
Probabilistic skeletons endow brain-like neural

networks with innate computing capabilities
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Genetically encoded structure endows neural networks of the brain with
innate computational capabilities that enable odor classification and basic
motor control right after birth. It is also conjectured that the stereotypical
laminar organization of neocortical microcircuits provides basic computing
capabilities on which subsequent learning can build. However, it has re-
mained unknown how nature achieves this. Insight from artificial neural
networks does not help to solve this problem, since their computational ca-
pabilities result from learning. We show that genetically encoded control
over connection probabilities between different types of neurons suffices for
programming substantial computing capabilities into neural networks. This
insight also provides a method for enhancing computing and learning ca-
pabilities of artificial neural networks and neuromorphic hardware through
clever initialization.

1 Introduction

There exists a fundamental difference between the way artificial neural networks receive
their functional capabilities and the way biological neural networks acquire them: Ar-
tificial neural networks receive their computational capabilities through adaptation of a
very large set of parameters, synaptic weights, through training -usually on a very large
numbers of examples- starting from a tabula rasa initial state. In contrast, neural net-
works in brains are already at birth highly structured, and they have innate computing
capabilities. [1] has recently reviewed the substantial experimental evidence for that,
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1 Introduction

see e.g. [2], [3], [4], [5], [6], [7], [8]. These data suggest that a substantial fraction of
behaviour and sensory representations in brains is innate. In fact, it is necessary for
the survival of many species that an individual does not have to learn through trial and
error which sources of food are nutritious and which are poisonous. It has also been
conjectured that the rather stereotypical local structure of cortical microcircuits, out of
which the neocortex is composed as a continuous 2D sheet, endows these neural networks
with basic capabilities for processing spike inputs to the microcircuit ([9], [10], [11]). In
fact, no method is known for learning these basic functional capabilities from scratch.
Rather, innate functional capabilities of cortical microcircuits are likely to provide the
platform on which efficient learning through synaptic plasticity takes place.

Substantial knowledge has been assembled during the last two decades about the
structure of generic cortical microcircuits, see e.g. [12] and [13] for recent summaries.
But it has remained open to what extent the known features of genetically encoded
structure is able to program basic computational capabilities into these microcircuits.
Network structure is expressed in these data-based models through connection probabil-
ities between genetically different types of neurons, i.e., classes of neurons with specific
gene and protein expression profiles. We extract salient aspects of this genetically en-
coded network structure into a mathematical model, a probabilistic skeleton. We then
show that these genetically encoded features suffice for programming substantial com-
putational capabilities into brain-like neural networks. We demonstrate this for a range
of concrete computational capabilities for recurrent networks of spiking neurons, such
as basic computations on spike times and spike patterns, computations on 2D patters,
and basic motor control capabilities. Furthermore, we demonstrate that this method for
bringing computational function into neural networks provides network properties that
do not arise if function is brought in through training, i.e. through stochastic optimiza-
tion in an extremely large parameter space. Instead, a probabilistic skeleton determines
network structure only on the statistical level, in a much lower dimensional parameter
space. This process removes some of the brittleness of trained deep neural networks, for
example their sensitivity to weight perturbations. In addition, the resulting number of
synapses and the total wire length, i.e., the total length of dendritic and axonal fibers,
grow just linearly with the number of neurons. Thus, probabilistic skeletons introduce
a new range of more brain-like neural networks with essential structural and functional
differences to the networks typically used in machine learning and neuromorphic com-
puting.

We will first present the precise definition of a probabilistic skeleton. We then demon-
strate that probabilistic skeletons can induce a number of generic computing capabilities
that have been conjectured to be innate. Finally we analyze general properties of the
resulting new paradigm for bringing function into neural networks.
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2 Results

2.1 A mathematical model for the way how genetically encoded
connection probabilities shape the structure of neural networks

According to [14] ”synaptic junctions are likely organized by trans-synaptic cell-adhesion
molecules that bidirectionally orchestrate synapse formation...”. Experimental data on
the statistics of synaptic connections in neocortical microcircuits are consistent with
these results on the molecular level, since they suggest that the probability of a synaptic
connection depends on the genetic type of the pre- and postsynaptic neuron. Existing
knowledge about the statistical structure of synaptic connections in area V1 of mouse has
recently been compiled by the Allen Institute. These data are shown in the probability
table of Fig. 4 in [13], which we have duplicated in Fig. 1a. According to this table
the probability of a synaptic connection between two neurons strongly depends on the
genetic type of the source and target neuron, for 17 different neuron types. These neuron
types are also distinguished through morphological properties and through their location
on specific layers of generic cortical microcircuits. Note that some of the entries in this
table are empty because of lack of data. In addition, it is known that these 17 types of
neurons consist of a substantially larger set of genetically distinguished subtypes, [13]
mentions altogether 112 types, for which connection probabilities are currently not yet
available.

According to [9], [15], [16] the basic spatial unit of the neocortex is a minicolumn, a
narrow chain of neurons with a diameter of just 50-60 µm that extends vertically across
the neocortical layers. Minicolumns emerge during ontogeny by the iterative division of
progenitor cells, that migrate vertically along guiding fibers of glial cells. A minicolumn
typically contains 80-120 neurons from all major neuron types, and is hypothesized to
be the ”smallest processing unit of the neocortex” [9]. The table in Fig. 1a provides
just base connection probabilities for the case that the horizontal distance between the
somata of two neurons is very small. We will assume in our model that such probability
tables provides the connection probabilities for neurons that are located within the same
minicolumn. For neurons that are located in different minicolumns, we multiply this
base connection probability, that only depends on the types of the neurons, with an
exponentially decaying function of the horizontal distance between their somata; see
Fig. 4c of [13], which is reproduced here as Fig. 1b. We approximate this horizontal
distance between the somata of neurons by the distance between the centers of the
minicolumns in which they are located. A rationale for not taking the vertical distance
into account is that most neurons have dendrites that stretch over several layers of the
neorcortical microcircuit. Therefore, apart from bundles of vertically running axons
within a minicolumn, axons reach target neurons primarily via very fine horizontally
running axonal fibers. For computational simplicity we assume that minicolumns form
an orthogonal grid, although a hexagonal grid would provide a better approximation of
anatomy. We assume that the distance between the centers of two adjacent minicolumns
is 60 µm. Furthermore we assume that each minicolumn contains the same number of
neurons of each type. Note that according to standard terminology in neuroscience, a
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2 Results

cortical microcircuit is substantially larger, and consists of a large number of stereotypical
minicolumns.
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2 Results

Figure 1: Illustration of the concept of a probabilistic skeleton as generative model for
recurrent neural networks. a Connection probabilities between different types of neu-
rons in mouse V1, assuming that the distance between somata can be neglected (copied
from [13]). b Scaling of connection probabilities with the horizontal distance between
the somata for mouse V1 (copied from [13]). c Sample base connection probability table
and prevalences of neuron types of a probabilistic skeleton for the case of K = 6 neuron
types (the length of the prevalence-bar encodes the number of neurons in a minicolumn).
White grid cells indicate a connection probability 0. d Functional forms of the distance
dependent scaling functions, with different values of σ2 in equation (1), that turned out
to work well for the induction of innate computing capabilities. e Sketch of a cortical
minicolumn according [9], showing somata of neurons on different layers and vertically
running dendrites. f Topdown view of our assumed simple arrangement of minicolumns,
each containing the same combination of neurons of different types. Horizontal displace-
ments of neurons within a minicolumn were made here only to facilitate the illustration,
our model assumes that they are all located at the center of their minicolumn. g Cartoon
of the resulting architecture of a neural network sample from a probabilistic skeleton,
showing unidirectional connectivity from three input neuron types, to two output neuron
types, as well as unidirectional or reciprocal connections between neurons from excita-
tory or inhibitory recurrent neuron types. h Examples for resulting binomial distributions
from which the number of synaptic connections are drawn for concrete neurons i, j of
types I, J for the case pI→J = 0.35 (two panels on the left) and pI→J = 0.85 (two panels
on the right), each for two different values of Dist(i, j).

