captured by the theory. The approximation for b works better with
small currents (zoomed-in gray box). The trend (larger K produces smaller quenched
variance and larger α) is also accounted for by the theory. Error bars indicate the 95%
confidence interval around the mean, averaged over 10 random realizations of the
connectivity. (Model parameters: I0 = 2 in A, g = J0 = 1, Jij ∼ gamma, φ = Heaviside)

These results suggest that, despite non-Gaussian statistics, the sparse balance model is 277

amenable to a mean-field treatment that is in similar spirit to what has been applied 278

previously to recurrent networks. 279
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Sparse balance in an E-I network 280

Finally, we illustrate that all of the features we have discussed for a purely inhibitory network 281

are present in mixed excitatory-inhibitory networks for two choices (gamma and lognormal) 282

of the connectivity distribution (Fig 6). These networks exhibit asynchronous irregular 283

activity with chaotic responses of individual units (Fig 6A-B) and constant population 284

activity (Fig 6C). Responses are sparse across the population: roughly 10% of excitatory and 285

20-30% of inhibitory units are active at any given time (Fig 6C). Individual units show 286

sporadic response for both E and I cells in time (Fig 6B) with spatiotemporal variability that 287

is purely internally generated. 288

gammalognormalgammalognormal

Fig 6. Asynchronous irregular activity in an E-I network with small input current
A) Responses of 500 excitatory (red) and 500 inhibitory (blue) units in two networks, one
with lognormal (left) and the other with gamma (right) weight distributions. Responses are
sparse and distributed across the population. B) Rates (dark) superimposed on the currents
(light) for four example cells from each population. Response is infrequent as fluctuations
occasionally push the current above threshold. C) Fraction of active units for individual
populations (red and blue) and across the entire network (gray). The inhibitory population
is more active than its excitatory counterpart. (continued on next page)
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Fig 6. D) Fraction of (simulation) time units spend above threshold for each population
and connectivity distribution. This distribution is wide and skewed. Both choices of the
connectivity distribution produce qualitatively similar results. (Model parameters: g = 1,
JEE = JIE = 1, JEI = 2, JII = 1.2, IE = 2, II = 1, NE = NI = 3000, K = 600,
φ = [tanh]+).

Responses are robust and shared across the entire population as opposed to a fixed 289

subset of units. We characterize this feature by considering the distribution of ON-time 290

fraction, i.e., the fraction of time individual cells spend above threshold (Fig 6D). This 291

quantity shows a wide and skewed distribution across both E and I populations. The 292

majority of units spend very little time above the threshold, with only a few (5% of E, 20% 293

of I cells with lognormal; 2% of E, 15% of I cells with gamma) spending more than half the 294

time above threshold, and none responding at all times. We note that gamma and 295

lognormal synaptic distributions produce similar activity patterns across the population. 296

Discussion 297

We have uncovered a novel regime of E-I networks that exhibits asynchronous irregular 298

activity without the need for unrealistically large external input currents. We have done so 299

by taking advantage of widely distributed synapses that generate fluctuations that would 300

otherwise be minuscule in the absence of large feedforward currents. We highlighted a 301

number of properties including sparse activity, non-Gaussian dynamics and a nonlinear 302

population response. We also revealed the mechanism by which the time-scale of the 303

dynamics generates sparse network activity. Using mean-field theory, we computed the 304

statistical features of the recurrent input. This model demonstrates the important role of 305

synaptic variance in the dynamics of recurrent networks. 306

Robust network responses with small input currents are especially interesting in light of 307

the fact that experiments suggest the feedforward component of the input in cortical circuits 308

is comparable in magnitude to the total synaptic input (see [9] for a review). For example, 309

in olfactory cortex, the feedforward excitation from the olfactory bulb accounts for only a 310

quarter of the net excitation into a pyramidal cell [10]; in the visual cortex, thalamic input 311

accounts for roughly 30-40% of the net excitation to a cell [11, 12]. Similar results have 312

been reported in the auditory cortex [21]. Our model provides a novel theoretical insight 313

into these observations and highlights the importance of the scaling of the input current on 314

network dynamics. 315

To provide a more quantitative link to these experimental findings, it is appropriate to 316

define χ = x/I0, referred to as the ’balanced index’ [9]. The ratio χ captures the relative 317

contribution of the feedforward input I0 to the mean of the total current x. The 318

aforementioned experiments suggest a χ of order 1. In both the standard balanced and the 319

