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Abstract

The brain must represent the outside world in a way that enables an animal to survive
and thrive. In early sensory systems, populations of neurons have a variety of receptive fields
that are structured to detect features in input statistics. Alongside this structure, experimental
recordings consistently show that these receptive fields also have a great deal of unexplained
variability, which has often been ignored in classical models of sensory neurons. In this work,
we model neuronal receptive fields as random samples from probability distributions in two
sensory modalities, using data from insect mechanosensors and from neurons of mammalian
primary visual cortex (V1). In particular, we build generative receptive field models where our
random distributions are Gaussian processes with covariance functions that match the second-
order statistics of experimental receptive data. We show theoretical results that these random
feature neurons effectively perform randomized wavelet transform on the inputs in the temporal
domain for mechanosensory neurons and spatial domain for V1 neurons. Such a transformation
removes irrelevant components in the inputs, such as high-frequency noise, and boosts the signal.
We demonstrate that these random feature neurons produce better learning from fewer training
samples and with smaller networks in a variety of artificial tasks. The random feature model of
receptive fields provides a unifying, mathematically tractable framework to understand sensory
encodings across both spatial and temporal domains.

Keywords: random features, receptive fields, sensory encoding, Gaussian processes, linear-
nonlinear model, artificial neural networks.

1 Introduction

It has long been argued that the brain uses a large population of neurons to represent the world [94,
30, 79, 86]. In this view, sensory stimuli are encoded by the responses of the population, which
are then used by downstream areas for diverse tasks, including learning, decision-making, and
movement control. These sensory areas have different neurons responding to differing stimuli while
also providing a measure of redundancy. However, we still lack a clear understanding of what
response properties are well-suited for different sensory modalities.

One way to approach sensory encoding is by understanding how a neuron would respond to
arbitrary stimuli. Experimentally, we typically present many stimuli to the animal, measure the
responses of sensory neurons, then attempt to estimate some kind of model for how the neurons
respond to an arbitrary stimulus. A common assumption is that the neuron computes a linear
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filter of the stimulus, which then drives spiking through a nonlinear spike-generating mechanism.
Mathematically, this assumption can be summarized as the number of measured spikes for a stim-
ulus x being equal to σ(wTx) for a weight vector w and nonlinearity σ. Here, the weights w
define the filtering properties of the neuron, also known as its receptive field [82]. This model is
known as a linear-nonlinear (LN) model [16], and it is also the most common form of artificial
neuron in artificial neural networks (ANNs). LN models have been used extensively to describe
the firing of diverse neurons in various sensory modalities of vertebrates and invertebrates. In the
mammalian visual system, LN models have been used to characterize retinal ganglion cells [78],
lateral geniculate neurons [19], and simple cells in primary visual cortex (V1) [44]. They have also
been used to characterize auditory sensory neurons in the avian midbrain [46] and somatosensory
neurons in the cortex [77]. In insects, they have been used to understand the response properties of
visual interneurons [75], mechanosensory neurons involved in proprioception [28, 68], and auditory
neurons during courtship behavior [20].

Given the stimulus presented and neural response data, one can thus estimate the receptive fields
of a population of neurons. Simple visual receptive fields have classically been understood as similar
to wavelets with particular spatial frequency and angular selectivity [44]. In mechanosensory areas,
receptive fields are selective to temporal frequency over a short time window [28]. Commonly,
parametric modeling (Gabor wavelets [86]) or smoothing (regularization, etc. [65]) are used to
produce “clean” receptive fields. Yet, the data alone show noisy receptive fields that are perhaps
best modeled using a random distribution [8]. A key goal of this work is to understand why receptive
fields have the structures that they do and how this structure relates to the kinds of stimuli that
are relevant to the animal.

Modeling the filtering properties of a population of LN neurons as samples from a random
distribution leads to the study of networks with random weights [74, 14, 52]. In machine learning
(ML), such networks are known as random feature networks (RFNs) [11, 40, 70, 53]. The study of
RFNs has rapidly gained popularity in recent years, in large part because it offers a theoretically
tractable way to study the learning properties of ANNs where the weights are tuned using data
[3, 2, 15]. When the RFN contains many neurons, it can approximate functions that live in a well-
understood function space. This function space is called a reproducing kernel Hilbert space (RKHS),
and it depends on the network details, in particular the weight i.e. receptive field distribution [59,
89, 71]. Learning can then be framed as approximating functions in this space from limited data.

Several recent works highlight the RFN theory’s usefulness for understanding learning in neural
systems. Bordelon, Canatar, and Pehlevan, in a series of papers, have shown that neural codes allow
learning from few examples when spectral properties of their second-order statistics aligns with the
spectral properties of the task [9, 10, 13]. When applied to V1, they found that the neural code is
aligned with tasks that depend on low spatial frequency components. Harris constructed an RFN
model of sparse networks found in associative centers like the cerebellum and insect mushroom body
and showed that these areas may behave like additive kernels [35], an architecture also considered
by Hashemi et al. [36]. These classes of kernels are beneficial for learning in high dimensions
because they can learn from fewer examples and remain resilient to input noise or adversarial
perturbation. Xie et al. investigated the relationship between the fraction of active neurons in
a model of the cerebellum—controlled by neuron thresholds—and generalization performance for
learning movement trajectories [90]. In the vast majority of network studies with random weights,
these weights w are drawn from a Gaussian distribution with independent entries. This sampling
is equivalent to a fully unstructured receptive field, which looks like white noise.

Closely related to our work, a previous study of ANNs showed that directly learning structured
receptive fields could improve image classification in deep networks [42]. Their receptive fields were
parametrized as a sum of Gaussian derivatives up to fourth order. This led to better performance
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against rival architectures in low data regimes.
In this paper, we study the effect of having structured yet random receptive fields and how

they lead to informative sensory encodings. Specifically, we consider receptive fields generated
by a Gaussian process (GP), which can be thought of as drawing the weights w from a Gaussian
distribution with a particular covariance matrix. We show that networks with such random weights
project the input to a new basis and filter out particular components. Next, we show that receptive
field datasets from two disparate sensory systems, mechanosensory neurons on insect wings and V1
cortical neurons from mice and monkeys, are well-modeled by GPs with covariance functions that
have wavelet eigenbases. Given the success of modeling these data with the GP, we apply these
weight distributions in RFNs that are used in synthetic learning tasks. We find that these structured
weights improve learning by reducing the number of training examples and the size of the network
needed to learn the task. Thus, structured random weights offer a realistic generative model of the
receptive fields in multiple sensory areas, which we understand as performing a random change of
basis. This change of basis enables the network to represent the most important properties of the
stimulus, which we demonstrate to be useful for learning.

2 Results

We construct a generative model for the receptive fields of sensory neurons and use it for the
weights of an ANN. We refer to such a network as a structured random feature network. In
Section 2.1, we review the basics of random feature networks, the details and rationale behind
our generative model, and the process by which we generate hidden weights. Our main theory
result is that networks with such weights transform the inputs into a new basis and filter out
particular components. In Section 2.2, we show that neurons in two receptive field datasets—
insect mechanosensory neurons and mammalian V1 cortical neurons—are well-described by our
generative model. There is a close resemblance between the the second-order statistics, sampled
receptive fields, and their principal components for both data and model. Finally, in Section 2.3 we
show the performance of structured random feature networks on several synthetic learning tasks.
The hidden weights from our generative model allows the network to learn from fewer training
examples and smaller network sizes.

2.1 Theoretical analysis

We consider receptive fields generated by GPs, which can be thought of as samples from a Gaussian
distribution with a particular covariance matrix, and initialize the hidden weights of RFNs using
these GPs. We show that using a GP causes the network to project the input into a new basis
and filter out particular components. The basis itself is determined by the covariance matrix of
the Gaussian. Such a basis change is useful for removing irrelevant and noisy components from the
input. We use these results to study the space of functions that RFNs containing many neurons
can learn by connecting our construction to the theory of kernel methods.

2.1.1 Random feature networks

We start by introducing the main learning algorithm and the neuronal model of our work, the RFN.
Consider a two-layer, feedforward ANN. Traditionally, all the weights are initialized randomly and
learned through backpropagation by minimizing some loss objective. In sharp contrast, RFNs have
their hidden layer weights sampled randomly from some distribution and fixed. Each hidden unit
computes a random feature of the input, and only the output layer weights are trained (Fig. 1).
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Figure 1: Random feature networks with structured weights. We study random feature
networks as models for learning in sensory regions. In these networks, each neuron’s weight w
is fixed as a random sample from some specified distribution. Only the readout weights β are
trained. In particular, we specify distributions to be Gaussian Processes (GPs) whose covariances
are inspired by biological neurons; thus, each realization of the GP resembles a biological receptive
field. We build GP models of two sensory areas that specialize in processing timeseries and image
inputs. We initialize w from these structured GPs and compare them against initialization from
unstructured white-noise distribution.

Mathematically, we have the hidden layer activations and output given by

h = σ (Wx) , ŷ = βTh+ β0, (1)

where x ∈ Rd is the stimulus, h = [h1, h2, . . . , hm]T ∈ Rm are the hidden neuron responses, and
ŷ ∈ R is the predicted output. We use a rectified linear (ReLU) nonlinearity, σ(x) = max(0, x)
applied entrywise in (1). The hidden layer weights W = [w1,w2, . . . ,wm]T ∈ Rm×d are drawn
randomly and fixed. Only the readout weights β0 and β are trained in RFNs.

In our RFN experiments, we train the readout weights β ∈ Rm and offset β0 ∈ R using a
support vector machine (SVM) classifier with squared hinge loss and `2 penalty with regularization
strength of 1. Our RFNs do not include a threshold for the hidden neurons.

In the vast majority of studies with RFNs, each neuron’s weights w ∈ Rd are initialized i.i.d.
from a spherical Gaussian distribution w ∼ N (0, Id). We will call networks built this way clas-
sical unstructured RFNs (Fig. 1). We propose a variation where hidden weights are initialized
w ∼ N (0,C), where C ∈ Rd×d is a positive semidefinite covariance matrix. We call such networks
structured RFNs (Fig. 1), to mean that the weights are random with a specified covariance.. To
compare unstructured and structured weights on equal footing, we normalize the covariance ma-
trices so that Tr(C) = Tr(Id) = d, which ensures that the mean square amplitude of the weights
E[‖w‖2] = d.