In order to answer the question whether these genetically encoded features of the
structure of neural networks in the neocortex is sufficient for endowing them with innate
computing capabilities, we abstracted these statistical features of neural networks into
a mathematical model, which we call a probabilistic skeleton. A probabilistic skeleton
consists of

(i) A natural number K (the number of neuron types in the model; we set K = 6 in
the illustrations of the model in Fig. 1c - f)

(ii) Base connection probabilities pI→J for neurons of type I to neurons of type J ,
for the case that they are located within the same minicolumn (see upper part of
Fig. 1c for a sample table of such base connection probabilities).

(iii) The prevalence of each neuron type, i.e., the number of neurons of each type in a
generic minicolumn, see the bottom plot of Fig. 1c.

(iv) The common weight win of all synapses from input neurons, as well as the common
weight wE of all synapses from excitatory and the common weight wI of all synapses
from inhibitory neurons in the recurrent network.

(v) A scaling parameter σ2 that controls the decay of connection probabilities with the
horizontal distance between somata.
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A probabilistic skeleton is a generative model, which produces a distribution over
neural networks that share common structural features, rather than a specific neural
network. It neither specifies the number N of neurons in the network, nor which synaptic
connections should be present. It just specifies base connection probabilities between
neurons according to their types, not between individual neurons. One samples a neural
network from a probabilistic skeleton according to the following rules:

1. Pick a number N , the total number of neurons in the network. It should be a mul-
tiple of the desired number of minicolumns in the network (since each minicolumn
has the same number of neurons). .

2. Draw S times for any pair (i, j) of neurons with i of type I and j of type J from
the binomial distribution with probability

P[Synapse from i to j] = pI→J e
−Dist(i,j)2

σ2 . (1)

The functional form of the dependence of connection probabilities on Dist(i, j) approx-
imates the corresponding data from [13], see panels b and d in Fig. 1. The exponential
decay of this function entails that the expected total wire length of axons from a neuron
is bounded by a constant that does not depend on the network size.

We have set S = 8 in all our experiments, thereby allowing up to 8 synaptic connections
between any pair of neurons. According to Fig. 7A in [12] most synaptically connected
neurons do in fact have multiple synaptic connections. An example for concrete distri-
butions of the number of synaptic connections between two neurons in dependence on
the base connection probabilities of their neuron types and the distance between their
somata is shown in Fig. 1h. The resulting weight wij ∈ R of a synaptic connection from
neuron i to neuron j is then the product of the general scaling parameter win, wE, or
wI , that depends on the type of neuron i, and the number of synaptic connections from
i to j that results from drawing S = 8 times from the distribution given in equ. (1). A
sketch of the overall architecture of recurrent neural network samples from a probabilistic
skeleton is given in Fig. 1g.

We refer in the following to a computing capability of neural networks as being ”innate”
if a probabilistic skeleton can endow all, or at least most of its neural network samples
(for a given number N of neurons) with this computing capability.

2.2 Algorithmic approach for optimizing probabilistic skeletons

We use the iterative method indicated in Fig. 2 in order to test whether a desired comput-
ing capability can be encoded on the statistical level of neural networks with probabilistic
skeletons. We use evolution strategies [17] as optimization method, rather than back-
propagation through time (BPTT), because the salient fitness function of a probabilistic
skeleton is not differentiable. Evolution strategies combine elements of stochastic search
with empirical estimates of gradients of the fitness function.
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2 Results

Figure 2: Illustration of our algorithmic approach for optimizing a probabilistic skele-
ton for a computational task. The motor control task of Figure 6 is used as an example.
RSNNs are sampled from the current probabilistic skeleton, and their innate computing
capability on a specific task, i.e., their fitness, is measured. Evolution strategies modify
the probabilistic skeleton on the basis of these fitness values. Then the loop is iterated.

We explore in this article only whether probabilistic skeletons are able to induce non-
trivial computing capabilities in recurrent networks of spiking neurons (RSNNs). Our
rationale for focusing on recurrent neural networks is that virtually all neural networks
in brains are recurrently connected. Additionally, structural properties of artificial re-
current neural networks are less understood than feedforward networks. Furthermore,
we focus on networks of spiking neurons because they are better suited than non-spiking
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neuron models to carry out brain-like computations with spikes. In contrast to compu-
tations in recurrent networks of artificial neurons, these computations are not clocked
but event-based: A spike represents an event in space and time, and time can be used as
additional resource for representing and computational processing of salient information.
Besides spikes, also a partition of neurons into excitatory and inhibitory neuron types
is essential for relating activity in resulting neural network models to recordings from
neurons in the brain.

2.3 Generic computing capabilities of cortical microcircuits on spike
times.

One of the most fascinating open problems in neuroscience is how the structure of rather
stereotypical, largely translation- and rotation- invariant connectivity templates of lam-
inar cortical microcircuits are able to provide the basis for the astounding computing
capabilities of the neocortex [9], [10]. [11] proposed that the laminar spatial arrangement
of different types of neurons is less essential for network function than the genetically
encoded organization of synaptic connections between them, as well as the relations
of neuron types to inputs from other brain areas and outputs to other areas. These
structural features are captured by a probabilistic skeleton: It includes connection prob-
abilities from and to external populations of neurons, and supports topographic maps
from and to external spatially structured populations of neurons, as well as topographic
maps between different types of neurons within the recurrent network.

The primary question that we want to answer is whether the abstract features of a
probabilistic skeleton suffice for endowing RSNN samples with generic computing capa-
bilities that are likely to be essential for the function of cortical microcircuits in many
different areas of the neocortex. We start with the capability to extract a salient latent
variable for computations on spike times: the temporal distance between two waves of
spike inputs, see the top row of Fig. 3a. More precisely, we want to install in RSNNs the
capability to classify this time difference into four segments of length 50 ms. A particular
type of output neurons is supposed to indicate through firing during the last 30 ms of
the total 200 ms time span, the class to which the time difference belongs, see bottom
right part of Fig. 3a. This relatively large time span of 200 ms is relevant for controlling
behaviour, and for regulating bottom-up and top-down processes in cortical networks.
It also represents a significant computational challenge for RSNNs because spikes and
postsynaptic potentials take place on the shorter time scale of ms and tens of ms. Hence
it is rather difficult to induce the computing capability that we are considering here
through traditional training of the synaptic weights of a RSNN.

