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Abstract

A cardinal feature of the neocortex is the progressive increase of the spatial receptive fields along the cortical hierarchy.
Recently, theoretical and experimental findings have shown that the temporal response windows also gradually enlarge, so
that early sensory neural circuits operate on short-time scales whereas higher association areas are capable of integrating
information over a long period of time. While an increased receptive field is accounted for by spatial summation of inputs
from neurons in an upstream area, the emergence of timescale hierarchy cannot be readily explained, especially given the
dense inter-areal cortical connectivity known in modern connectome. To uncover the required neurobiological properties,
we carried out a rigorous analysis of an anatomically-based large-scale cortex model of macaque monkeys. Using a
perturbation method, we show that the segregation of disparate timescales is defined in terms of the localization of
eigenvectors of the connectivity matrix, which depends on three circuit properties: (1) a macroscopic gradient of synaptic
excitation, (2) distinct electrophysiological properties between excitatory and inhibitory neuronal populations, and (3) a
detailed balance between long-range excitatory inputs and local inhibitory inputs for each area-to-area pathway. Our
work thus provides a quantitative understanding of the mechanism underlying the emergence of timescale hierarchy in
large-scale primate cortical networks.

Keywords

large-scale cortical network | timescale hierarchy | eigenvector localization | inter-areal heterogeneity | detailed
excitation-inhibition balance of long-range cortical connections

Significance Statement

In the neocortex, while early sensory areas encode and process external inputs rapidly, higher association areas are
endowed with slow dynamics suitable for accumulating information over time. Such a hierarchy of temporal response
windows along the cortical hierarchy naturally emerges in a model of multi-regional primate cortex. This finding raises the
question of why diverse temporal modes are not mixed in roughly the same way across the whole cortex, despite high
connection density and an abundance of feedback loops. We investigate this question by mathematically analyzing the
anatomically-based network model of macaque cortex, and show that three general principles of synaptic excitation and
inhibition are crucial for timescale segregation in a hierarchy, a functionally important characteristic of the cortex.
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THE brain is organized with a delicate structure to integrate and process both spatial and temporal information
received from the external world. For spatial information processing, neurons along cortical visual pathways possess

increasingly large spatial receptive fields, and its underlying mechanism has been understood as neurons in higher level
visual areas receive input from many neurons with smaller receptive fields in lower level visual areas, thereby aggregating
information across space (Hubel, 1995). More recently, a computational model (Chaudhuri et al., 2015) revealed that the
timescale over which neural integration occurs also gradually increases from area to area along the cortical hierarchy.
The model was based on the anatomically measured directed- and weighted- inter-areal connectivity of the macaque
cortex (Markov et al., 2014a) and incorporated heterogeneity of synaptic excitation calibrated by spine count per pyramidal
neuron (Elston, 2007). It has been observed that the decay times increased progressively along the cortical hierarchy
when signals propagate in the network, and the temporal hierarchy could change dynamically in response to different types
of sensory inputs (e.g., different hierarchy of timescales for somatosensory input versus visual input) (Chaudhuri et al.,
2015). By manipulating parameters of the model, simulation results further demonstrate that both within and between
regions of anatomical properties could affect the hierarchy of timescales in neuronal population activity (Chaudhuri et al.,
2015). A hierarchy of temporal receptive windows is functionally desirable, so that the circuit dynamics operate on short
time scales in early sensory areas to encode and process rapidly changing external stimuli, whereas parietal and frontal
areas can accumulate information over a relatively long period of time window in decision-making and other cognitive
processes (Gold and Shadlen, 2007; Wang, 2008).

Despite the accumulating evidence in support of timescale hierarchy across cortical areas in mice (Runyan et al.,
2017; Siegle et al., 2021), monkeys (Ogawa and Komatsu, 2010; Murray et al., 2014; Cavanagh et al., 2016; Spitmaan et al.,
2020), and humans (Hasson et al., 2008; Honey et al., 2012; Lerner et al., 2011; Stephens et al., 2013; Yeshurun et al.,
2017; Raut et al., 2020; Shafiei et al., 2020; Gao et al., 2020), its underlying mechanism remains unclear. In particular,
since inter-areal connections are dense, with roughly 65% of all possible connections present in the macaque cortex
(Markov et al., 2014a) and even higher connection density in the mouse cortex (Gămănuţ et al., 2018), what circuit
properties are required to ensure that dynamical modes with disparate time constants are spatially localized? How
intra-areal anatomical properties determine the intrinsic timescale of each area, and how these intrinsic timescales remain
to be segregated rather than mixed up in the presence of dense inter-areal connections? In this work, we addressed these
questions by a mathematical analysis of the model (Chaudhuri et al., 2015). Using a perturbation method, we identified
key required conditions, in particular a detailed excitation-inhibition balance for long-distance inter-areal connections which
is experimentally testable.