2.1.2 Receptive fields modeled by linear weights

Sensory neurons respond preferentially to specific features of their inputs. This stimulus selectivity
is often summarized as a neuron’s receptive field, which describes how features of how the sensory
space elicits responses when stimulated [82]. Mathematically, receptive fields are modeled as a
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linear filter in the stimulus space. Linear filters are also an integral component of the widely used
LN model of sensory processing [16]. According to this model, the firing rate of a neuron is a
nonlinear function applied to the projection of the stimulus onto the low-dimensional subspace of
the linear filter.

A linear filter model of receptive fields can explain responses of individual neurons to diverse
stimuli. It has been used to describe disparate sensory systems like visual, auditory, and somatosen-
sory systems of diverse species including birds, mammals, and insects [78, 75, 46, 20, 77]. If the
stimuli are uncorrelated, the filters can be estimated by computing the spike triggered average
(STA), the average stimulus that elicited a spike for the neuron. When the stimuli are correlated,
the STA filter is whitened by the inverse of the stimulus covariance matrix [64]. Often these STAs
are denoised by fitting a parametric function to the STA [16], such as Gabor wavelets for simple
cells in V1 [44].

We model the receptive field of a neuron i as its weight vector wi and its nonlinear function as σ.
Instead of fitting a parametric function, we construct covariance functions so that each realization
of the resulting Gaussian process resembles a biological receptive field (Fig. 1).

2.1.3 Structured weights project and filter input into the covariance eigenbasis

We generate network weights from Gaussian processes (GP) whose covariance functions are inspired
by the receptive fields of sensory neurons in the brain. By definition, a GP is a stochastic process
where finite observations follow a Gaussian distribution [72]. We design the weight covariance of
the GP so that our weights are compatible with our inputs, which is to say, the GP covariance
function reflects the statistical regularities within the sensory inputs to the network. We find that
networks with such weights project inputs into a new basis and filter out irrelevant components. In
Section 2.3, we will see that this adds an inductive bias to classical RFNs and improves learning.

We view our weight vector w as the finite-dimensional discretization of a continuous function
w(t), where the continuous function is a sample from a GP. The continuous function has domain
T , a compact subset of RD, and we assume that T is discretized using a grid of d equally spaced
points. Let the input be a real-valued function x(t) over the same domain T , which could represent
a finite timeseries (D = 1), an image of luminance on the retina (D = 2), or more complicated
spatiotemporal sets like a movie (D = 3). In the continuous setting, the d-dimensional `2 inner
product wTx =

∑d
i=1wixi gets replaced by the L2(T ) inner product 〈w, x〉 =

∫
t∈T w(t)x(t)dt.

Every GP is fully specified by its mean and covariance function C(t, t′). We will always assume
that the mean is zero and study different covariance functions. By the Kosambi-Karhunen–Loéve
theorem [48], each realization of a zero-mean GP has a random series representation

w(t) =
∞∑
i=1

ziλiφi(t), (2)

in terms of standard Gaussian random variables zi ∼ N (0, 1), functions φi(t), and weights λi ≥ 0.
The pairs (λ2

i , φi) are eigenvalue, eigenfunction pairs of the covariance operator C : L2(T )→ L2(T ),

(Cf)(t) =

∫
t∈T

C(t, t′)f(t′)dt′,

which is the continuous analog of the covariance matrix C. If C(t, t′) is positive definite, as opposed
to just semidefinite, all λ2

i > 0 and these eigenfunctions φi form a complete basis for L2(T ). Using
(2), the inner product between a stimulus and a neuron’s weights is

〈w, x〉 =

〈 ∞∑
i=1

ziλiφi, x

〉
=
∞∑
i=1

ziλi〈φi, x〉 =
∞∑
i=1

zix̃i, where x̃i = λi〈φi, x〉. (3)
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Equation (3) shows that the structured weights compute a projection of the input x onto each
eigenfunction 〈φi, x〉 and reweight or filter by the eigenvalue λi before taking the `2 inner product
with the random Gaussian weights zi.

It is illuminating to see what these continuous equations look like in the d-dimensional discrete
setting. Samples from the finite-dimensional GP are used as the hidden weights in RFNs, w ∼
N (0,C). First, the GP series representation (2) becomes w = ΦΛz, where Λ and Φ are matrices
of eigenvalues and eigenvectors, and z ∼ N (0, Id) is a Gaussian random vector. By the definition of
the covariance matrix, C = E[wwT ], which is equal to ΦΛ2ΦT after a few steps of linear algebra.
Finally, (3) is analogous to wTx = zTΛΦTx. Since Φ is an orthogonal matrix, ΦTx is equivalent
to a change of basis, and the diagonal matrix Λ shrinks or expands certain directions to perform
filtering. This can be summarized in the following theorem:

Theorem 1 (Basis change formula) Assume w ∼ N (0,C) with C = ΦΛ2ΦT its eigenvalue
decomposition. For x ∈ Rd, define

x̃ := ΛΦTx. (4)

Then wTx = zT x̃ for z ∼ N (0, Id).

Theorem 1 says that projecting an input onto a structured weight vector is the same as first
filtering that input in the GP eigenbasis and doing a random projection onto a spherical random
Gaussian. The form of the GP eigenbasis is determined by the choice of the covariance function.
If the covariance function is compatible with the input structure, the hidden weights filter out any
irrelevant features or noise in the stimuli while amplifying the descriptive features. This inductive
bias facilitates inference on the stimuli by any downstream predictor.

2.1.4 Function spaces for wide networks with structured receptive fields

RFNs are intimately connected to a popular class of supervised learning algorithms called kernel
methods. As the network width grows, the inner product between the feature representations of
two inputs x,x′ converges to a reproducing kernel

k(x,x′) := Ew

[
h(x)h(x′)

]
. (5)

The kernel defines a reproducing kernel Hilbert space (RKHS) of functions. The explicit form of
the kernels corresponding to classical RFNs are known for several non-linear activation functions.
For example, with the ReLU nonlinearity, no threshold, and unstructured Gaussian weights w ∼
N (0, Id), kReLU(x,x′) = 1

π‖x‖‖x′‖(sin θ + (π − θ) cos θ) where θ = arccos
(

xTx′

‖x‖‖x′‖

)
[17].

We derive the kernel induced by our RFNs with hidden weights initialized from GPs. In this
section we work in the discrete setting, but the continuous version is analogous. By definition (5),
network equation (1), and basis change Theorem 1, the kernel for structured features

kstruct(x,x
′) = Ew∼N (0,C)

[
h(x)h(x′)

]
= Ew∼N (0,C)

[
σ(wTx)σ(wTx′)

]
= Ez∼N (0,Id)

[
σ
(
zT x̃

)
σ
(
zT x̃′

)]
:= kunstruct(x̃, x̃

′). (6)

Thus, the induced kernels from structured weights can be found in terms of unstructured weight
kernels acting on the transformed inputs x̃ and x̃′. Taking ReLU as the nonlinearity for example,
we get that kstruct(x,x

′) = kReLU(x̃, x̃′).
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Every RKHS H comes with an inner product 〈·, ·〉H and norm ‖ · ‖H =
√
〈·, ·〉H. The norm

and inner product can be expressed in terms of eigenvalues and eigenfunctions of the kernel itself,
analogous to the eigendecomposition of the covariance function of the GP weights. Although it is
beyond the scope of our paper to explain the theory in detail, there are well-established results
showing that functions with small H-norm are easier to learn than those with larger norm [81]. In
ridge regression, this effect is again equivalent to projection and filtering in the kernel eigenbasis,
i.e. linear filtering in function space. Finally, end-to-end trained networks where the weights W
are optimized may be studied with the related neural tangent kernel (NTK) when the step size is
small [43]. The basis change formula, Theorem 1, and (6) give us a way to understand the RKHS
of the stuctured network in terms of an unstructured network’s RKHS acting on the transformed
inputs x̃.

2.2 Examples of random yet structured receptive fields

Our goal is to model the weights of artificial neurons in a way that is inspired by biological neurons’
receptive fields. Structured RFNs sample hidden weights from GPs with structured covariance, so
we construct covariance functions that make the generated weights resemble neuronal receptive
fields. We start with a toy example of a stationary GP with well-understood Fourier eigenbasis
and show how the receptive fields generated from this GP are selective to frequencies in timeseries
signals. Then, we construct locally stationary covariance models of the of insect mechanosensory
and V1 neuron receptive fields. These models are shown to be a good match for experimental data.

2.2.1 Warm-up: frequency selectivity from stationary covariance

To illustrate some results from our theoretical analysis, we start with a toy example of temporal
receptive fields that are selective to particular frequencies. This example may be familiar to readers
comfortable with Fourier series and basic signal processing. Let the input be a finite continuous
timeseries x(t) over the interval T = [0, L]. We use the covariance function

C(t, t′) =

stationary process︷ ︸︸ ︷
∞∑
k=0

λ2
k cos

(
ωk(t− t′)

)
, (7)

where ωk = 2πk/L is the kth natural frequency and λ2
k are the weight coefficients. The covariance

function (7) is stationary, which means that it only depends on the difference between the timepoints
t− t′. Applying the compound angle formula, we get

C(t, t′) =

∞∑
k=0

λ2
k

(
cos(ωkt) cos(ωkt

′) + sin(ωkt) sin(ωkt
′)
)
. (8)

Since the sinusoidal functions cos(ωkt) and sin(ωkt) in fact form an orthonormal basis for L2(T ),
(8) is the eigendecomposition of the covariance, where the eigenfunctions are sines and cosines with
eigenvalues λ2

k. From (2), we know that structured weights with this covariance form a random
series:

w(t) =
∞∑
k=0

zkλk (cos(ωkt) + sin(ωkt)) , (9)

where each zk ∼ N (0, 1). Thus, the receptive fields are made up of sinusoids weighted by λk and
the Gaussian variable zk.
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Suppose we want receptive fields that only retain specific frequency information of the signal
and filter out the rest. Take λk = 0 for any k where ωk < flo or ωk > fhi. We call this a bandlimited
spectrum with passband [flo, fhi] and bandwidth flo−fhi. As the bandwidth increases, the receptive
fields become less smooth since they are made up of a wider range of frequencies. The smoothness
is also controlled by the overall magnitude of the nonzero eigenvalues.

