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Abstract 14 

Understanding brain functions as an outcome of underlying neuro-cognitive network mechanisms in 15 

rest and task requires accurate spatiotemporal characterization of the relevant functional brain 16 

networks. Recent endeavours of the Neuroimaging community to develop the notion of dynamic 17 

functional connectivity is a step in this direction. A key goal is to detect what are the important events 18 

in time that delimits how one functional brain network defined by known patterns of correlated brain 19 

activity transitions into a “new” network. Such characterization can also lead to more accurate 20 

conceptual realization of brain states, thereby, defined in terms of time-resolved correlations. 21 

Nonetheless, identifying the canonical temporal window over which dynamic functional connectivity 22 

is operational is currently based on an ad-hoc selection of sliding windows that can certainly lead to 23 

spurious results. Here, we introduce a data-driven unsupervised approach to characterize the high 24 

dimensional dynamic functional connectivity into dynamics of lower dimensional patterns. The 25 

whole-brain dynamic functional connectivity states bearing functional significance for task or rest 26 

can be explored through the temporal correlations, both short and long range. The present study 27 

investigates the stability of such short- and long-range temporal correlations to explore the dynamic 28 

network mechanisms across resting state, movie viewing and sensorimotor action tasks requiring 29 

varied degrees of attention. As an outcome of applying our methods to the fMRI data of a healthy 30 

ageing cohort we could quantify whole-brain temporal dynamics which indicates naturalistic movie 31 

watching task is closer to resting state than the sensorimotor task. Our analysis also revealed an 32 

overall trend of highest short range temporal network stability in the sensorimotor task, followed by 33 

naturalistic movie watching task and resting state that remains similar in both young and old adults. 34 

However, the stability of neurocognitive networks in the resting state in young adults is higher than 35 

their older counterparts. Thus, healthy ageing related differences in quantification of network stability 36 

along task and rest provides a blueprint of how our approach can be used for cohort studies of mental 37 

health and neurological disorders.   38 

39 
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1. Introduction 40 

Functional connectivity (FC) - most simplistically computed using the pairwise Pearson correlations 41 

between brain regions using blood oxygen level dependent (BOLD) fMRI has proven to be a powerful 42 

tool for studying the functional organization of the brain (Friston, et al. 1993). FC sheds light on the 43 

functional coupling and connectedness between proximal and distal brain regions subserving crucial 44 

role towards the neuronal processing of a task (Aertsen, Gerstein, Habib, & Palm, 1989) (Friston, 45 

Frith, Liddle, & Frackowiak, 1993). However, emergence of superior computing prowess has allowed 46 

us to critique the inferences drawn from time-averaged, static FC usually computed by collapsing the 47 

functional dynamics across time (Ciric , Nomi, Uddin, & Satpute, 2017) (Mash, et al., 2019). 48 

Recently, dynamic functional connectivity (dFC) has emerged as a major topic in the resting-state 49 

BOLD fMRI literature (Hutchison et al., 2013). The more refined measure of Dynamic functional 50 

connectivity (dFC) is commonly computed using the sliding window framework, which estimates 51 

dFC by computing average FC over small windows of time, and subsequently sliding the window 52 

over the entire duration of the BOLD time series (Hutchison & et al, 2013). Although, the sliding 53 

window approach has been the most common, simple, and intuitive analysis strategy for estimating 54 

dFC (Kudela, Harezlak, & Lindquist, 2017) (Preti, Bolton, & Van De Ville , 2017), the method suffers 55 

from prominent drawbacks. Arbitrary choice of window length, inherent variation present in the 56 

estimate that can be confused with the empirical time-varying nature of FC, equal weighting of all 57 

observations within the window leading to spurious fluctuations being magnified – all add to the woes 58 

of sliding window based approach (Lindquist, Xu, Nebel, & Caffo, 2014) (Hindriks, et al., 2016) 59 

(Preti, Bolton, & Van De Ville , 2017).Over the years, many meaningful extensions have been 60 

suggested to improve sliding window approach. Independent component analysis (ICA) was used to 61 

decompose windowed BOLD timecourses (Kiviniemi, et al., 2011).  Several graph theoretical 62 

summary measures such as assortivity, modularity, efficiency offer promising avenues to extract 63 

information from dFC (Bullmore & Sporns, 2009). In addition, clustering algorithms such as K-64 
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means clustering (Damaraju, et al., 2014) (Allen, et al., 2014), hidden Markov models (HMM) 65 

(Vidaurre, Smith, & Woolrich, 2017), temporal ICA (TICA) (Yaesoubi, Miller, & Calhoun, 2015) 66 

allows to identify clustering-derived recurring connectivity patterns or dFC states. Several conceptual 67 

alternative strategies such as wavelet transform coherence (Chang & Glover, 2010), a time/frequency 68 

analysis strategy with an observation window for the frequency content of the time courses; and  69 

frame-wise analysis of the BOLD timecourses (Cabral, et al., 2017), which allows information to be 70 

retrieved from the observation of single frames and yield temporally subsequent co-activation maps 71 

(Liu, Chang, & Duyn, 2013); have been suggested (see (Preti, Bolton, & Van De Ville , 2017) for a 72 

review). 73 

 74 

In spite of inherent limitations, dFC captures the fluctuations of FC, which contain meaningful 75 

information on minute temporal scale (Hutchison & et al, 2013). While, accounting these fluctuations 76 

are critical for understanding complex behaviour, nonetheless, stable representation of information 77 

of neural activity and corresponding stability of FC patterns over time is critical for survival (Li, Lu, 78 

& Yan, 2019). In other words, in an axiomatic sense, there must exist a temporally stable connectivity 79 

pattern that corresponds to one or multiple functional states of the brain. Subsequent transition 80 

between successive functional brain states can be characterized by estimating the dFC patterns. The 81 

two most widely applied dynamic measures in brain/behaviour analyses that are constructed from 82 

dFC time courses based on either applying sliding window or frame wise analysis are connection 83 

variability (CV) and connectivity states (CS). Stable representation of information processing will 84 

reflect the robustness of recurring patterns of CS concatenated across subjects to influence myriad of 85 

behaviour (Bolton, Morgenroth, Preti, & Van De Ville, 2020). Identifying both connectivity states 86 

and their stability in brain dynamics requires delimiting the dFC evolution and dFC stability with 87 

measures of optimality which may or may not be crucially linked with the underlying subject specific 88 

structural connectivity (Surampudi, et al., 2019). The goal of this article is to develop an unsupervised 89 
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approach to characterize optimal dFC states and go beyond what has been proposed in the existing 90 

literature based on widely applied sliding window or frame wise based approach (Bolton, 91 

Morgenroth, Preti, & Van De Ville, 2020). 92 

 93 

Previous studies exploring temporal dynamics of FC have tried to investigate the stability by 94 

calculating the correlation between FC matrices computed from successive temporal windows 95 

(Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015), characterizing CV of the functional connectivity 96 

profile of a given region across time (Zhang & et al, 2016)  (Guo, Zhao, Tao, Liu, & Palaniyappan, 97 

2017), by estimating voxel level dFC maps using Kendall’s coefficient of concordance with time 98 

windows as raters (Li, Lu, & Yan, 2019), by estimating the standard deviation of global modularity 99 

averaged across all timepoints and all participants (Hilger, Fukushima, Sporns, & Fiebach, 2019). FC 100 

stability has been shown to increase with motor learning (Yu, Song, Huang, Song, & Liu, 2020), 101 

decrease in patients of schizophrenia and their siblings (Guo, Zhao, Tao, Liu, & Palaniyappan, 2017), 102 

was significantly higher in patients with major depressive disorder (Demirtas, et al., 2016). These 103 

studies emphasise the neurobiological significance of the stability of FC.  104 

 105 

Quantifying the temporal stability of dFC patterns is of immediate concern to studies investigating 106 

the relationship between resting state and task-related brain dynamics (Li, Lu, & Yan, 2019). 107 

Spontaneous brain activity during rest is not random and show specific spatio-temporal organization 108 

in state space (Deco, Jirsa, & Mcintosh, 2011). From a dynamical systems point of view, the resultant 109 

emerging resting state functional connectivity of the brain networks, quantitatively, fits best with the 110 

experimentally observed functional connectivity when the brain network operates at the edge of 111 

instability. Under these near critical conditions, the slow fluctuating (< 0.1 Hz) resting state BOLD 112 

networks emerge as structured noise fluctuations around a stable low firing activity equilibrium state 113 

in the presence of latent "ghost" multi stable attractors (Deco & Jirsa, 2012). Recent work has further 114 
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demonstrated that during spontaneous resting state activity the ghost attractors makes frequent 115 

excursion to functionally and behavioural relevant phase locking states in a low dimensional state 116 

space (Vohryzek, Deco, Cessac, Kringelbach, & Cabral, 2020) . Brain resides in a specific attractor 117 

state defined by a certain FC pattern according to the cognitive demands of the task (Fedorenko & 118 

Thompson-Schill, 2014) (Pillai & Jirsa, 2017). An overall increase in FC stability has been reported 119 

in the presence of the task (Gonzalez-Castillo & Bandettini, 2018). Subsequently, temporal stability 120 

of FC guides the stability of a functional state. Thus, we tested the following hypothesis, unsupervised 121 

dFC characterization will reveal task specific dFC stability patterns that are local in time, whereas for 122 

the resting state dFC patterns, these functional states are composed of non-local correlations in time. 123 

Prior studies have also explored changes in temporal stability of functional architecture in resting 124 

state of healthy control and patients with psychiatric disorders, and different battery of tasks. Zhang 125 

and colleagues showed disorder specific (ADHD, schizophrenia, autism spectrum disorder) 126 

variability modifications in functional architecture of DMN, visual and subcortical regions of the 127 

brain (Zhang & et al, 2016). Increased functional stability in high-order visual regions during 128 

naturalistic movie watching task were identified (Li, Lu, & Yan, 2019), but these studies are limited 129 

to stability of FC of a given region. The second test for an unsupervised dFC characterization 130 

algorithm will be application to a specific neuroscience problem, such as investigation of lifespan 131 

trajectories in healthy ageing. Although previous studies have explored the association between 132 

dynamic functional connectivity and age (Viviano, Raz, Yuan, & Damoiseaux, 2017) (Chen, et al., 133 

2017) (Xia, et al., 2018), how the stability of functional architecture modifies across age remains an 134 

open question. 135 

 136 

The aim of the present study is three-fold: 1) to precisely characterise the stability of whole-brain 137 

dFC patterns 2) to demonstrate that dFC patterns are locally stable during task 3) identify the dFC 138 

patterns during task and rest for a cross-sectional population with age range over human adult lifespan 139 
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(18-88 years). This manuscript is organized as follows. First, we estimate BOLD phase coherence 140 

over time (Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012) which was used as a measure 141 

of dFC for rest and task. Next, we proceed with unsupervised characterization of dFC subspaces 142 

involved in task and rest. Subsequently, the temporal stability of dFC subspaces were computed using 143 

two different measures - angular separation and the Mahalanobis distance (Mahalanobis, 1930) (Shen, 144 

Kim, & Wang, 2010). Finally, the temporal stability of dFC was analysed to draw critical insights 145 

about age associated differences to task and rest using a large human cohort of healthy ageing (Shafto, 146 

et al., 2014).  147 

  148 
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2. Methods 149 

2.1 Data sources and participants 150 

 151 

The data were collected as part of stage 2 of the Cambridge Centre for Ageing and Neuroscience 152 

(CamCAN) project (available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan) (Taylor, et al., 153 

2017) (Shafto, et al., 2014). The CamCAN is a large-scale multimodal, cross-sectional, population-154 

based study. The database includes raw and pre-processed structural magnetic resonance imaging 155 

(MRI), resting state and active tasks using functional MRI (fMRI) and Magnetoencephalogram 156 

(MEG), behavioural scores, demographic and neuropsychological data.  From 3000 participants of 157 

stage 1, a subset of approximately 700 participants who were cognitively healthy (MMSE score >25), 158 

with no past or current treatment for drug abuse or usage, met hearing threshold greater than 35 dB 159 

at 1000 Hz in both ears, had at least a corrected near vision of 20/100 with both eyes and could speak 160 

English language (native English speaker or bilingual English from birth) were eligible for MRI 161 

scanning. They were home interviewed and recruited to stage 2. The study was in compliance with 162 

the Helsinki Declaration and was approved by the Cambridgeshire 2 Research Ethics Committee. The 163 

fMRI data from resting state and task periods (naturalistic movie watching and sensorimotor task) 164 

was used in the present study. 165 

 166 

2.2 Data acquisition and experimental paradigm 167 

 168 

The fMRI data were collected at MRC Cognition and Brain Sciences Unit, on a 3T Siemens TIM 169 

Trio scanner with a 32-channel head coil, the head movement was restricted with the aid of memory 170 

foam cushions. For the tasks, the instructions and visual stimuli were back projected onto the screen, 171 

auditory stimuli were presented via MR-compatible Etymotics headphones and manual responses 172 

from the participants made with the right hand were recorded using an MR-compatible button box 173 
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(Taylor, et al., 2017). The fMRI data for eyes-closed resting state and sensorimotor task were acquired 174 

using Echo-Planar Imaging (EPI) sequence, consisted of 261 volumes, each volume with 32 axial 175 

slices (slice thickness 3.7mm, interslice gap 20%) acquired in descending order, TR 1970 ms, TE 30 176 

ms, voxel-size 3 mm 3 mm 4.44 mm. The duration of both the scans was 8 min 40s. The fMRI data 177 

for the naturalistic movie watching task were acquired using multi-echo EPI sequence, consisting of 178 

