1 A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and

- 2 SARS-CoV-2 variants in mice
- 3

4	David R. Martinez ^{1, 7} , Alexandra Schaefer ^{1, 7} , Sophie Gobeil ^{2, 7} , Dapeng Li ^{2, 7} , Gabriela De la
5	Cruz ³ , Robert Parks ² , Xiaozhi Lu ² , Maggie Barr ² , Kartik Manne ² , Katayoun Mansouri ² ,
6	Robert J. Edwards ² , Boyd Yount ¹ , Kara Anasti ² , Stephanie A. Montgomery ⁴ , Shaunna Shen ⁶ ,
7	Tongqing Zhou ⁵ , Peter D. Kwong ⁵ , Barney S. Graham ⁵ , John R. Mascola ⁵ , David. C.
8	Montefiori ⁶ , Munir Alam ² , Gregory D. Sempowski ² , Kevin Wiehe ² , Kevin O. Saunders ^{2, 6} ,
9	Priyamvada Acharya ^{2, 6, *} , Barton F. Haynes ^{2, *} , Ralph S. Baric ^{1, *} .
10	
11	¹ Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,
12	USA
13	² Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
14	³ Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine,
15	Chapel Hill, NC, USA
16	⁴ Department of Laboratory Medicine and Pathology, University of North Carolina School of
17	Medicine, Chapel Hill, NC, USA
18	⁵ Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda,
19	MD, USA
20	⁶ Department of Surgery, Duke University School of Medicine, Durham, NC, USA
21	
22	⁷ These authors contributed equally.

23

- ^{*}Corresponding authors.
- 25 Priyamvada Acharya, P.A., priyamvada.acharya@duke.edu
- 26 Barton F. Haynes, B.F.H., <u>barton.haynes@duke.edu</u>
- 27 Ralph S. Baric, R.S.B., <u>rbaric@email.unc.edu</u>
- 28 Keywords: SARS-CoV-2 D614G, B.1.1.7, B.1.429, B1.351, SARS-like virus, Sarbecovirus,
- 29 countermeasures, DH1047 antibody, bNAb, panCoV
- 30
- 31 Abstract

32 SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern 33 (VOC) can cause deadly infections, underlining the importance of developing broadly effective 34 countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention 35 and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, 36 bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.1.7, B.1.429, B1.351 37 by a receptor-binding domain (RBD)-specific antibody DH1047. Prophylactic and therapeutic 38 treatment with DH1047 demonstrated protection against SARS-CoV, WIV-1, RsSHC014, and 39 SARS-CoV-2 B1.351 infection in mice. Binding and structural analysis showed high affinity 40 binding of DH1047 to an epitope that is highly conserved among Sarbecoviruses. We conclude 41 that DH1047 is a broadly neutralizing and protective antibody that can prevent infection and 42 mitigate outbreaks caused by SARS-like strains and SARS-CoV-2 variants. Our results argue 43 that the RBD conserved epitope bound by DH1047 is a rational target for pan Group 2B 44 coronavirus vaccines.

45

46 Introduction

47	The emergence of severe acute respiratory syndrome (SARS-CoV) in 2003 led to more
48	than 8,000 infections and 800 deaths ^{1,2} . In 2012, the Middle East Respiratory Syndrome
49	(MERS-CoV) emerged in Saudi Arabia 3 , which has so far infected ~2,600 people and caused
50	900 deaths. Less than a decade following the emergence of MERS-CoV, SARS-CoV-2 emerged
51	in Wuhan, China ⁴ . The spread of SARS-CoV-2, the virus that causes coronavirus disease of
52	2019 (COVID-19) was rapid, and by March 2020, the World Health Organization (WHO) had
53	declared SARS-CoV-2 a global pandemic. By April 2021, more than 140 million people had
54	been infected globally, resulting in >3 million deaths. Therefore, there is a need to develop safe
55	and effective broad-spectrum countermeasures that can prevent the rapid spread and attenuate the
56	severe disease outcomes associated with current and future SARS-like virus emergence events.
57	Human highly pathogenic CoV outbreaks are likely of bat origin ⁵ , and there is great
58	genetic diversity among bat SARS-like viruses ⁶ . Zoonotic CoVs of bat origin, such as
59	RsSHC014 and WIV-1, can utilize the human ACE2 receptor for cell entry and infect human
60	airway cells ^{7,8} , underlining their potential for emergence in naïve human populations. Moreover,
61	existing SARS-CoV therapeutic monoclonal antibodies and SARS-CoV-2 mRNA vaccines do
62	not protect against zoonotic SARS-like virus infection ⁷⁻⁹ . Given the pandemic potential of
63	SARS-like viruses, the development of broadly effective countermeasures, such as universal
64	vaccination strategies ⁹⁻¹¹ , and coronavirus (CoV) cross-reactive monoclonal antibodies is a
65	global health priority. Moreover, given the emergence of the SARS-CoV-2 variants that are
66	partially or fully resistant to some neutralizing antibodies authorized for COVID-19 treatment ¹²⁻
67	¹⁴ , there is a need to discover mAb therapies that are broadly effective against the SARS-CoV-2
68	variants and zoonotic SARS-like viruses that will continue to emerge in the future.

69	The receptor binding domain (RBD) of SARS-CoV-2 is one of the targets for highly
70	potent neutralizing antibodies. Despite the high degree of genetic diversity within the RBD in
71	SARS-like viruses ⁶ , antibodies can be engineered to recognize diverse SARS-like viruses.
72	Rappazzo et al. recently reported that an engineered RBD-directed antibody, ADG-2, neutralized
73	SARS-like viruses and protected against SARS-CoV and wild type SARS-CoV-2 ¹⁵ . Therefore,
74	the RBD of Sarbecoviruses contains conserved epitopes that are the target of broadly
75	neutralizing antibodies. In agreement with the notion that the RBD contains a conserved epitope
76	shared among SARS, SARS-like, SARS-CoV-2 and the variants, we have identified a panCoV
77	protective antibody: DH1047. Here, we demonstrate, using both pseudoviruses and live virus
78	assays, that DH1047 neutralizes SARS-CoV, SARS-like bat viruses RsSHC014 and WIV-1, and
79	SARS-CoV-2 D614G, B.1.1.7, B.1.429, B.1.351 variants. Structural analysis shows that
80	DH1047 targets a highly conserved RBD region among the Sarbecoviruses. Importantly, we also
81	demonstrate that DH1047 provides prophylactic and therapeutic protection activity against
82	pathogenic SARS-CoV, RsSHC014, WIV-1, wild type SARS-CoV-2, and against a pathogenic
83	B.1.351 variant in mice. Thus, DH1047 is a pan-group 2B CoV protective antibody that can be
84	used to prevent and treat SARS-CoV-2 infections including important with variants of concern
85	and has the potential to prevent disease from a future outbreak of a pre-emergent, zoonotic
86	SARS-like virus strains that jump into naïve animal and human populations.
87	
88	Results

89 The identification of broadly cross-binding and neutralizing antibodies

90 We previously isolated 1737 monoclonal antibodies (mAbs) from a SARS-CoV

91 convalescent patient 17 years following infection and a SARS-CoV-2 convalescent patient from

92	36 days post infection ¹⁶ . From this large panel of mAbs previously described by Li <i>et al</i> . we
93	focused on 50 cross-reactive antibodies which bound to SARS-CoV, SARS-CoV-2, and other
94	human and animal CoV antigens ¹⁶ . To examine if these cross-reactive mAbs neutralized
95	divergent Sarbecoviruses, we measured neutralizing activity against a mouse-adapted SARS-
96	CoV-2 2AA mouse-adapted (MA) virus, SARS-CoV, bat CoV WIV-1, and bat CoV RsSHC014
97	using live viruses, and found four broadly cross-reactive antibodies, DH1235, DH1073,
98	DH1046, and DH1047 (Fig. 1). DH1235 neutralized SARS-CoV-2 2AA MA, SARS-CoV, and
99	bat CoV WIV-1 with IC $_{50}$ of 0.122, 0.0403, and 0.060 $\mu g/ml$, respectively (Fig. 1A and Table
100	S1). DH1073 neutralized SARS-CoV-2 2AA MA, SARS-CoV, and bat CoV WIV-1 with IC_{50} of
101	0.808, 0.016, and 0.267 μ g/ml, respectively (Fig. 1B and Table S1). DH1046 neutralized SARS-
102	CoV-2 2AA MA, SARS-CoV, bat CoV WIV-1, and bat CoV RsSHC014 with IC_{50} of 2.85,
103	0.103, 0.425, and 1.27 μ g/ml, respectively (Fig. 1C and Table S1). Similar to DH1046, DH1047
104	more potently neutralized SARS-CoV-2 2AA MA, SARS-CoV, bat CoV WIV-1, and bat CoV
105	RsSHC014 with IC ₅₀ of 0.397, 0.028, 0.191, and 0.200μ g/ml, respectively (Fig. 1D and Table
106	S1).
107	We also measured binding responses for DH1235, DH1073, DH1046, and DH1047
108	against zoonotic bat RaTG13-CoV, bat RsSHC014, and Pangolin GXP4L-CoV spikes. DH1235,
109	DH1073, DH1046, and DH1047 mAbs showed strong binding to bat RaTG13-CoV, bat
110	RsSHC014, and pangolin GXP4L-CoV spikes in addition to SARS-CoV and SARS-CoV-2 (Fig.
111	1E-1H). Finally, DH1235, DH1073, DH1046, and DH1047 bound to SARS-CoV-2 RBD and did
112	not bind to the SARS-CoV-2 NTD, demonstrating specific binding to the RBD. While DH1235,
113	DH1073, DH1046, and DH1047 were cross-reactive against epidemic, pandemic, and zoonotic
114	Sarbecovirus spikes, they did not bind to MERS-CoV, HuCoV OC43, HuCoV NL63, and