When these receptive fields act on input signals x(t), they implicitly transform the inputs into
the Fourier basis and filter frequencies based on the magnitude of λk. In a bandlimited setting,
any frequencies outside the passband are filtered out, which makes the receptive fields selective to
a particular range of frequencies and ignore others. On the other hand, classical random features
weight all frequencies equally, even though in natural settings high frequency signals are the most
corrupted by noise.

2.2.2 Insect mechanosensors

We next consider a particular biological sensor that is sensitive to the time-history of forces. Cam-
paniform sensilla (CS) are dome-shaped mechanoreceptors that detect local stress and strain on the
insect exoskeleton [22]. They are embedded in the cuticle and deformation of the cuticle through
bending or torsion induces depolarizing currents in the CS by opening mechanosensitive ion chan-
nels. The CS encode proprioceptive information useful for body state estimation and movement
control during diverse tasks like walking, kicking, jumping, and flying [22].

We will model the receptive fields of CS that are believed to be critical for flight control, namely
the ones found at the base of the halteres [93] and on the wings [68] (Fig. 2A). Halteres and wings
flap rhythmically during flight, and rotations of the insect’s body induce torsional forces that can
be felt on these active sensory structures. The CS detect these small strain forces, thereby encoding
angular velocity of the insect body [93]. Experimental results show haltere and wing CS are selective
to a broad range of oscillatory frequencies [27, 68], with STAs that are smooth, oscillatory, selective
to frequency, and decay over time [28] (Fig. 2B).

We model these temporal receptive fields with a locally stationary GP [32] with bandlimited
spectrum (Fig. 2C). The inputs to the CS are modeled as a finite continuous timeseries x(t) over
the finite interval T = [0, L]. The neuron weights are generated from a covariance function

C(t, t′) =

localized︷ ︸︸ ︷
exp

(
−(t+ t′)

γ

) stationary process︷ ︸︸ ︷
∞∑
k=0

λ2
k cos

(
ωk(t− t′)

)
, λk =

bandlimited, flat-power spectrum︷ ︸︸ ︷{
1 flo ≤ ωk ≤ fhi

0 otherwise
, (10)

where ωk = 2πk/L is the kth natural frequency. As in Section 2.2.1, the frequency selectivity of
their weights is accounted for by the parameters flo and fhi. As the bandwidth fhi − flo increases,
the receptive fields are built out of a wider selection of frequencies. This makes the receptive fields
less smooth (Fig. 2D). Each field is localized to near t = 0, and its decay with t is determined by
the parameter γ. As γ increases, the receptive field is selective to larger time windows.

The eigenbasis of the covariance function (10) is similar to a Fourier eigenbasis modulated by a
decaying exponential. The eigenbasis is an orthonormal basis for the span of λke

−t/γ cos(ωkt) and
λke
−t/γ sin(ωkt), which are a non-orthogonal set of functions in L2(T ). The hidden weights trans-

form timeseries inputs into this eigenbasis and discard components outside the passband frequencies
[flo, fhi].

We fit the covariance model to receptive field data from 95 CS neurons from wings of the
hawkmoth Manduca sexta (data from [68]). Briefly, CS receptive fields were estimated as the spike-
triggered average (STA) of experimental mechanical stimuli of the wings, where the stimuli were
generated as bandpassed white noise (2–300 Hz).
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Figure 2: Random receptive field model of insect mechanosensors. (A) Diagram of the the
cranefly, Tipula hespera. Locations of the mechanosensors, campaniform sensilla, are marked in blue
on the wings and halteres. (B) Two receptive fields of campaniform sensilla are shown in blue. They
are smooth, oscillatory, and decay over time. We model them as random samples from distributions
parameterized by frequency and decay parameters. Data are from the hawkmoth [68]; cranefly
sensilla have similar responses [28]. (C) Two random samples from the model distribution are
shown in red. (D) The smoothness of the receptive fields is controlled by the frequency parameter.
The decay parameter controls the rate of decay from the origin (not shown).

To characterize the receptive fields of this population of CS neurons, we compute the data
covariance matrix Cdata by taking the inner product between the centered receptive fields. We
normalize the trace to be the dimension of each receptive field (number of samples), which in this
case is 40 kHz × 40 ms = 1600 samples. This normalization sets the overall scale of the covariance
matrix. The data covariance matrix shows a tridiagonal structure (Fig. 3A). The main diagonal
is positive while the off diagonals are negative. All diagonals decay away from the top left of the
matrix.

To fit the covariance model to the data, we optimize the parameters (see Appendix A.1) flo, fhi,
and γ, finding flo = 75 Hz, fhi = 200 Hz, and γ = 12.17 ms best fit the sensilla data. The resulting
model covariance matrix (Fig. 3B) matches the data covariance matrix (Fig. 3A) remarkably well.
Examples of biological receptive fields and random samples from this fitted covariance model are
shown in the Appendix (Fig. 17). To simulate the effect of a finite number of neurons, we generate
95 weight vectors (equal to the number of neurons recorded) and recompute the model covariance
matrix (Fig. 3C). We call this the finite neuron model covariance matrix Cfinite, and it shows
the bump and blob-like structures evident in Cdata but not in Cmodel. This result suggests that
these bumpy structures can be attributed to having a small number of recorded neurons. We
hypothesize that these effects would disappear with a larger dataset and Cdata would more closely
resemble Cmodel.

Comparing the eigenvectors and eigenvalues of the data and model covariance matrices, we find
that the spectral properties of both Cmodel and Cfinite are similar to that of Cdata. The eigenvalue
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Figure 3: Spectral properties of mechanosensory RFs and our model are similar. We
compare the covariance matrices generated from (A) receptive fields of 95 mechanosensors from [68],
(B) the model (10), and (C) 95 random samples from the same model. All covariance matrices show
a tri-diagonal structure that decays away from the origin. (D) The first five principal components
of all three covariance matrices are similar and explain 90% of the variance in the RF data. (E)
The leading eigenvalue spectra of the data and models show similar behavior.

curves of the models match that of the data quite well (Fig. 3E); these curves are directly comparable
because each covariance is normalized by its trace, which makes the sum of the eigenvalues unity.
Further, all of the data and the model covariance matrices are low-dimensional. The first 10 data
eigenvectors explain 97% of the variance, and the top 5 explain 90%. The top 5 eigenvectors of the
model and its finite sample match that of the data quite well (Fig. 3D).

2.2.3 Primary visual cortex

We now turn to visually driven neurons from the mammalian primary cortex. Primary visual cortex
(V1) is the earliest cortical area for processing visual information (Fig. 4A). The neurons in V1 can
detect small changes in visual features like orientations, spatial frequencies, contrast, and size.

Here, we model the receptive fields of simple cells in V1, which have clear excitatory and
inhibitory regions such that light shone on the excitatory regions increase the cell’s response and
vice-versa (Fig. 4B). The shape of the regions determines the orientation selectivity, while their
widths determine the frequency selectivity. The receptive fields are centered to a location in the
visual field and decay away from it. They integrate visual stimuli within a small region of this
center [39]. Gabor functions are widely used as a mathematical model of the receptive fields of
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Figure 4: Random receptive field model of Primary Visual Cortex (V1). (A) Diagram of
the mouse brain with V1 shown in blue. (B) Receptive fields of two mouse V1 neurons calculated
from their response to white noise stimuli. The fields are localized to a region in a visual field
and show “on” and “off” regions. (C) Random samples from the model (11) distribution. (D)
Increasing the receptive field size parameter in our model leads to larger fields. (E) Increasing the
model spatial frequency parameter leads to more variable fields.

simple cells [44].
We model these receptive fields using another locally stationary GP [32] (Fig. 4C). Consider

the inputs to the cortical cells to be a continuous two-dimensional image x(t), where the domain
T = [0, L]× [0, L′] and x : T → R. Since the image is real-valued, x(t) is the grayscale contrast or
single color channel pixel values. The neuron weights are then generated from a covariance function
of the following form:

C(t, t′) =

smooth receptive fields︷ ︸︸ ︷
exp

(
−‖t− t

′‖2
2f2

)
·

localized to a center c︷ ︸︸ ︷
exp

(
− ‖t− c‖

2 + ‖t′ − c‖2
2s2

)
. (11)

The receptive field center is defined by c, and the size of the receptive field is determined by the
parameter s. As s increases, the receptive field extends farther from the center c (Fig. 4D). Spatial
frequency selectivity is accounted for by the bandwidth parameter f . As f decreases, the spatial
frequency of the receptive field goes up, making the weights less smooth (Fig. 4E).

The eigendecomposition of the covariance function (11) leads to an orthonormal basis of single
scale Hermite wavelets [55, 56]. When c = 0, the wavelet eigenfunctions are Hermite polynomials
modulated by a decaying Gaussian:

φk(t) ∝
D∏
i=1

e−c1ti
2
Hki(c2ti) and λ2

k ∝
D∏
i=1

cki3 , (12)

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.09.459651doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459651
http://creativecommons.org/licenses/by/4.0/


where Hk is the kth Hermite polynomial; eigenfunctions for nonzero centers c are just shifted
versions of (12). The detailed derivation and values of the constants c1, c2, c3 and normalization
are in Appendix A.2.

We use (11) to model receptive field data from 8,358 V1 neurons recorded with calcium imaging
from transgenic mice expressing GCaMP6s; the mice were headfixed and running on an air-floating
ball. We presented 24,357 unique white noise images of 14×36 pixels using the Psychtoolbox
[45], where the pixels were white or black with equal probability. Images were upsampled to the
resolution of the screens via bilinear interpolation. The stimulus was corrected for eye-movements
online using custom code. The responses of 45,026 cells were collected using a two-photon mesoscope
[84] and preprocessed using Suite2p [63]. Receptive fields were calculated from the white noise
images and the deconvolved calcium responses of the cells using the STA. For the covariance
analysis, we picked cells above the signal-to-noise (SNR) threshold of 0.4; this gave us 8,358 cells.
The SNR was calculated from a smaller set of 2,435 images that were presented twice using the
method from [86]. As a preprocessing step, we moved the center of mass of every receptive field to
the center of the visual field.