The multi-areal model and hierarchical timescales phenomenon

We first review the mathematical form of the multi-areal model of the macaque brain, and the hierarchical timescales
phenomenon captured by this model (Chaudhuri et al., 2015). The macaque cortical network model contains a subnet
of 29 areas widely distributed from sensory to association areas in the macaque cortex, and each area includes both
excitatory and inhibitory neuronal populations. The neuronal population dynamics in the ith area is described as

τE
d
dt

ν i
E =−ν i

E +βE

[
Ii
syn,E + Ii

ext,E

]
+

(1)

τI
d
dt

ν i
I =−ν i

I +βI

[
Ii
syn,I + Ii

ext,I

]
+
, (2)

where ν i
E and ν i

I are the firing rate of the excitatory and inhibitory populations in the ithe area, respectively, τE and τI are
their time constants, respectively, and βE and βI are the slope of the f-I curve for the excitatory and inhibitory populations,
respectively. The f-I curve takes the form of a rectified linear function with [I]+ = max(I,0). In addition, Ii

ext,E and Ii
ext,I are

the external currents, and Ii
syn,E and Ii

syn,I are the synaptic currents that follow
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Ii
syn,E = (1+ηhi)

(
wEEν i

E +µEE

N

∑
j=1

FLNi jν j
E

)
−wEIν i

I ,

Ii
syn,I = (1+ηhi)

(
wIEν i

E +µIE

N

∑
j=1

FLNi jν j
E

)
−wIIν i

I ,

where wpq, p,q ∈ {E, I} is the local coupling strength from the q population to the p population within each area. FLNi j

is the fraction of labeled neurons (FLN) from area j to area i reflecting the strengths of long-range input (Markov et al.,
2014a), and µEE and µIE are scaling parameters that control the strengths of long-range input to the excitatory and
inhibitory populations, respectively. Both local and long-range excitatory inputs to an area are scaled by its position in the
hierarchy quantified by hi (a value normalized between 0 and 1), based on the observation that the hierarchical position
of an area highly correlates with the number of spines on pyramidal neurons in that area (Elston, 2007; Chaudhuri et al.,
2015). A constant η maps the hierarchy hi into excitatory connection strengths. Note that both local and long-range
projections are scaled by hierarchy, rather than just local projections, following the observation that the proportion of local
to long-range connections is approximately conserved across areas (Markov et al., 2011). The values of all the model
parameters are specified in Sec. Materials and Methods.

By simulating the model, it has been observed in Ref. (Chaudhuri et al., 2015) that the decay time of neuronal
response in each area increases progressively along the visual cortical hierarchy when an pulse input is given to area
V1, as shown here in Fig. 1A. Early visual areas show fast and transient responses while prefrontal areas show slower
responses and longer integration times with traces lasting for several seconds after the stimulation. In addition, white-noise
input to V1 is also integrated with a hierarchy of timescales by computing the autocorrelation of neuronal activity at each
area (Chaudhuri et al., 2015). As shown in Fig. 1B, the activity of early sensory areas shows rapid decay of autocorrelation
with time lag while that of association areas shows slow decay. In Fig. 1C, by fitting single or double exponentials to the
decay of the autocorrelation curves (Chaudhuri et al., 2015), the dominant timescale of each area tends to increase along
the hierarchy approximately, thus a hierarchy of widely disparate timescales emerges from this model. It is worth noting,
however, that the timescale does not change monotonically with the anatomically defined hierarchy (x-axis), the precise
pattern is sculpted by the measured inter-areal wiring properties.

Before we perform mathematical analysis to understand the mechanism underlying the emergence of hierarchical
timescales, to simplify the notation, we rewrite the network dynamics Eqs. 1-2 in the linear regime in the following form

d
dt

ννν =Wννν + IIIext , (3)

where

ννν =
[
ν1

E , . . . ,νn
E ,ν1

I , . . . ,νn
I

]T
, W =

[
DEE +FEE DEI

DIE +FIE DII

]
,

with n = 29, and DEE , DEI , DIE , DII being four diagonal matrices whose ith element on their diagonal line are

di
EE =

βE

τE

[
(1+ηhi)wEE − 1

βE

]
, di

EI =−βE

τE

[
wEI
]
,

di
IE =

βI

τI

[
(1+ηhi)wIE

]
, di

II =−βI

τI

[
wII +

1
βI

]
,

respectively, and matrices FEE and FIE being two non-diagonal matrices whose ith-row- jth-column element is

f i j
EE =

βE

τE

[
(1+ηhi)µEEFLNi j

]
, f i j

IE =
βI

τI

[
(1+ηhi)µIEFLNi j

]
,

respectively. Note that matrices DEE , DEI , DIE , DII reflect local intra-areal interactions, while matrices FEE and FIE reflect
long-range inter-areal interactions. In addition, elements in DEE , DIE , FEE , and FIE depend on area hierarchy hi while
elements in DEI and DII are constant. Finally, the external input vector is
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Figure 1: The hierarchical timescales phenomenon simulated in the macaque multi-areal model. (A), a pulse of input to
area V1 is propagated along the hierarchy, displaying increasing decay times as it proceeds. (B), autocorrelation of area
activity in response to white-noise input to V1. (C), the dominant time constants in all areas, extracted by fitting single or
double exponentials to the autocorrelation curves (Chaudhuri et al., 2015). In (A)-(C), areas are arranged and colored by
position in the anatomical hierarchy.
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IIIext =
[

βE
τE

I1
ext,E , . . . ,

βE
τE

In
ext,E ,

βI
τI

I1
ext,I , . . . ,

βI
τI

In
ext,I

]T
.