193 volumes of 32 axial slices each (slice thickness 3.7mm, interslice gap 20%) acquired in 179 

descending order, TR 2470 ms, TE [9,4,21.2,33,45,57] ms, voxel-size 3 mm 3 mm 4.44 mm. The 180 

duration of the scan was 8 min 13s. 181 

 182 

The task-induced BOLD data from the naturalistic movie watching task was acquired from 183 

participants, who watched 8 minutes of narrative preserved, condensed, black and white version of 184 

Alfred Hitchcock’s television drama “Bang! You’re Dead”. The participants were not aware of the 185 

title of the movie but were instructed to pay attention to the movie. In the sensorimotor task, the trials 186 

consisted of a binaural tone simulation at either 300, 600, or 1200 Hz and bilateral black and white 187 

checkerboard. The participants were asked to button press with their right index finger if they hear or 188 

see any stimuli. More details about the task paradigm have been presented here (Shafto, et al., 2014) 189 

(Taylor, et al., 2017). 190 

 191 

2.3 Data pre-processing  192 

 193 

Pre-processed data was provided by Cam-CAN research consortium. Mean regional BOLD time 194 

series were estimated in 116 parcellated brain areas of Anatomical Automatic Labelling atlas (AAL) 195 

(Tzourio-Mazoyer, et al., 2002) (available at http://www.gin.cnrs.fr/tools/aal). We selected 50 196 

participants, 25 were young adults (48% female; mean age = 24.1士3.33 years) randomly selected 197 

from age range 18-28, and remaining 25 were old adults (52% female; mean age = 63.8士2.63 years) 198 
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randomly selected over age range 60-68 years. Each participant’s BOLD time series in the resting 199 

state, naturalistic movie watching and sensorimotor tasks were extracted. 200 

2.4 Data analysis  201 

 202 

2.4.1 Characterization of dynamic functional connectivity  203 

 204 

Time-resolved dynamic functional connectivity (dFC) was estimated, for each individual, using 205 

BOLD phase coherence (Figure 1A) (Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012) 206 

(Ponce-Alvarez, et al., 2015) (Deco & Kringelbach, 2016) (Cabral, et al., 2017), which resulted in a 207 

matrix with size NxNxT, where N=116 is the number of brain regions defined by AAL atlas, T is the 208 

total number of time points (T=261 for resting state and Sensorimotor task, T=193 for naturalistic 209 

movie watching task). We chose BOLD phase coherence instead of computing correlation over a 210 

sliding window to calculate dFC, because BOLD phase coherence is an instantaneous measure with 211 

maximum temporal resolution (Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012). BOLD 212 

phase coherence does not require time-windowed averaging, that generates biased estimates if the 213 

window length is short and reduces temporal resolution if the window length is longer (Glerean, 214 

Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012). 215 

 216 

First, the instantaneous phases 𝜃(𝑛, 𝑡)  of the BOLD time series for all the brain regions,𝑛, was 217 

computed using Hilbert transform. The real-valued modulated BOLD signal 𝑠(𝑡) is expressed as an 218 

analytical signal in the complex plane as: 219 

 220 

𝑧(𝑡) = 𝑧𝑟(𝑡) + 𝑗𝑧𝑖(𝑡) = 𝑠(𝑡) + 𝑗 𝐻𝑇[𝑠(𝑡)]                    (1) 221 

 222 
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Where, (HT [*]) represents the Hilbert transform. The instantaneous phase 𝜃 (𝑡) is computed as 223 

follows: 224 

 225 

𝜃(𝑡) =  ∠𝑧(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑧𝑖(𝑡)

𝑧𝑟(𝑡) 
= arctan

𝐻𝑇 [𝑠(𝑡)]

𝑠(𝑡)
             (2) 226 

 227 

Given the phases of the BOLD time series, phase coherence i.e.,  𝑑𝐹𝐶 (𝑛, 𝑝, 𝑡) for brain regions, 𝑛 228 

and 𝑝 at time 𝑡 is computed as: 229 

 230 

                   𝑑𝐹𝐶 (𝑛, 𝑝, 𝑡) = cos (𝜃(𝑛, 𝑡) − 𝜃(𝑝, 𝑡))                   (3) 231 

 232 

when, the phases of BOLD signals, 𝜃(𝑛, 𝑡) , 𝜃(𝑝, 𝑡) of the brain regions 𝑛, 𝑝 are synchronized, 233 

𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) (ranges from -1 to 1) is close 1, when the phases from the BOLD signals of brain regions 234 

𝑛, 𝑝  are orthogonal 𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) is close to 0. Since the phases are undirected, 𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) is 235 

symmetric along the diagonal. 236 

 237 

In addition to this, to check for reliability, we compute dFC using a sliding-window approach 238 

(Hutchison & et al, 2013) with non-overlapping, gaussian windows, varying the window length (10, 239 

20, 30 time points) (Supplementary information - S 1, S 2, S 3). 240 

 241 

2.4.2 Extracting Dominant dynamic functional connectivity  242 

 243 

Principal component analysis (PCA) was applied to participant-wise 𝑑𝐹𝐶 (𝑛, 𝑝, 𝑡) matrix of size 244 

𝑁𝑋𝑁  representing the FC between 𝑛th and 𝑝th brain area for each time point. PCA is an 245 

unsupervised, multivariate dimension reduction method that decomposes the data into a set of 246 
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orthogonal principal components or leading eigenvectors sorted by their contribution to the overall 247 

variance (Friston, 1993). Thus, 𝑑𝐹𝐶 (𝑛, 𝑝, 𝑡) or simply 𝒅𝑭𝑪𝑡 can be expressed as  248 

  𝒅𝑭𝑪𝑡 = 𝑽𝑇𝑺𝑽                                          (4) 249 

 where, matrix  𝑽 of size  𝑁𝑋𝑁 are set of eigenvectors, with each column of 𝑽 of size 1𝑋𝑁 250 

representing orthogonal principal component, and 𝑺 the diagonal matrix (
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑁

), such that  251 

𝜆1 > 𝜆2 … . >  𝜆𝑁  252 

If 𝑘 is the number of principal components chosen to represent 𝒅𝑭𝑪, the corresponding subspace 253 

𝑫(𝒏, 𝒌, 𝒕) or 𝑫𝒕, representative of dominant dFC pattern, can be expressed as  254 

𝑫 = 𝑽̃𝑻𝑺̃𝑽̃                                        (5) 255 

where, 𝑽̃𝑻 is a dimensionally reduced matrix of size 𝑁 𝑋 𝑘, 𝑺̃ is a diagonal matrix  (
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑘

) . 256 

In this study, we chose k = 3 because for all participants at least 99% variance in 𝒅𝑭𝑪 matrix is 257 

captured by the 3 leading eigenvectors (S 4). The dimension of 𝒅𝑭𝑪(𝒏, 𝒑, 𝒕) has been reduced to 258 

𝑫(𝒏, 𝒌, 𝒕). 259 

 260 

 261 

2.4.3 Computation of stability of dynamic functional architecture 262 

 263 

We seek to characterize the temporal stability of the dominant subspace 𝐷(𝑛, 𝑝, 𝑡) (or referred to as 264 

simply 𝑫𝑡) by estimating how similar they are across time 𝑡. To estimate the similarity between 265 

dominant dFC configurations, we introduce two types of distance measures successive dFC 266 

subspaces, 1) angular distance 2) Normalised Euclidean distance (Figure 1B). We define angular 267 
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distance as the principal angle between the dFC subspaces from different time points, given by the 268 

following equation: 269 

  270 

𝜙(𝑡𝑥, 𝑡𝑦) =  ∠(𝑫𝑡𝑥
, 𝑫𝑡𝑦

)                 (6) 271 

 272 

Where, each entry in the time X time temporal stability matrix, 𝜙(𝑡𝑥, 𝑡𝑦) is the principal angle 273 

between the two N X k dimensional subspaces at 𝑡𝑥 and 𝑡𝑦  (Banerjee, Pillai, Sperling, Smith, & 274 

Horwitz, 2012) ( Björck & Golub, 1973). The principal angle ranges between 0 (low angular distance) 275 

to π/2 (high angular distance).  276 

For each individual, we calculate the angular distance between dominant dFC subspaces at 𝑡𝑥 and 𝑡𝑦, 277 

by estimating the principal angle between them. The low principal angle between dominant dFC 278 

subspaces means that their dFC configurations are very similar. On the contrary, the high principal 279 

angle between dominant dFC subspaces means that their dFC configurations are dissimilar.  280 

 281 

We define the normalised Euclidean distance between dominant dFC subspaces by the Mahalanobis 282 

distance. Mahalanobis distance measures the distance between points in space 1 from space 2 with 283 

the following equation: 284 

 285 

                 𝑀2 = (𝑫𝑡𝑥
− 𝑫𝑡𝑦

)
𝑇

𝐶−1(𝑫𝑡𝑥
− 𝑫𝑡𝑦

)                  (7) 286 

where 𝑀2 is the distance between each entry of 𝑫𝑡𝑥
and 𝑫𝑡𝑦

Subsequently, for each individual, we 287 

estimate the time X time temporal stability matrix, where each entry is the Mahalanobis distance 288 

(𝑀 ranges between 0.5 to 2.5), averaged across all brain parcels. Low 𝑀 means that dominant dFC 289 

subspaces are similar, high 𝑀 means that the dFC subspaces are dissimilar.  290 

 291 
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2.4.4 Quantifying complexity of temporal stability matrices 292 

Entropy: 293 

 294 

To evaluate the informational content of temporal stability matrices we evaluated the entropy, for all 295 

three categories, rest, movie viewing and sensorimotor task in young and old adults. Entropy is 296 

defined by the following equation: 297 

 298 

                       E = − ∑ 𝑝 𝑙𝑜𝑔(𝑝)                                 (8) 299 

where 𝑝 contains the normalised histogram counts returned from ‘imhist.m’. ‘imhist.m’ calculates 300 

the histogram of temporal stability matrices and returns histogram counts. 301 

 302 

Entropy in temporal stability matrices for empirical data and surrogate data were compared by 303 

generating random time series using MATLAB function ‘randn.m’ and down sampling them at 0.1 304 

Hz mimicking BOLD activity of each subject. The 𝑫 matrices with same dimensions as the empirical 305 

data were computed. Welch’s corrected t-tests revealed significant differences between the entropy 306 

of surrogate and empirical temporal stability matrices of rest (p=0.000464) (S 5). 307 

 308 

Frobenius norm: 309 

Frobenius norm was used to measure the differences between the temporal stability matrices 310 

computed for rest and the task conditions. Frobenius norm, also called the Euclidean norm of a matrix, 311 

is defined as the square root of the sum of the absolute squares of its elements. Here, we calculate 312 

Frobenius norm between temporal stability matrices with the following equation: 313 

 314 

||𝑥𝐹|| =  √∑ ∑ |𝑎𝑖𝑗 − 𝑏𝑖𝑗|2𝑇
𝑗=1

𝑇
𝑖=1                                 (9) 315 
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where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are the entries in the temporal dynamic matrices of rest and any of the task 316 

conditions respectively (movie watching or sensorimotor). 𝑥𝐹 is also computed between the two tasks. 317 

 318 

Stochastic characterization of 𝑑𝐹𝐶 319 

The temporal variation of two measures, principal angle and Mahalanobis distance between the 320 

dominant 𝑑𝐹𝐶 subspaces essentially capture the degree of temporal variation in functional network. 321 

Principal angular values close to 
𝜋

2
 or high Mahalanobis distance at a specific time point reflects the 322 

reorganization of the functional state itself, whereas angular values closer to zero or low Mahalanobis 323 

distance indicates minor deviation from previous time. To understand the underlying stochastic 324 

characteristics of these measures, we use auto-regressive (AR) models where present values of  325 

𝜙(𝑡)/ 𝑀(𝑡) are modelled as a linear weighted sum of values from past 𝜙(𝑡 − 1), 𝜙(𝑡 − 2) … 𝜙(𝑡 −326 

𝑖)/𝑀(𝑡 − 1), 𝑀(𝑡 − 2) … 𝑀(𝑡 − 𝑖).The   AR (𝜌)  process, 𝑋𝑡 (𝜙(𝑡) or 𝑀(𝑡)) is given by the 327 

following equation: 328 

     𝑋𝑡 = 𝑐 + ∑ 𝜑𝑖𝑋𝑡−𝑖 + 𝜀𝑡
𝜌
𝑖=1                                    (10) 329 

where  𝜑1 … … … … 𝜑𝜌 are parameters of the model, 𝑐 is a constant, 𝜀𝑡 is white noise and 𝜌 is the lag 330 

term or model order. The simplest AR process is AR (0) is essentially a white noise process. In AR 331 

(1), the current value is dependant only on its immediately preceding value, and hence captures a 332 

Markovian process.  Optimal model of an AR process can be computed using the Akaike information 333 

criterion (AIC) which is expressed as 334 

    𝐴𝐼𝐶(𝜌) =  −2𝐿 + 2𝜌                                                   (11) 335 

where 𝐿 is the likelihood function computed by summing up over the mean squared error for an AR 336 

model of order 𝜌 (Wagenmaker & Farrell, 2004) (H.Akaike, 1974).Optimal model order can be 337 

selected at a value of 𝜌 where AIC is minimum. We varied the model order (𝜌) from 0 to 100 and use 338 

the first minimal AIC value to select the best AR (𝜌), model. If the model order is found to be greater 339 

than 1, the underlying process is considered non-Markovian. 340 
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3 Results 341 