We compute the data covariance matrix Cdata by taking the inner product between the receptive
fields. We normalize the trace to be the dimension of each receptive field, which in this case is
14 pixels × 36 pixels = 504 pixels2. The data covariance matrix resembles a tridiagonal matrix.
However, the diagonals are non-zero only at equally spaced segments. Additionally, their values
decay away from the center of the matrix. We show Cdata zoomed in at the non-zero region
around the center of the matrix (Fig. 5A). The full covariance matrix is shown in the Appendix
A.7 (Fig. 15).

In the covariance model, the number of off-diagonals, the center, the rate of their decay away
from the center are determined by the parameters f , s and c respectively. When the frequency
parameter f increases, the number of off-diagonals increases. Pixels in the generated weights
become more correlated and the weights become spatially smoother. When the size parameter s
increases, the diagonals decay slower from the center c, increasing correlations with the center pixel
and leading the significant weights to occupy more of the visual field.

We again optimize the parameters to fit the data (Appendix A.1.2), finding s = 1.87 and f =
0.70 pixels. We do not need to optimize over the center parameter c, since we preprocess the data
so that all receptive fields are centered at c = (7, 18), the center of the 14×36 grid. The resulting
model covariance matrix (Fig. 5B) and the data covariance matrix (Fig. 5A) match remarkably
well. Examples of biological receptive fields and random samples from this fitted covariance model
are shown in Fig. 16 in the Appendix. To simulate the effect of a finite number of neurons, we
generate 8,358 weights, equal to the number of neurons in our data, to compute Cfinite shown in
Fig. 5C. This finite matrix Cfinite looks even more like Cdata, and it shows that some of the negative
covariances far from center result from finite sample size but not all.

Similar spectral properties are evident in the eigenvectors and eigenvalues of Cmodel, Cfinite,
Cdata, and the analytical forms derived in (12) (Fig. 5D,E). As in Section 2.2.2, the covariances are
normalized to have unit trace. Note that the analytical eigenfunctions are shown on a finer grid than
the model and data because the analysis was performed in continuous space; differences between
analytical and model results are due to discretization. Examining the eigenvectors (Fig. 5D), we
also see a good match, although there are some rotations and differences in ordering. These 10
eigenvectors explain 68% of the variance in the receptive field data. For reference, the top 80
eigenvectors explain 86% of the variance in the data and all of the variance in the model. The
eigenvalue curves of both the models and the analytical forms match that of the data (Fig. 5E)
reasonably well, although not as well as for the mechanosensors. In Appendix A.7, we repeat
this analysis for receptive fields measured with different stimulus sets in the mouse and different
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Figure 5: Spectral properties of V1 RFs and our model are similar. We compare the
covariance matrices generated from the (A) receptive fields of 8,358 mouse V1 neurons, (B) the GP
model (11), and (C) 8,358 random samples from the model. These resemble a tri-diagonal matrix
whose diagonals are non-zero at equally-spaced segments. (D) The leading 10 eigevectors of the
data and model covariance matrices show similar structure and explain 68% of the variance in the
data. Analytical Hermite wavelet eigenfunctions are in the last row and differ from the model due
to discretization (both cases) and finite sampling (8,358 neurons only). (E) The eigenspectrum of
the model matches well with the data. The staircase pattern in the model comes from repeated
eigenvalues at each frequency.

experimental dataset from non-human primate V1. Our findings are consistent with the results
shown above.

2.3 Advantages of structured random weights for artificial learning tasks

Our hypothesis is that neuronal inductive bias from structured receptive fields allows networks
to learn with fewer neurons, training examples, and steps of gradient descent. To examine this
hypothesis, we compare the performance of structured receptive fields against classical ones on
several classification tasks. We find that, for most artificial learning tasks, structured random
networks learn more accurately from smaller network sizes, fewer training examples, and gradient
steps.

2.3.1 Frequency detection

CS naturally encode the time-history of strain forces acting on the insect body and sensors inspired
by their temporal filtering properties have been shown to accurately classify spatiotemporal data
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Figure 6: Random mechanosensory weights enable learning with fewer neurons in time-
series classification tasks. We show the test error of random feature networks with both
mechanosensory and classical white-noise weights against the number of neurons in their hidden
layer. For every hidden layer width, we generate five random networks and average their test error.
In the error curves, the solid lines show the average test error while the shaded regions represent the
standard error across five generations of the random network. The top row shows the timeseries
tasks that the networks are tested on. (A, top) In the frequency detection task, a f1 = 50 Hz
frequency signal (purple) is separated from white noise (black). (B, top) In the frequency XOR
task, f1 = 50 Hz (purple) and f2 = 80 Hz (light purple) signals are separated from white noise
(black) and mixtures of 50 Hz and 80 Hz (gray). When their covariance parameters are tuned
properly, mechanosensor-inspired networks achieve lower error using fewer hidden neurons on both
frequency detection (A, bottom) and frequency XOR (B, bottom) tasks. However, the performance
of bio-inspired networks suffer if their weights are incompatible with the task.

[58]. Inspired by this result, we test sensilla-inspired mechanosensory receptive fields from Sec-
tion 2.2.2 on a timeseries classification task (Fig. 6A, top). Each example presented to the network
is a 100 ms timeseries sampled at 2 kHz so that d = 200, and the goal is to detect whether or not
each example contains a sinusoidal signal. The positive examples are sinusoidal signals with f1 = 50
Hz and corrupted by noise so that their SNR = 1.76 (2.46 dB). The negative examples are Gaussian
white noise with matched amplitude to the positive examples. Note that this frequency detection
task is not linearly separable because of the random phases in positive and negative examples. See
Section A.4 for additional details including the definition of SNR and how cross-validation was used
to find the optimal parameters flo = 10 Hz, fhi = 60 Hz, and γ = 50 ms.

For the same number of hidden neurons, the structured RFN significantly outperforms a classical
RFN. We show test performance using these tuned parameters in Fig. 6A. Even in this noisy task,
it achieves 1% test error using only 25 hidden neurons. Meanwhile, the classical network takes 300
neurons to achieve similar error.

Predictably, the performance suffers when the weights are incompatible with the task. We show

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.09.459651doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459651
http://creativecommons.org/licenses/by/4.0/


results when flo = 10 Hz and fhi = 40 Hz and the same γ (Fig. 6A). The incompatible RFN
performs better than chance (50% error) but much worse than the classical RFN. It takes 300
neurons just to achieve 19.9% test error. The test error does not decrease below this level even
with additional hidden neurons.

2.3.2 Frequency XOR task

To challenge the mechanosensor-inspired networks on a more difficult task, we build a frequency
Exclusive-OR (XOR) problem (Fig. 6B, top). XOR is a binary function which returns true if
and only if the both inputs are different, otherwise it returns false. XOR is a classical example
of a function that is not linearly separable and thus harder to learn. Our inputs are again 100
ms timeseries sampled at 2 kHz. The inputs either contain a pure frequency of f1 = 50 Hz or
f2 = 80 Hz, mixed frequency signals with both f1 and f2, or white noise. In both the pure and
mixed frequency cases, we add noise so that the SNR = 1.76. See A.4 for details. The goal of the
task is to output true if the input contains either pure tone and false if the input contains mixed
frequencies or is white noise.

We tune the GP covariance parameters flo, fhi, and γ from (10) using cross-validation. The
cross validation procedure and algorithmic details are identical to that of the frequency detection
task in Section 2.3.1. Using cross validation, we find the optimal parameters to be flo = 50 Hz,
fhi = 90 Hz, and γ = 40 ms. For incompatible weights, we take flo = 10 Hz, fhi = 60 Hz, and the
same γ.

The structured RFN significantly outperform classical RFN for the same number of hidden
neurons. We show network performance using these parameters in Fig. 6B. Classification error of
1% can be achieved with 25 hidden neurons. In sharp contrast, the classical RFN requires 300
hidden neurons just to achieve 8.1% error. With incompatible weights, the network needs 300
neurons to achieve just 25.5% test error and does not improve with larger network sizes. Out of
the four input subclasses, it consistently fails to classify pure 80 Hz sinusoidal signals which are
outside its passband.

2.3.3 Image classification

We next test the V1-inspired receptive fields from Section 2.2.3 on two standard digit classification
tasks, MNIST [50] and KMNIST [18]. The MNIST and KMNIST datasets each contain 70,000
images of handwritten digits. In MNIST, these are the Arabic numerals 0–9, whereas KMNIST
has 10 Japanese hiragana phonetic characters. Both datasets come split into 60,000 training and
10,000 test examples. With 10 classes, there are 6,000 training examples per class. Every example
is a 28×28 grayscale image with centered characters.

Each hidden weight has its center c chosen uniformly at random from all pixels. This ensures
that the network’s weights uniformly cover the image space and in fact means that the network
can represent any sum of locally-smooth functions (see Section A.3). We use a network with
1,000 hidden neurons and tune the GP covariance parameters s and f from (11) using 3-fold cross
validation on the MNIST training set. Each parameter ranges from 1 to 20 pixels, and the optimal
parameters are found with a grid search. We find the optimal parameters to be s = 5 pixels and
f = 2 pixels. We then refit the optimal model using the entire training set. The parameters from
MNIST were used on the KMNIST task without additional tuning.

The V1-inspired achieves much lower average classification error as compared to the classical
RFN for the same number of hidden neurons. We show learning performance using these parameters
on the MNIST task in Fig. 7A. To achieve 6% error on the MNIST task requires 100 neurons
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Figure 7: Random V1 weights enable learning with fewer neurons and fewer examples
on digit classification tasks. We show the average test error of random feature networks with
both V1 and classical white-noise weights against the number of neurons in their hidden layer. For
every hidden layer width, we generate five random networks and average their test error. The solid
lines show the average test error while the shaded regions represent the standard error across five
generations of the random network. The top row shows the network’s test error on (A) MNIST and
(B) KMNIST tasks. When their covariance parameters are tuned properly, V1-inspired networks
achieve lower error using fewer hidden neurons on both tasks. The network performance deteriorates
when the weights are incompatible to the task. (C) MNIST and (D) KMNIST with 5 samples per
class. The V1 network still achieves lower error on these fewshot tasks when the parameters are
tuned properly.

versus 1,000 neurons for the classical RFN, and the structured RFN achieves 2.5% error with 1,000
neurons. Qualitatively similar results hold for the KMNIST task (Fig. 7B), although the overall
errors are larger, reflecting the harder task. To achieve 28% error on KMNIST requires 100 neurons
versus 1,000 neurons for the classical RFN, and the structured RFN achieves 13% error with 1,000
neurons.