We found that the PS with just 10 types of neurons in the recurrent network, shown
in Fig. 3b, can solve this task very well, with a classification accuracy of 96%. The
probabilistic skeleton encoded this computing capability with just 164 parameters that
we optimized for this task. These represent a tiny fraction of the 33.280 parameters (=
number of potential synaptic connections) of the RSNN samples that were considered
during this optimization process. Furthermore, the same PS can generate RSNNs of
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many different sizes, which all can solve this task very well, see Fig. 7e. A closer look at
the organization of spiking activity in these RSNNs shows that they rely on persistent
firing activity of particular types of neurons. In this way they maintain in their working
memory the information whether the second wave of input spikes has already arrived,
and if so, within which time interval. A closer look at the network activity for network
inputs from all four classes shows that the logic of interactions between the different
assemblies of neurons formed by the different neuron types is quite complex. However,
the 4 rightmost columns of the plot of the PS in Fig. 3b show that each of the four types
of output neurons has a different set of presynaptic neuron types, and the recurrent
network manages to activate for each network input the right collection of neuronal
assemblies during the trial, which then activate the right type of output neurons during
the last 30 ms. Details to all our experiments can be found in the Methods section.
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2 Results

Figure 3: Induction of innate computing capability on spike times through a proba-
bilistic skeleton. a The task is to classify the temporal distance between two waves of
spike inputs into 4 classes of inter-spike intervals, each of length 50 ms, that are indicated
by dotted lines in the top row. The network is supposed to produce the classification of
the inter-spike distance through higher firing of a corresponding type of output neurons,
in this sample trial for class 3. Firing activity is shown for all neuron types of the prob-
abilistic skeleton indicated in (b). Emergent sequential activation of neuron assemblies
is visible for recurrently connected neuron types. b Optimized probabilistic skeleton for
this task. c The connectivity graph induced by the probabilistic skeleton shown in (b),
plotted in the same style as corresponding experimental data for cortical microcircuits
in Fig. 7C of [12]. Thickness of ribbons is proportional to the number of synaptic con-
nections; the ends of incoming ribbons to a neuron type indicate distribution over source
types
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2.4 Innate pattern classification capability

Distinguishing poisonous from harmless and nutritious food sources is a computing ca-
pabilities that needs to be largely innate, because learning this classification through
trial and error is too costly for the survival of an individual. But there also exists exper-
imental evidence that innate computing capabilities are involved in visual perception,
e.g. in face perception [8]. Inputs from olfactory sensory neurons (see e.g., Fig. 5 of
[18]), as well as inputs from peripheral neurons for other sensory modalities, arrive in
the form of spatio-temporal spike patterns. Hence we wondered whether a PS can endow
RSNNs with the innate capability to distinguish variations of specific spatio-temporal
spike patterns, such as the ones shown for classes 1 and 2 in Fig. 4a, from generic spike
input streams with the same firing rates, such as the samples of class 3 in Fig. 4a. The
spike pattern templates that we used for classes 1 and 2 were frozen Poisson spike trains.
Samples from the corresponding classes were generated by adding, deleting, and shifting
spikes in time in these spike pattern templates. Spike patterns of class 3 were freshly
generated with the same Poisson firing rates as the spike templates for classes 1 and 2.

We found that a PS with 9 neuron types in the recurrent network can solve this
task with 91% accuracy. This shows that the capability to distinguish particular spike
input patterns from generic spike trains with the same firing rates can be genetically
encoded through connection probabilities between neuron types. Furthermore Fig. 4c, d,
f show again an emergent orchestration of assembly activations in order to carry out this
classification, and to bridge the delay to the decision time during the last 30 ms. The
probabilistic skeleton for this task had 157 parameters. In contrast, a RSNN of the size
of the RSNN samples that were considered during the optimization of the probalistic
skeleton had 13,392 potential synaptic connections. Furthermore Fig. 7e shows that the
probabilistic skeleton endows also much larger RSNNs, with many more parameters,
with the same computing capability.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.18.444689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444689


2 Results

Figure 4: Innate spike pattern classification. a Two samples from each of the three
classes of spike input patterns. b Optimized probabilistic skeleton for this task. c The
connectivity graph induced by this probabilistic skeleton, plotted in the same style as
in Fig. 3c. d-f Firing activity is shown for all neuron types for samples of spike input
patterns from classes 1-3. The 30 ms time window during which the network output is
extracted is indicated by the red frame at the bottom of each spike raster.
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2.5 Generic 2D computing capabilities.

The neocortex forms a 2D sheet, with topographic maps between cortical areas and from
peripheral sensory neurons. Therefore we wondered whether basic 2D computational op-
erations could be programmed into this 2D sheet through probabilistic skeletons. Since
noise surpression and contrast enhancement are among the most basic ones, we first
tested whether a probabilistic skeleton can endow RSNNs with the capability to extract
just the local maxima from a 2D input patterns, thereby filtering out background noise[9]
, see Fig. 5c, d for two examples of such computations. It turns out that this computa-
tional capability can already be provided by a quite simple probabilistic skeletons with
just 5 recurrent types of neurons, see Fig. 5a for the spike raster of an RSNN sample
that receives the 2D pattern shown at the top of panel c as input, and produces in its
output neurons the output shown at the bottom of panel c. Panel d depicts the output
of this RSNN for another 2D input pattern. The grey values of these 12 x 12 arrays were
encoded through Poisson firing rates. A similar input/output mapping can be produced
by Mexican hat filters or Winner-Take-All circuits. But these are hard to execute by
RSNNs in a stable manner, in particular in a way where it applies equally well to all parts
of a larger 2D input array. One problem is that strong lateral inhibition among excita-
tory neurons tends to drive down also the firing rate of the ”winner”. The phasic firing
pattern of the output neurons in Fig. 5a suggests that the network exploits the option
to implement the local maximum extraction through an iterated temporal competition,
where the strongest activated neurons fire first, thereby inhibiting weaker competitors
-but also temporary themselves. The probabilistic skeleton that programmed this com-
putation into the network had 44 parameters, whereas the shown RSNN sample with
1008 neurons had 725,760 potential synaptic connections.

A further important 2D computational operation that is carried out by cortical micro-
circuits is the detection of coincidences between different 2D input streams. These could
come from different sensory areas, or from higher and lower cortical areas for the same
sensory modality [9], see the cartoon in Fig. 5e and f. In particular, common models
for the interaction of higher and lower visual areas propose that topdown predictions
of sensory inputs are compared with bottom-up sensory inputs in generic cortical mi-
crocircuits. Fig. 5 g-i shows that also this fundamental 2D computation can be induced
through a probabilistic skeleton. Fig. 5g shows the computation of an RSNN sample on
the two 2D input patterns shown at the top of panel h into the network output shown
below them. The target output used for optimizing the probabilistic skeleton. Panel i
shows another example of a pair of 2D input patterns and the 2D output of this RSNN.
This probabilistic skeleton had 121 parameters, and had been optimized, like the one for
local maximum extraction, just for 5x5 input patterns.
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Figure 5: 2D computing capabilities: Maximum extraction and coincidence detection.
a, c Spike raster plot of an RSNN sample solving the local maximum extraction task,
for the 2D input pattern shown at the top of panel c, producing the 2D output shown
at the bottom of panel c. Grey values were encoded through Poisson firing rates. b
The red box in the 12x12 grid indicates the 5x5 size of the smaller grid for which the
probabilistic skeleton had been optimized. d A different 2D input and output pattern
of the same RSNN. e Motivation for the coincidence detection task in the context of a
proposed enhancement of perception through interaction of inputs from different sensory
modalities and topdown predictions; figure adapted from [19]. f Illustration of the
calculation of the target 2D output pattern, shown as dark area that consist of the
intersection of the preceding two 2D input patterns. g Spike raster of an RSNN sample
of the probabilistic skeleton for solving the 2D coincidence detection task. h Pairs of 2D
input patterns, for which this RSNN produced the 2D output pattern shown below. i
Another sample of pairs of 2D input patterns and the 2D network output of the same
RSNN.