Denoting the eigenvalues and eigenvectors of the connectivity matrix W as λi and VVV i (i = 1,2, ...,2n), respectively,
i.e., WVVV i = λiVVV i, the analytical solution of Eq. 3 can be obtained as

ννν i(t) =
2n

∑
j=1

(
ã jeλ jt +

∫ t

0
eλ j(t−t ′)Ĩ j(t ′)dt ′

)
VVV i

j, (4)

where ννν i and VVV i
j are the ith element in ννν and VVV j, respectively, ã j and Ĩ j are the coefficients for the initial condition and

the external input, respectively, represented in the coordinate system of the eigenvectors {VVV j}. Note that, from Eq. 4,
each area integrates input current with the same set of time constants {τi} determined by the real part of the eigenvalues,
i.e., τi =−1/Re{λi}. Therefore, the characteristic timescale of each area across the network is expected to be similar in
general case. To obtain distinct timescales at each area, it requires (1) the localization of eigenvectors VVV j, i.e., most of the
elements in VVV j are close to zero, (2) the orthogonality of all pairs of eigenvectors, i.e., the non-zero elements are nearly
non-overlap for different VVV j.

By computing the eigenvalues and eigenvectors of matrix W , as shown in Fig. 2A, the timescale pool {τi} derived from
eigenvalues can be classified into two groups, one group shows quite fast timescale about 2 milliseconds, and the other
group includes relatively slow timescales ranging from tens to hundreds of milliseconds. In addition, we are particularly
interested in the excitatory population because the majority of neurons in the brain are excitatory neurons. We observe
that the magnitude of the eigenvectors corresponding to the fast timescale is nearly zero for the excitatory population at
each area, while that corresponding to the slow timescale is weakly localized and weakly orthogonal, i.e., each eigenvector
has a few nonzero elements that almost do not overlap with other eigenvectors’ nonzero elements. According to Eq. 4,
the pattern of eigenvectors gives rise to the disparate timescales for the excitatory neuronal population at each brain
area. We next perform mathematical analysis to investigate the sufficient conditions for (1) vanishing magnitude of the
excitatory component of fast-eigenmode eigenvectors, and (2) localization and orthogonality of the excitatory component
of slow-eigenmode eigenvectors in this network system.
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Figure 2: (A), eigenvectors of the network connectivity matrix W . Each column shows the amplitude of an eigenvector
at the 29 areas, with corresponding timescale labeled below. (B), eigenvectors of W calculated from the first-order
perturbation analysis. (C), similarity measure defined as the inner product of the corresponding eigenvectors in (A)
and (B). 7
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Perturbation analysis of the model

We note that the parameters of the model (specified in Sec. Materials and Methods) gives

ε =
βE

τE
/

βI

τI
≈ 0.094, δ =

µEE

µIE
− wEI

wII +1/βI
≈ 0.038,

which can be viewed as two small parameters in order to allow us to perform perturbation analysis below.

We first study the network in the absence of the long-range interactions among areas. Accordingly, we study the 2

by 2 block matrix D =

[
DEE DEI

DIE DII

]
in which each block is a diagonal matrix defined above. By viewing ε = βE

τE
/βI

τI
as a

small parameter, we have

DII ,DIE ∼ O(1); DEI ,DEE ∼ O(ε) (5)

from their definitions. Accordingly, we can prove the following proposition:

Proposition 1 If DII ∼ O(1), DIE ∼ O(1), DEI ∼ O(ε), DEE ∼ O(ε), then D has n eigenvalues being O(ε), and n
eigenvalues being O(1).

Proof: It is straightforward to prove that Matrix D can be diagonalized by matrix P, i.e.,

Λ = PDP−1 =

[
ΛU O
O ΛL

]
=

[
DEE +ADIE O

O −DIEA+DII

]
,

where

P =

[
I A
B I +BA

]
,

I is the identity matrix, and diagonal matrix A satisfies −(DEE +ADIE)A+DEI +ADII = 0, diagonal matrix B satisfies
DIE +B(DEE +ADIE)+(DIEA−DII)B = 0.