Again, network performance suffers when GP covariance parameters do not match the task.
This happens if the size parameter s is smaller than the stroke width or spatial scale f doesn’t
match the stroke variations in the character. Taking the incompatible parameters s = 0.5 and
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f = 0.5 (Fig. 7A, B), the structured weights performs worse than the classical RFN in both tasks.
With 1,000 hidden neurons, it achieves the relatively poor test errors of 8% on MNIST (Fig. 7A)
and 33% on KMNIST (Fig. 7B).

2.3.4 Structured weights improve generalization with limited data

Alongside learning with fewer hidden neurons, V1 structured RFNs also learn more accurately from
fewer examples. We test few-shot learning using the image classification datasets from Section 2.3.3.
The training examples are reduced from 60,000 to 50, or only 5 training examples per class. The
test set and GP parameters remain the same.

Structured encodings allow learning with fewer samples than unstructured encodings. We show
these few-shot learning results in Fig. 7C and D. The networks’ performance saturate past a few
hundred hidden neurons. For MNIST, the lowest error achieved by V1 structured RFN is 27%
versus 33% for the classical RFN and 37% using incompatible weights (Fig. 7C). The structured
network acheives 61% error using structured features on the KMNIST task, as opposed to 66% for
the classical RFN and 67% using incompatible weights (Fig. 7D).

2.3.5 Networks train faster when initialized with structured weights

Now we study the effect of structured weights as an initialization strategy for fully-trained neural
networks where all weights in the network vary. We hypothesized that structured initialization
allows networks to learn faster, i.e. that the training loss and test error would decrease faster than
with unstructured weights. We have shown that the performance of RFNs improves with biologically
inspired weight sampling. However, in RFNs (1) only the readout weights β are modified with
training, and the hidden weights W are frozen at their initial value.

We compare the biologically-motivated initialization with a classical initialization where the
variance is inversely proportional to the number of hidden neurons, wunstruct ∼ N (0, 2

dI). This
initialization is widely known as the “Kaiming He normal” scheme and is thought to stabilize
training dynamics by controlling the magnitude of the gradients [38]. The classical approach ensures
that Tr(2

dI) = 2, so for fair comparison we scale our structured weight covariance matrix to have
Tr(C) = 2. In our studies with RFNs the trace is equal to d, but this weight scale can be absorbed
into the readout weights β due to the homogeneity of the ReLU.

We again compare structured and unstructured weights on MNIST and KMNIST tasks, common
benchmarks for fully-trained networks. The architecture is a single hidden layer feedforward neural
network (Fig. 1) with 1,000 hidden neurons. The cross-entropy loss over the training sets are
minimized using simple gradient descent (GD) for 3,000 epochs with a learning rate of 0.1. All
other parameters are the same as in Section 2.3.3.

In both the MNIST and KMNIST tasks, the V1-initialized network minimizes the loss function
faster than the classically initialized network. For the MNIST task, the V1 network achieves a loss
value of 0.07 after 3,000 epochs compared to 0.1 for the other network (Fig. 8A). We see qualitatively
similar results for the KMNIST task. At the end of training, the V1-inspired network’s loss is 0.09,
while the classically initialized network only reaches 0.14 (Fig. 8B). We find that the the V1-
initialized network performs no better than classical initialization when the covariance parameters
do not match the task. With incompatible parameters, the V1-initialized network achieves a loss
value of 0.12 on MNIST and 0.17 on KMNIST.

Not only does it minimize the training loss faster, the V1-initialized network also generalizes
well and achieves a lower test error at the end of training. For MNIST, it achieves 2% test error
compared to 3.5% error for the classically initialized network, and 3.7% using incompatible weights
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Figure 8: V1 weight initialization for fully-trained networks enables faster training on
digit classification tasks. We show the average test error and the train loss of fully-trained neural
networks against the number of training epochs. The hidden layer of each network contains 1,000
neurons. We generate five random networks and average their performance. The solid lines show
the average performance metric across five random networks while the shaded regions represent the
standard error. The top row shows the network’s training loss on (A) MNIST and (B) KMNIST
tasks. The bottom row shows the corresponding test error on (C) MNIST and (D) KMNIST
tasks. When their covariance parameters are tuned properly, V1-initialized networks achieve lower
training loss and test error under fewer epochs on both MNIST and KMNIST tasks. The network
performance is no better than unstructured initialization when the weights are incompatible with
the task.

(Fig. 8C). For KMNIST, we see 10% error compared to 14% error with classical initalization and
15% using incompatible weights (Fig. 8D).

We see similar results across diverse hidden layer widths and learning rates (Fig. 18–21), with the
benefits most evident for wider networks and smaller learning rates. Furthermore, the structured
weights show similar results when trained for 10,000 epochs (rate 0.1; 1,000 neurons; not shown)
and with other optimizers like minibatch Stochastic Gradient Descent (SGD) and ADAM (batch
size 256, rate 0.1; 1,000 neurons; not shown). Structured initialization facilitates learning across a
wide range of networks.
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However, the improvement is not universal: no significant benefit was found by initializing the
early convolutional layers of the deep network AlexNet [49] and applying it to the ImageNet dataset
[76], as shown in Appendix A.9. The large amounts of training data and the fact that only a small
fraction of the network was initialized with structured weights could explain this null result.

2.3.6 Improving representation with structured random weights

We have shown how structured receptive field weights can improve the performance of RFNs and
fully-trained networks on a number of supervised learning tasks. As long as the receptive fields
are compatible with the task itself, then performance gains over unstructured features are possible.
If they are incompatible, then the networks performs no better or even worse than using classical
unstructured weights.

These results can be understood with the theoretical framework of Section 2.1. Structured
weights effectively cause the input x to undergo a linear transformation into a new representation
x̃ following Theorem 1. In all of our examples, this new representation is bandlimited due to how
we design the covariance function.1 By moving to a bandlimited representation, we both filter
out noise—high-frequency components—and reduce dimensionality—coordinates in x̃ outside the
passband are zero. In general, noise and dimensionality both make learning harder.

It is easiest to understand these effects in the frequency detection task. For simplicity, assume
we are using the stationary features of our warm-up Section 2.2.1 to do frequency detection. In
this task, all of the signal power is contained in the f1 = 50 Hz frequency, and everything else is
due to noise. If the weights are compatible with the task, this means that w is a sum of sines
and cosines of frequencies ωk in some passband which includes f1. The narrower we make this
bandwidth while still retaining the signal, the higher the SNR of x̃ becomes since more noise is
filtered out (Appendix A.5).

3 Discussion

In this paper, we describe a random generative model for the receptive fields of sensory neurons.
Specifically, we model each receptive field as a random filter sampled from a Gaussian process
(GP) with covariance structure matched to the statistics of experimental neural data. We show
that two kinds of sensory neurons—insect mechanosensory and simple cells in mammalian V1—
have receptive fields that are well-described by GPs. In particular, the generated receptive fields,
their second-order statistics, and their principal components match with receptive field data. The-
oretically, we show that individual neurons perform a randomized transformation and filtering on
the inputs. This connection provides a framework for sensory neurons to compute input transfor-
mations like Fourier and wavelet transforms in a biologically plausible way.

Our numerical results using these structured random receptive fields show that they offer better
learning performance than unstructured receptive fields on several benchmarks. The structured
networks achieve higher test performance with fewer neurons and fewer training examples, unless
the frequency content of their receptive fields is incompatible with the task. In networks that are
fully trained, initializing with structured weights leads to better network performance (as measured
by training loss and generalization) in fewer iterations of gradient descent. Structured random
features may be understood theoretically as transforming inputs into an informative basis that
retains the important information in the stimulus while filtering away irrelevant signals.

1The V1 weights have all eigenvalues nonzero, but the spectrum decays exponentially, so it acts as a lowpass filter.
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3.1 Modeling other sensory neurons and modalities

The random feature formulation is a natural extension of the traditional linear-nonlinear (LN)
neuron model. This approach may be applied to other brain regions where LN models are successful,
for instance sensory areas with primarily feedforward connectivity like somatosensory and auditory
regions. The neurons in auditory and somatosensory systems are selective to both spatial and
temporal structures in their stimuli [46, 77, 69], and spatial structure emerges in networks trained
on artificial tactile tasks [96]. Their receptive fields could be modeled by GPs with spatiotemporal
covariance functions [91]; these could be useful for artificial tasks with spatiotemporal stimuli such
as movies and multivariate timeseries. Neurons with localized but random temporal responses were
found to be compatible with manifold coding in a decision-making task [47].

3.2 Receptive fields in development

Our generative model offers new directions to explore the biological basis and computational prin-
ciples behind receptive fields. Development lays a basic architecture that is conserved from animal
to animal [87, 85], yet the details of every neural connection cannot be specified [95], leading to
some amount of inevitable randomness at least initially [14]. If receptive fields are random with
constrained covariance, it is natural to ask how biology implements this. Unsupervised Hebbian
dynamics with local inhibition can allow networks to learn principal components of their input
[60, 66]. An interesting future direction is how similar learning rules may give rise to overcomplete,
nonorthogonal structure similar to what has been studied here.

The above assumes that receptive field properties actually lie within synaptic weights. For
spatial receptive fields, this assumption is plausible [73], but the temporal properties of receptive
fields are more likely a result of neurons’ intrinsic dynamics, for which the LN framework is just a
model [62, 88, 24]. Heterogeneous physiological (e.g. resonator dynamics) and mechanical (position
and shape of mechanosensor relative to body structure) properties combine to give the diverse
temporal receptive field structures [6]. Development thus leverages different mechanisms to build
structure into receptive field properties of sensory neurons.