115	HuCoV 229E spike proteins (Fig. S1), suggesting these mAbs recognize a conserved epitope
116	found only in Group 2B betacoronaviruses. By Negative Stain Electron Microscopy (NSEM), we
117	observed binding of DH1047 to the RBD of bat RsSHC014 and SARS-CoV spike ectodomains,
118	with overall similar orientations as was observed for DH1047 binding to the SARS-CoV-2 spike
119	ectodomain (Figure S2) ¹⁶ .
120	Finally, DH1235, DH1073, DH1046, and DH1047 exhibited medium to long heavy-
121	chain-complementarity-determining-region 3 (HCDR3) lengths and variable somatic mutation
122	rates in the heavy chain genes. DH1235, DH1073, and DH1046, had HCDR3 lengths of 21, 15,
123	and 24, and somatic hypermutation (SMH) rates of 1.7, 9.0, and 4.7, respectively (Table S2). The
124	most potent neutralizing antibody DH1047 had HCDR3 lengths and SMH rates of 24 and 8.05,
125	respectively (Table S2).
126	
126 127	The protective activity of DH1235, DH1073, DH1046, and DH1047 against SARS-CoV
	The protective activity of DH1235, DH1073, DH1046, and DH1047 against SARS-CoV To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively
127	
127 128	To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively
127 128 129	To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively immunized aged mice with DH1235, DH1073, DH1046, DH1047 and a negative control
127 128 129 130	To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively immunized aged mice with DH1235, DH1073, DH1046, DH1047 and a negative control influenza mAb, CH65 ¹⁷ , at 10mg/kg 12 hours prior to infection and evaluated lung viral titer
127 128 129 130 131	To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively immunized aged mice with DH1235, DH1073, DH1046, DH1047 and a negative control influenza mAb, CH65 ¹⁷ , at 10mg/kg 12 hours prior to infection and evaluated lung viral titer replication. Neither DH1235, DH1073, nor DH1046 protected against SARS-CoV mouse-
127 128 129 130 131 132	To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively immunized aged mice with DH1235, DH1073, DH1046, DH1047 and a negative control influenza mAb, CH65 ¹⁷ , at 10mg/kg 12 hours prior to infection and evaluated lung viral titer replication. Neither DH1235, DH1073, nor DH1046 protected against SARS-CoV mouse-adapted passage 15 (MA15) challenge in mice and all had lung viral replication comparable to
127 128 129 130 131 132 133	To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively immunized aged mice with DH1235, DH1073, DH1046, DH1047 and a negative control influenza mAb, CH65 ¹⁷ , at 10mg/kg 12 hours prior to infection and evaluated lung viral titer replication. Neither DH1235, DH1073, nor DH1046 protected against SARS-CoV mouse-adapted passage 15 (MA15) challenge in mice and all had lung viral replication comparable to that of control mice (Fig. 2A). In contrast, prophylactic administration of DH1047 fully protected
127 128 129 130 131 132 133 134	To define the protective efficacy of these four RBD-specific IgG bNAbs, we passively immunized aged mice with DH1235, DH1073, DH1046, DH1047 and a negative control influenza mAb, CH65 ¹⁷ , at 10mg/kg 12 hours prior to infection and evaluated lung viral titer replication. Neither DH1235, DH1073, nor DH1046 protected against SARS-CoV mouse-adapted passage 15 (MA15) challenge in mice and all had lung viral replication comparable to that of control mice (Fig. 2A). In contrast, prophylactic administration of DH1047 fully protected mice from lung viral titer replication (Fig. 2A). Given the prophylactic potential of DH1047, we

138 including weight loss, pulmonary function, which was measured by whole-body 139 plethysmography (Buxco), through day 4 post infection (d4pi). In agreement with the SARS-140 CoV MA15 experiments, prophylactic treatment with DH1047 protected mice from weight loss 141 through d4pi (Fig. 2B), and also protected mice from lung viral replication (Fig. 2C). We also 142 evaluated if the prophylactic and therapeutic administration of DH1047 protected against lung 143 pathology as measured by 1) lung discoloration, which is a visual metric of gross lung damage 144 taken at the time of the necropsy, 2) microscopic evaluation as measured by an acute lung injury 145 (ALI) scheme, and 3) a diffuse alveolar damage (DAD) scheme. ALI and DAD, which are 146 characterized by histopathologic changes including alveolar septal thickening, protein exudate in 147 the airspace, hyaline membrane formation, and neutrophils in the interstitium or alveolar sacs, 148 were both blindly evaluated by a board-certified veterinary pathologist. The prophylactic 149 administration of DH1047 resulted in complete protection from macroscopic lung discoloration 150 (Fig. 2D) and microscopic lung pathology as measured by ALI (Fig. 2E and Fig. S3) and DAD 151 (Fig. 2F and Fig. S3). Similarly, the therapeutic administration of DH1047 12 hours post 152 infection resulted in reductions in lung viral titers (Fig. 2C and Fig. S3) as well as the 153 macroscopic lung damage measured by the lung discoloration score (Fig. 2D and Fig. S3). In 154 contrast to the prophylactic treatment condition, therapeutic administration of DH1047 did not 155 significantly reduce microscopic lung pathology compared to control mice as measured by ALI 156 (Fig. 2E and Fig. S3) and DAD (Fig. 2F and Fig. S3) in this highly susceptible model for SARS-157 CoV pathogenesis. Thus, DH1047 can prevent SARS-CoV disease when administered 158 prophylactically and has early measurable therapeutic benefits in highly susceptible aged mouse models, much like other SARS-CoV-2 therapeutic neutralizing antibodies which have the most 159 benefit in outpatient settings 4,18,19. 160

161

162 **Cryo-EM structure of the SARS-CoV/DH1047 complex**

163 To visualize the binding epitope of DH1047 and to compare with the previously reported structure of the complex with the SARS-CoV-2 spike ectodomain¹⁶, we solved the cryo-EM 164 165 structure of SARS-CoV bound to DH1047. 3D-classification of the cryo-EM dataset resulted in a 166 3.20 Å resolution reconstruction showing three DH1047 Fab bound to each of the 3 RBD of the 167 ectodomain in the "up" position (1 Fab:1 RBD ratio) (Fig. 3, Figure S5 and Table S3). Similar to what we had observed for the DH1047 complex with the SARS-CoV-2 spike ectodomain ¹⁶, 168 169 there was considerable heterogeneity in the RBD region; further classification of particles was 170 performed to better resolve the antibody binding interface, resulting in an asymmetric reconstruction of a population refined to a resolution of 3.4 Å that was used for model fitting. 171 172 The angle of approach and footprint of DH1047 on the SARS-CoV RBD closely resembled that 173 in the SARS-CoV-2 complex with steric overlap predicted with ACE2 binding (Figure 3A-C). 174 These results demonstrate that DH1047 binds to SARS-CoV and SARS-CoV-2 spike 175 ectodomains by involving homologous interactions, consistent with our analysis of RBD sequence variability that showed a high degree of convergence of the DH1047 epitope¹⁰, thereby 176 177 defining an RBD conserved site of vulnerability among Sarbecoviruses. The DH1047 epitope on 178 the SARS-CoV-2 RBD is distinct from other known antibodies of Classes 1, 2, 3 and 4 (Figure 179 3D). The DH1047 epitope overlays with that of antibody ADG-2, yet the two epitopes are 180 distinct, and related by a rotation about the Fab longitudinal axis that pivots the ADG-2 antibody 181 more towards the ACE2 binding region (Figures 3D and S6). Finally, we defined the binding 182 affinity of DH1047 against epidemic and zoonotic spike proteins. We measured binding on and 183 off rates against both SARS-CoV and RsSHC014-CoV spike proteins via surface plasmon

resonance (SPR). DH1047 bound to the SARS-CoV and RsSCH014-CoV spikes with high affinity, association rates (> $8.60 \times 10^4 M^{-1}s^{-1}$) and dissociation rates (< $1.0\times 10^{-5} s^{-1}$) (Fig. S4), demonstrating that DH1047 binds tightly to both the epidemic SARS-CoV and pre-emergent bat CoVs that are poised for human emergence.

188

The prophylactic and therapeutic activity of DH1047 against bat pre-emergent CoVs and *in vitro* neutralization activity against the SARS-CoV-2 variants

191 As DH1047 neutralized both the pre-emergent bat CoVs WIV-1 and RsSHC014 (Fig. 1), 192 we sought to define if DH1047 had prophylactic and therapeutic efficacy in mice. We evaluated 193 the protective efficacy against lung viral replication against these pre-emergent bat CoVs. We 194 administered DH1047 prophylactically 12 hours before infection and therapeutically 12 hours 195 post infection at 10mg/kg in mice infected with bat CoVs. Importantly, the prophylactic 196 administration of DH1047 completely protected mice from WIV-1 lung viral replication and 197 reduced lung viral titers in therapeutically treated mice compared to control mice (Fig. 4A). 198 Similarly, the prophylactic administration of DH1047 completely protected mice from 199 RsSHC014 lung viral replication and significantly reduced viral replication to near undetectable 200 levels in therapeutically treated mice (Fig. 4B). While we previously demonstrated the 201 prophylactic and therapeutic efficacy of DH1047 against the wild type SARS-CoV-2 in cynomolgus macaques¹⁶, which exhibit mild SARS-CoV-2 disease²⁰, it was not known if the 202 203 mutations present in the newly emerging SARS-CoV-2 variants would ablate the neutralizing 204 activity of DH1047. We therefore evaluated if DH1047 could neutralize the prevalent variants of 205 concern (VOCs): SARS-CoV-2 D614G, SARS-CoV-2 UK B.1.1.7., SARS-CoV-2 California 206 B1.429, and SARS-CoV South Africa B1.351 using both pseudovirus and live virus

207	neutralization assays. DH1047 neutralized all tested variants of concern with substantial potency
208	(Fig. 4C and Fig. 4D). Pseudovirus neutralization assays revealed strong neutralization of
209	DH1047 against the SARS-CoV-2 VOCs (Fig. 4D). Importantly, live virus neutralization also
210	demonstrated the broadly neutralizing activity of DH1047 with IC ₅₀ values against D614G,
211	B.1.1.7, and B1.351 were 0.059, 0.081, and 0.111µg/ml, respectively.
212	
213	The prophylactic and therapeutic activity of DH1047 against SARS-CoV-2 B.1.351 in mice
214	Given that the B.1.351 South African variant is more resistant to both vaccine-elicited
215	neutralizing antibodies ^{14,21} , and completely ablates the neutralizing activity of the Eli Lily
216	therapeutic monoclonal antibody LY-CoV555 ¹² , we also sought to evaluate if DH1047 had both
217	prophylactic and therapeutic efficacy against SARS-CoV-2 B.1.351, which incorporates the
218	B.1.351 spike in the SARS-CoV MA10 genome backbone ²² . We again utilized a highly
219	susceptible and vulnerable aged mouse model in the SARS-CoV-2 B.1.351 protection
220	experiments. Consistent with the SARS-CoV, WIV-1, and RsSHC014 in vivo data, the
221	prophylactic administration of DH1047 mediated protection against severe weight loss following
222	SARS-CoV-2 B.1.351 challenge in aged mice (Fig. 5A). In contrast, we did not observe
223	differences in weight loss from the therapeutic administration of DH1047 (Fig. 5A). Mice
224	prophylactically treated with DH1047 had undetectable levels of SARS-CoV-2 B.1.351 lung
225	viral replication (Fig. 5B) and were also completely protected from macroscopic lung pathology
226	compared to controls (Fig. 5C). While we observed no significant protection from weight loss in
227	DH1047 therapeutically treated mice, we did observe a significant reduction in lung viral titers
228	compared to control (Fig. 5B). We also evaluated the microscopic lung pathology as measured
229	by ALI (Fig. 5D) and DAD scoring schemes (Fig. 5E) in this highly susceptible aged model for

to control mice. Additionally, we observed a reduction in ALI by the therapeutic administration

of DH1047 as measure by macroscopic lung pathology (Fig. 5C) and lung histopathology by

ALI (Fig. 5D). Therefore, DH1047 can prevent and treat SARS-CoV-2 infections with the

B.1.351 variant of concern *in vivo*, especially if given early in infection.