We solve the equation of A and choose one of the two solutions of A as

A =
1
2

D−1
IE
[
DII −DEE +

√
(DII −DEE)2 +4DIEDEI

]
,

where the square root of a diagonal matrix is defined as taking the square root of its elements. Due to the fact that DII ∼
O(1), DIE ∼ O(1), DEI ∼ O(ε), DEE ∼ O(ε), we have A = −DEID−1

II +O(ε2) ∼ O(ε), and B = DIED−1
II +O(ε) ∼ O(1).

Accordingly, we have
ΛU = DEE −DEID−1

II DIE +O(ε2)∼ O(ε),

ΛL = DII +DEID−1
II DIE +O(ε2)∼ O(1). �

From Proposition 1, the eigenvalues of D have two separated scales belonging to ΛU and ΛL, respectively. As the
timescales of the network system is given by τi = −1/Re{λi} (λi is the ith diagonal element in matrix Λ), the separation
of scales for eigenvalues in ΛU and ΛL explains that the intrinsic timescale pool can be classified into two group with a
separation of scales, which is mainly determined by the distinct electrophysiological properties between excitatory and
inhibitory neuronal populations within each area described by ε . In addition, from the analysis, the eigenvalues in ΛL with
large magnitude (fast timescale) are less sensitive to the hierarchy level because ΛL ≈ DII , and the elements in DII does
not depend on hi. Therefore, the gradient of hi across areas barely affects fast timescale pool. In contrast, the eigenvalues
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in ΛU with small magnitude (slow timescale) are more sensitive to the hierarchy level because ΛU ≈ DEE −DEID−1
II DIE ,

and both the elements in DEE and DIE depend on hi. Therefore, the gradient of hi across areas increases the range of
slow timescale pool. Further, the slow timescales of each area in this disconnected network are segregated and follows
the hierarchical order hi as the corresponding eigenvectors are perfectly localized and orthogonal to each other.

Now we consider the multi-areal network in the presence of long-range interactions. Adding long-range connectivity to
local connectivity matrix D changes the eigenvalues and eigenvectors of matrix D, which can be analyzed in the following.

By multiplying P and P−1 (given in the proof of Proposition 1) on both sides of W , we have

Γ = PWP−1 = P

([
DEE DEI

DIE DII

]
+

[
FEE O
FIE O

])
P−1 = Λ+Σ,

where

Σ = P

[
FEE O
FIE O

]
P−1 =

[
ΣUL ΣUR

ΣLL ΣLR

]
,

with ΣUL = (FEE + AFIE)(I + AB), ΣUR = −(FEE + AFIE)A, ΣLL =
[
BFEE + (I +BA)FIE

](
I +AB

)
, ΣLR = −

[
BFEE + (I +

BA)FIE
]
A, and with Λ, A, and B defined in the proof of Proposition 1.

Denoting one of the eigenvectors of matrix Γ as [uuu,vvv]T , and the corresponding eigenvalue as λ , we have([
ΛU 0
0 ΛL

]
+

[
ΣUL ΣUR

ΣLL ΣLR

])[
uuu
vvv

]
= λ

[
uuu
vvv

]
. (6)

According to the definition of ε = βE
τE
/βI

τI
, and δ = µEE

µIE
− wEI

wII+1/βI
, A ∼ O(ε) and B ∼ O(1), and

FEE ∼ O(ε); FIE ∼ O(1) (7)

we have FEE +AFIE ∼ O(εδ ), I +AB ∼ O(1), BFEE +(I +BA)FIE ∼ O(1), and accordingly,

ΣUL ∼ O(εδ ), ΣUR ∼ O(ε2δ ), ΣLL ∼ O(1), ΣLR ∼ O(ε).

As ΣUR ∼ O(ε2δ ) is a higher order term compared with ΛU , ΛL, ΣUL, ΣLL, and ΣLR, it can be dropped out in Eq. 6 and the
error of eigenvalue and eigenvector is at most O(ε2δ ) (see Proposition 4 in Appendix for a detailed proof). Accordingly,
we can obtain two equations from Eq. 6 in the vector form,

(ΛU +ΣUL)uuu = λuuu, (8)

ΣLLuuu+(ΛL +ΣLR)vvv = λvvv. (9)

To describe the eigenvector property of Eqs. 8-9, we first introduce the definitions of weak localization and weak
orthogonality as follows.

Definition 1 A vector uuu(δ ) is weakly localized if it can be represented as uuu= aeeekkk+δbbb+O(δ 2) for some k, where a∼O(1)
is a constant number, bbb ∼ O(1) is a constant vector, δ is a small parameter, and eeek represents the natural basis with only
the kth element being 1 and others being zero, i.e., eeek = [0, ...,1(kth), ...,0].

Definition 2 Two vectors uuu(δ ) and vvv(δ ) are weakly orthogonal to each other if their inner product < uuu,vvv >∼O(δ ), where
δ is a small parameter.