3.3 Connections to compressive sensing

Random projections have seen extensive use in the field of compressive sensing, where a high-
dimensional signal can be found from only a few measurements so long as it has a sparse represen-
tation [23, 26, 31]. Random compression matrices are known to have optimal properties, however
in many cases structured randomness is more realistic. Recent work has shown that structured ran-
dom projections with local wiring constraints (in one dimension) was compatible with dictionary
learning [25], supporting previous empirical results [5]. Our work shows that structured random
receptive fields are equivalent to employing a wavelet dictionary and dense Gaussian projection.

3.4 Machine learning and inductive bias

An important open question for both neuroscience and machine learning is why certain networks,
characterized by features such as their architecture, weights, and nonlinearities, are better than
others for certain problems. One perspective is that a network is good for a problem if it is biased
towards approximating functions that are close to the target, known as an inductive bias, which
depends on an alignment between the features encoded by neurons and the task at hand [10]. Our
approach shows that structured receptive fields are equivalent to a linear transformation of the
input that can build in such biases. Furthermore, we can describe the nonlinear properties of the
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network using the kernel, which varies depending on the receptive field structure. If the target
function has a small norm in this Reproducing Kernel Hilbert Space (RKHS), then there is an
inductive bias and it is easier to learn [81, 80].

Networks endowed with principles of neural computation like batch normalization, pooling of
inputs, and residual connections have been found to contain inductive biases for certain learning
problems [92, 37]. Learning data-dependent kernels is another way to add in inductive bias [83]. We
also saw that initializing fully-trained networks from our generative models improved their speed
of convergence and generalization compared to unstructured initialization. This result is consistent
with known results that initialization has an effect on generalization [4]. The initialization literature
has mostly been focused on avoiding exploding/vanishing gradients [38, 33]. Here, we conjecture
that the inductive bias in our structured connectivity places the network closer to a good solution
in the loss landscape [95].

The random V1-inspired receptive fields that we model can be seen as similar to what happens
in a convolutional neural network (CNN) [61], which have similarities and differences compared
to brains [51]. A recent study showed that CNNs with a fixed V1-like convolutional layer are
more robust to adversarial perturbations to their inputs [21]. In a similar vein to our work, using
randomly sampled Gabor receptive fields in the first layer of a deep network was also shown to
improve its performance [41]. The wavelet scattering transform is a multi-layer network where
wavelet coefficients are passed through nonlinearities, a model which is similar to deep CNNs
[54, 12, 1]. Our framework differs as a randomized model and yields wavelets of a single scale.
Adding layers to our model or sampling weights with a variety of spatial frequencies and field sizes
would yield random networks that behave similar to the scattering transform, offering an another
connection between the brain and CNNs. Directly learning filters in a Hermite wavelet basis led to
good perfomance in ANNs with little data [42], and this idea was extended to multiple scales by
[67]. Our structured random features can be seen as an RFN version of those ideas with supporting
evidence that these principles are used in biology.

3.5 Limitations and future directions

There are several limitations to the random feature approach. We model neuron responses with a
scalar firing rates instead of discrete spikes, and we ignore complex neuronal dynamics, neuromod-
ulatory context, and many other details. Like most LN models, the random feature model assumes
zero plasticity in the hidden layer neurons. However, associative learning can drive changes in
receptive fields of individual neurons in sensory areas like V1 and auditory cortex [34, 29]. Further,
our RFN is purely feedforward and cannot account for feedback connections. Recent work suggests
that feedforward architecture lacks sufficient computational power to serve as a detailed input-
output model for a network of cortical neurons; it might need additional layers with convolutional
filters [7]. It can be difficult to interpret the parameters found from fitting receptive field data and
connect them to experimental conditions. Also, the GP model of weights only captures covariance
(second moments) and neglects higher-order statistics. It remains to be shown how the theory can
yield concrete predictions that can be tested in vivo experimental conditions.

We see several future directions of structured random features in connecting computational
neuroscience and machine learning. As already stated, the auditory, somatosensory, and tactile
regions are good candidates for further study as well as developmental principles that could give rise
to random yet structured receptive field properties. To account for plasticity in the hidden layer, one
could also analyze the neural tangent kernel (NTK) associated with structured features [43]. These
kernels are often used to analyze ANNs trained with gradient descent when the number of hidden
neurons is large and the step size is small [2]. To incorporate lateral and feedback connections,
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the weights could be sampled from GPs with recurrent covariance functions [57]. Our theory may
also help explain why CNNs with fixed V1-like convolutional layer are more robust to adversarial
input perturbations [21] as filtering out high frequency corruptions. It seems likely that structured
random features will also be more robust. It would be interesting to study intermediate layer
weights of fully-trained networks as approximate samples from a GP by studying their covariance
structure. Finally, one could try and develop other covariance functions and further optimize these
RFNs for most sophisticated learning tasks to see if near high performance—lower error, faster
training, etc.—on more difficult tasks is possible.

Acknowledgements

We thank Dario Ringach for providing the macaque V1 data and Brandon Pratt for the hawkmoth
mechanosensor data. We are grateful to Ali Weber, Steven Peterson, and Owen Levin for useful
discussions. We thank Sarah Lindo, Michalis Michaelos, and Carsen Stringer for help with mouse
surgeries, calcium imaging, and data processing, respectively.

Author contributions

Conceptualization: K.D.H.; Mathematical Analysis: B.P., K.D.H.; Data Acquisition: M.P.; Writing–
original draft: B.P., K.D.H.; Writing–review & editing: B.P, M.P., B.W.B., K.D.H.; Figures: B.P.,
B.W.B., K.D.H.; Supervision: B.W.B., K.D.H.

Funding

B.P. was supported by a UW Applied Math Frederic Wan Endowed Fellowship, Terry Keegan
Memorial ARCS Endowment Fellowship, and Natural Science Foundation Graduate Research Fel-
lowship Program under Grant No. DGE-1762114. M.P. was supported by the Janelia Research
Campus, Howard Hughes Medical Institute. B.W.B. was supported by grants FA9550-19-1-0386 &
FA9550-18-1-0114 from the Air Force Office of Scientific Research. K.D.H. was supported by the
Washington Research Foundation postdoctoral fellowship and Western Washington University.

4 References
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A Appendix

Abbreviation Meaning

ANN artificial neural network
DFT discrete Fourier transform
DHT discrete Hartley transform
GP Gaussian process
LN linear-nonlinear model of a neuron
ReLU rectified linear unit, nonlinearity max(0, x)
RFN random feature network
RKHS reproducing kernel Hilbert space
SNR signal-to-noise ratio
STA spike triggered average
V1 primary visual cortex
XOR exclusive-or, boolean function

Table 1: List of abbreviations

Symbol Meaning

x an input or stimulus to the network
w input-hidden weights for a neuron
β, β0 readout weights and offset
y, ŷ true and predicted output of the network
d dimension of the stimulus as a vector
m number of neurons in the hidden layer
T structured input space
D dimensions of input space T

L2(T ) space of square-integrable functions over a domain T

`2 vector space with norm ‖u‖ =
√
uTu

‖ · ‖ the L2 or `2 norm for function or vector argument
‖ · ‖F the Frobenius norm of a matrix
〈a, b〉 the L2(T ) inner product between functions, 〈a, b〉 =

∫
t∈T a(t)b(t)dt

uTv finite-dimensional `2 inner product, uTv =
∑d

i=1 uivi
Id d× d identity matrix
C d× d covariance matrix

H RKHS, comes with inner product 〈a, b〉H and norm ‖a‖H =
√
〈a, a〉H

Table 2: List of important symbols

A.1 Covariance parameter optimization

Here we describe the details of how the GP covariances were fit to our various datasets.

A.1.1 Mechanosensor covariance

We aim to minimize the difference between the matrix generated by the covariance model Cmodel

and the data Cdata, while keeping flo smaller than fhi. For simplicity, we measure the covariance
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mismatch with the Frobenius norm, solving

min
flo,fhi,γ

‖Cmodel(flo, fhi, γ)−Cdata‖F (13)

subject to: fhi ≥ flo.

We use the trust region algorithm provided by the scipy.optimize.minimize to solve (13).

A.1.2 V1 covariance

To fit the covariance model to the data, we formulate an optimization problem over the model
parameters s and f , where we minimize the Frobenius norm of the difference between the covariance
matrix Cmodel and Cdata:

min
s,f
‖Cmodel(s, f)−Cdata‖F . (14)

We solve (14) using the Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithm provided by the
scipy.optimize.minimize package.

A.2 Derivation of eigenfunctions of V1 covariance function

The covariance between two pixel locations t = (t1, t2), t′ = (t′1, t
′
2) ∈ R2 is given by

C(t, t′) = e
− ‖t−t′‖2

2f2 e−
‖t‖2+‖t′‖2

2s2

= e
− (t1−t

′
1)

2

2f2 e−
(t21+t

′2
1 )

2s2 · e−
(t2−t

′
2)

2

2f2 e−
(t22+t

′2
2 )

2s2

=

2∏
i=1

e−α(ti−t′i)2e−δ(t
2
i+t
′2
i ) for α :=

1

2f2
, δ :=

1

2s2
.

Since covariance function factors into a product of functions of variables t1, t
′
1 and t2, t

′
2, the mul-

tidimensional eigenfunctions φk(t) and eigenvalues λ2
k also factor into a product of 1-dimensional

eigenfunction and eigenvalues, i.e. φk(t) =
∏2
i=1 φki(ti) and λ2

k =
∏
i=1 λ

2
ki

. This holds for d > 2
dimensions as well. So we work in 1-d and search for eigenfunctions and eigenvalues such that,∫ ∞

−∞
C(t, t′)φk(t)dt = λ2

kφk(t
′),

with C(t, t′) = e−α(t−t′)2e−δ(t
2+t′2).