low-variance networks result in χ ∼ 1/
√
K. In the sparse balance model, widely distributed 320

synapses together with small input currents yield a χ of order 1 in agreement with 321

experimental findings in cortex. 322

Despite the absence of cancellation of large excitatory and inhibitory currents in the 323

sparse balance model, the mean of the net synaptic input, x, lies well below threshold. One 324

consequence of this, as mentioned above, is that the net input and the feedforward input 325

have comparable contributions to the mean response. This results in a nonlinear population 326

response to uniform input that is absent in the standard balanced regime where the strength 327

of the feedforward input overwhelms the influence of the net input. Nonlinear mean 328

responses are known to be necessary for a variety of cortical computations such as response 329

normalization and surround suppression in visual cortex [9, 17, 22–24] and concentration 330

invariance in olfactory cortex [25–27]. In the sparse balance model, the shape of this 331
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nonlinear population response depends on the choice of neuronal response function. 332

Small input currents impose a constraint on the mean response. To ensure this 333

constraint is carried over to the sparsity, but not the mean response of the active neurons, 334

we considered widely distributed synapses through an unconventional scaling of synaptic 335

variance. Models that address the role of heavy-tailed connectivity distributions are timely 336

because it has been shown that the distribution of synaptic efficacies in cortex are 337

compatible with a lognormal fit [1, 28, 29]. Experiments and modeling studies have also 338

suggested that strong synapses in the tail of such distributions, although less frequent, can 339

have a strong influence on postsynaptic firing and network dynamics [30–33]. 340

Our choice of the gamma distribution, as opposed to the lognormal, was motivated by 341

its analytical tractability. The scaling of variance we consider results in an effectively sparse 342

connectivity distribution where the majority of synapses are weak and thus neuronal activity 343

is heavily influenced by the minority of strong synapses. Similar to this idea, recent modeling 344

work has demonstrated that networks with power-law synaptic weights exhibit self-sustained 345

activity [33]. In these ’Cauchy networks’, the variance of the connectivity is infinite for finite 346

K, and network behavior is dominated by large tails in the weight distribution. In another 347

modeling study, a lognormal distribution of synaptic weights in a network of spiking neurons 348

gave rise to self-sustained asynchronous firing in the absence of any bias input current [31]. 349

Together with these results, our model highlights the degree to which heterogeneity in 350

connectivity can compensate for the absence of large input currents and help sustain rich 351

network dynamics. 352

The emergence of sparse activity in our model is interesting given that only a small 353

fraction of cortical cells, particularly in the superficial layers, are active in response to many 354

stimulus or spontaneously (see [34] for a review). The level of sparsity in the model is 355

related to the degree of network connectivity as opposed to single-neuron properties, such as 356

the threshold. Standard balanced models can also exhibit a high degree of population 357

sparseness, as in the spiking models of [35]. In networks with intrinsic chaotic activity, 358

whether and how the degree of sparsity can be used to perform computations that require 359

high-dimensional representation [36, 37] of the stimulus remains to be investigated. 360

In our model, we revealed that the time-scale of the synaptic input, not its distribution, 361

adjusts to maintain the degree of sparsity in the network. When the constraint on the mean 362

response demands a small level of current above threshold, fluctuations at the synaptic input 363

speed up; since the dynamic equation of each cell is a low-pass filter of its synaptic input, 364

the output distribution narrows ever so slightly and the tail above threshold retreats in a 365

manner that satisfies the constraint on the mean rate. Changes in sparsity are made possible 366

by changes in the autocorrelation time-scale, and this phenomenon appears to apply 367

generally. This feature highlights the flexibility of recurrent dynamics in adjusting not only 368

the mean and variance of the distribution of its firing rates, but also their correlation 369

time-scales. The role of this flexibility in building functional networks of rate neurons is a 370

potential subject of future work. 371

Mean-field theory is an important tool for understanding network behavior. We examined 372

a mean-field theory based on the approximation that synaptic fluctuations are 373

instantaneously tracked by neuronal responses. This adequately predicted the network 374

behavior and was extended to include both time-dependent and quenched fluctuations. This 375

theory assumes a finite, but large in-degree K. Biological values of K are roughly of order 376

103, the range we considered. Specifically, pyramidal cells receive ∼7000 excitatory 377

synapses [1], but when we account for the average number of synapses per connection, 378