3.1 Dynamic functional connectivity (𝐝𝐅𝐂) patterns during rest, continuous naturalistic movie 342 

watching, and discrete sensorimotor task. 343 

 344 

We computed the 𝑑𝐹𝐶 from parcellated BOLD time series of resting state, naturalistic movie 345 

watching task where the participants watched and listened to an excerpt from Alfred 346 

Hitchcock’s “Bang! You’re Dead”, and a sensorimotor task where participants responded by a 347 

button press to either a visual or an auditory stimulus from the Cam-CAN dataset (details in 348 

Methods). Figure 2A represents dFC obtained using BOLD phase coherence connectivity in 349 

resting state. We report the results of the analysis on young adults (age range 18-28) in this 350 

section. 351 

 352 

Dominant 𝑑𝐹𝐶 subspaces were obtained by applying the unsupervised approach of Principal 353 

Component Analysis (PCA) to BOLD time series at each time point, and then reconstructing 354 

either the task or rest as the dynamics of a reduced dimensional 𝑑𝐹𝐶 subspace. To demonstrate, 355 

that the unsupervised characterization of 𝑑𝐹𝐶 patterns indeed capture the functional brain 356 

network organization, we computed the differences between the temporal stability matrices of 357 

rest and the two task conditions; first using the measure of principal angles and second using 358 

the measure of Mahalanobis distance. Thereafter, other measures of complexity and temporal 359 

variability were tested. 360 

 361 

3.1.1 Using angular distance to characterize temporal stability matrices 362 

First, we calculate the principal angles among the dominant 𝑑𝐹𝐶 subspaces generated across 363 

all time points. This resulted in time X time temporal stability matrix, averaged across all 364 

subjects, where each entry in the matrix is the angle between dominant  𝑑𝐹𝐶 subspaces at 𝑡𝑥 365 

and 𝑡𝑦, as shown in Figure 2BFigure 2. We consider a dominant  𝑑𝐹𝐶 configuration to be 366 
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stable if the subsequent subspaces are similar in configuration, i.e., less “angular distant” for 367 

extended duration of time points. Results shown in Figure 2B indicate that the resting state 368 

has a global spread of shorter-lived, repeated patterns of stability than both tasks. On the 369 

contrary, both the task cohorts, passive movie watching, and sensorimotor task, showed a local 370 

spread of, longer-lived stability patterns suggesting that local temporal stability of functionally 371 

connected networks are higher in the task than in resting state. To quantify these observations, 372 

we calculated the entropy of temporal stability matrices of each category. The plots in Figure 373 

4A, which represent entropy of temporal dynamic matrices of three categories, report resting 374 

state to have the highest entropy, followed by movie watching task and sensorimotor task. The 375 

distribution was parametric (normality check was done with Jarque-Bera test and verified with 376 

D’Agostino-Pearson omnibus test), paired two-sample t-tests and effect size analysis using 377 

Cohen’s d, revealed significant differences (at 95% significance level) in entropy values 378 

between resting state and movie watching task (p=0.0026 d=0.8), and resting state and 379 

sensorimotor task (p=0.001, d=1.009). However, difference in movie watching task and 380 

sensorimotor task were not significant (p=0.4907 ns). Further, to analyse how similar temporal 381 

stability matrices across rest and tasks are, we calculate the Frobenius norm as shown in 382 

Figure 4B. The results reveal a shorter Frobenius norm between the temporal dynamic 383 

matrices of the resting state and movie watching task, than the resting state and sensorimotor 384 

task.  385 

 386 

3.1.2 Using Mahalanobis distance to characterize temporal stability matrices 387 

Alternatively, we evaluate the temporal stability of  𝑑𝐹𝐶, by estimating Mahalanobis distance, 388 

that resulted in a time X time temporal stability matrix. Each entry of this matrix is the 389 

Mahalanobis distance between dominant dFC subspaces (Figure 3A). Results, as shown in 390 

Figure 3B and Figure 3C, reveal global, shorter-lived repeated patterns of temporal stability 391 
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in resting state and local, longer-lived temporal stability patterns in both the tasks. The entropy 392 

results (Figure 4A) reveal high entropy in the resting state, followed by movie watching task 393 

and sensorimotor task. The distribution was non-parametric (normality check was done with 394 

Jarque-Bera test and D’Agostino-Pearson omnibus test), we employed Wilcoxon matched 395 

paired test to compute statistical significance between the entropy of temporal stability 396 

matrices of each category, although the results did not reveal statistical significance, the trend 397 

in entropy is similar to the trend in angular distance metric. We repeated the Frobenius norm 398 

analysis, which produced similar results as the angular distance metric, as shown in Figure 399 

4B. 400 

 401 

3.2 Unsupervised characterization of  𝒅𝑭𝑪 across healthy ageing  402 

Next, we have included two cohorts, young and old adults from the Cam-CAN dataset and 403 

carried out unsupervised characterisation of dFC using participant’s resting state, movie 404 

watching, and sensorimotor task data to identify age associated alterations in temporal 405 

stability of dominant 𝑑𝐹𝐶 subspaces. 406 

 407 

3.2.1 Using principal angle to quantify temporal stability differences in 𝑑𝐹𝐶 between young and 408 

elderly 409 

The time X time temporal stability matrix was computed for the aged cohort (age range 60-410 

68) and compared with that of younger cohort computed in the section 3.1. A global spread 411 

of shorter duration of temporal stability patterns was observed in resting state and local spread 412 

of longer duration temporal stability patterns was observed in the task, in both young and old 413 

adults. Further, entropy analysis revealed (Figure 4A) a similar trend of peak entropy in 414 

resting state, followed by movie watching task and sensorimotor task in both young and old 415 

cohorts. The distribution was parametric (normality check was done with Jarque-Bera test and 416 
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D’Agostino-Pearson omnibus test), paired two-sample t-test revealed significant differences 417 

in entropy values between resting state and movie watching task (p=0.000435, d=0.971), 418 

movie watching task, and sensorimotor task (p=0.0438, d=0.370), resting state and 419 

sensorimotor task (p=0.000567, d=1.319) of the older cohort (P values of young adults are 420 

reported in the previous section). The Frobenius norm analysis as shown in (Figure 4B) also 421 

revealed a similar trend in young and old adults i.e., shorter Frobenius norm between resting 422 

state and movie watching task than resting state and sensorimotor task  423 

3.2.2 Using Mahalanobis to quantify temporal stability of 𝑑𝐹𝐶 between young and elderly 424 

Mahalanobis distance between dominant dFC subspaces showed patterns similar to principal 425 

angle in young and elderly. Further, we calculate entropy as shown in Figure 4A, of temporal 426 

stability matrices of each category, in both young and old adults. The results indicate peak 427 

entropy in resting state, followed by movie watching task and sensorimotor task, a similar 428 

trend as the angular distance metric. In the elderly, the distribution was non-parametric 429 