We make the ansatz that φk(t) = e−c1t
2
Hk(c2t), where Hk is the kth Hermite polynomial
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(physicists’ convention) [1] and c1, c2 are constants. With this guess for the eigenfunctions,∫ ∞
−∞

C(t, t′)φk(t)dt =

∫ ∞
−∞

e−α(t−t′)2e−δ(t
2+t′2)e−c1t

2
Hk(c2t)dt

=

∫ ∞
−∞

e−Xt
2+Y t−t′2(α+δ)Hk(c2t)dt (X := α+ δ + c1, Y := 2αt′)

= e−t
′2(α+δ)+Y 2

4X

∫ ∞
−∞

e
−(
√
Xt− Y

2
√
X

)2
Hk(c2t)dt (completing the square)

=
1√
X
e−t

′2(α+δ)+Y 2

4X

∫ ∞
−∞

e
−
(
u− Y

2
√
X

)2
Hk(u

c2√
X

) (u =
√
Xt)

=

√
π

X

(
1− c2

2

X

)k/2
︸ ︷︷ ︸

λ2k

e−t
′2(α+δ−α

2

X
)Hk

(
c2α

X(1− c22
X )1/2

t′

)
︸ ︷︷ ︸

φ̂k(t′)

. ([1], 7.374.8)

Solving for the unknown constants leads to the equations

c1 = α+ δ − α2

X
=⇒ c1 =

√
δ(2α+ δ),

c2 =
c2α

X
(

1− c22
X

)1/2
=⇒ c2 =

√
(α+ δ + c1)

(
1− α2

(α+ δ + c1)

)
=
√

2c1.

The last step is to find the normalization constant for the eigenfunctions:∫ ∞
−∞
|φ̂k(t)|2dt =

∫ ∞
∞

e−2c1t2H2
k(c2t)dt

=
1

c2

∫ ∞
∞

e−u
2
H2
k(u)du (u = c2t, c

2
2 = 2c1)

=
2kk!
√
π

c2
. ([1], 7.374.1)

Therefore, our orthonormal eigenfunctions and eigenvalues for the 1-dimensional covariance are

φk(t) =
c2

2kk!
√
π
e−c1t

2
Hk(c2t), λ2

k =

√
π

α+ δ + c1

(
1− c2

2

α+ δ + c1

)k/2
, (15)

where c1 =
√
δ(2α+ δ), c2 =

√
2c1. Note that λ2

k ∝ ck3 with c3 =
√

1− c2

α+δ+c1
, so that the

spectrum decays exponentially.

A.3 Distributed receptive field centers imply a sum kernel space

To generate our V1-inspired weights, we first sample a center c uniformly at random from the pixels
in the image; call this set of pixels S. We will now derive the kernel for this weight sampling.

Suppose that all of the weights are sampled with a single center c. Then (6) tells us that the
structured kernel associated with the RFN

kstruct(x,x
′; c) = kunstruct(ΛcΦ

T
c x,ΛcΦ

T
c x
′)

= kunstruct(x̃c, x̃
′
c), (16)
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where we have defined the local basis change

x̃c = ΛcΦ
T
c x. (17)

This local basis change projects into a basis of Hermite wavelets Φc centered at c and filters
according to the eigenvalues Λc. The reproducing kernel (16) defines an RKHS of functions Hc

which take images as their input and produce a real-valued output. The RKHS is a Hilbert space
and thus has a norm ‖ · ‖Hc . Functions with small Hc-norm are, informally, smooth functions of
the local wavelet coefficients x̃c.

In our experiments, we actually sample weights from all centers c ∈ S with equal probability.
Taking the expectation over the centers, this means that the kernel will be an average over all of
the local kernels (16),

kstruct(x,x
′) =

1

|S|
∑
c∈S

kstruct(x,x
′; c). (18)

Let H be the RKHS associated with kstruct(·, ·), another space of functions that take in images and
output a real number. The sum (18) implies that H =

⊕
c∈SHc, i.e. the RKHS is a direct sum of

local RKHS’s [81]. This means that any function f ∈ H can be written as f =
∑

c∈S fc, with every
fc ∈ Hc. The norm of this function comes from taking a minimum over all such decompositions

‖f‖H = min
fc:f=

∑
c∈S fc

√
|S|
∑
c∈S
‖fc‖2Hc

.

We can think of functions with small H-norm, which will be easiest to learn, as sums of smooth
functions of local wavelet coefficients.

A.4 Timeseries data generation

We detail how the two frequency classification tasks from Sections 2.3.1 and 2.3.2 are generated.
In both tasks, each example is an L ms timeseries sampled at f Hz, making each x a vector of
length d = L × f . Thus in the discrete setting, we only have d total frequencies. While the math
below show continuous signals, in our code we generate analagous discrete signals using the discrete
Fourier transform basis.

A.4.1 Frequency detection

The frequency detection task from Section 2.3.1 is a binary classification task. The positive exam-
ples contain a pure sinusoidal signal with frequency f1 and additive Gaussian noise. The negative
examples are just white noise. They are generated in the following way:

x+(t) = a

pure frequency︷ ︸︸ ︷√
2

L
(ηf cos(f1t)− ξf sin(f1t)) +

additive Gaussian noise︷ ︸︸ ︷√
1− a2

√
2

(d− 1)L

d−1∑
j=0

j:ωj 6=f1

(ηj cos(ωjt)− ξj sin(ωjt))

x−(t) =

√
2

dL

d−1∑
j=0

(ηj cos(ωjt)− ξj sin(ωjt))

where ωj = 2πj/L is the j-th natural frequency, a is a parameter that sets the SNR, and the
coefficients ηj , ξj , ηf , ξf are random variables uniformly sampled from the unit circle (which gives
each frequency component a random phase).
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We define

SNR :=
a2

1− a2
, (19)

with a ∈ [0, 1]. Larger a means a larger contribution of the pure tone and smaller amplitude noise.
Note that ‖x−(t)‖2L2([0,L]) = ‖x+(t)‖2L2([0,L]) = 1. The generation process ensures that the L2 energy
of both the negative and positive examples are matched and that the SNR is equal to the ratio of
energy captured in frequency flo to the total energy in all other components.

We generate a balanced dataset with 7,000 timeseries signals which we split into a training set
with 5,600 examples and a test set with 1,400 examples. We tuned the GP covariance parameters
flo, fhi, and γ from (10) using 3-fold cross validation on the training set. We found the optimal
parameters for a network with 20 hidden neurons and used them for all hidden layer widths. We
tested flo and fhi parameters from 10 Hz to 200 Hz at increments of 10 Hz. For γ, we set the
parameter range to be from 10 ms to 100 ms and used all parameters at increments of 10 ms. Using
grid search, we tested all combinations of these parameters. The optimal model was refit using all
training 5,600 samples, and the errors we report were measured on the test set.

A.4.2 Frequency XOR

We use a similar set up to generate the timeseries for the frequency exclusive-or (XOR) task in
Section 2.3.2. The positive examples are either frequency f1 or f2 Hz pure sinusoids with additive
Gaussian noise. The negative examples are either mixed frequency timeseries (with both f1 and f2

Hz signals) or pure Gaussian noise. They are generated in the following way:

x+,k(t) =

pure frequency︷ ︸︸ ︷
a

√
2

L
(ηf cos(fkt)− ξf sin(fkt)) +

additive Gaussian noise︷ ︸︸ ︷√
2(1− a2)

(d− 1)L

d−1∑
j=0

j:ωj 6=fj

(ηj cos(ωjt)− ξj sin(ωjt))

x−,noise(t) =

√
2

dL

d−1∑
j=0

(ηj cos(ωjt)− ξj sin(ωjt))

x−,mixed(t) =
a√
L

∑
j∈{1,2}

(ηj cos(fjt)− ξj sin(fjt)) +

√
2(1− a2)

(d− 2)L

d−1∑
j=0

j:ωj 6=f1,f2

(ηj cos(ωjt)− ξj sin(ωjt)) ,

for k ∈ {1, 2} in the x+,k(t) function. The constants, random variables, and details of SNR are
identical to the frequency detection section. The datasets we generate have balanced proportions
of x+,1, x+,2, x−,noise, and x−,mixed signals.

A.5 SNR amplification via filtering

Let’s consider the simple frequency detection task with stationary bandpass features. Since these
features are stationary, their eigenvectors are Fourier modes, i.e. Φ is the discrete Fourier transform
(DFT) matrix. Assume the features encode a bandpass filter, which means that Λ = diag(λi),
i ∈ {0, . . . , d− 1}, with λi = 1 for ilo ≤ i ≤ ihi and 0 otherwise.

In frequency detection, a single frequency component (discrete Fourier mode) contains the signal

with energy a2. The other d − 1 components each have energy 1−a2
d−1 , for a total energy of 1 − a2

contained in this white noise. After the basis change (4) is applied to any input x, the transformed
vector x̃ = ΛΦ∗x will have zeros in all entries outside the passband. (We use the conjugate
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transpose Φ∗ here rather than the transpose since the DFT matrix is complex; the interpretation
is the same.) This makes the new representation x̃ effectively d′-dimensional, where d′ = ihi − ilo.

Now, first assume that the signal is within the passband. The total noise energy in the trans-
formed representation becomes (1− a2)d

′−1
d−1 , since one of the d′ components is still signal, and no

energy is lost in the retained components because Φ is unitary. The overall noise is shrunk by a
factor of d′−1

d−1 , so the SNR gets boosted by d−1
d′−1 . In the limiting case where d′ = 1, the noise energy

is 0 and SNR is infinite. On the other hand, if the signal lies outside the passband the SNR is
reduced to 0.

A.6 Implementation details and code availability

In all experiments with RFNs, the training algorithm is an SVM classifier with squared hinge loss
provided by the sklearn.svm.LinearSVC package and all other parameters set to their defaults.
We used scipy [8] and numpy [2] to construct both classical unstructured and neural-inspired
structured weights. For the experiments with fully-trained networks, we used pytorch [4]. The
cross entropy loss function was optimized using full batch stochastic gradient gescent (SGD) opti-
mizer, i.e. gradient descent (GD). Our code is available at https://github.com/BruntonUWBio/

structured-random-features.

A.7 Covariance of V1 neurons with other stimuli

We repeat the covariance analysis from Section 2.2.3 on three additional datasets of V1 neurons.
Different stimuli were shown in each dataset to calculate the receptive field.