236

237 **Discussion**

238 The emergence of SARS-CoV and SARS-CoV-2 in the last two decades underscores a 239 critical need to develop broadly effective countermeasures against Sarbecoviruses. Moreover, with the recent emergence of more highly transmissible ²³, virulent ²⁴, and neutralization resistant 240 UK B.1.1.7 variant, that can partially evade existing countermeasures ^{12,14}, there is a need to 241 242 develop next-generation mAb therapeutics that can broadly neutralize these variants, as well as 243 future variants of concern. For example, the SARS-CoV-2 South African B.1.351 variant completely ablates the neutralization activity of the mAb LY-CoV555^{12,13}. As a result, the 244 245 emergency use authorization (EUA) of LY-CoV555 was recently rescinded by the U.S. Food and 246 Drug Administration (FDA). In addition, the presence of the E484K mutation in many variants 247 of concern, severely dampens the neutralization activity by more than 6-fold of the AstraZeneca 248 COV2-2196 mAb, Brii BioSciences mAb Brii-198, and the Regeneron mAb REGN 10933 ^{13,14,19}. In addition to evading currently monoclonal antibody therapeutics, some of the variants 249 250 including B.1.351 can diminish the efficacy of clinically approved vaccines, including the Johnson & Johnson single-dose vaccine and the AstraZeneca ChAdOx1^{25,26}. Furthermore, some 251 252 monoclonal antibodies isolated from vaccine recipients of the Moderna and Pfizer vaccines also

demonstrated reduced efficacy against mutations present in the variants ²⁷. Therefore, current
vaccine and mAb therapies must be monitored in real time to define the performance of existing
therapies against newly emerging and spreading variants. In the setting of reduced vaccine
efficacy, the deployment of effective mAb therapies against the variants, such as DH1047, could
be a strategy to help control the COVID-19 pandemic.

258 The development of universal vaccination strategies against Sarbecoviruses will be 259 improved by the identification and characterization of broadly protective and conserved epitopes 260 across SARS-like virus strains. Recent studies described broadly reactive antibodies that target the subunit 2 (S2) portion of the spike protein $^{28-31}$. While the broad recognition of these S2-261 262 specific antibodies is encouraging, these antibodies weakly neutralized diverse CoVs. Given the 263 limited characterization of these mAbs, it is unclear if these S2-specific mAbs are broadly 264 protective in vivo against diverse epidemic and zoonotic pre-emergent CoVs. In contrast, RBD-265 specific antibody, S2X259, neutralized SARS-CoV-2 variants and zoonotic SARS-like viruses, as measured by pseudovirus neutralization³². Similarly, a recent subset of RBD-specific cross-266 reactive mAbs also showed *in vitro* activity ³³, although their *in vivo* breadth and protective 267 268 efficacy remains unconfirmed. It is interesting that DH1235, DH1073, and DH1046 neutralized 269 SARS-CoV but did not protect against SARS-CoV challenge in vivo. Perhaps DH1235, DH1073, 270 and DH1046 require 1) non-neutralizing functions for protecting against infection in vivo, or 2) 271 have a distinct mode or angle of binding to SARS-CoV compared to DH1047 required for the 272 observed protection. This underlines the importance of performing in vivo protection studies in 273 addition to *in vitro* neutralization assays to truly define the protective efficacy of panCoV-274 specific mAbs.

275	In contrast to ADG-2 which uses VH3-21 for its heavy chain and has a 17 amino acid
276	long HCDR3, DH1047 uses VH1-46 and has a 24 amino acid long HCDR3 (Table S2) 15 .
277	Moreover, ADG-2 and DH1047 have overlapping, yet distinct binding footprints, targeting a
278	conserved region on the RBD (Fig. S6). In addition, the DH1047 epitope is distinct to those from
279	cross-reactive antibodies S309 and CR3022 (Fig. 3D) and targets an epitope near those from
280	class 4 antibodies. DH1047 had broad protective in vivo efficacy against pre-emergent SARS-
281	like viruses, epidemic SARS-CoV, and the SARS-CoV-2 B.1.351 variant, underscoring that
282	DH1047 recognizes a pan Sarbecovirus neutralizing epitope. Consistent with this notion, we
283	have described a SARS-CoV-2 RBD-ferritin nanoparticle vaccine that elicited neutralizing
284	antibodies against pre-emergent SARS-like viruses and protected against SARS-CoV-2
285	challenge in monkeys ¹⁰ . The serum antibody responses in these SARS-CoV-2 RBD-ferritin
286	nanoparticle-vaccinated monkeys could block DH1047 binding responses against SARS-CoV-2
287	spike proteins, suggesting that SARS-CoV-2 RBD vaccines elicit DH1047-like antibody
288	responses and could potentially protect against the future emergence of SARS- or SARS2-like
289	viruses.
200	

290 Moving forward, it will be critical to closely monitor SARS- and SARS2-like viruses of 291 zoonotic origin and actively monitor if broad-spectrum antibodies like ADG-2, DH1047, and 292 S2X259 retain their inhibitory activity against pre-emergent viruses. We envision a system in 293 which broad-spectrum antibodies like DH1047 could be tested for safety in small Phase I clinical 294 trials so that in the event that a future SARS-like virus emerges, DH1047 could immediately be 295 tested in larger efficacy trials at the site of an outbreak to potentially prevent the rapid spread of 296 an emergent CoV. Moreover, given that DH1047 exhibited strong in vivo protection against the 297 SARS-CoV-2 B.1.351 VOC, this mAb could be deployed as a mAb therapeutic to help control

298	the current COVID-19 pandemic. Like other therapeutic antibodies evaluated against COVID19
299	infections, our data argues that early administration will prove critical for protecting against
300	severe disease outcomes ¹⁹ . We conclude that DH1047 is a broadly protective mAb that has
301	efficacy against pre-emergent, zoonotic SARS-like viruses from different clades, neutralizes
302	highly transmissible SARS-CoV-2 variants, and protects against SARS-CoV-2 B.1.351.
303	
304	
305	
306	
307	
308	
309	
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
320	

321	
322	
323	Methods
324	Antibody isolation
325	Antibodies were isolated from antigen-specific single B cells as previously described
326	from an individual who had recovered from SARS-CoV-1 infection 17 years prior to
327	leukapheresis, and from a SARS-CoV-2 convalescent individual from 36 days post infection ¹⁶ .
328	
329	Measurement of CoV spike binding by ELISA
330	Indirect binding ELISAs were conducted in 384 well ELISA plates (Costar #3700) coated
331	with $2\mu g/ml$ antigen in 0.1M sodium bicarbonate overnight at 4°C, washed and blocked with
332	assay diluent (1XPBS containing 4% (w/v) whey protein/ 15% Normal Goat Serum/ 0.5%
333	Tween-20/ 0.05% Sodium Azide). mAbs were incubated for 60 minutes in three-fold serial
334	dilutions beginning at 100μ g/ml followed by washing with PBS/0.1% Tween-20. HRP
335	conjugated goat anti-mouse IgG secondary antibody (SouthernBiotech 1030-05) was diluted to
336	1:10,000 in assay diluent without azide, incubated at for 1 hour at room temperature, washed and
337	detected with 20µl SureBlue Reserve (KPL 53-00-03) for 15 minutes. Reactions were stopped
338	via the addition of 20μ l HCL stop solution. Plates were read at 450nm. Area under the curve
339	(AUC) measurements were determined from binding of serial dilutions.
340	
341	Measurement of neutralizing antibodies against live viruses
342	Full-length SARS-CoV-2 Seattle, SARS-CoV-2 D614G, SARS-CoV-2 B.1.351, SARS-
343	CoV-2 B.1.1.7, SARS-CoV, WIV-1, and RsSHC014 viruses were designed to express

nanoluciferase (nLuc) and were recovered via reverse genetics as described previously ¹⁶. Virus 344 345 titers were measured in Vero E6 USAMRIID cells, as defined by plaque forming units (PFU) per 346 ml, in a 6-well plate format in quadruplicate biological replicates for accuracy. For the 96-well 347 neutralization assay, Vero E6 USAMRID cells were plated at 20,000 cells per well the day prior 348 in clear bottom black walled plates. Cells were inspected to ensure confluency on the day of 349 assay. mAbs were serially diluted 3-fold up to nine dilution spots at specified concentrations. 350 Serially diluted mAbs were mixed in equal volume with diluted virus. Antibody-virus and virus 351 only mixtures were then incubated at 37°C with 5% CO₂ for one hour. Following incubation, 352 serially diluted mAbs and virus only controls were added in duplicate to the cells at 75 PFU at 353 37°C with 5% CO₂. After 24 hours, cells were lysed, and luciferase activity was measured via 354 Nano-Glo Luciferase Assay System (Promega) according to the manufacturer specifications. 355 Luminescence was measured by a Spectramax M3 plate reader (Molecular Devices, San Jose, 356 CA). Virus neutralization titers were defined as the sample dilution at which a 50% reduction in 357 RLU was observed relative to the average of the virus control wells. 358

359 Surface plasmon resonance

Kinetic measurements of the DH1047 Fab binding to SARS-CoV and RsSHC014 spike
proteins were obtained using a Biacore S200 instrument (Cytiva, formerly GE Healthcare) in
HBS-EP+ 1X running buffer. The spike proteins were first captured onto a Series S Streptavidin
chip to a level of 300-400 for the SARS-CoV spike proteins and 850-1000RU for the RsSHC014
spike protein. The DH1047 Fab was diluted from 2.5 to 200nM and injected over the captured
CoV spike proteins using the single cycle kinetics injection type at a flow rate of 50µL/min.
There were five 120s injections of the Fab at increasing concentrations followed by a

dissociation of 600s after the final injection. After dissociation, the spike proteins were
regenerated from the streptavidin surface using a 30s pulse of Glycine pH1.5. Results were
analyzed using the Biacore S200 Evaluation software (Cytiva). A blank streptavidin surface
along with blank buffer binding were used for double reference subtraction to account for nonspecific protein binding and signal drift. Subsequent curve fitting analyses were performed using
a 1:1 Langmuir model with a local Rmax for the DH1047 Fab. The reported binding curves are
representative of 2 data sets.