2.6 A probabilistic skeleton can endow neural networks with innate
motor control capability.

Basic motor control capability right after birth, for example the capability to stand up
and walk on 4 legs, is essential for survival in many species. We tested the capability
of probabilistic skeletons to endow neural networks with such capability on a common
benchmark task for motor control: Enabling a simple quadruped model (”ant”) to walk
by controlling the the 8 joints of its 4 legs through suitable torques. The neural network
controller received 9 spike input streams that encoded -with a delay of 60 ms- through
population coding 9 dynamically varying variables: The angles of the 8 joints as well as
the torso height, see Fig. 6a. Hence a correspondingly large network is needed to extract
salient information from these 9 input time series and to produce the 8 output time
series. Nevertheless we found that a probabilistic skeleton with 15 types of neurons in
the recurrent network, specified by just 635 parameters, see Fig. 6b, contains already the
control strategy that this quadruped needs for locomotion. Compared with an RSNN
sample from this PS with 250 neurons in the recurrent part of the network, which
has 114, 500 potential synaptic connections, the PS could compress its control strategy
into 0.55% of the parameters that are tuned if one train this RSNN, consisting of 458
neurons, in the traditional manner for this task. Fig. 5c shows that the time varying
spatial patterns of the 8 input variables cause diverse time varying activity patterns
within many of the recurrent neuron types. Fig. 6 d shows a sample of the 9 time-
varying network inputs and the resulting 8 time-varying network outputs on a larger
time scale. Here and in (Movie of ant) one can see that this task requires the RSNN
controller to produce in its 8 output neuron types quite complex time-varying outputs.

After randomly deleting 30 percent of the recurrent and output neurons of this RSNN,
the network can still enable the ant model to walk, although somewhat slower, see (Movie
of ant after 30% deletion).
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Figure 6: Example for innate motor control capability through a probabilistic skele-
ton. a System architecture, indicating network inputs and outputs, as well as the 8
joints that are controlled by the network outputs. b Probabilistic skeleton for solving
this motor control task. c Spike raster of an RSNN sample with 458 neurons drawn from
this probabilistic skeleton. The required spatial organization of network outputs emerges
through population coding of 9 input variables. d Sample dynamics of input and output
variables of the RSNN controller on a larger time scale.
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2 Results

2.7 General results and principles for designing neural networks
through probabilistic skeletons.

The number K of neuron types is a new complexity measure for RSNNs that emerges
from our generative approach. We show in Fig. 7a that the mean performance of RSNNs
samples from probabilistic skeletons increases only slightly with K for the tasks that we
have considered (we did not carry out the control experiments for the motor control task
because this was computationally substantially more demanding). But we also found
that the performance reached via Evolution Strategies by probabilistic skeletons varied
widely, even for repeated runs with the same K.

A larger number of neuron types, such as the 112 types considered in [13], could also
have the purpose to implement different innate computing capabilities through different
sets of neuron types. Multiplexing of computations in cortical microcircuits, possibly
using different output types for transmitting results of different computations to diverse
downstream networks [20], appears to be a characteristic feature of cortical microcircuits.

A key property of RSNNs that are generated from a probabilistic skeleton is that the
connection probability between neurons i and j decays exponentially as function of their
horizontal distance Dist(i, j). Hence, since the density of neurons is bounded through the
diameter of a minicolumn, the expected number of synaptic connections from a neuron,
as well as the total length of axons from a neuron, are bounded by constants that do not
grow with the number of neurons in the network. This feature induces a substantially
more rigorous type of sparsity of connections than usually considered, where sparsity is
expressed as fraction of the the quadratic number of all synapses in a fully connected
recurrent network. In addition, we show in Fig. 7b, c that the performance of RSNN
samples from a probabilistic skeleton decays gracefully when synaptic connections with
the smallest connection probability are successively removed. Hence this process provides
a principled method for further decreasing the number of synapses and total wire length
if this becomes relevant. One possible application of this is to fine-tune the performance
of a RSNN by replacing its weakest synaptic connections by other connections, a process
that is observed in biology in the form of spine motility on the time-scale of hours and
days. This occurs spontaneously [21] and even more during learning [22].

We show in Fig. 7d that the performance of RSNN samples from probabilistic skeletons
is quite robust with regard to perturbations of the strength of synaptic connections.
This feature appears to be important for biological neural networks because underlying
molecular processes appear to modify the strengths of synaptic connections even in the
absence of other learning processes [21]. Note that robustness against fluctuations of
synaptic strengths is also desirable for neuromorphic implementations of RSNNs where
synaptic weights are implemented through somewhat volatile but highly energy-efficient
memristors or other new devices [23] On a more general level, robustness against weight
perturbations can be viewed as a generic implication of the genomic bottleneck [1], where
computational properties are encoded in a much lower dimensional parameter space.

Finally, Fig. 7e shows that the computing capabilities that probabilistic skeletons pro-
vide generalize very well to RSNN samples that are substantially larger than the ones
considered during the optimization of the probabilistic skeleton. This feature highlights
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2 Results

another fundamental difference to the traditional method to generate functional neural
networks through training, where transition to larger input dimensions usually requires
retraining of the network from scratch.
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3 Discussion

Figure 7: General functional properties of RSNN samples from probabilistic skeletons.
Performance of RSNN is measured relative to random guessing as a common baseline
for all tasks, see 4 for details. a Mean performance values achieved by optimizing
probabilistic skeletons with different numbers K of neuron types. b Degradation of innate
computing capabilities through pruning of synapses (elimination of synapses with the
smallest connection probabilities). The x-axis depicts the average number of synapses
per neuron. The star corresponds to the performance without pruning. c Same data
as in b, but plotted here as function of the average total wire length of axons from
a neuron. The star corresponds to the performance without pruning. d Performance
after random perturbation of synaptic connections, plotted as function of the maximal
amount of change in the number of synaptic connections for each neuron pair, expressed
as fraction of the current number of synaptic connections. e Generalization capability of
probabilistic skeletons to RSNN samples with different neuron numbers N . The value
of N that was considered during the optimization of the probabilistic skeleton is marked
by a star.

3 Discussion

Neural networks have become a central tool and concept both for understanding brain
function, and for reproducing intelligence in artificial devices. But it has long been
ignored that our standard procedure for bringing function into neural networks is fun-
damentally different from the way how computational capabilities emerge in biological
neural networks [1]. Rather than being trained from a tabula rasa initial state with large
number of data, often resorting to supervising learning methods that rely on a teacher,
it is well known that computational function emerges in neural networks through a com-
bination of nature and nurture, with the contribution of each depending on the species.
Even the mammalian neocortex, which exhibits astounding learning capabilities, uses
highly structured canonical neural microcircuits for learning, that are known to provide
substantial innate computing capabilities [2], [4], [5], [6], [7], [8].