(normality check was done with Jarque-Bera test and D’Agostino-Pearson omnibus test). 430 

Wilcoxon matched paired test revealed statistical significance between the entropy of 431 

temporal stability matrices of movie watching task and sensorimotor task (p=0.0074, 432 

d=0.379). Frobenius norm analysis as shown in Figure 4B revealed a shorter Frobenius norm 433 

between resting state and movie watching task than resting state and sensorimotor task. 434 

The entropy analysis between young and elderly in resting state and tasks is shown in Figure 435 

4A(inset). The analysis indicates entropy of resting state in older adults was higher than their 436 

younger counterparts, in both angular distance and Mahalanobis distance metric but statistical 437 

tests (independent t-test for angular distance metric and Wilcoxon rank-sum test for 438 

Mahalanobis distance metric) did not reveal any statistical significance. 439 

 440 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

20 
 

3.3 Stochastic characterization of 𝒅𝑭𝑪 441 

 442 

We examined the stochastic structure of 𝑑𝐹𝐶 evolution by investigating the principal angle 443 

𝜙 (𝑡) and Mahalanobis distance 𝑀 (𝑡)  as functions of time.  𝜙 (𝑡) and 𝑀(𝑡) are modelled as 444 

auto-regressive or AR (𝜌) process. The optimal model order was taken to be at the value which 445 

yields lowest Akaike information criterion (AIC). The results from this analysis shown in 446 

Figure 5A and Figure 5B reveal the best fit model that explains 𝜙 (𝑡) has a model order ρ≥447 

6 i.e., the results suggest 𝜙 (𝑡) of resting state, movie watching task and sensorimotor task, in 448 

both young and old adults, is neither random (ρ≠ 0) nor markovian (ρ≠ 1) in nature, and is 449 

dependent on at least 6 immediately preceding values of  𝜙. For 𝑀(𝑡), as shown in Figure 5C 450 

and Figure 5D  both resting state and tasks have the optimum model order 𝜌 ≥ 6, suggesting 451 

𝑀(𝑡) is neither random (ρ≠ 0)  nor markovian (ρ≠ 1)  in both young and old adults.   452 
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4 Discussion  453 

 454 

The functional architecture of the brain is dynamic and changes on a minute temporal scale during 455 

resting state and task (Gonzalez-Castillo J. , et al., 2015) (Hutchison & et al, 2013) (Gonzalez-Castillo 456 

& Bandettini, 2018) (Bolton, Morgenroth, Preti, & Van De Ville, 2020). While previous studies have 457 

explored flexibility (Zhang & et al, 2016) (Yin, et al., 2016) and temporal variability (Zhang & et al, 458 

2016) (Li, Lu, & Yan, 2019) of the functional architecture of a specific region, we propose a novel 459 

unsupervised method, that captures the stability of whole-brain functional architecture on a minute 460 

temporal scale. First, we apply the data-driven unsupervised approach to characterize the high 461 

dimensional dynamic functional connectivity into lower dimensional patterns by identifying 462 

temporally similar dominant FC configurations. Subsequently, using two different measures - 463 

principal angle and Mahalanobis distance applied on dFCs extracted across time, we capture the 464 

stability of dFC through the temporal stability matrices that could be used to draw critical insights 465 

about underlying functional brain states. For empirical validation, we explored modifications in 466 

temporal stability matrices of whole-brain FC during a continuous, naturalistic movie watching task 467 

and discrete, goal oriented sensorimotor task and showed that, in contrast to resting state, stability 468 

increased during the task (stability was highest in the sensorimotor task, followed by naturalistic 469 

movie watching task and resting state). Next, we explored ageing specific modulations in temporal 470 

stability matrices of dFC patterns between resting state and task and showed increased stability in the 471 

task in both young and old adults. Finally, we examined the stochastic properties of temporal stability 472 

matrices using an auto-regressive modelling, and showed dominant whole-brain FC configurations 473 

are neither random nor Markovian. We discuss the implications of these key results in the following 474 

subsections. 475 

 476 
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4.1 Stochastic properties of dynamic functional connectivity  477 

Studies describing brain dynamics have clustered recurring connectivity patterns into states, using 478 

clustering algorithms like K-means clustering (Allen, et al., 2014) (Cabral, et al., 2017) (Damaraju, 479 

et al., 2014), HMM (Cabral, et al., 2017) (Vidaurre, Smith, & Woolrich, 2017) (Vidaurre, et al., 2016) 480 

(Quinn, et al., 2018), suggestive of stability of functional architecture of the brain. Yet, most of the 481 

studies hypothesize a fixed number of discrete recurrent connectivity patterns or states with varying 482 

temporal fractional occupancy. The homogenous states are essentially clustered ignoring their 483 

temporal order and index. Studies have shown clustering time series requires ignoring some data and 484 

few attempts at clustering time series have shown to be objectively incorrect in some cases 485 

(Rakthanmanon, Keogh, Lonardi, & Evans, 2011) (Rahman, Damaraju, Saha, Plis, & Calhoun, 2020). 486 

Rahman and colleagues (Rahman, Damaraju, Saha, Plis, & Calhoun, 2020) have proposed a novel 487 

framework, relying on the concept of shapelets, ‘statelets’- a high dimensional state-shape 488 

representation of temporal dynamics of functional connectivity, instead of clustering. Another set of 489 

prior studies have explored the other side of stability – flexibility, which characterises heterogenous 490 

connectivity between a specific region and others over time (Yin, et al., 2016) (Harlalka, Bapi, Vinod, 491 

& Roy, 2019) and temporal variability (Zhang & et al, 2016) (Li, Lu, & Yan, 2019) of functional 492 

architecture in resting state (Li, Lu, & Yan, 2019) ,naturalistic movie watching task (Li, Lu, & Yan, 493 

2019) and in disease (Zhang & et al, 2016). But these studies are restricted to temporal variability and 494 

flexibility of the functional architecture of a specific region. Our main contribution in this study is an 495 

unsupervised, data-driven approach to characterise the stability of whole-brain functional 496 

connectivity patterns. A recent study (Faghiri , et al., 2020) has proposed a new method, where they 497 

calculate the gradients of timeseries pair and use their weighted average of shared trajectory (WAST) 498 

as a new estimator of dFC. This method defines a subspace on the raw BOLD fMRI timeseries where 499 

as our approach estimated dFC with BOLD phase coherence and defined dominant whole-brain FC 500 

patterns as dominant dFC subspaces with PCA and characterised temporally similar dominant whole-501 
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brain FC patterns with two alternative measures, angular distance and verifying the same with 502 