374

375 **Protein expression and purification for EM studies**

376 The SARS-CoV spike ectodomain construct comprised the residues 1 to 1190 (UniProt 377 P59594-1) with proline substitutions at 968-969, a C-terminal T4 fibritin trimerization motif, a 378 C-terminal HRV3C protease cleavage site, a TwinStrepTag and an 8XHisTag. The construct was cloned into the mammalian expression vector $p\alpha H^{34}$. The RsSHC014 spike ectodomain construct 379 380 was prepared similarly, except it also contained the 2P mutations that placed two consecutive 381 proline at the HR1-CH junction at residue positions 986 and 987. FreeStyle 293F cells were used 382 for the spike ectodomain production. Cells were maintained in FreeStyle 293 Expression 383 Medium (Gibco) at 37°C and 9% CO₂, with agitation at 120 rpm in a 75% humidified atmosphere. Transfections were performed as previously described ³⁵⁻³⁸ using Turbo293 384 385 (SpeedBiosystems). 16 to 18 hours post transfection, HyClone CDM4HEK293 media (Cytiva, MA) was added. On the 6th day post transfection, spike ectodomain was harvested from the 386 387 concentrated supernatant. The purification was performed using StrepTactin resin (IBA 388 LifeSciences) and size exclusion chromatography (SEC) on a Superose 6 10/300 GL Increase 389 column (Cytiva, MA) in 2mM Tris, pH 8.0, 200 mM NaCl, 0.02% NaN₃. All steps were

performed at room temperature and the purified spike proteins were concentrated to 1-5 mg/ml,
flash frozen in liquid nitrogen and stored at -80 °C until further use.

392 DH1047 IgG was produced in Expi293F cells maintained in Expi293 Expression 393 Medium (Gibco) at 37°C, 120 rpm, 8% CO₂ and 75% humidity. Plasmids were transfected using 394 the ExpiFectamine 293 Transfection Kit and protocol (Gibco) $^{35-37}$ and purified by Protein A 395 affinity. The IgG was digested to the Fab state using LysC.

396

397 Negative Stain Electron Microscopy (NSEM)

NSEM was performed as described previously ¹⁶. Briefly, Fab-spike complexes were 398 399 prepared by mixing Fab and spike to give a 9:1molar ratio of Fab to spike. Following a 1-hr 400 incubation for 1 hour at 37 °C, the complex was cross-linked by diluting to a final spike 401 concentration of 0.1 mg/ml into room-temperature buffer containing 150 mM NaCl, 20 mM 402 HEPES pH 7.4, 5% glycerol, and 7.5 mM glutaraldehyde and incubating for 5 minutes. Excess 403 glutaraldehyde was quenched by adding sufficient 1 M Tris pH 7.4 stock to give a final 404 concentration of 75 mM Tris and incubated for 5 minutes. Carbon-coated grids (EMS, CF300-405 cu-UL) were glow-discharged for 20s at 15 mA, after which a 5-µl drop of quenched sample was 406 incubated on the grid for 10-15 s, blotted, and then stained with 2% uranyl formate. After air 407 drying grids were imaged with a Philips EM420 electron microscope operated at 120 kV, at 408 82,000x magnification and images captured with a 2k x 2k CCD camera at a pixel size of 4.02 Å. 409 The RELION 3.0 program was used for all negative stain image processing. Images were 410 imported, CTF-corrected with CTFFIND, and particles were picked using a spike template from 411 previous 2D class averages of spike alone. Extracted particle stacks were subjected to 2-3 rounds 412 of 2D class averaging and selection to discard junk particles and background picks. Cleaned

413 particle stacks were then subjected to 3D classification using a starting model created from a 414 bare spike model, PDB 6vsb, low-pass filtered to 30 Å. Classes that showed clearly defined Fabs 415 were selected for final refinements followed by automatic filtering and B-factor sharpening with 416 the default Relion post-processing parameters.

- 417
- 418 **Cryo-EM**

419 Purified SARS-CoV-1 spike ectodomain was incubated for approximatively 2 hours with 420 a 6-fold molar equivalent of the DH1047 Fab in a final volume of 10µL. The sample 421 concentration was adjusted to ~1.5 mg/mL of spike in 2 mM Tris pH 8.0, 200 mM NaCl, and 422 0.02% NaN₃. Before freezing, 0.1µL of glycerol was added to the 10µL of sample. A 2.4-µL 423 drop of protein was deposited on a Quantifoil-1.2/1.3 grid (Electron Microscopy Sciences, PA) 424 that had been glow discharged for 10 seconds using a PELCO easiGlowTM Glow Discharge 425 Cleaning System. After a 30-second incubation in >95% humidity, excess protein was blotted 426 away for 2.5 seconds before being plunge frozen into liquid ethane using a Leica EM GP2 427 plunge freezer (Leica Microsystems). Frozen grids were imaged using a Titan Krios (Thermo 428 Fisher) equipped with a K3 detector (Gatan). Data processing was performed using cryoSPARC ³⁹. Model building and refinement was done using Phenix ^{40,41}, Coot ⁴², Pymol ⁴³, Chimera ⁴⁴, 429 ChimeraX 45 and Isolde 46 . 430

431

432 Animals and challenge viruses

Eleven-month-old female BALB/c mice were purchased from Envigo (#047) and were
used for the SARS-CoV, SARS-CoV-2 B1.351, and RsSHC014-CoV protection experiments. 810-week-old hACE2-transgenic mice were bred at UNC Chapel Hill and were used for WIV-1-

436 CoV protection experiments. The study was carried out in accordance with the recommendations 437 for care and use of animals by the Office of Laboratory Animal Welfare (OLAW), National 438 Institutes of Health and the Institutional Animal Care and Use Committee (IACUC) of 439 University of North Carolina (UNC permit no. A-3410-01). Animals were housed in groups of 440 five and fed standard chow diets. Virus inoculations were performed under anesthesia and all 441 efforts were made to minimize animal suffering. All mice were anesthetized and infected intranasally with 1×10^4 PFU/ml of SARS-CoV MA15, 1×10^4 PFU/ml of SARS-CoV-2 442 B1.351-MA10, 1×10^4 PFU/ml RsSHC014, 1×10^4 PFU/ml WIV-1, which have been described 443 444 previously ^{7,22,47}. Mice were weighted daily and monitored for signs of clinical disease, and 445 selected groups were subjected to daily whole-body plethysmography. For all mouse studies, 446 groups of n=10 mice were included per arm of the study except for the hACE2-transgenic mice, 447 which included n=5 mice per group due to a limited availability of these mice. Viral titers, 448 weight loss, and histology were measured from individual mice per group. 449

450 Lung pathology scoring

451 Acute lung injury was quantified via two separate lung pathology scoring scales: Matute-452 Bello and Diffuse Alveolar Damage (DAD) scoring systems. Analyses and scoring were 453 performed by a board vertified veterinary pathologist who was blinded to the treatment groups as described previously ⁴⁸. Lung pathology slides were read and scored at 600X total magnification. 454 455 The lung injury scoring system used is from the American Thoracic Society (Matute-456 Bello) in order to help quantitate histological features of ALI observed in mouse models to relate 457 this injury to human settings. In a blinded manner, three random fields of lung tissue were 458 chosen and scored for the following: (A) neutrophils in the alveolar space (none = 0, 1-5 cells =

459	1, > 5 cells = 2), (B) neutrophils in the interstitial septa (none = 0, 1–5 cells = 1, > 5 cells = 2),
460	(C) hyaline membranes (none = 0, one membrane = 1, > 1 membrane = 2), (D) Proteinaceous
461	debris in air spaces (none = 0, one instance = $1, > 1$ instance = 2), (E) alveolar septal thickening
462	(< $2x$ mock thickness = 0, $2-4x$ mock thickness = 1, > $4x$ mock thickness = 2). To obtain a lung
463	injury score per field, A–E scores were put into the following formula score = $[(20x A) + (14 x A)]$
464	B) + (7 x C) + (7 x D) + (2 x E)]/100. This formula contains multipliers that assign varying
465	levels of importance for each phenotype of the disease state. The scores for the three fields per
466	mouse were averaged to obtain a final score ranging from 0 to and including 1. The second
467	histology scoring scale to quantify acute lung injury was adopted from a lung pathology scoring
468	system from lung RSV infection in mice ⁴⁹ . This lung histology scoring scale measures diffuse
469	alveolar damage (DAD). Similar to the implementation of the ATS histology scoring scale, three
470	random fields of lung tissue were scored for the following in a blinded manner: 1= absence of
471	cellular sloughing and necrosis, 2=Uncommon solitary cell sloughing and necrosis (1-2
472	foci/field), 3=multifocal (3+foci) cellular sloughing and necrosis with uncommon septal wall
473	hyalinization, or 4=multifocal (>75% of field) cellular sloughing and necrosis with common
474	and/or prominent hyaline membranes. The scores for the three fields per mouse were averaged to
475	get a final DAD score per mouse. The microscope images were generated using an Olympus
476	Bx43 light microscope and CellSense Entry v3.1 software.