We have examined one essential aspect of the genetically encoded structure of cortical
microcircuits, connection probabilities between genetically different types of neurons,
and formulated a simple mathematical model for that, probabilistic skeletons. One may
view probabilistic skeletons as a fragment of the programming language that nature uses
for endowing neural networks of the brain with innate computing capabilities, since they
represent an abstraction of a very large body of experimental data on the structure of
cortical microcircuits, see [13] for a recent summary. We have shown that this fragment
of the genetic programming language is surprisingly powerful: It is able to install innate
computing capabilities on spike times (Fig. 3), temporal spike patterns (Fig. 4), 2D spike
patterns (Fig. 5), and multiple dynamically changing spike input streams (Fig. 6) in
recurrent networks of spiking neurons. Interestingly, the resulting functional recurrent
neural networks differ in essential aspects from those that are commonly studied: Their
number of neurons and total wire length scales linearly with the number of neurons. Total
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wire length is obviously an important constraint for the design of cortical microcircuits,
where already a single cubic mm of grey matter is estimated to contain 4km of axonal
fibers [24].

Such linear scaling of the number of synapses and the total wire length is enforced by
a generic exponential decay of connection probabilities with distance in cortical micro-
circuits [13], which is reproduced by probabilistic skeletons. The resulting connectivity
structure encourages topographic maps between 2D populations of neurons, a well-known
construction principle of neural circuits in the brain. It induces a computational ma-
chinery that is exquisitely suited for computing on 2D input streams from visual and
somatosensory peripheral neuron arrays, as well as from other cortical areas, including
higher cortical areas that control for example spatial attention. A further new feature of
resulting neural networks is their robustness to random changes of synaptic connections
between neurons, see Fig. 7. This feature appears to be essential for neural networks
of the brain, where a substantial fraction of synaptic connections on spines come and
go on the time scale of hours [25]. It also points to an intrinsic difference to the way
how computational function is commonly installed in artificial neural networks, whose
brittleness with regard to minor network perturbations has frequently been criticized
[26].

Probabilistic skeletons can be viewed as a way of meeting the challenge of [1] to ex-
plore the functional impact of the ”genomic bottleneck”, i.e., the fact that the number of
bits which the genome uses for encoding brains is quite small compared with the number
of synaptic connections in the brain, and actually also if compared with the number of
synaptic weights in state-of-the-art deep neural networks. Alternative approaches for
meeting this challenge have recently been proposed [27], [28]. [28] models the impact
of genomic information compression on functional capabilites of neural networks on a
more abstract level. On the other hand, their model is less general insofar as it as-
sumes that connection probabilities, or in this case deterministic connections, can be
computed from binary codes for neurons through linear operations. The model of [27]
is less abstract than ours and that of [28]. It is less general because each genetic neuron
type is assumed to consist of just one neuron, and synapse formation is assumed to
be deterministic, and controlled by linear operations. Benefits of these two alternative
approaches have been demonstrated for feedforward artificial neural network computa-
tions on static inputs, exhibiting intriguing consequences of the underlying parameter
compression. [29] considered already previously evolution of network architectures with
uniform weight values. But they did not aim at modelling the impact of the ”genomic
bottleneck” since the existence of a synaptic connection was optimized individually for
each pair of neurons. Several other related methods have been considered in the context
of neuroevolution [30].

One advantage of the probabilistic skeleton approach is that this model can be related
directly to experimental data on the structure of cortical microcircuits, and to recordings
from recurrent networks of spiking neurons in the brain. In fact, this approach suggests
that for understanding innate computing capabilities of cortical microcircuits it will be
fruitful to investigate the computational interaction between genetically different neuron
types, for example through Ca-imaging. It also suggests that it will be important for
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understanding the organization of computations in cortical microcircuits to determine
connection probabilities between substantially more types of neurons than the 17 types
that were addressed in Fig. 4 of [13]), reproduced in Fig. 1a. Our scaling analysis from
Fig. 7a suggests that the number and precision of innate computations can be enhanced
by using more neuron types with genetically programmed connection probabilities. It
will be very interesting to see whether evolution has pursued this direction.

Another interesting next step will be to elucidate additional benefits of designing neu-
ral network via probabilistic skeletons if one takes into account that neurons of different
types have according to [12] and [13] different electrophysiological and morphological
properties. It turned out that offering probabilistic skeletons the opportunity to use for
different neuron types different GLIF3 neuron models from [13] did not provide functional
advantages for the computational tasks that we have considered. A further interesting
next step will be to take into account that the neocortex also has a substantial number of
long range connections. An investigation of the trade off between the resulting increase
of total wire length and the benefits of having network modules with different innate
competences is likely to improve our understanding of global brain architectures from
the computational perspective.

Further facets of the genetic programming language for the generation of neural net-
works with innate computing and learning capabilities will become apparent if one also
takes into account that the short term [31] and long term dynamics [32], [33]) of synapses
is highly diverse. Hence it may be fruitful to add diverse synapse types to the fragment
of the genetic programming language that is formalized through probabilistic skeletons.

Both the number of synapses and total wire length are critical factors in the cost
and efficiency of neuromorphic hardware. Using probabilistic skeletons for the design
of neuromorphic hardware, where both measures grow just linearly with the number
of neurons in resulting RSNNs, is therefore likely to provide new methods for efficient
circuit design. In particular, 2D arrays of neuromorphic sensors can in this way be com-
bined with hardware for computational processing so that not only time, but also space
is represented by itself, through topographic maps between neuron types. Additionally,
the resulting inherent robustness against weight perturbations supports implemention of
synaptic connections by extremely energy-efficient but imprecise memristors [34]. An-
other possible technological application of the methods presented in this article lies in
the area of organoids [35]. They imply that, as soon as one will be able to modify
those sections of the genetic code of neurons that control their connection probabilities
to other neuron types, one will be able to grow cerebral organoids with powerful innate
computing capabilities.

Convolutional neural networks (CNNs) represent one of the practically most successful
feedforward artificial neural network architecture in terms of training capability. Like
probabilistic skeletons, these architectures have a reduced number of parameters and
also employ a simple spatially iterated connection pattern. Hence it is tempting to
ask whether probabilistic skeletons could provide analogous benefits for the design of
recurrent networks of artificial neurons.
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Details to recurrent network of spiking neurons
(RSNNs) models

Neuron types

Neuron types fall into three categories: input types, recurrent types, and output types.
The neurons from these three categories are referred to as input neurons, recurrent
neurons, and output neurons.

Input neurons provide external inputs in the form of spike trains. They have no
internal states, and there are no recurrent connections from recurrent neurons or output
neurons back to the input neurons. The output neurons receive their input from the
recurrent neurons (see Fig. 1g).

Recurrent neurons can have connections from input neurons and other recurrent neu-
rons. All neurons from the same type can be either excitatory or inhibitory. Note that
input or output types will always consist of excitatory neurons.

Discrete time neuron model

Recurrent and output neurons are modelled as discrete-time versions of standard Leaky-
Integrate-and-Fire (LIF) neuron models. More precisely the GLIF1 model from [36] has
been used. Control experiments with the GLIF3 model from [13] produced qualitatively
similar results.

For a given neuron j ∈ {1, . . . , N} of type J the membrane potential is denoted by Vj
and the input current by Ij. We assume that currents are constant on small intervals
[t, t+ δt], which have been set to a length of 1 ms. The neural dynamics of the model in
discrete time can then be given as

Vj(t+ δt) =

{
αVj(t) + (1− α)(EL + 1

Cm
Ij(t)) if zj(t) = 0

Vr else
(2)

(3)

where α = exp
(
− δt

τ

)
and

zj(t) = H

(
Vj(t)− vth(t)

vth(t)

)
(4)

with the Heaviside function H(x) =

{
0 x < 0
1 else

. Here τ ∈ R is the membrane time

constant, EL ∈ R is the resting potential, Cm ∈ R is the membrane conductance and
vth is the threshold voltage. After spiking the neuron enters a refractory period, lasting
tref > 0, in which zj(t) is fixed to zero.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.18.444689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444689


4 Methods

Figure 8: The temporal dynamics of the four different synapse types for WGLIF = 1.