With the concept of weak localization and weak orthogonality defined above, we introduce the following proposition that
describes the property of uuu in the system of Eqs. 8-9.
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Proposition 2 In the system described by Eqs. 8-9, if all matrices are analytic with respect to ε and δ , and if ΣUL ∼O(εδ ),
ΣLL ∼ O(1), ΣLR ∼ O(ε), ΛU ∼ O(ε), ΛL ∼ O(1), and if ΛU has n simple eigenvalues, then
(1) there exists n eigenvectors [uuu,vvv]T in which uuu = 0, with λ ∼ O(1) correspondingly.
(2) there exists n eigenvectors [uuu,vvv]T in which uuu is weakly localized and weakly orthogonal to each other, with λ ∼ O(ε)
correspondingly.

Proof: (1) It is noted that uuu = 0 is a trivial solution of Eq. 8. By defining Σ̄LR = ΣLR/ε ∼ O(1), Eq. 9 becomes

(ΛL + εΣ̄LR)vvv = λvvv,

in which vvv is the eigenvector of matrix ΛL + εΣ̄LR. By viewing εΣ̄LR as a perturbation matrix to ΛL, then the leading order
of λ shall be the same as that of n elements in the diagonal line of ΛL, which takes the order of O(1).

(2) In Eq. 8, if uuu ̸= 0, by defining Λ̄U = ΛU/ε , Σ̄UL = ΣUL/εδ , and λ̄ = λ/ε , we have

(Λ̄U +δ Σ̄UL)uuu = λ̄uuu. (10)

Therefore, uuu is also the eigenvector of matrix Λ̄U + δ Σ̄UL, and λ̄ is the corresponding eigenvalue. As ΛU has n simple
eigenvalues, so does Λ̄U , then uuu and λ̄ are analytic with respect to the perturbation parameter δ (Kato, 1966), i.e.,
uuu = ∑∞

i=0 δ iuuui, and λ̄ = ∑∞
j=0 δ jµi for δ near zero. Therefore, to the leading order, we have

Λ̄U uuu0 = µ0uuu0,

in which µ0 is the eigenvalue of the diagonal matrix Λ̄U , and uuu0 is the corresponding eigenvector. Accordingly, uuu0 ∈ {eeek},
thereafter

uuu = eeek +δuuu1 +O(δ 2), k = 1,2, ...,n

where eeek represents the kth natural basis, and the leading order of λ = ελ̄ is εµ0 ∼ O(ε). It’s straightforward to verify that
uuu are weakly localized and weakly orthogonal to each other. �

If we define the unit-length eigenvector of the connectivity matrix W as [rrrE ,rrrI ]
T , and denote the corresponding

eigenvalue as λ (the same as that of matrix Γ after the similarity transform), then from Propositions 1 and 2, we have

Proposition 3 Under the same condition in Propositions 1-2, the unit-length eigenvector [rrrE ,rrrI ]
T of the connectivity

matrix W has the following properties,
(1) for eigenvalue λ ∼ O(ε), the corresponding rrrE is weakly localized and weakly orthogonal to each other.
(2) for eigenvalue λ ∼ O(1), the corresponding rrrE ∼ O(ε).

Proof: We first consider [rrrE ,rrrI ]
T with non-unit length. According to the similarity transform, we have the following linear

relation between [rrrE ,rrrI ]
T and [uuu,vvv]T , [

rrrE

rrrI

]
= P−1

[
uuu
vvv

]
=

[
I +AB −A
−B I

][
uuu
vvv

]
,

i.e., rrrE = (I +AB)uuu−Avvv, and rrrI =−Buuu+ vvv. From Proposition 1, we have A ∼ O(ε), and B ∼ O(1).

(1) From Proposition 2, we have uuu = eeek + δuuu1 +O(δ 2) for λ ∼ O(ε) (k = 1,2, ...,n). Accordingly, vvv can be solved as
vvv = (λ I−ΛL −ΣLR)

−1ΣLLuuu ∼ O(1), which gives rrrE ∼ O(1), and rrrI ∼ O(1). Therefore, the length of [rrrE ,rrrI ]
T denoted by c

is order O(1). By normalizing the length of [rrrE ,rrrI ]
T to be unity, we have rrrE = c−1(I +AB)eeek +O(ε)+O(δ ) being weakly
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localized and weakly orthogonal to each other.

(2) From Proposition 2, we have uuu = 0 for λ ∼ O(1). Accordingly, vvv can be solved as the eigenvector of matrix (ΛL +ΣLR)

with unit-length. Therefore, [rrrE ,rrrI ]
T = [−Avvv,vvv]T , and the length of [rrrE ,rrrI ]

T denoted by c is order O(1). By normalizing the
length of [rrrE ,rrrI ]

T to be unity, we have rrrE =−c−1Avvv ∼O(ε). �

Note that, Propositions 2-3 hold for sufficiently small ε and δ near zero. However, the convergence radius of the power
series of uuu in Proposition 2 is not specified yet. Although difficult to calculate the convergence radius, we can compute the
analytical expression of uuu1 in the power series uuu = ∑∞

i=0 δ iuuui in Proposition 2 to obtain the first-order perturbation solution
of uuu and thereby rrrE , which could help us gain insight about when weak localization and orthogonality of uuu and rrrE will
break down approximately.