The first dataset was provided by Ringach et al. from their work on characterizing the spatial
structure of simple receptive fields in macaque (Macaca fascicularis) V1 [5]. The spikes of 250
neurons were recorded in response to drifting sinusoidal gratings. The receptive fields were calcu-
lated from the stimuli and responses using subspace reverse correlation. Because of the bandlimited
properties of sinusoidal stimuli, this experiment biases the reconstruction towards smooth receptive
fields. The receptive fields were of various sizes: 32 pixels × 32 pixels, 64 pixels × 64 pixels, and
128 pixels × 128 pixels. We resized them to a common dimension of 32 pixels × 32 pixels using
local mean averaging. We find the optimal covariance parameters that fit the data to be s = 2.41
and f = 0.95 pixels. The covariance matrices and eigenfunctions are shown in Fig. 9. Examples
of biological receptive fields and random samples from the fitted model are shown in Fig. 10 in the
Appendix.

The second dataset contains the responses of 69,957 neurons recorded from the primary visual
cortex of mice bred to express GCaMP6s. We presented 5,000 static natural images of 24 × 27
pixels in random order for 3 trials each. We calculated the receptive fields from the natural images
and calcium responses of cells using ridge regression with an `2 penalty set to 0.1 after each image
pixel was z-scored across images. We used the average receptive field over all three trials. For
the covariance analysis, we picked cells with SNR > 0.4. This gave us 10,782 cells. The optimal
covariance parameters that fit the data are s = 5.40 and f = 1.17 pixels. Examples of biological
receptive fields and random samples from the model are shown in Fig. 12. The covariance matrices
and eigenfunctions are shown in Fig. 11. Examples of biological receptive fields and random samples
from the fitted model are shown in Fig. 12. Repeating this analysis using receptive fields from
individual trials yields identical results.

The third dataset contains the responses of 4,337 neurons also recorded from the primary visual
cortex of mice bred to express GCaMP6s. The mice were shown static discrete Hartley transform
(DHT, similar to a real-valued discrete Fourier transform) basis functions of size 30 × 80 pixels, and
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Figure 9: Spectral properties of V1 receptive fields and our model for Ringach dataset.
We compare the covariance matrices generated from the (A) receptive fields of 250 macaque V1
neurons, (B) the GP model (11), and (C) 250 random samples from the model. The data is from [5].
(D) The leading 10 eigenvectors of the data and model covariance matrices show similar structure
and explain 57% of the variance in the data. Analytical Hermite wavlet eigenfunctions are in the
last row. (E) The eigenspectrum of the model matches well with the data.

the calcium responses of neurons were recorded. The receptive fields were calculated using ridge
regression without any `2 penalty. Here, we picked cells with SNR > 1 for analysis. We were left
with 2,698 cells. The optimal covariance parameters that fit the data are s = 10.46 and f = 1.20
pixels. The covariance matrices and eigenfunctions are shown in Fig. 13. Examples of biological
receptive fields and random samples from the fitted model are shown in Fig. 14.

A.8 Initialization of networks with structured weights

We show results of initializing fully trained neural networks across a range of network widths (50,
100, 400, and 1,000) and learning rates (10−3, 10−2, and 10−1) in Figures 18, 19, 20, and 21.

A.9 Deep network experiments

We experimented with using the V1-inspired weight initialization in the first two convolutional
layers of AlexNet [49] and training on the ImageNet Large Scale Visual Recognition Challenge from
2012 [76]. Our implementation was based on the example provided by pytorch and torchvision

[4] and used the same optimization routine, parameters, and schedule as in https://github.com/

pytorch/examples/tree/master/imagenet.
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A
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Figure 10: Receptive fields of V1 neurons from the Ringach dataset. We show (A) biological
receptive fields and (B) random samples from the fitted covariance model.

Initialization Loss Top-1 accuracy (%) Top-5 accuracy (%)

Classical 2.059 (1.907) 55.2 (56.5) 76.3 (79.2)
Structured 2.074 (1.920) 53.0 (56.4) 76.0 (79.0)

Table 3: Results after training AlexNet for 90 epochs on ImageNet. The classical initial-
ization leads to slightly smaller loss and higher accuracy over the structured initialization. Test
values are shown in parentheses; these are better than the training values due to dropout.

All convolutional layers were initialized with weights drawn from a Gaussian distribution with
variance (cindxdy)−1, where cin was the number of input channels, and dx and dy are the dimensions
of the filter. This is equal to the reciprocal of the fan-in. In the case of classical initialization, this
Gaussian distribution has covariance proportional to the identity, whereas in the structured case
we use the V1-inspired covariance centered in the center of the filter with independent draws for
each input channel. All biases and weights in the other layers are set with their pytorch defaults.
The structured weights were only used in the first two convolutional layers of dimensions dx×dy =
11×11 and 5×5. The size parameter was set to s = max(dx, dy) · 3 and frequency bandwidth was
f = max(dx, dy)/5.

We show training and testing loss over the first 10 epochs for both the classical and structured
initializations in Fig. 22. The structured initialization at first shows an advantage over classical,
with consistently lower losses for the first 4 epochs, but eventually the classical network catches
up. From this point onwards (until the 90 training epochs are complete), the classical network has
the same or lower loss. Both networks end up performing well, reaching accuracies close to those
reported in [49] and the torchvision documentation (https://pytorch.org/vision/stable/
models.html), as shown in Table 3. The classical initialization performs slightly better overall.

These null results are perhaps not surprising: The initial layers of AlexNet contain only 64 and
192 output channels (i.e. filters) respectively, making up only a small fraction of the total weights
in the network. The deeper convolutional layers contain many more channels and are built with
small 3×3 filters where our initialization is unlikely to help. It is also possible that the effects
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Figure 11: Spectral properties of V1 receptive fields and our model for natural image
stimuli. We compare the covariance matrices generated from the (A) receptive fields of 10,782
mice V1 neurons, (B) the GP model (11), and (C) 10,782 random samples from the model. (D)
The leading 10 eigenvectors of the data and model covariance matrices show similar structure and
explain 39% of the variance in the data. Analytical Hermite wavelet eigenfunctions are in the last
row. (E) The eigenspectrum of the model compared to the data.

of initialization are less important for overparametrized models or with large amounts of training
data.

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.09.459651doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459651
http://creativecommons.org/licenses/by/4.0/


A

B

Figure 12: Receptive fields of V1 neurons from natural images stimuli. We show (A)
biological receptive fields and (B) random samples from the fitted covariance model.
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Figure 13: Spectral properties of V1 receptive fields and our model for DHT stimuli.
We compare the covariance matrices generated from the (A) receptive fields of 2,698 mice V1
neurons, (B) the GP model (11), and (C) 2,698 random samples from the model. (D) The leading
10 eigenvectors of the data and model covariance matrices. They explain 29% of the variance in
the data. Analytical Hermite wavelet eigenfunctions are in the last row. (E) The eigenspectrum of
the model matches well with the data.
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Figure 14: Receptive fields of V1 neurons from DHT stimuli. We show (A) biological
receptive fields and (B) random samples from the fitted covariance model.
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Figure 15: Covariance matrix of V1 receptive fields and our model for white noise
stimuli. We show the full structure of the covariance matrices shown in Fig. 5. These matrices are
generated from the (A) receptive fields of 8,358 mouse V1 neurons, (B) the GP model (11), and
(C) 8,358 random samples from the model.
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Figure 16: Receptive fields of V1 neurons from white noise stimuli. We show (A) biological
receptive fields and (B) random samples from the fitted covariance model.

A

B

Figure 17: Receptive fields of mechanosensory neurons. We show (A) biological receptive
fields and (B) random samples from the fitted covariance model.
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Figure 18: Training loss on MNIST for fully-trained neural networks initialized with
V1 weights. We show the average training loss of fully-trained networks against the number
of training epochs across diverse hidden layer widths (50, 100, 400, and 1000) and learning rates
(10−1, 10−2, and 10−3). For every hidden layer width, we generate five random networks and
average their performance. The solid lines show the average training loss while the shaded region
represents the standard error. When the covariance parameters are tuned properly, V1-initialized
networks achieve lower training loss over fewer epochs. The benefits are more significant at larger
network widths and lower learning rates. With incompatible weights, V1 initialization leads to
similar performance as unstructured initialization.
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Figure 19: Test error on MNIST for fully-trained neural networks initialized with V1
weights. We show the average test error of fully-trained networks against the number of training
epochs across diverse hidden layer widths (50, 100, 400, and 1000) and learning rates (10−1, 10−2,
and 10−3). For every hidden layer width, we generate five random networks and average their
performance. The solid lines show the average test error while the shaded regions represent the
standard error. When the covariance parameters are tuned properly, V1-initialized networks achieve
lower test error over fewer epochs. The benefits are more significant at larger network widths and
lower learning rates. With incompatible weights, V1 initialization leads to similar performance as
unstructured initialization.
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Figure 20: Training loss on KMNIST for fully-trained neural networks initialized with
V1 weights. We show the average training loss of fully-trained networks against the number
of training epochs across diverse hidden layer widths (50, 100, 400, and 1000) and learning rates
(10−1, 10−2, and 10−3). For every hidden layer width, we generate five random networks and
average their performance. The solid lines show the average training loss while the shaded regions
represent the standard error. When the covariance parameters are tuned properly, V1-initialized
networks achieve lower training loss over fewer epochs. The benefits are more significant at larger
network widths and lower learning rates. With incompatible weights, V1 initialization leads to
similar performance as unstructured initialization.
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Figure 21: Test error on KMNIST for fully-trained neural networks initialized with V1
weights. We show the average test error of fully-trained networks against the number of training
epochs across diverse hidden layer widths (50, 100, 400, and 1000) and learning rates (10−1, 10−2,
and 10−3). For every hidden layer width, we generate five random networks and average their
performance. The solid lines show the average test error while the shaded regions represent the
standard error. When the covariance parameters are tuned properly, V1-initialized networks achieve
lower test error over fewer epochs. The benefits are more significant at larger network widths and
lower learning rates. With incompatible weights, V1 initialization leads to similar performance as
unstructured initialization.
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Figure 22: Initializing AlexNet using structured random features shows little benefit for
ImageNet. Training and testing loss are shown for classical and structured random initializations
of convolutional layers in AlexNet. These losses are initially lower for structured features, but by
6 epochs the classical initialization catches up and it eventually reaches a slightly lower loss than
the structured initialization. Note that the training losses are higher than testing due to dropout
applied in the training phase.
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