∼4 [38, 39] and the number of non-intracortical synapses, the in-degree comes out to be 379

∼103. 380

One prominent theory that addresses the issue of bias input is the stabilized supralinear 381

network (SSN) [9, 24, 40]. Important features of SNNs include supralinear neuronal response 382

function, small bias current, and weak synaptic coupling. These models have been 383
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extensively and successfully used to describe steady-state responses in sensory cortex. Our 384

model differs from the SSN in that it generates chaotic activity, has strong synaptic 385

coupling [41] and has widely distributed synaptic weights. With a supralinear response 386

function (λ > 1), the large synaptic variance endows our model with a higher degree of 387

chaos than other strongly-coupled networks; without this large degree of heterogenity in the 388

weights, responses are susceptible to resting at fixed points [15]. This degree of chaos may 389

aid in the learning of functional trajectories [42–46]. 390

We examined a model with random connectivity, but it would be interesting to 391

investigate stimulus selectivity in sparse balance networks with structured connections. The 392

large degree of variability in the synapses could route stimulus information along particular 393

paths across network neurons. Structured connectivity is of particular interest given 394

compelling evidence that the recurrent contribution of the synaptic input, not just the 395

feedforward component, exhibits selectivity [10–12]. We believe that the variance of 396

connectivity, in addition to its mean structure, is important to consider for addressing the 397

way feedforward and recurrent components shape selective responses. 398

Materials & methods 399

Numerical simulations 400

Numerical simulations were performed using Euler integration with time-steps less than 0.05, 401

τx = 1, and simulation time T = 1000. Other network parameters are included in the figure 402

captions. The code (written in Julia v1.3.0) is available with the online version of the 403

manuscript. 404

Non-Heaviside nonlinearities 405

Our analysis, leading to the high variance scaling (ν = 1/2) is based on networks with a 406

Heaviside (λ = 0) response function, which simplifies the calculations. Generally, the 407

variance of the recurrent synaptic input is var(η) = Kvar(J)φ2 ∼ K1−νφ2. With a 408

Heaviside nonlinearity, φ2 = φ and since φ ∼ 1/
√
K, we conclude that ν = 1/2 is the only 409

solution with finite fluctuations as K grows. Non-binary responses do not guarantee the 410

equivalence of φ2 and φ, so we introduce ψ(λ) ≡ φ2/φ. In the case of a Heaviside (λ = 0), 411

ψ = 1. For λ > 0, the distribution of x dictates this ratio. We find numerically that, while 412

not exactly one, ψ is slowly varying in K (Fig S3). 413

The variance scaling result obtained with a Heaviside nonlinearity extends to rectified 414

tanh (and similarly rectified linear) in that the 1/
√
K scaling of φ is predominantly 415

inherited from f , and not µ. For λ ≥ 2, this is not necessarily the case and µ can exhibit a 416

non-negligible scaling with K. In spite of this, with a fixed value of K in the range of 417

interest, ∼103, the responses in the high-variance case, as opposed to its low-variance 418

counterpart, are much more appreciable and irregular, and the low-variance model is prone 419

to fixed point states for λ > 1. 420

Existence of the mean-field solution 421

From Eq 15, 422

m = 1
Γ(α)

∫ I0/θ

0
du e−uuα−1 = γ̃(α, I0/θ) , (25)

where γ̃ is the regularized lower incomplete gamma function. From Eq 14, 423

α = J2
0
g2

√
K γ̃

(
α,
I0J0

g2

)
. (26)
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Solving this equation for α produces the result shown in Fig 5B. 424

Combining Eqs (21) and (24), we obtain 425

bθ2

g2
√
K

= 1
Γ(b)

∫ I0/θ

0
du e−uub−1

(
γ̃
(
α− b, I0

θ
− u
))2

(27)

Here, we comment on the existence of a solution to Eq (27). On one hand, the maximal 426

possible value of b is b = α. At this extremum value, it follows from Eq (14) that the 427

left-hand-side (LHS) of Eq (27) is equal to m. In this limit, the right-hand-side (RHS) of 428

Eq (27) is also equal to m. This is because limε→0 γ̃(ε, u) = 1. In other words, 429

LHS(b = α) = RHS(b = α) = m (28)

This, however, is not a viable solution because b = α describes a fixed-point state with no 430

temporal variability, rather than describing a chaotic state. 431

On the other hand, the minimal value of b is b = 0, and a similar manipulation of 432