To the order of δ in Eq. 10, we have

Λ̄U uuu1 + Σ̄ULuuu0 = µ0uuu1 +µ1uuu0. (11)

Without loss of generality, we assume uuu0 = eeek, and accordingly, µ0 = λ̄k is the kth element in the diagonal line of matrix
Λ̄U . In addition, we normalize uuu to make the kth element in uuu denoted by (uuu)k to be unity, correspondingly (uuui)k = 0 for
i ≥ 1. By left multiplying eeeT

j ( j ̸= k) to Eq. 11, we have

(uuu1) j =
(Σ̄UL) jk

λ̄k − λ̄ j
, (12)

where (Σ̄UL) jk is the element in the jth row and kth column in matrix Σ̄UL. To make the first-order perturbation solution
valid, we expect that (uuu1) j is small compared with δ−1, otherwise the separation of orders will no longer hold in the power
series (i.e., first-order term δuuu1 becomes larger than the zeroth-order term eeek). In such a case, the spectral gap λ̄k − λ̄ j

shall be large enough compared with elements in Σ̄UL. The spectral gap of matrix Λ̄U attributes to the gradient of excitation
across areas, or simply hi. In Fig. 2B-2C, we show that the eigenvector [rrrE ,rrrI ]

T , which is solved using the perturbation
theory in Proportions 2-3 to the first-order accuracy (Eq. 12), well agrees with the original eigenvector in most cases.
However, some eigenvectors show less similarity to the original eigenvectors when the first-order perturbation theory
breaks down for the reason discussed above.

Biological interpretations of the three requirements

From the above analysis, three conditions are required to obtain weakly localized and orthogonal eigenvectors in order
to maintain the hierarchy of timescales: (1) small ε , (2) small δ , (3) the gradient of hi across areas. We next discuss the
biological interpretation of the three conditions.

First, according to the definition of ε = βE
τE
/βI

τI
, small ε indicates that the electrophysiological properties of excitatory

and inhibitory neurons are different, in particular, their membrane time constant and the slope of the gain function. The
substantial difference of electrophysiological properties between the excitatory and inhibitory neurons has been supported
by experimental evidence, i.e., inhibitory neurons have larger slope of the gain function and smaller membrane time
constant (Ahmed et al., 1998; Nowak et al., 2003; Povysheva et al., 2008; Zaitsev et al., 2012).

Second, small δ = µEE
µIE

− wEI
wII+1/βI

indicates the balanced condition between the inter-areal excitatory and intra-areal

inhibitory inputs. When the presynaptic excitatory input from the jth area is increased by ∆r j
E , its influence on the excitatory

population activity in the ith area is described by the following steady state equations:
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Dii
EE∆ri

E +Dii
EI∆ri

I +F i j
EE∆r j

E = 0, (13)

Dii
IE∆ri

E +Dii
II∆ri

I +F i j
IE∆r j

E = 0. (14)

From Eqs. 13-14, by eliminating ∆ri
I , we have(

Dii
EE − Dii

IE

Dii
II

Dii
EI

)
∆ri

E +
(

F i j
EE − Dii

EI

Dii
II

F i j
IE

)
∆r j

E = 0.

The solution yields ∆ri
E =Ci j∆r j

E , in which Ci j ∼O(δ ) according to Eqs. 5-7. This indicates that the signal from the jth area
have a small influence on the activity of the excitatory population in the ith area, because the global long-range excitatory
input is balanced with and canceled by the local inhibitory synaptic input, leading to small net inputs in each signal pathway,
as shown in Fig. 3. This condition corresponds to a detailed balance of excitation and inhibition that may benefit signal
control and gating, as proposed in previous studies (Vogels and Abbott, 2009). The importance of excitation-inhibition
balance on timescale hierarchy is supported by a recent study showing that the imbalance of excitation and inhibition
could have a substantial effect on the change of intrinsic timescales across brain areas, which is a manifestation of
psychosis such as hallucination and delusion (Wengler et al., 2020).

Third, the gradient of hi parameterizes the gradient of synaptic excitation across areas in the model, supported by
the fact that hi is proportional to the spine count per pyramidal neuron across areas (Chaudhuri et al., 2015; Elston, 2007)
in the form of a macroscopic gradient (Wang, 2020). The gradient of synaptic excitation leads to two consequences,
(1) it gives rise to the hierarchy of intrinsic timescale for each area while being disconnected to other parts of the
brain, (2) it stabilizes the localization of intrinsic timescale for each area in the presence of long-range connections.
From the perturbation analysis and Eq. 12, the degree of eigenvector localization is determined by the competition
between the strength of long-range connections encoded in matrix Σ̄UL and the spectral gap of matrix Λ̄U . Therefore, the
long-range connections tend to delocalize eigenvectors thus break the timescale hierarchy, but the heterogeneity of local
recurrent excitation level weakens its effect on eigenvector delocalization in a divisive fashion. In fact, the heterogeneity
or randomness in local node properties has been shown to give localized eigenvectors in models of physical system, for
instance, a phenomenon known as Anderson localization (Anderson, 1958) that describes the transition from a conducting
medium (corresponding to delocalized eigenvectors) to an insulating medium (corresponding to localized eigenvectors).
Similar mechanism has been identified in studying the eigenvector localization of a idealized neural network with simple
nodes in each brain area (Chaudhuri et al., 2014).