Mahalanobis distance (Figure 1B). The central idea is if the dominant FC configurations are similar 503 

for extended time points, then they are considered to be stable.  504 

Viduarre and colleagues (Vidaurre, Smith, & Woolrich, 2017) have shown dynamic switching 505 

between brain networks and time spent visiting distinct brain networks are not random. Subsequently, 506 

another study has shown that the switching dynamics of functional brain states in the resting state 507 

follows AR model of order 1, or in other words a Markovian process fully explains the dFC evolution 508 

when correlation was computed using a sliding window approach (liégeois, Laumann, Snyder, Zhou, 509 

& Yeo, 2017).  By constructing the unsupervised temporal stability matrices from two alternative 510 

approaches - principal angle, 𝜙 (𝑡) and Mahalanobis distance, 𝑀(𝑡), we reveal that dFC evolution is 511 

neither random nor Markovian (Figure 5A and Figure 5B) (Figure 5C and Figure 5D ).  512 

 513 

4.2 Temporal stability of task related dynamic functional connectivity is higher than rest. 514 

 515 

A key finding of our study indicates a global spread of shorter-lived, repeated patterns of stability 516 

between dominant FC configurations in resting state and local spread of longer-lived repeated patterns 517 

of stability in the task (in both continuous, naturalistic movie watching task and discrete goal oriented 518 

sensorimotor task) (Figure 2B and Figure 3B). The resting state is shown to be a multistable 519 

stationary state-regime at equilibrium (Deco & Jirsa, 2012). Ghosh and colleagues (Ghosh, Rho, 520 

McIntosh, Kötter, & Jirsa, 2008) have demonstrated that resting state networks operate close to 521 

instability and explore these states, before committing to one of these states. Deco and Jirsa  (Deco 522 

& Jirsa, 2012) have proposed that a repertoire of multistable states exists in resting state, that are 523 

functionally meaningful and inherently supported by the neuroanatomical connectivity, and can be 524 

rapidly activated even in the absence of any task. We speculate that in resting state the global spread 525 

of shorter-lived repeated patterns of stability between dominant FC configurations is associated with 526 

the exploration of multistable dynamic repertoire of states. On the contrary during a task (continuous 527 

or discrete), the repertoire of multistable states are limited, as only task specific, cognitively relevant 528 
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brain networks are explored. The brain visits task specific stable states for duration that a putative 529 

stimulus triggered cognitive process demands. This is associated with the local spread of longer-lived 530 

temporal similarities between dominant functional connectivity subspaces in a task.   531 

Our entropy results indicate the stability of functional connectivity architecture was highest in the 532 

discrete, goal-oriented sensorimotor task, followed by continuous naturalistic movie watching task 533 

and resting state (Figure 4A). This is in line with previous studies which report an increase in overall 534 

stability of FC with the largest increase in between network connections (Elton & Gao, 2015) 535 

(Gonzalez-Castillo & Bandettini, 2018), increase in stability of hemispheric homotopic connections 536 

during a task (Gonzalez-Castillo J. , Hoy, Handwerker, & Bandettini, 2014). Such increased stability 537 

of FC during a task is hypothesised to be associated with cognitive constraints during a task 538 

(Gonzalez-Castillo & Bandettini, 2018). Frobenius distance analysis results reveal the temporal 539 

stability matrices of functional connectivity during continuous, naturalistic movie watching task was 540 

closer to resting state than discrete, goal oriented sensorimotor task (Figure 4B). Considering our 541 

Frobenius distance analysis, we hypothesized stability of functional connectivity architecture should 542 

be highest in the sensorimotor task, followed by the naturalistic movie watching task, which was 543 

validated by our entropy results. Our findings thus provide evidence of increased temporal stability 544 

of whole-brain functional connectivity in task, highest in the discrete, goal-oriented task, followed by 545 

continuous, naturalistic movie watching task and then resting-state, using a novel unsupervised 546 

approach of characterising the stability of functional connectivity architecture.   547 

 548 

4.3 Ageing introduces temporal variability in evolution of dynamic functional connectivity in 549 

both rest and task 550 

 551 

Evidence from prior studies reveals the complexity of FC dynamics remains similar for all 552 

participants irrespective of age. An earlier study (Viviano, Raz, Yuan , & Damoiseaux, 2017) found 553 

no association between age and rate of switching between the FC states for resting brain.   Our results 554 
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(Figure 2B and Figure 3B) indicate an overall trend of global spread of shorter-lived repeated 555 

patterns of stability between dominant FC configurations in resting state and local spread of longer-556 

lived repeated patterns of stability in the task was similar in both young and old adults. Our study also 557 

revealed the highest stability of functional connectivity in the discrete, goal-oriented sensorimotor 558 

task, followed by continuous, naturalistic movie watching task and resting state, a trend similar in 559 

both young and old adults (Figure 4A). Interestingly, McIntosh and colleagues (McIntosh, et al., 560 

2010) have reported BOLD signal variability of hub-region decreases with age, suggestive of increase 561 

in stability of hub regions with age. Our results, which contrasted the stability of functional 562 

architecture in young and old adults (Figure 4A (inset)), found increased stability of functional 563 

architecture in young adults in resting state. The neural noise hypothesis suggests the age-related 564 

cognitive decline could be explained as a consequence of the increase in the noisy baseline activity 565 

of the brain (Voytek, et al., 2015) (Davis , et al., 2009). In accordance to this hypothesis, the decrease 566 

in stability of the functional architecture of the brain in older adults can be explained with an increase 567 

in neural noise with age. An important point to note, regardless of age associated changes in the 568 

stability of functional architecture, our results did not reveal statistically significant differences. 569 

Therefore, although there are differences in stability of functional architecture with age, their 570 

magnitude may be modest. 571 

 572 

3.4 Limitations and Future directions 573 

   574 

An important caveat of the current study was due to parcellation atlas used in the Cam-CAN dataset. 575 

The AAL atlas parcellates the brain regions into 116 structural parcels and few parcels span multiple 576 

functional regions. For future studies, for a more refined spatial profile of temporal stability of 577 

functional architecture, using a finely parcellated brain atlas is recommended. Researchers have 578 

shown stability of functional architecture is modified in patients of Schizophrenia, ADHD and ASD  579 

(Zhang & et al, 2016) (Guo, Zhao, Tao, Liu, & Palaniyappan, 2017). Hence, we can extrapolate that 580 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