477

478 **Biocontainment and biosafety**

479 Studies were approved by the UNC Institutional Biosafety Committee approved by
480 animal and experimental protocols in the Baric laboratory. All work described here was
481 performed with approved standard operating procedures for SARS-CoV-2 in a biosafety level 3

482	(BSL-3) facility conforming to requirements recommended in the Microbiological and
483	Biomedical Laboratories, by the U.S. Department of Health and Human Service, the U.S. Public
484	Health Service, and the U.S. Center for Disease Control and Prevention (CDC), and the National
485	Institutes of Health (NIH).
486	
487	Statistics
488	All statistical analyses were performed using GraphPad Prism 9.
489	
490	Data availability
491	Structural data of DH1047 will be made available after publication.
492	
493	Code availability
494	No code was generated in this study.
495	
496	ACKNOWLEDGEMENTS
497	Funding: David R. Martinez is currently supported by a Burroughs Wellcome Fund Postdoctoral
498	Enrichment Program Award and a Hanna H. Gray Fellowship from the Howard Hugues Medical
499	Institute and was supported by an NIH NIAID T32 AI007151 and an NIAID F32 AI152296.
500	This research was also supported by funding from the Chan Zuckerberg Initiative awarded to
501	R.S.B. This project was supported by the North Carolina Policy Collaboratory at the University
502	of North Carolina at Chapel Hill with funding from the North Carolina Coronavirus Relief Fund
503	established and appropriated by the North Carolina General Assembly. This project was funded
504	in part by the National Institute of Allergy and Infectious Diseases, NIH, U.S. Department of

505	Health and Human Services award AI157155 (R.S.B), U54 CA260543 (R.S.B), AI149644
506	(R.S.B), AI145687 (P.A.), as well as an animal models contract from the NIH
507	(HHSN272201700036I). Funding was also supplied by the Intramural Research Program of the
508	Vaccine Research Center, NIAID, NIH. This work was supported by a grant from the State of
509	North Carolina with funds from the federal CARES Act, and by funds from NIH, NIAID,
510	DAIDS grant AI142596 (B.F.H). Animal histopathology services were performed by the Animal
511	Histopathology & Laboratory Medicine Core at the University of North Carolina, which is
512	supported in part by an NCI Center Core Support Grant (5P30CA016086-41) to the UNC
513	Lineberger Comprehensive Cancer Center. Part of this work was performed in the Duke
514	Regional Biocontainment Laboratory, which received partial support for construction from the
515	NIH/NIAD (UC6AI058607; G.D.S) and with support from a cooperative agreement with
516	DOD/DARPA (HR0011-17-2-0069; G.D.S). This project was also supported by the North
517	Carolina Policy Collaboratory at the University of North Carolina at Chapel Hill and Duke
518	University with funding from the North Carolina Coronavirus Relief Fund established and
519	appropriated by the North Carolina General Assembly. Cryo-EM data were collected on the
520	Titan Krios system at the Shared Materials and Instrumentation Facility in Duke University. We
521	thank Nilakshee Bhattacharya and Mark Walters for microscope alignments and assistance with
522	cryo-EM data collection. This study utilized the computational resources offered by Duke
523	Research Computing (<u>http://rc.duke.edu</u> ; NIH 1S10OD018164-01) at Duke University. We thank
524	C. Kneifel, M. Newton, V. Orlikowski, T. Milledge, and D. Lane from the Duke Office of
525	Information Technology and Research Computing for assisting with setting up and maintaining
526	the computing environment. We thank A. Foulger, N. Jamieson, J. Kittrell, E. Lee, and A.
527	Sanzone for DNA and antibody production.

528

529	Author contributions: Conceived the study: D.R.M., A.S., S.G., D.L., P.A., B.F.H., R.S.B.
530	designed experiments: D.R.M., A.S., S.G., D.L., performed laboratory experiments: D.R.M,
531	A.S., D.L., S.G., Provided critical reagents: T.Z., P.D.K., B.S.G., and K.O.S. Analyzed data and
532	provided critical insight: D.R.M, A.S., S.G., D.L., G.D.LC., R.P., M.B., K.M., B.Y., K.A., S.M.,
533	T.Z., P.D.K., B.S.G., J.R.M., D.C.M, M.A., G.D.S., K.W., K.O.S., P.A., B.F.H., R.S.B.; Wrote
534	the first draft of the paper: D.R.M; Read and edited the paper: D.R.M, A.S., S.G., D.L., T.Z.,
535	P.D.K., B.S.G., J.R.M., D.C.M, M.A., G.D.S., K.W., K.O.S., P.A., B.F.H., R.S.B. Funding
536	acquisition: D.R.M., G.D.S., B.F.H., R.S.B. All authors reviewed and approved the manuscript.
537	Competing interests: Duke University has filed provisional patents for which B.F.H, K.O.S.,
538	D.L., and G.D.S., are inventors on a provisional U.S. patent for mAb DH1047 and its
539	applications described in this study.
540	
541	
542	
543	
544	
545	
546	
547	
548	
549	
550	

REFERENCES

553	1.	Peiris, J.S., et al. Coronavirus as a possible cause of severe acute respiratory syndrome.
554		Lancet 361 , 1319-1325 (2003).
555	2.	Cherry, J.D. & Krogstad, P. SARS: The First Pandemic of the 21st Century. Pediatric
556		<i>Research</i> 56 , 1-5 (2004).
557	3.	Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D. & Fouchier, R.A.
558		Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J
559		<i>Med</i> 367 , 1814-1820 (2012).
560	4.	Zhou, P., et al. A pneumonia outbreak associated with a new coronavirus of probable bat
561		origin. Nature 579, 270-273 (2020).
562	5.	Li, W., et al. Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science 310,
563		676-679 (2005).
564	6.	Hu, B., et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides
565		new insights into the origin of SARS coronavirus. PLoS Pathog 13, e1006698 (2017).
566	7.	Menachery, V.D., et al. A SARS-like cluster of circulating bat coronaviruses shows
567		potential for human emergence. Nat Med 21, 1508-1513 (2015).
568	8.	Menachery, V.D., et al. SARS-like WIV1-CoV poised for human emergence. Proc Natl
569		Acad Sci U S A 113 , 3048-3053 (2016).
570	9.	Martinez, D.R., et al. Chimeric spike mRNA vaccines protect against sarbecovirus
571		challenge in mice. <i>bioRxiv</i> , 2021.2003.2011.434872 (2021).
572	10.	Saunders, K.O., et al. SARS-CoV-2 vaccination induces neutralizing antibodies against
573		pandemic and pre-emergent SARS-related coronaviruses in monkeys. <i>bioRxiv</i> (2021).
574	11.	Walls, A.C., et al. Elicitation of broadly protective sarbecovirus immunity by receptor-
575		binding domain nanoparticle vaccines. <i>bioRxiv</i> (2021).
576	12.	Wang, L., et al. Antibodies with potent and broad neutralizing activity against
577		antigenically diverse and highly transmissible SARS-CoV-2 variants. <i>bioRxiv</i> (2021).
578	13.	Wang, P., et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.
579		Nature (2021).
580	14.	Chen, R.E., et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal
581		and serum-derived polyclonal antibodies. <i>Nat Med</i> (2021).
582	15.	Rappazzo, C.G., et al. Broad and potent activity against SARS-like viruses by an
583		engineered human monoclonal antibody. Science 371, 823-829 (2021).
584	16.	Li, D., et al. The functions of SARS-CoV-2 neutralizing and infection-enhancing
585		antibodies in vitro and in mice and nonhuman primates. <i>bioRxiv</i> (2021).
586	17.	Whittle, J.R., et al. Broadly neutralizing human antibody that recognizes the receptor-
587		binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci USA 108, 14216-
588		14221 (2011).
589	18.	An EUA for Bamlanivimab—A Monoclonal Antibody for COVID-19. JAMA (2020).
590	19.	Martinez, D.R., et al. Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in
591		mice. <i>bioRxiv</i> , 2021.2001.2027.428478 (2021).
592	20.	Leist, S.R., Schäfer, A. & Martinez, D.R. Cell and animal models of SARS-CoV-2
593		pathogenesis and immunity. Dis Model Mech 13(2020).

594	21.	Planas, D., et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to
595		neutralizing antibodies. Nature Medicine (2021).
596	22.	Leist, S.R., et al. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and
597		Mortality in Standard Laboratory Mice. Cell 183, 1070-1085.e1012 (2020).
598	23.	Davies, N.G., et al. Estimated transmissibility and impact of SARS-CoV-2 lineage
599		B.1.1.7 in England. Science 372 , eabg3055 (2021).
600	24.	Davies, N.G., et al. Increased mortality in community-tested cases of SARS-CoV-2
601		lineage B.1.1.7. <i>Nature</i> (2021).
602	25.	Sadoff, J., et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against
603		Covid-19. New England Journal of Medicine (2021).
604	26.	Madhi, S.A., et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the
605		B.1.351 Variant. New England Journal of Medicine (2021).
606	27.	Wang, Z., et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating
607		variants. Nature (2021).
608	28.	Wang, C., et al. A conserved immunogenic and vulnerable site on the coronavirus spike
609		protein delineated by cross-reactive monoclonal antibodies. <i>Nature Communications</i> 12,
610		1715 (2021).
611	29.	Zhou, P., <i>et al.</i> A protective broadly cross-reactive human antibody defines a conserved
612		site of vulnerability on beta-coronavirus spikes. <i>bioRxiv</i> (2021).
613	30.	Sauer, M.M., et al. Structural basis for broad coronavirus neutralization. bioRxiv (2020).
614	31.	Jennewein, M.F., et al. Isolation and Characterization of Cross-Neutralizing Coronavirus
615		Antibodies from COVID-19+ Subjects. <i>bioRxiv</i> (2021).
616	32.	Tortorici, M.A., <i>et al.</i> Structural basis for broad sarbecovirus neutralization by a human
617	52.	monoclonal antibody. <i>bioRxiv</i> (2021).
618	33.	Jette, C.A., <i>et al.</i> Broad cross-reactivity across sarbecoviruses exhibited by a subset of
619	001	COVID-19 donor-derived neutralizing antibodies. <i>bioRxiv</i> , 2021.2004.2023.441195
620		(2021).
621	34.	Wrapp, D., <i>et al.</i> Cryo-EM structure of the 2019-nCoV spike in the prefusion
622		conformation. <i>Science</i> 367 , 1260-1263 (2020).
623	35.	Henderson, R., <i>et al.</i> Controlling the SARS-CoV-2 spike glycoprotein conformation. <i>Nat</i>
624	551	Struct Mol Biol (2020).
625	36.	Li, D., <i>et al.</i> The functions of SARS-CoV-2 neutralizing and infection-enhancing
626	50.	antibodies in vitro and in mice and nonhuman primates. <i>bioRxiv</i> (2021).
620 627	37.	Acharya, P., <i>et al.</i> A glycan cluster on the SARS-CoV-2 spike ectodomain is recognized
628	57.	by Fab-dimerized glycan-reactive antibodies. <i>bioRxiv</i> (2020).
629	38.	Edwards, R.J., <i>et al.</i> Cold sensitivity of the SARS-CoV-2 spike ectodomain. <i>Nature</i>
630	50.	Structural & Molecular Biology 28, 128-131 (2021).
631	39.	Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms for
632	57.	rapid unsupervised cryo-EM structure determination. <i>Nature Methods</i> 14 , 290-296
633		(2017).
634	40.	Liebschner, D., <i>et al.</i> Macromolecular structure determination using X-rays, neutrons and
635	40.	electrons: recent developments in Phenix. Acta Crystallographica Section D Structural
636		Biology 75 , 861-877 (2019).
637	41.	Afonine, P.V., <i>et al.</i> Real-space refinement inPHENIX for cryo-EM and crystallography.
638	41.	Atomic, F.V., et al. Real-space remement in HENIXIO Crystallographica Section D Structural Biology 74 , 531-544 (2018).
030		Acia Crysianographica section D structural Diology 14, 551-544 (2010).