Synapse model

The postsynaptic current for a single spike and a single neuron is modeled by the dy-
namics given in [13] as

Isyn(t) =
eWGLIF

τsyn
te
− t
τsyn , t ∈ R+, (5)

where Isyn is the postsynaptic current, τsyn is the synaptic time constant and WGLIF

scales the weight of the synaptic connection such that the postsynaptic current has an
amplitude of WGLIF after τsyn ms. Note that τsyn depends on the type of the pre- and
postsynaptic neurons. The exact values of τsyn have been set to 5.5 ms for excitatory-to-
excitatory synapses, 8.5 ms for inhibitory-to-excitatory synapses, 2.8 ms for excitatory-
to-inhibitory synapses and 5.8 ms for inhibitory-to-inhibitory synapses according to [13].

The resulting postsynaptic currents can be seen in Figure 8. Using discrete time-steps
the equation (5) transforms to

Isyn(t) =
eWGLIF

τsyn
t δt e

− tδt
τsyn , t ∈ N. (6)

Since multiple spikes are possible up to time-step t the current from neuron i to neuron
j at timestep t can be written in terms of the synaptic weight wij defined in section 2.1
as

Iij(t) =
t−1∑
s=0

ewijzi(s)

τsyn
(t− s) δt e−

(t−s)δt
τsyn . (7)

The input current Ij(t) for neuron j at time t is defined as the sum of currents from all
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neurons:

Ij(t) =
∑
i

ewij
τsyn

t−1∑
s=0

zi(s)(t− s) δt e
− (t−s)δt

τsyn (8)

=
t−1∑
s=0

e

τsyn
(t− s) δt e−

(t−s)δt
τsyn

∑
i

wijzi(s). (9)

Parameters of neuron and synapse models

The previously defined neuron- and synapse models use the following set of additional
parameters:

H = {CJ
m, τ

J , V J
r , v

J
th, t

J
ref | J = 1, . . . , K}

. The values for {CJ
m, τ

J , V J
r , v

J
th, t

J
ref | J = 1, . . . , K} are taken from [13], and the raw

data is available in [37]. A good overview of these neuron types has been made available
online in the database of the Allen institute. Detailed biological and modelling data
for the prototype of the excitatory neuron can be found at Excitatory neuron and the
prototype for the inhibitory neuron at Inhibitory neuron. We have seen no evidence that
the exact values of the GLIF1 parameters are essential for the results reported in this
paper.

Synapse population and spatial structure

In the first four tasks the neurons were arranged in a 2D array of minicolumns as in-
dicated in Fig. 1f. The minimum distance between neurons in different minicolumns is
given by the diameter of a minicolumn, which is 60 µm. Every recurrent neuron type
has at least one neuron in each minicolumn, but a type can have more than one neuron
in a single minicolumn if its prevalence is high.

Optimization method

The probabilistic skeletons were optimized using the Separable Natural Evolution Strat-
egy (Separable NES), which was first introduced in [17]. The algorithm is available in
pseudo code 1. Considering the optimization of a d-dimensional vector of network pa-
rameters θ, the algorithm uses a Gaussian distribution in every dimension with means
µ ∈ Rd and variances σ ∈ Rd. The basic idea is that one samples λ times from this
distributions, then evaluates the fitness values of the so-called offsprings, i.e. the vectors
θj ∼ N (µ, Iσ), and finally updates the distributions to capture more of the parameter
space, where the fitness of the offsprings is higher. The fitness function F depends on the
task, that the probabilistic skeleton should perform. The mean values of the parameters
are initialized by truncated normal random variables with mean zero and variance 1.0
and the variance values are initialized as ones. We found that choosing the learning rate
for µ as ηµ = 1.0 yields good results, which is consistent with the suggested value in
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[38] and [39]. The learning rate for σ was chosen as ησ = 0.01. As suggested in [39]
mirrored sampling has been employed, see, e.g., [40]. That is, for every Gaussian noise
vector s ∈ Rd also the offspring, which results from using −s, will be evaluated.

Algorithm 1 Separable NES

Require: λ ∈ N,µ ∈ Rd,σ ∈ Rd, ηµ, ησ, F
Ensure: λ ≡ 0 mod 2, ηµ > 0, ησ > 0

for epoch=1,. . . ,N do
for j=1,. . . ,λ/2 do

Init s ∈ R(λ,d) as sj ∼ N (0, I), s(j+λ/2) = −sj
θj ← µ + σ � sj
Compute Fitness F (θj)

end for

Compute gradients
∇µJ ←

∑λ
j=1 F (θj)sj

∇σJ ←
∑λ

j=1 F (θj)(s
T
j sj − 1)

Update parameters
µ← µ + ηµσ∇µJ
σ ← σ exp

{
ησ
2
∇σJ

}
end for

Note, that the value of the scaling parameter σ2 from equation (1) was optimized
using a large-scale hyperparameter search and not using evolutionary strategies. For the
optimization of the base probabilites, there is the additional constraint that pI→J ∈ [0, 1].
Hence real values κIJ ∈ R are optimized and the connection probabilities are obtained
by using the sigmoid function:

pI→J =
1

1 + e−κIJ
. (10)

In the following generic parameter vectors will be denoted by θ.

Experiments

Details to generic computing capabilities of cortical microcircuits on spike times.

Task description: In this task the goal is to classify the time lengths between two spikes.
There is a fixed time interval of 200 ms, which is divided into four bins of 50 ms. For each
class the first spike occurs at the beginning t = 0 and the second spike is uniformly drawn
from the four bins, which results in four classes of input spike trains. The precise timing
of the second spike is again uniformly sampled within the time interval of the chosen bin.

Input: The network receives as input a spike train from one of the four classes with
equal probability. Additionally, for each neuron Gaussian noise with mean zero and
variance 0.5 ms has been added to the spike times to avoid that all input neurons spike
at the exact same time.
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Output: Every class is represented by a corresponding output neuron type (Ji, i =
1, . . . , 4), consisting of four neurons. For each of these populations at every time step t
the average spike count is given by

sJ(t) :=
1

| J |
∑

j of type J

zj(t). (11)

These spike counts can be used to derive a spike rate of the population, where just the
last 30 ms of the simulation are taken into account:

ri :=
T∑

t=T−30

sJi(t), i = 1, . . . , 3, (12)

with T = 200 ms. Then the softmax function is used on the vector (r1, r2, r3, r4)
T to

obtain the class probabilities (p1, p2, p3, p4)
T . The output class C is then given by the

class for which the class probability pC is maximal.

Fitness function: The fitness function is given by the negative cross entropy loss. For a
single example with one-hot-encoded true class label y the fitness is defined as:

F (θ) =
4∑
c=1

yc log(pc). (13)

Another measure that is commonly used is the accuracy, which is given by the fraction
of correct samples.

Constant value of synapses: In the spike interval classification task the weight val-
ues of a single synapse are: win = 40.82, wE = 11.19, wI = 6.11.

Task-specific model details: Neurons are arranged in a 4x4 grid of minicolumns with
60 µm between them. In every minicolumn there are two input neurons and one output
neuron. Ten recurrent neuron types and 160 recurrent neurons are used, resulting in
164 free parameters, whereas the full RSNN would have 33,280 parameters. Hence only
0.4928% of the potential synaptic connections are used. A decay constant of σ = 77.7
was used for this task. The weight sparsity on the spike interval classification task is
25.6% and the total wire length is 0.798 meters.