Eq (27) shows that RHS(b = 0) = m2
433

LHS(b = 0) = 0 < RHS(b = 0) = m2 (29)

Therefore, a solution is guaranteed as long as the slope of the RHS at b = α, 434

∂(RHS)/∂b, is larger than that of the LHS. These slopes depend on K, through the explicit 435

appearance of K in the LHS of Eq (27) and through the dependence of the mean-field value 436

of α on K. Numerically, we find that a solution exists for the K values of interest. Solving 437

Eq (27) for b produces the result shown in Fig 5C. 438
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Supplementary figures

Fig S1. Asynchronous irregular activity in the sparse balance model with binary
weights. Same as Fig 3, except with a Bernoulli connectivity distribution of mean J0/

√
N .

(Model parameters: J0 = 2, g =
√
J0
(
1− J0/

√
N
)
, I0 = 1.5, N = 1000).
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Fig S2. Equivalence between dilute and full connectivity. A-C) Same as Fig 1C-E,
but with the addition of results from a dilutely-connected network (dots). With dilute
connectivity, the source of variability in the connections are twofold: each neuron receives
inputs from, on average, K other neurons out of the total N network neurons; additionally,
each existing connection is drawn from a distribution of mean J0/

√
K and variance g2/

√
K.

In the fully-connected case, each neuron receives input from all other neurons with
connections drawn from a distribution of mean J0/

√
N and variance g2/

√
N . Note that in

the main text, we considered fully-connected networks and denoted the mean and variance
by J0/

√
K and g2/

√
K with K = N . (Model parameters: g = J0 = 2, I0 = 1,

Jij ∼ gamma, φ = [tanh]+; N = K in full (solid), N = 20000 in dilute (dotted)).

Fig S3. Slow variations in ψ for various nonlinear response functions. ψ(λ), defined
as φ2/φ, exhibits sub-power law scalings with K. (Model parameters: g = J0 = 2, I0 = 1,
Jij ∼ gamma, φ = [x]λ+)
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Fig S4. Recurrent synaptic input is described by a gamma distribution. A-C) The
distribution of the synaptic input η (across population and time) with a Heaviside response
nonlinearity for three different values of K (shaded histograms). The solid line is the
gamma distribution in Eq (8) with scale parameter θ = g2/J0 and shape parameter
α = f

√
KJ2

0/g
2, where f is the measured sparsity in the simulations, and J0, g, K are

network parameters. The distribution accurately describes the histograms. Also note that,
due to the high J-variance in the sparse balance model, the distributions of synaptic input
hardly change as K increases. (Model parameters: g = J0 = 2, I0 = 1, Jij ∼ gamma,
φ = Heaviside)

Fig S5. Sparse balance responds nonlinearly to input current. A) Mean response,
φ = fµ, increases nonlinearly with input current. This relationship depends on the shape of
the neuronal response function: λ < 1 and λ > 1 give rise to sublinear and supralinear mean
responses, respectively. B-C) Fraction, f , and mean response, µ, of the active neurons
versus input current. With rectified linear (λ = 1), this fraction remains constant since x
can be rescaled by I−1

0 without changing the shape of the x distribution; this feature also
makes the mean response linear. The nonlinear trend in sparsity switches at λ = 1. The
fraction active f increases with I0 at an ever-decreasing rate with λ > 1, while the opposite
is true for λ < 1. For λ > 1, with stronger feedforward excitation, threshold crossings that
result in sufficiently large responses become amplified. This amplification produces a large,
supralinear µ, which in turn comes at the cost of sparsening the population activity with I0.
For the Heaviside (λ = 0), responses are binary, so µ = 1 independent of I0 and φ = f .
(Model parameters: g = J0 = 2, Jij ∼ gamma, φ = [x]λ+, K = 1000)

22/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.433027doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433027
http://creativecommons.org/licenses/by/4.0/


Fig S6. Distribution of time-averaged activities. Recurrent synaptic inputs of three
example neurons with their corresponding distributions on the right (solid curves). Due to
quenched disorder in the network, each neuron fluctuates around a different time-average
(horizontal dashed lines). These time-averages form a distribution shown on the right (gray
dashed curve) whose width is captured by σQ = θ

√
b and is approximated by a gamma

distribution. This approximation is the main source of error in Fig 5C. (Model parameters:
g = J0 = I0 = 1, K = 1000, Jij ∼ gamma, φ = Heaviside)
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