639 640	42.	Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. <i>Acta Crystallographica Section D Biological Crystallography</i> 66 , 486-501 (2010).
641	43.	Schrodinger, L. The PyMOL Molecular Graphics System. (2015).
642	44.	Pettersen, E.F., et al. UCSF Chimera?A visualization system for exploratory research and
643		analysis. Journal of Computational Chemistry 25, 1605-1612 (2004).
644	45.	Goddard, T.D., et al. UCSF ChimeraX: Meeting modern challenges in visualization and
645		analysis. Protein Science 27, 14-25 (2018).
646	46.	Croll, T.I. ISOLDE: a physically realistic environment for model building into low-
647		resolution electron-density maps. Acta Crystallogr D Struct Biol 74, 519-530 (2018).
648	47.	Roberts, A., et al. A mouse-adapted SARS-coronavirus causes disease and mortality in
649		BALB/c mice. PLoS Pathog 3, e5 (2007).
650	48.	Sheahan, T.P., et al. Comparative therapeutic efficacy of remdesivir and combination
651		lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications 11,
652		222 (2020).
653	49.	Schmidt, M.E., et al. Memory CD8 T cells mediate severe immunopathology following
654		respiratory syncytial virus infection. PLoS Pathog 14, e1006810 (2018).
655		
656		
000		
657		
< 5 0		
658		
659		
660		
661		
662		
663		
664		
665		
666		
667		
668		
669		
007		

6	7	0

671

- 672 Figure legends
- 673 Figure 1. The identification of cross-reactive and broadly neutralizing antibodies.
- 674 The neutralization activity of four broadly neutralizing antibodies against SARS-CoV-2 2AA
- mouse-adapted (MA), SARS-CoV, WIV-1, and RsSHC014. SARS-CoV-2 2AA MA is shown in
- 676 purple, SARS-CoV is shown in orange, WIV-1 is shown in pink, and RsSHC014 is shown in
- 677 green. The neutralization activity against Sarbecoviruses is shown for (A) DH1235, (B) DH1073,
- 678 (C) DH1046, and (D) DH1047. The binding activity of cross-reactive antibodies against SARS-
- 679 CoV spike, SARS-CoV-2 spike, SARS-CoV-2 RBD, Pangolin GXP4L spike, RaTG13 spike,
- and RsSHC014 spike of (E) DH1235, (F) DH1073, (G) DH1046, and (H) DH1047.
- 681
- **Figure 2: Prevention and therapy of DH1047 against SARS-CoV in aged mice.**
- 683 (A) SARS-CoV mouse-adapted 15 (MA15) lung viral replication in the prophylactically treated
- 684 (-12 hours before infection) mice with a control influenza mAb CH65 and the four broadly
- neutralizing antibodies DH1235, DH1073, DH1046, DH1047.
- 686 (B) % Starting weight of prophylactic (-12 hours before infection) and therapeutic (+12 hours
- after infection) treatment with DH1047 and control against SARS-CoV MA15 in mice.
- 688 (C) Lung viral replication of SARS-CoV MA15 in mice treated prophylactically and
- therapeutically with DH1047 and control at 4 days post infection.
- 690 (D) Macroscopic lung discoloration scores in mice treated with DH1047 and control
- 691 prophylactically and therapeutically.

- (E) Lung pathology at day 4 post infection measured by acute lung injury (ALI) scores in mice
- treated with DH1047 and control prophylactically and therapeutically.
- (F) Lung pathology at day 4 post infection measured by diffuse alveolar damage (DAD) in mice
- treated prophylactically and therapeutically with DH1047 and control.
- (G) Pulmonary function as measured by whole body plethysmography (Buxco) in DH1047 and
- 697 control mAb prophylactically and therapeutically treated mice. P values are from a 2-way
- 698 ANOVA after Tukey's multiple comparisons test for the weight loss, and P values are from a 1-
- 699 way ANOVA following Dunnett's multiple comparisons for the viral titer, and lung pathology
- readouts.
- 701

702 Figure 3. Cryo-EM structure of DH1047 bound to SARS-CoV spike.

703 (A) Cryo-EM reconstruction of DH1047 Fab bound to SARS-CoV spike shown in grey, with the

underlying fitted model shown in cartoon representation. DH1047 is colored green, the RBD it is

505 bound to is colored black with the Receptor Binding Motif within the RBD colored purple.

706 (B) Overlay of DH1047 bound to SARS-CoV-1 and SARS-CoV-2 (PDB ID: 7LDI) S proteins.

707 Overlay was performed with the respective RBDs. DH1047 bound to SARS-CoV and SARS-

708 CoV-2 spike is shown in green and and salmon, respectively.

709 (C) ACE2 (yellow surface representation, PDB 6VW1) binding to RBD is sterically hindered by

710 DH1047. The views in panels B and C are related by a ~180° rotation about the vertical axis.

- 711 (D) DH1047 binding relative to binding of other known antibody classes that bind the RBD.
- 712 RBD is shown in black with the ACE2 footprint on the RBD colored yellow. DH1047 is shown

713 in cartoon representation and colored green. The other antibodies and shown as transparent

surfaces: C105 (pale cyan, Class 1, PDB ID: 6XCN and 6XCA), DH1041 (light blue, Class 2,

- 715 PDB ID: 7LAA), S309 (wheat, Class 3, PDB ID:6WS6 and 6WPT) and CR3022 (pink, Class 4,
- 716 PDB ID: 6YLA)
- 717
- 718 Figure 4: Prophylactic and therapeutic activity of DH1047 against SARS-like bat CoVs and
- 719 the *in vitro* neutralization against the SARS-CoV-2 variants.
- (A) Lung viral replication of WIV-1 in mice treated prophylactically and therapeutically with
- 721 DH1047 and control at 2 days post infection.
- (B) Lung viral replication of RsSHC014 in mice treated prophylactically and therapeutically with
- 723 DH1047 and control at 2 days post infection.
- (C) Live virus neutralization of SARS-CoV-2 D614G, UK B.1.1.7., and South African B.1.351
 variants.
- (D) The comparison of the DH1047 neutralization activity against the SARS-CoV-2 variants in
- pseudovirus and live virus neutralization assays. P values are from a 2-way ANOVA after
- Tukey's multiple comparisons test for the weight loss, and P values are from a 1-way ANOVA
- following Dunnett's multiple comparisons for the viral titer, and lung pathology readouts.
- 730
- 731

732 Figure 5: Prevention and therapy of DH1047 against SARS-CoV-2 B.1.351 in mice.

- (A) % Starting weight of prophylactic (-12 hours before infection) and therapeutic (+12 hours
- after infection) treatment with DH1047 and control against SARS-CoV-2 B.1.351 in mice.
- (B) Lung viral replication of SARS-CoV-2 B.1.351 in mice treated prophylactically and
- therapeutically with DH1047 and control at 4 days post infection.

- 737 (C) Macroscopic lung discoloration scores in mice treated with DH1047 and control
- 738 prophylactically and therapeutically.
- (E) Lung pathology at day 4 post infection measured by acute lung injury (ALI) scores in mice
- treated with DH1047 and control prophylactically and therapeutically.
- (F) Lung pathology at day 4 post infection measured by diffuse alveolar damage (DAD) in mice
- treated prophylactically and therapeutically with DH1047 and control. P values are from a 2-way
- ANOVA after Tukey's multiple comparisons test for the weight loss, and P values are from a 1-
- vay ANOVA following Dunnett's multiple comparisons for the viral titer, and lung pathology
- readouts.
- 746
- 747
- 748 Supplemental Figure Legends
- 749
- Figure S1. The binding activity of cross-reactive antibodies against MERS-CoV and human
 common-cold CoVs.
- 752 The neutralization activity of four broadly neutralizing antibodies against SARS-CoV-2 NTD,
- 753 MERS-CoV spike, HCoV-OC43 spike, HCoV-NL63, and HCoV-229E shown for (A) DH1235,
- 754 (B) DH1073, (C) DH1046, and (D) DH1047.
- 755

756 Figure S2. NSEM of DH1047 bound to bat RsSHC014 and SARS-CoV spike ectodomains.

(A) Representative 2D class averages of bat RsSHC014 2P spike ectodomain bound to DH1047Fab.

- (B) Overlay of 3D reconstruction of DH1047 bound to bat RsSHC014 2P (grey) and SARS-
- 760 CoV-2 HexaPro (purple) S ectodomains.
- 761 (C) Representative 2D class averages of SARS-CoV 2P spike ectodomain bound to DH1047 Fab
- 762 (D) Overlay of 3D reconstruction of DH1047 bound to bat SARS-CoV 2P (grey) and SARS-
- 763 CoV-2 HexaPro (purple) S ectodomains. The red boxes in panels A and C indicate the classes
- that show DH1047 Fab bound to spike.
- 765
- 766

767 Figure S3. Lung H+E staining of SARS-CoV infected mice.

- 768 Pathologic features of acute lung injury were scored using two separate tools: the American
- 769 Thoracic Society Lung Injury Scoring (ATS ALI) system. Using this ATS ALI system, we
- created an aggregate score for the following features: neutrophils in the alveolar and interstitial
- space, hyaline membranes, proteinaceous debris filling the air spaces, and alveolar septal
- thickening. Three randomly chosen high power (×60) fields of diseased lung were assessed per
- 773 mouse. Representative images are shown from vehicle and RDV-treated mice. All images were
- taken at the same magnification. The black bar indicates 100 µm scale. (A) CH65 control
- prophylaxis. (B) CH65 therapy. (C) DH1047 prophylaxis. (D) DH1047 therapy.
- 776
- 777

778 Figure S4. The affinity data of DH1047 against SARS-CoV and RsSHC014 spikes.

- Surface plasmon resonance (SPR) binding experiments of DH1047 against (A) SARS-CoV-2
- 780 Toronto and (B) RsSHC014. Binding affinity measurements are shown in the tables and response

- units (RU) as a function of time in seconds (s) is shown for both SARS-CoV and RsSHC014.
- 782 SPR experiments were repeated twice.
- 783
- 784 Figure S5. Cryo-EM data processing for the SARS-CoV spike ectodomain bound to
- 785 DH1047, Related to Figure 2.
- 786 (A) Representative cryo-EM micrograph.
- 787 (B) Cryo-EM CTF fit.
- 788 (C) Representative 2D class averages from Cryo-EM dataset.
- 789 (D) Ab initio reconstruction.
- 790 (E) Refined map.
- 791 (F) Fourier shell correlation curve.
- (G) Refined cryo-EM map colored by local resolution.
- (H) Zoom-in images showing the SD1, NTD, HR1/CH and RBD/Fab contact regions in the
- structure. The cryo-EM map is shown as a blue mesh and the fitted model is in cartoon
- representation, with residues shown as stick.