Discussion

In this work, we investigated the requirements for the emergence of a hierarchy of temporal response windows in a
multi-regional model of the macaque cortex (Chaudhuri et al., 2015). The fact that the model is essentially a linear
dynamical system when neural populations are all above firing threshold enabled us to define the time constants precisely
and carried out a detailed mathematical analysis, which identified biologically interpretable conditions. In contrast to
previous computational models studying the emergence of timescales (Chaudhuri et al., 2014), the model we studied
is anatomically more realistic as it incorporates (1) experimental measurements of directed and weighted anatomical
connectivity, (2) a gradient of synaptic excitation reflected by spine counts in pyramidal neurons across areas, and (3)
both excitatory and inhibitory neuronal populations. By performing rigorous perturbation analysis, we show that the
segregation of timescales is attributable to the localization of eigenvectors of the connectivity matrix, and the parameter
regime that makes this happen has three crucial properties: (1) a macroscopic gradient of synaptic excitation, (2) distinct
electrophysiological properties between excitatory and inhibitory neuronal populations, and (3) a detailed balance between
long-range excitatory inputs and local inhibitory inputs for inter-areal connectivity.
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Figure 3: The illustration of detailed balance between inter-areal excitation and intra-areal inhibition. The projection from
V1 to V4 is shown as an example. (A), one-way interaction from V1 to V4. V1 receives external Gaussian input. The
excitatory population in V4 receives balanced excitatory inter-areal inputs from V1 (dark red) and intra-areal inhibitory
inputs from the inhibitory population in V4 (dark blue). Other excitatory and inhibitory interactions in this circuit are colored
by light red and blue, respectively. (B), simulation of the synaptic currents received by V4 excitatory population induced by
V1 activity. The inter-areal excitatory inputs (red) is balanced with the intra-areal inhibitory inputs (blue), leading to small
net inputs (black).

It is worth mentioning that, although the specific pattern of inter-areal connectivity does not affect the eigenvector
localization substantially based on the perturbation analysis, it shapes the timescale hierarchy qualitatively. In particular,
the timescale hierarchy does not exactly follow monotonically the areal anatomical hierarchy in the presence of long-range
connections, as shown in Fig. 1C. Furthermore, within a brain region time constants are heterogeneous across individual
neurons (Bernacchia et al., 2011; Cavanagh et al., 2020). To better relate the model with experimentally observed
timescales in various specific cortical areas, the roles of long-range connections, cell types and other circuit properties
require further elucidation.

It has been noticed that the neuronal activity propagates along the hierarchy with significant attenuation in the model
of Ref. (Chaudhuri et al., 2015). The attenuation can be alleviated by tuning the model parameters to the regime of
strong global balanced amplification (GBA) (Joglekar et al., 2018) (see parameters in Sec. Materials and Methods).
Balanced amplification was originally introduced for a local neural network, associated with strong non-normality of
the system where eigen modes are far from being orthogonal with each other (Murphy and Miller, 2009). A quantity
called κ measures the degree of non-normality of a matrix (Trefethen and Embree, 2020) (κ = 1 for a normal matrix; the
larger the κ value, the more non-normal the system). We have κ = 4.35 for the original model (Chaudhuri et al., 2015),
which is thus only slightly non-normal. By contrast, κ = 96.58 for the model in the strong GBA regime. Therefore, the
enhancement of signal propagation in the model correlates with the increase of the non-orthogonality of the eigenvectors,
or the non-normality of the connectivity matrix. In the strong GBA regime, δ ≈ 0.38, which is ten times larger than its
original value, suggesting that the detailed balance condition is less well satisfied. In such a case, the localization of time
scales may no longer exist in this linear model. The situation is different in nonlinear models (Chaudhuri et al., 2015;
Mejias and Wang, 2020; Chien and Honey, 2020), where inputs may be amplified by strongly recurrent circuit dynamics
to enhance signal propagation or routing of information is selectively gated (for a subset of connection pathways in a
goal-directed manner) (Vogels and Abbott, 2009; Wang and Yang, 2018), while the conditions for a timescale hierarchy
are satisfied. For a nonlinear system, however, eigenmodes are defined only with respect to a particular network state.
Consequently, the time constants observed in single neurons are no longer unique and may differ, for instance, when the
brain is at rest or during a cognitive process. It remains to be seen to what extent the conditions identified here hold in
various brain’s internal states, while the precise pattern of timescales can be flexibly varied to meet behavioral demands.
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Materials and Methods