Details to innate pattern classification capability

Task description: The goal of this task is to classify between three different classes of
spike patterns. Two of them correspond to spike pattern templates and the third class
contains random Poisson spike patterns with a Poisson rate of 50 Hz. Additionally a
delay of 50 ms gets added after the spike patterns are completed, hence the network has
to memorize the prediction during this time.
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Class generation: First for all four input neurons one Poisson spike train with a rate of
50 Hz is created, which yields a binary matrix z ∈ {0, 1}4×50. In the next step random
Poisson spike patterns with the same rate of 50 Hz are sampled until the L2 difference
of the postsynaptic currents caused by the two spike patterns is greater than 0.19. This
L2 difference is for spike patterns z and z̃ given by

∞∑
t=0

(Iz(t)− Iz̃(t))2 ,

where Iz and Iz̃ are the corresponding postsynaptic currents. The idea of measuring the
distance of spike trains by using the L2 difference of the postsynaptic currents was first
introduced in [41].

For the generation of the first two classes, two spike patterns are used as templates.
To create samples of these classes the templates are varied by flipping for every neuron
at two timesteps from spike to no spike or vice-versa, followed by a shift in time for every
spike. The shift is normal distributed with mean zero and variance 0.5 ms. The third
class includes random Poisson spike patterns with rate 50 Hz, which have a neglectable
probability to belong to one of the two classes.

Input: The network receives as input a spike pattern from one of the three classes
with the same probability followed by a 50 ms delay, hence altogether T = 100 timesteps.

Output: The output convention used in this task is the same as in the spike inter-
val classification task.

Fitness function: The same fitness function as in the spike interval classification task
has been used. As for the spike interval task also in this task the accuracy is a useful
measure, that was used to have a better intuition of the performance.

Constant value of synapses: For this task the weight values of a single synapse are:
win = 19.18, wE = 9.69, wI = 10.90.

Task-specific model details: Neurons are arranged in a 3x4 grid of minicolumns. There
is one input neuron in every corner of the grid. In every minicolumn there is one output
neuron. Nine recurrent neuron types and 108 recurrent neurons are used, resulting in 157
free parameters, whereas the full RSNN has 13,392 parameters (compression to 1.172%).
A decay constant of σ = 62.7 was used for this task. The connection sparsity on the
spike pattern classification task is 25.8% and the total wire length is 0.241 meters.

Details to local maximum extraction

Task description: In this task 2D patterns x ∈ [0, 1]
√
ncol×

√
ncol are presented to the net-

work, where ncol is the number of minicolumns, which are arranged on a squared grid.
For optimizing the probabilistic skeltons, ncol = 25 has been selected, resulting in a 5x5
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grid. The goal is to produce 2D patterns, where the locations of local maxima in the
input signal should be extracted.

Pattern generation To generate a pattern x first a fixed number Npoints of coordinate
pairs (m,n) ∈ {2, . . . ,√ncol − 1}2 get drawn randomly. In a second step, the value 1.0
gets assigned to these points, all other points are set to zero. Finally a discrete 2D Gaus-
sian filter with variance 1.25 is applied to this binary matrix and the result is normalized
to [c, 1], where c is a baseline intensity, which is drawn uniformly from [0.05, 0.15]. For
the 12x12 patterns that can be seen in Fig. 5 Npoints = 6 was used.

Input: The 2D input signals are encoded for the network by using Poisson spike trains
between zero and 200 Hz, where the firing rate of the neuron is proportional to the value
at the corresponding index. The length of the simulation is 300 ms.

Computing the targets: The targets of the maximum extraction task are computed
by applying the Mexican hat filter with symmetric padding to the original input, fol-
lowed by a clipping at zero and a normalization to [0, 1]. The Mexican hat filter is
defined as:

filter =

 0 −1 0
−1 4 −1

0 −1 0

 (14)

Output: There are ncol output neurons, which are arranged on a squared grid. The
output of the model can be computed by summing up all spikes over time for all mini-
columns and normalizing the result:

ŝi(t) =
∑
t

zi(t), (15)

si(t) =
ŝi(t)

max(ŝi(t))
(16)

Fitness function: To calculate the fitness the normalized cross correlation between target
signal t and output signal y is used:

F (θ) = NCC =

∑ncol
i=1 tiyi√∑ncol

i=1 t
2
i

∑ncol
i=1 y

2
i

The value of the normalized cross correlation can easily be interpreted. A value of 0.0
would indicate that the two patterns are totally different while a value of 1.0 would show
that the two patterns are the same.
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Constant value of synapses: The constant values of a single synapse on the local maxi-
mum extraction task are: win = 1.845, wE = 1.458, wI = 3.1.

Task-specific model details: A decay constant of σ = 90.6 is used for this task. The
weight sparsity is 15.27% for ncol = 25 and the total wire length is 0.495 meters. The
sparsity decreases to 3.27% for ncol = 144.

The PS optimized on the local maximum extraction task has five recurrent types and
uses seven neurons per column. This enables the PS to generate a RSNN with 1008
neurons when using a 12x12 grid. Note that the PS only has 44 free parameters, where
the full RSNN has 21,875 parameters, yielding a compression of 0.201% The average
normalized correlation on this task was is 0.81 for a 5x5 grid and 0.76 for a 12x12 grid.

Details to the coincidence detection

Task description: Two 2D input patterns are presented to the network. The goal is to
locate the positions where both signals display a high value. The patterns are generated
using the same algorithm described for the maximum extraction task.

Input: The same input convention and input patterns as for the maximum extraction
task are used, with the difference that two patterns are presented simultaneously.

Computing the targets: The targets of the coincidence detection task can be computed
by utilizing the following formula:

t =
φ(x1 � x2)

max(φ(x1 � x2))
(17)

where x1 and x2 are the two inputs and φ is a function that returns element wise the
identity of the input if it is higher than the average of the two inputs, else it returns zero.

Output and Fitness function The output convention and the fitness function are the
same as for the maximum extraction task.

Constant value of synapses: The constant values of a single synapse on the coinci-
dence detection task are: win = 2.21, wE = 2.97, wI = 2.8.

Task-specific model details: A decay constant of σ = 69.5 is used for the coincidence
detection task. The weight sparsity is 14.38% for ncol = 25 and the total wire length
is 1.47 meters. Note, that the sparsity drops as the size of the RSNN increases. For
example, this value decreases to 3.08% for ncol = 144.

The PS consists of nine recurrent types and 15 neurons per column. Hence it is
possible to construct RSNNs with 375 neurons on a 5x5 grid and also with 2160 neurons
on a 12x12 grid. This PS has a total of 121 free parameters, whereas the full RSNN
would have 112.500 (5x5) or 3,732,480 (12x12) parameters, yielding a compression of
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0.108% and 0.003% respectively. The average normalized correlation on the coincidence
detection task is 0.779 for 5x5 grids.

Note, that in the coincidence detection task, the objective is not to compute the sum
of the two inputs but much rather to compute the product of the inputs. This is an
important consideration, since simply computing a sum with a certain threshold is a
trivial task for an RSNN, however, obtaining a product is a lot more challenging. In Fig.
9 it becomes apparent that simply computing the sum would not be a good strategy, as
it would yield a low fitness value.