796

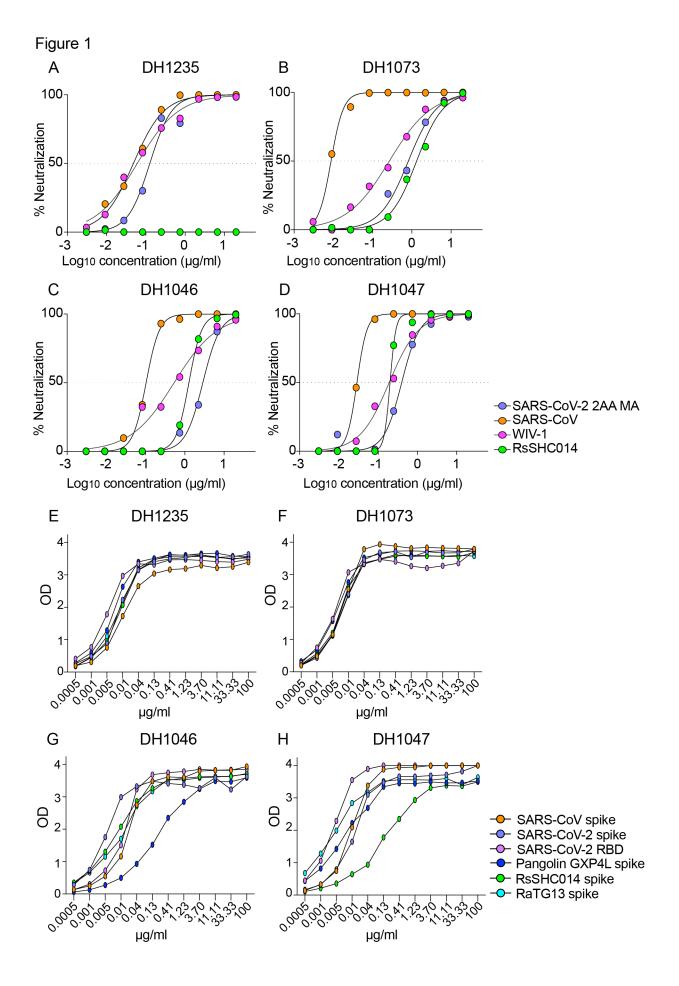
797 Figure S6. DH1047 and ADG-2 binds the RBD of SARS-Cov and SARS-CoV-2 spike

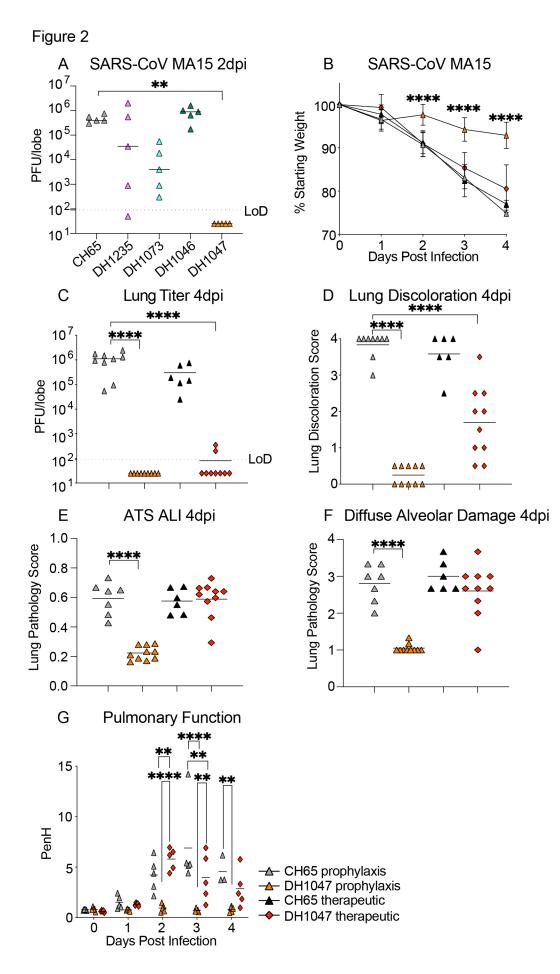
798 ectodomains using a similar footprint.

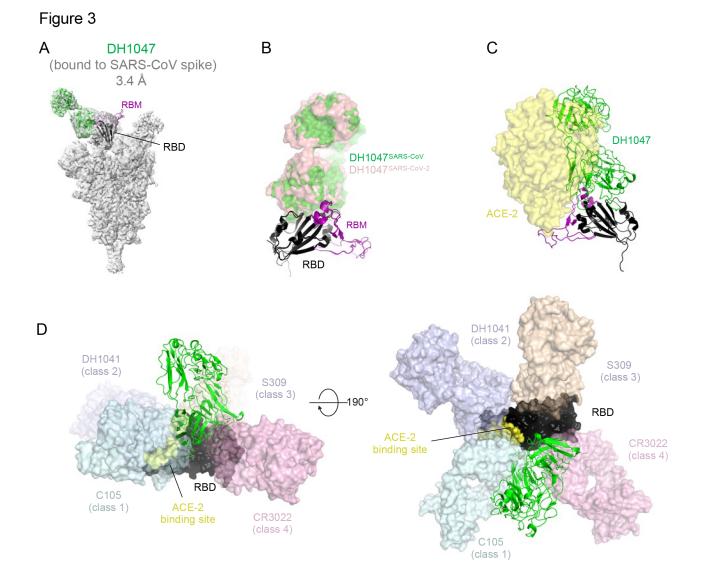
- (A) Cartoon representation of DH1047 (colored in pale green) bound to the RBD (grey surface,
- 800 ACE2 binding site in yellow) of SARS-CoV S ectodomain and ADG-2 (cyan) bound to SARS-
- 801 CoV-2 S ectodomain. The homologous Fab ADI-19425 (PDB 6APC) was docked in the ADG-2
- 802 cryo-EM map (EMD-23160) to generate the model.

803 ((\mathbf{B})) DH1047	and AD	G-2 bin	d partially	overlap	ping b	inding	sites on	the RBD.

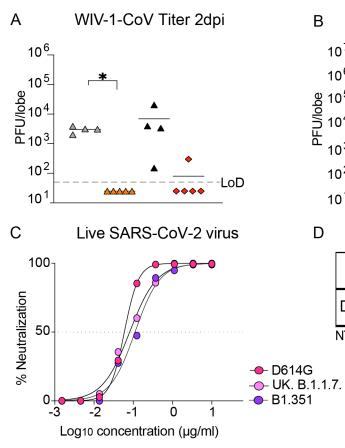
~	~	
Ο	1	1
A		4


805	Supplemental Table 1: monoclonal antibody screen against SARS-CoV-2 2AA MA, SARS-
806	CoV, WIV-1, and RsSHC014
807	
808	Supplemental Table 2: Immunogenetic characteristics of broadly cross-reactive mAbs.
809	
810	
811	
812	
813	
814	
815	
816	
817	
818	
819	
820	
821	
822	
823	
824	
825	




PDB ID	828	Supplementary Table 3.		
EMDB ID	829	- Cryo-EM data collection and		
Data collection and		- Cryo-ENI uata conection and		
Microscope	FEI Titan Krios830	refinements statistics.		
Detector	Gatan K3			
Magnification	81,000			
Voltage (kV)	300			
Electron exposure ($e/A\Box 2$)	54.1			
Defocus range (µm)	~0.75-2.50			
Pixel size (A \Box)	1.08			
Reconstruction software	cryoSparc			
Symmetry imposed	C1			
Initial particle images (no.)	2,370,616			
Final particle images (no.)	284,619			
Map resolution (A \Box)	3.43			
FSC threshold	0.143			
Refinemen	t			
Initial model used	7LD1			
Model resolution (A \Box)	3.43			
FSC threshold	0.143			
Model compos	ition			
Nonhydrogen atoms	28,048			
Protein residues	3,737			
R.m.s. deviati	ions			
Bond lengths $(A\Box)$	0.016			
Bond angles (°)	1.956			
Validation	1			
MolProbity score	1.79			
Clashscore	1.65			
Poor rotamers (%)	2.36			

EM ringer score	2.9	831
Ramachandran plot		022
Favored (%)	88.54	832
Allowed (%)	9.79	833
Disallowed (%)	1.66	
		834


835

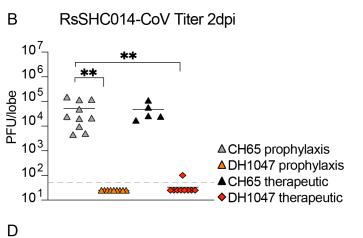
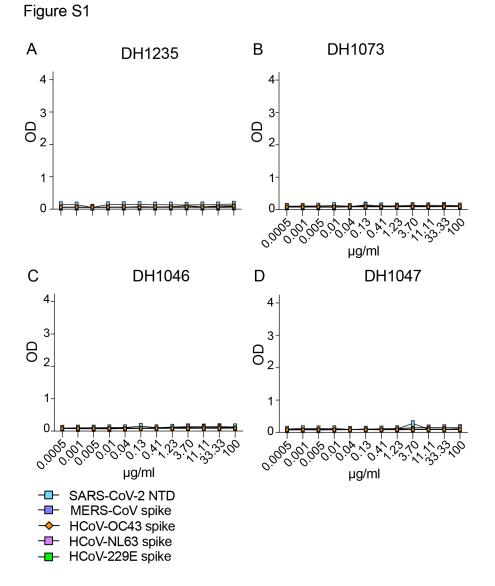
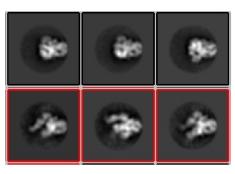


Figure 4



m۸b	A	D614G	B1.351							
mAb	Assay	IC50 (µg/ml)								
DH1047	pseudovirus	0.181	0.223	0.220	0.266					
0111047	live virus	0.059	0.081	NT	0.111					
NT: not tested										

Figure 5 А SARS-CoV-2 B1.351 В SARS-CoV-2 B1.351 Titer 4dpi **** 10⁵ 100 10⁴ % Starting Weight **PFU/lobe** 90-10³ 10² 80 LoD 10¹ 70+ 0 1 2 3 Days Post Infection 4 Lung Discoloration 4dpi Lung Discoloration Score O D ATS ALI 4dpi 1.0 ** 4 Lung Pathology Score 0.8 *× 3 0.6 2 \wedge 0.4 1 0.2 0.0 0 Diffuse Alveolar Damage 4dpi Е 4 Lung Pathology Score 3 2 ▲CH65 prophylaxis ▲DH1047 prophylaxis