26 
 

the temporal stability of functional architecture can provide a richer information to discover 581 

biomarkers for neurological and mental disorders.  582 

3.5 Conclusion 583 

 584 

In summary, the current study introduces a data-driven unsupervised approach to characterise the 585 

temporal stability of functional architecture. When applied to a putative lifespan ageing data, the 586 

whole-brain temporal dynamics of naturalistic movie watching task was found to be closer to resting 587 

state than during sensorimotor task.  Further, the study revealed peak temporal stability in 588 

sensorimotor task, followed by naturalistic movie watching task and resting state, a trend similar in 589 

both young and elderly. The temporal stability of functional architecture of the resting state was also 590 

found to be higher in young adults than their older counterparts. The quantification of differences in 591 

network stability associated with healthy ageing provides evidence for the potency of the temporal 592 

stability measure to act as biomarker for multiple neurological disorders. 593 
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Figure captions: 849 

Figure 1: (A). The schematic diagram shows how the temporal stability of dynamic functional 850 

connectivity subspaces (dFC) are computed. Dominant dFC subspace, at each time point, is estimated 851 

using the first three principal components of dFC(t), that was computed using the measure of BOLD 852 

phase coherence. The similarity between dFC subspaces are calculated using principal angle (Angular 853 

distance) and Mahalanobis distance (Euclidean distance). If the dominant dFC subspaces are similar 854 

for extended timepoints, then they are considered to be stable. (B). A flowchart representation of the 855 

method  856 

 857 

Figure 2: (A) dFC matrices estimated using BOLD phase coherence.  858 

 (B) Time X Time temporal stability matrix of resting state, naturalistic movie watching task and 859 

discrete, sensorimotor task for young and old adults. Each entry in the matrix is the principal angle 860 

𝜙(𝑡𝑥, 𝑡𝑦) between dominant dFC subspaces at 𝑡𝑥 and 𝑡𝑦. The principal angle ranges between 0 (low 861 

angular distance) to π/2 (high angular distance). Resting state, in both young and old adults, has 862 

shorter-lived, global spread of patterns of temporal stability. On the contrary, both the tasks have a 863 

longer-lived, local spread of patterns of stability (indicated by arrows and rectangular boxes).  864 

 865 

Figure 3: Mahalanobis distance between dominant dFC subspaces.                       866 

(A) Mahalanobis distance is a pairwise Euclidean distance between the ROIs of dominant dFC 867 

subspace at 𝑡𝑥, with the whole-brain dominant dFC subspace at 𝑡𝑦.  868 

(B) Time X Time temporal stability matrix of resting state, naturalistic movie watching task, and 869 

sensorimotor task, where each entry in the matrix is Mahalanobis (𝑀2(𝑡𝑥, 𝑡𝑦)) distance between the 870 

dominant dFC subspaces. Mahalanobis distance between dominant dFC subspaces is low when the 871 

dFC configurations are similar.  872 
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(C) The profile of temporal stability estimated with Mahalanobis distance across the brain regions at 873 

different instances of time.     874 

                       875 

Figure 4: (A) Plots representing entropy of temporal stability matrices of resting state (rest), 876 

naturalistic movie watching task (movie) and sensorimotor task (SMT), for Angular distance and 877 

Mahalanobis distance metric, in both young (magenta) and old adults (blue). Statistically significant 878 

differences are indicated using * (𝒫 ≤ 0.05), ** (𝒫 ≤ 0.01), *** (𝒫 ≤ 0.01), *** (𝒫 ≤ 0.001), 879 

**** (𝒫 ≤ 0.0001), ns (not significant). 880 

(inset) Distribution of entropy computed from temporal stability matrices of the resting state, 881 

naturalistic movie watching, and sensorimotor task, each contrasted between young (magenta) and 882 

old adults (blue) represented as a violin plot 883 

 884 

(B)  Plots representing distribution of Frobenius distance between temporal stability matrices of 885 

resting state, naturalistic movie watching (yellow) and resting state, sensorimotor task (pink) for 886 

Angular distance, and Mahalanobis distance metric, in both young and old adults. The violin plots 887 

reveal a shorter Frobenius norm between resting state and movie watching task than resting state and 888 

sensorimotor task in both young and old adults. 889 

 890 

Figure 5: (A) Stochastic modelling of principal angle, 𝜙 (𝑡) as autoregressive, AR (𝜌) process. The 891 

model order (𝜌) was varied from 0 to 100. The plot represents Akaike information criterion (AIC) 892 

values corresponding to the model order. Inset shows the first minima of the AIC value and its 893 

corresponding model order. 894 

(B) Table shows first minimal AIC value and its corresponding model order of 𝜙 (𝑡)  for all the 895 

categories 896 

 897 
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 (C) Stochastic modelling of Mahalanobis distance, 𝑀 (𝑡) as AR (𝜌) process. The model order (𝜌) 898 

was varied from 0 to 100. The plot represents AIC values corresponding to the model order. Inset 899 

shows the first minima of the AIC value and its corresponding model order. 900 

(D) Table shows first minimal AIC value and its corresponding model order of 𝑀 (𝑡)  for all the 901 

categories 902 

 903 

 904 

Supplementary Figures: 905 

 906 

S 1: Temporal stability matrices of the resting state, naturalistic movie watching task and 907 

sensorimotor task, where each entry is the principal angle 𝜙(𝑡𝑥, 𝑡𝑦) between dominant dFC subspaces 908 

at 𝑡𝑥 and 𝑡𝑦, for young and old adults. For validation of the results where dFC was estimated using 909 

BOLD phase coherence, we calculated dFC using sliding window approach with (window length) 910 

WL = 10 time points.  911 

 912 

S 2: Temporal stability matrices of the resting state, naturalistic movie watching task, and 913 

sensorimotor task, for both young and old adults. dFC was estimated using sliding window approach 914 

with (window length) WL= 20 time points. 915 

 916 

S 3: Temporal stability matrices of the resting state, naturalistic movie watching task, and 917 

sensorimotor task, for both young and old adults. dFC was estimated using sliding window approach 918 

with (window length) WL= 30 time points 919 

 920 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

37 
 

 S 4: The Plot represents the variance explained by all 116 principal components of the input dFC 921 

matrix for all categories. The first three principal components explain almost 99% of the variance of 922 

the input matrix. 923 

 924 

S 5: Temporal stability matrices representing the temporal landscape of randomised BOLD signals, 925 

resting state, naturalistic movie watching task, and sensorimotor task.  926 
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 927 
928 

Figure 1 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

39 
 

  929 

Figure 2 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

40 
 

 930 

 931 

 932 

Figure 3 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

41 
 

 933 

 934 

 935 

 936 

 937 

 938 

Figure 4 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

42 
 

  939 Figure 5 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

43 
 

 940 

Supplementary figures 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 S 1 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

44 
 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 S 2 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

45 
 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 

 S 3 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

46 
 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 

 1008 

 1009 

 1010 

 1011 

 1012 

 1013 

 S 4 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590


  

47 
 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 S 5 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451590