Figure 9: a Normalized cross entropy between the output of the RSNN, the target and
the average of the two input patterns. Approximating the target with a sum
of the two input patterns does not yield a high correlation. Panel b and c show
2D input patterns along with the network output and the target pattern. A
5x5 grid was used in this figure.

Details to innate motor control capabilities through probabilistic skeletons

Task description: For the simulation of the environment (AntMuJoCoEnv-v0) the Py-
Bullet physics engine [42] is used. The agent is a quadruped walker and is usually
referred to as ’ant’ in the literature. It consists of four legs having four joints, which
are attached by another four joints to a torso. The goal of this task is to achieve a
high forward velocity over the whole simulation period. The episode is terminated if the
center of mass of the actor falls below a height of 0.2 m or if the maximum number of
time steps has been reached.

Spatial structure: The spatial structure of this task differs from the remaining tasks
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in the sense that the neurons are not arranged in minicolumns, but the neurons are dis-
tributed evenly over a 1D line in the interval [0, 660] µm. This 1D circuit structure turns
out to be more effective if network inputs have a pronounced 1D organization, which
is induced in this case through the encoding of analog variables in 1D populations of
input neurons. For every neuron type, of the recurrent network the neurons are placed
such that they are evenly spaced. The distance measure Dist(i, j) simply computes the
distance between two neurons i and j by subtracting the one-dimensional coordinate
value of i from the coordinate value of j. Note, that the output locations are not evenly
spaced on the 1D line, but their locations are optimized alongside the other parameters
of the PS.

Input: In the environment the time is discretized to time steps of 20 ms. For this
reason the network receives for 20 ms the corresponding real-valued input, which is en-
coded to spikes using population coding with nine neuron types, each having 16 neurons.
Population coding is used which is commonly employed in the brain to encode analog
variables [43]. The input is given by the current state of the environment, where usually
the state space has 111 dimensions, but most of them are excluded, for example the
angular velocities, to have a more biologically realistic input. In total the observation
space consists of the eight joint angles and the height of the torso. Additionally a delay
of 60 ms is introduced between the environment and the model.

Each analog input value is encoded by the spiking activity of an excitatory population
of Npop input neurons. An input variable x can only takes values in the bounded interval
(a, b] ⊂ R. We define points a = x1, . . . , xM = b such that the subintervals (xi, xi+1], i =
0, . . . , Npop are of equal lengths b−a

Npop−1 and disjointly overlap the interval. The neurons

are chosen such that there is a positive linear dependency between the input values and
the spatial position of the neurons. On these subintervals gaussian density functions are
used to model the probability that a neuron i spikes for a given input x ∈ (a, b] by first
defining

hi(x) =
1

σpop
√

2π
e
− 1

2

(
x−xi
σpop

)2

(18)

for i = 1, . . . , Npop, where σpop ∈ R. In the experiments it is chosen to be σpop = xi+1−xi−1

2
,

such that ∼ 68.27% of spiking activity for this type happens in the interval (xi−1, xi+1]
and ∼ 95.45% happens in the interval (xi−2, xi+2] for suitable i. Since this is modeled by
a density function it is necessary to normalize the values of hi to obtain spike probabilities
for each neuron. A schematic plot of the population coding is given in Figure 10.

The spike train zi : R → R for an input neuron i and an input value x is therefore
given as

zi(t) =

{
1 with probability hi(x)

max
x∈[a,b]

hi(x)

0 else
(19)

. For an input vector x ∈ Rd d types and d ·Npop neurons are used.
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Figure 10: Illustration of population coding.

Output: The action space of the environment is given by A = [−1, 1]8, which corre-
sponds to torques that get applied to the eight joints of the ant. An output torque
y ∈ [−1, 1] of the model is computed by using two output neuron types representing
negative and positive torques denoted by J− and J+ and each having four output neu-
rons. This idea is inspired from how animals move their joints by using two opposing
muscles, which contract depending on the firing rate that they receive. The output scalar
values are computed by the normalized linear combination of the spike rates over the 20
ms , where the model receives the same input, and output neurons of the given type.
The output is then computed by

y =

20∑
t=1

e
− 20−t
τout

(
sJ−(t)− sJ+(t)

)
20∑
t=1

e
− 20−t
τout max (sJ−(t), sJ+(t))

, (20)

where τout = 10. For computing the outputs 16 output types and 64 neurons are used.

Fitness function: The fitness is given by the total reward received from the environ-
ment summed up over time. Every timestep the agent receives a reward

vfwd − 0.1jl + 1, (21)

where vfwd := forward velocity into the x direction, jl := number of joints which are at
the limit and there is a constant reward of 1 for each time step.

Constant value of synapses: The constant values of a single synapse on this task are:
win = 4.75, wE = 4.5, wI = 2.3.

Task-specific model details: A decay constant of σ = 80.0 is used for this task. The
sparsity of the model is 11.24% and the total wire length is 0.79 meters.
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The experiment where 30% of the neurons get deleted is conducted by sampling a RSNN
from the PS and randomly removing 30% of the recurrent and output neurons. Note,
that input neurons do not get deleted.

Our version of the ant task poses a much more challenging task than the original ant
which has been considered previously in the literature [44]. The reason for this is the
limited observation space, which makes it very hard for the model to know in which di-
rection it is facing, especially at a later point in the simulation. As the environment only
considers speed along the x-axis for the fitness it is important to run in a straight line,
which is more difficult if the feedback regarding the orientation is missing. Furthermore,
to increase biological realism, there is a delay of 60 ms between the environment and
the RSNN, making the task even more demanding. Our model manages to achieve an
average fitness of 517 using 250 steps in the environment, where the average is computed
over 100 trials. The version of the model where 30% of the recurrent and output neurons
are randomly deleted achieves a fitness of 421.

Details to general results and principles for designing neural networks through
probabilistic skeletons

To compare the different tasks it is necessary to use a common scale. This can be achieved
by defining baselines for every task, which correspond to the performance of a random
strategy. For the spike interval classification task there are four classes, hence picking
random classes would give an expected accuracy of 25 %. Analogously the baseline
accuracy for the spike pattern classification, which involves three classes, is 33.33%. For
the maximum extraction task and the coincidence detection task it is possible that a PS
has a fitness of 0.0, hence this was chosen to be the baseline for these tasks.

The performances on these different tasks can be compared by calculating the differ-
ence of the actual performance (either accuracy or normalized cross correlation) to the
baseline performance and normalizing this difference to [0, 1].

For each of the numbers of neuron types in panel a 80 probabilitic skeletons were
optimized for every task and the best performing ones were used.

The pruning experiments in panel b and c were done by deleting synapses that have
a connection probability below a certain threshold, where the threshold was raised until
the average number of synaptic connections was at the desired levels needed for plotting
panel b. Simultaneously the average wire length per neuron was calculated, which gave
the results that can be seen in panel c.

The weight perturbation experiment in panel d was performed by sampling an RSNN
from the probabilistic skeleton and then perturbing for every neuron pair the current
number of synapses Nsyn by

Nsyn ← Nsyn +Npert.

The perturbation number Npert is sampled uniformly from

{max(−Nsyn,−bcNsyn +
1

2
c), . . . , bcNsyn +

1

2
c}.
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Hence the weight is perturbed, such that the maximal perturbation is as close as possible
to c and the number of synapses has to stay above zero. The x-axis in panel d corresponds
to different values for c.

For panel e the number of neurons was varied by increasing the number of minicolumns.
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