♦DH1047 therapeutic

1

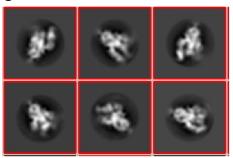
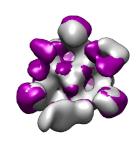
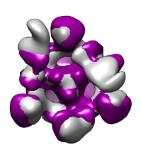
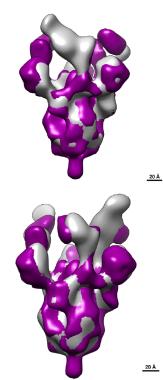


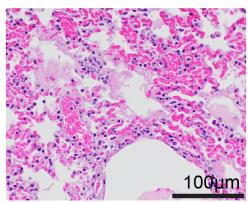
Figure S2

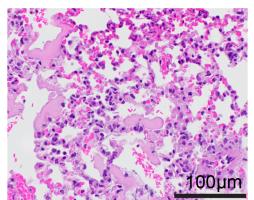

А


С

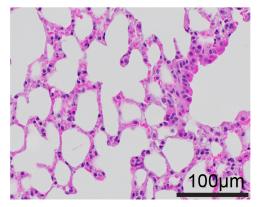


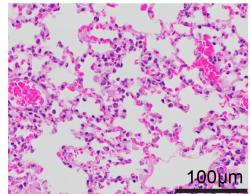
В


D


Figure S3

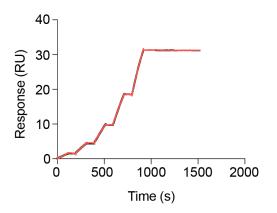
A CH65 control -12hr prophylaxis




C DH1047 -12hr prophylaxis

B CH65 +12hr therapy

D DH1047 +12hr therapy



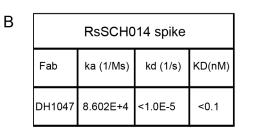
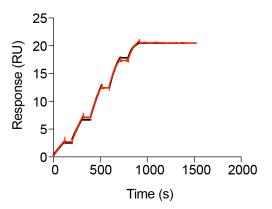
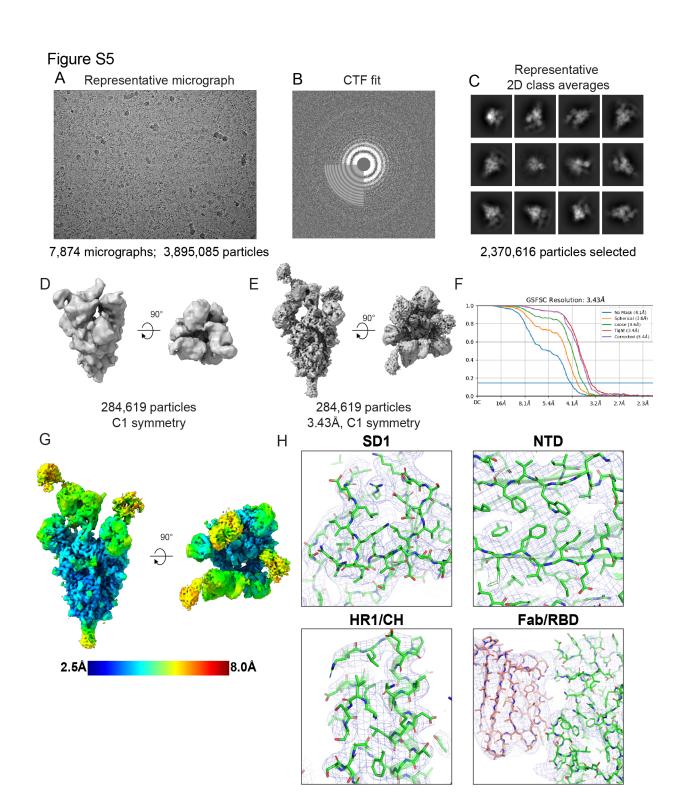
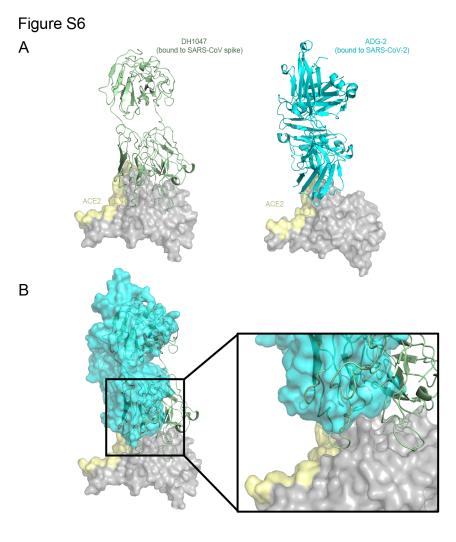


Figure S4


A	SARS-CoV Toronto spike							
	Fab	ka (1/Ms)	kd (1/s)	KD(nM)				
	DH1047	9.622E+4	<1.0E-5	<0.1				


DH1047 Fab vs. SARS-CoV Toronto



DH1047 Fab vs. RsSHc014

Supplemental Table 1: monoclonal antiboo	v screen against SARS-CoV-2 2AA MA	SARS-CoV_WIV-1_and BsSHC014

m∆h #	DH #	mAb	Specificity to SARS-CoV-2	ELISA cross-reactivity	Live virus neutralization IC ₅₀ (µg/ml)				
				•	SARS-CoV-2 2AA MA				
1	DH1058	Ab711725_G1.4A/293i/Citrate	S2	SARS-CoV-1, MERS-CoV, 229E, NL63, HKU1, OC43	>10	>10	>10	>10	
2	DH1057	Ab025934_G1.4A/293i/Citrate	S2	SARS-CoV-1, OC43	>10	>10	>10	>10	
18	DH1047	Ab712384_LS/293i/Citrate	RBD	SARS-CoV, SARS-CoV-2, and bat CoVs	0.3979	0.0287	0.191	0.2005	
45	DH1203	Ab026044_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	3.768	0.04781	>10	>10	
46	DH1127	Ab026075_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
47	DH1059	Ab026129L2_LS/293i/Citrate	no binding	SARS-CoV-2	>10	>10	>10	>10	
48	DH1081	Ab026147_LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
49	DH1085	Ab026160_LS/293i/Citrate	no binding	SARS-CoV-2	>10	>10	>10	>10	
50	DH1080	Ab026162_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	0.0059	0.0330		
51	DH1061.1	Ab026164 LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
52	DH1065	Ab026172 LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
53	DH1066	Ab026186 LS/293i/Citrate	NTD	only SARS-CoV	>10	>10	>10	>10	
54	DH1064	Ab026188 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	0.0216	>10	>10	
55	DH1067	Ab026196 LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
56	DH1069	Ab026200 LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
57	DH1046	Ab026204 LS/293i/Citrate	RBD	SARS-CoV, SARS-CoV-2, and bat CoVs	2.857	0.1033	0.4248	1.274	
58	DH1068	Ab026217 LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
59	DH1086	Ab026240 LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
60	DH1071	Ab026243 LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
61	DH1088	Ab026245 LS/293i/Citrate	no binding	SARS-CoV-2	>10	>10	>10	>10	
62	DH1073	Ab026258 LS/293i/Citrate	RBD	SARS-CoV. SARS-CoV-2, and bat CoVs	0.8088	0.0161	0.267	>10	
64	DH1235	Ab026319 LS/293i/Citrate	RBD	SARS-CoV, SARS-CoV-2, and bat CoVs	0.1226	0.0403	0.0602	>10	
65	#N/A	Ab026336 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
66	DH1193	Ab712053 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2 SARS-CoV and SARS-CoV-2	4.345	>10	>10	>10	
67	DH1152	Ab712109 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
68	DH1171	Ab712103_LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
69	DH1109	Ab712156 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
70	DH1109 DH1208	Ab712166 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2 SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
71	DH1208 DH1166	Ab712106_L3/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2 SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
72	DH1100 DH1191	Ab712224 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2 SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
73	DH1120	Ab712294_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2 SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
74	DH1120 DH1110		NTD	SARS-COV and SARS-COV-2 SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
75		Ab712312_LS/293i/Citrate							
	DH1106	Ab712366_LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
76	DH1112	Ab712370_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	0.0023	0.1617		
77	DH1117	Ab712376_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
78	DH1115	Ab712378_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	0.0083	0.1614		
79	DH1093	Ab712381_LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
80	DH1095	Ab712402_LS/293i/Citrate	RBD	SARS-CoV	>10	>10	>10	>10	
81	DH1113	Ab712404_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
82	DH1114	Ab712407_LS/293i/Citrate	NTD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
84	DH1098	Ab712416_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	0.0052	0.0318	>10	
85	DH1101	Ab712423_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	0.0012	>10	>10	
86	#N/A	Ab712561_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	0.0399	0.4312		
87	#N/A	Ab712572_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
88	#N/A	Ab712584_LS./293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
89	#N/A	Ab712585_LS./293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
90	#N/A	Ab712588_LS./293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
91	#N/A	Ab712614L_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
92	#N/A	Ab712617_LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	>10	>10	>10	>10	
93	#N/A	Ab712618 LS/293i/Citrate	RBD	SARS-CoV and SARS-CoV-2	9.877	>10	>10	>10	

Supplemen	Supplemental Table 2: Immunogenetic characteristics of broadly cross-reactive mAbs												
			Antibody Gene Analysis										
DH#	DH# Antibody ID	Binding Specificity	Cross Reactivity	Donor ID	Time Piont	HCDR3 Length	Heavy chain mutation	VH_Gene	JH_Gene		Light chain mutation	VL_Gene	JL_Gene
DH1235	Ab026319_LS	RBD	SARS-CoV-1	SARS-CoV-2 convalescent	Day 36	21	1.68	IGHV3-48	IGHJ4	9	1.75	IGLV4-60	IGLJ2
DH1073	Ab026258_LS	RBD	SARS-CoV-1	SARS-CoV convalescent	Year 17	15	9.06	IGHV1-46	IGHJ6	11	2.92	IGKV3-11	IGKJ1
DH1046	Ab026204_LS	RBD	SARS-CoV, PCoV GXP4L, Bat CoV RsSHC014, Bat CoV RaTG13	SARS-CoV convalescent	Year 17	24	4.70	IGHV3-23	IGHJ6	9	3.65	IGKV1-5	IGKJ2
DH1047	Ab712384_LS	RBD	SARS-CoV, PCoV GXP4L, Bat CoV RsSHC014, Bat CoV RaTG13	SARS-CoV convalescent	Year 17	24	8.05	IGHV1-46	IGHJ4	9	2.05	IGKV4-1	IGKJ1