Model parameters

In the macaque brain network model, we set τE = 20 ms, τI = 10 ms, βE = 0.066 Hz/pA, βI = 0.351 Hz/pA, wEE = 24.4
pA/Hz, wIE = 12.2 pA/Hz, wEI = 19.7 pA/Hz, wII = 12.5 pA/Hz, µEE = 33.7 pA/Hz, µIE = 25.5 pA/Hz and η = 0.68.
We set wEI = 25.2 pA/Hz and µEE = 51.5 pA/Hz for the strong balanced amplification regime (Joglekar et al., 2018)
introduced in Sec. Discussion. Some of the parameters are derived from experimental measurements of primary visual
cortex (Binzegger et al., 2009). The FLN values are obtained from the experimental measurements of macaque brain
connectivity (Markov et al., 2014a). The hierarchy values hi of each brain area are obtained by fitting a generalized linear
model that assigns hierarchical values to areas (Chaudhuri et al., 2015) such that the differences in hierarchical values
predict the supragranular layer neurons (SLNs) measured in experiment (Markov et al., 2014b).

Software Availability

Upon publication, the python code for model simulation and perturbation analysis will be made publicly available on Github
(https://github.com/songting858).
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Appendix

Proposition 4 Given

Γ =

[
εΛ̄U 0

0 Λ̄L

]
+

[
εδ Σ̄UL ε2δ Σ̄UR

Σ̄LL εΣ̄LR

]
and

Γ′ = Γ−

[
0 ε2δ Σ̄UR

0 0

]
with Λ̄U , Λ̄L, Σ̄UL, Σ̄UR, Σ̄LL, Σ̄LR being O(1), and AU has n simple eigenvalues. If λ and XXX are the eigenvalue and
eigenvector of Γ respectively, then there exists λ ′ and XXX ′′′ being the eigenvalue and eigenvector of Γ′ respectively, such
that λ −λ ′ ∼ O(ε2δ ) or higher order, XXX −XXX ′′′ ∼ O(ε2δ ) or higher order.

Proof: The eigenvalue of Γ denoted by λ can be solved as the root of the characteristic polynomial

f (λ ) = det(λ I −Γ) = f1(λ ) f2(λ ),

where
f1(λ ) = det

(
λ I − εΛ̄U − εδ Σ̄UL − ε2δ Σ̄UR(λ I − Λ̄L − εΣ̄LR)

−1Σ̄LL

)
,

and
f2(λ ) = det(λ I − Λ̄L − εΣ̄LR),

here det(·) is the determinant of a matrix, and I is the identity matrix.

For the eigenvalues that solve f1(λ ) = 0, if we define λ̄ = λ/ε , then λ̄ solves

f̄1(λ̄ ) = det
(

λ̄ I − Λ̄U −δ Σ̄UL − εδ Σ̄UR(ελ̄ I − Λ̄L − εΣ̄LR)
−1Σ̄LL

)
= 0.

If we set β = εδ , then f̄1(λ̄ ,ε,δ ,β ) is analytic with respect to λ̄ , ε , δ , β . In addition, as ĀU has n different eigenvalues
denoted by (ĀU )i, i = 1,2, ...,n, we have ∂ f

∂ λ̄ (λ̄ = (ĀU )i,ε = 0,δ = 0,β = 0) ̸= 0 for i = 1,2, ...,n. According to the implicit
function theorem, λ̄ is analytic near (ĀU )i with respect to ε , δ , β . Therefore, the eigenvalue of Γ can be expanded
as λ = ε[(ĀU )i + ai0(ε,δ )+∑∞

j=1 ai j(ε,δ )β j] with coefficients ai j(ε,δ ) being analytic with respect to ε and δ . And the
eigenvalue of Γ′ denoted by λ ′ can thus be obtained by setting β = 0 as λ ′ = ε[(ĀU )i +ai0(ε,δ )]. Consequently, we have
λ −λ ′ ∼ O(ai1(ε,δ )εβ ) which is of order O(ε2δ ) or higher. For the eigenvalues that solve f2(λ ) = 0, they do not depend
on β as f2(λ ) does not include β . Consequently, these n eigenvalues of Γ and Γ′ are identical.

For eigenvector X of matrix Γ, if we set γ = ε2δ , then Γ is a analytic function of ε , δ , and γ . Accordingly, its eigenvector
X is analytic with respect to ε , δ , γ (Kato, 1966). In particular, we can expand X = ∑∞

k=0 bk(ε,δ )γk with coefficient b(ε,δ )
being analytic. And the eigenvector X ′ of matrix Γ′ can thus be obtained by setting γ = 0 as X ′ = b0(ε,δ ). Therefore, the
difference is X −X ′ ∼ O(b1(ε,δ )γ) which is of order O(ε2δ ) or higher. �
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