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Modular structures in the brain play a central role in compositionality and

intelligence, however the general mechanisms driving module emergence have

remained elusive. Studying entorhinal grid cells as paradigmatic examples

of modular architecture and function, we demonstrate the spontaneous emer-

gence of a small number of discrete spatial and functional modules from an in-

terplay between continuously varying lateral interactions generated by smooth

cortical gradients. We derive a comprehensive analytic theory of modulariza-

tion, revealing that the process is highly generic with its robustness deriving

from topological origins. The theory generates universal predictions for the

sequence of grid period ratios, furnishing the most accurate explanation of

grid cell data to date. Altogether, this work reveals novel principles by which

simple bottom-up dynamical interactions lead to macroscopic modular orga-

nization.
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One sentence summary A novel bottom-up pathway for the self-organization of modules in

biology provides quantitative match to grid cell experiments.

Introduction Modular structures are robust to localized perturbations (1, 2), faster to adapt

if the world requires sparse or modular changes (3), relatively expressive because of compo-

sitionality (4–6), and probably for these reasons empirically favored by the arrow of evolu-

tion, which drives systems toward greater modularization (7). In this sense, modularity is the

crux of biological organization. However, the mechanisms driving modularity are not well un-

derstood. Most models involve some form of supervision (selection in systems biology and

feedback-based learning in neuroscience and machine learning) and are very slow processes

that require intensive data from the world (8–10). These top-down models of modularization

typically involve evolution in modularly changing environments (8, 11, 12) or learning of mul-

tiple modular tasks (9, 10, 13, 14)1. Here we propose an alternative mechanism, in the form of

self-organization that emerges from spontaneous symmetry breaking dynamics: Just as simple

bottom-up physical constraints serve as important shapers of morphogenesis and local pattern

formation (17–20), they can also provide critical inductive predispositions that drive global

modularization, as a complement to top-down forces.

Here, we aim to provide a robust and general theory of modular structure emergence from

smooth gradients via bottom-up principles, with grid cells as our concrete subject. Extensive

supervised training of networks to reproduce a prespecified pattern of place cell activity with

velocity inputs can result in grid-like activity patterns, with multiple spatial scales (21–23).

The grid periods and emergence of grid patterns are, however, highly sensitive to ad-hoc mod-

eling decisions about network size, shape, and target place cell activity (21–23). Two recent

1Some models exhibit modularity emergence through motif duplication followed by specialization (15, 16),
though the resulting modules typically require selection or supervision under the conditions noted earlier to remain
stable.
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works empirically demonstrate module emergence without extensive supervision: in the first,

grid tuning is derived from location-coding place cell inputs and a continuum of adaptation

timescales (24). However, the resulting grid cells do not possess the ability to integrate velocity

inputs and cell-cell relationships are not preserved across environments, inconsistent with the

observed stability of pairwise grid cell relationships (25–27). In the second, grid module for-

mation proceeds from a multi-sheet architecture, however it already assumes a proto-modular

architecture with structured and finely tuned one-to-one linkages of neurons across the mod-

ules (28). In both these works, we also lack any theory of the dynamics of module emergence.

We present a novel pathway for the spontaneous emergence of modularity from smooth

gradients that is robust through a topological mechanism, and does not require supervision. The

mechanism admits a complete analytical description of why modules emerge, which reveals the

genericity of the process and suggests that the insights should generalize from grid cells to other

systems in biology and machine learning. Finally, we generate detailed predictions about the

entire sequence of period ratios of grid modules that provide the best fit to data till date.

Smooth gradients as precursors to discrete modules in biology In biological systems, mod-

ular structures often originate from spatial biochemical gradients (36–38) that unleash a spatial

patterning process (39–42), resulting in the emergence of complex structures. For instance, the

Bicoid protein gradient in Drosophila embryos (30), Fig. 1a, generated by the maternal de-

position of Bicoid RNA, precedes and causally guides the formation of body segments in the

fly through the dynamics of a spatially modulated gene expression cascade, Fig. 1b. Mature

modular systems also frequently exhibit smooth gradients in their underlying biophysical or

functional properties (32,43–45). Grid cells in the medial entorhinal cortex (MEC; Fig. 1c, top)

form modules in which all co-modular cells share the same spatial period, with discrete jumps

in period between modules (Fig 1d). The modules are arranged in order of increasing period
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along dorsoventral MEC in the brain, accompanied by a large number of cellular and network

properties including cell resistance, activation threshold, time-constant, and local inhibition that

vary continuously (Fig. 1c). Can these smooth underlying gradients lead to the emergence of

discrete modules?

A fixed connectivity range with smooth gradients leads to modularization We build a

mechanistic circuit model of grid cells based on the principle of continuous attractors (35).

Neurons are situated along a strip, with a slow spatial gradient along the long axis in the width

of the lateral interactions (W g, with scale σ(nDV )). The result is the formation of hexagonal

activity patterns whose period varies smoothly with the interaction gradient, and no modular-

ization (Fig. 1f-g). We next consider the addition of a second scale in the lateral interaction

(W f , with scale d that is fixed but wider than σ(nDV ) along the whole neural strip), Fig. 2a-

Figure 1 (preceding page): Smooth gradients as precursors to discrete modules in biol-
ogy (a) Fluorescence imaging of the expression of the protein bcd early in development of
the Drosophila embryo (29); this polarity gradient is the precursor to a gene-protein expres-
sion cascade that leads to the formation of body segmentation. (Figure adapted from (30).)
(b) Discrete gap and pair-rule gene expression bands emerging from the initial polarity protein
gradients (immunofluorescence image adapted from (31)). (c) Smooth gradient in inhibitory
(PV-immunoreactive) axon terminals along the dorsoventral (DV) axis in layers II and III of the
medial entorhinal cortex (MEC) (32), where grid cells are found (33). (d) The spatial tuning
curves of grid cells (top: autocorrelation of spatial responses of four cells; intensity plot as a
function of two spatial dimensions) vary in spatial period along the DV axis in MEC (region
and electrode penetration angle shown in left inset, bottom), with period increasing ventrally.
However, the variation is discrete: there are a few discrete modules with a few periods, and
nearby cells have the same period (right inset, bottom) (adapted from (34)). (e) In a continuous
attractor model of grid cells formed by pattern formation through lateral inhibition (35), we
model the biophysical DV gradients in MEC by a continuous gradient in the width of lateral
inhibition. (f-g) The smooth gradient of (e) results in pattern formation with smoothly varying
periodicity in the population pattern, with no modularity (in (f): neural population activity pat-
tern in a 2-dimensional neural strip; (g): top, activity pattern in a 1-dimensional neural strip;
bottom, extracted period as a function of DV location; inset, histogram of extracted periods).
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Figure 2: A fixed connectivity range combined with smooth gradients leads to module
emergence. (a) Lateral interactions consisting of a smoothly varying component (W g, green)
and a component with fixed width (W f , orange) along the neural strip. Widths defined as
σ(nDV ), d, respectively. (b-c) The interactions from (a) lead to self-organized module for-
mation (activity pattern in 1-dimensional neural strip with smaller periods more dorsally, (b);
extracted periods, (c)). (d-f) Same as (a-c), but for a very different pair of W g,W f . (g-h) Mod-
ularity is not only present in the population pattern on the neural strip, but also in function:
response of the network over time to a velocity input injected into all cells. (g) Flow of popu-
lation activity in response to a constant velocity input; (h) Spatial tuning curves of 2 example
cells per module (top and bottom), generated by collecting spikes in response to a sinusoidal
velocity input corresponding to multiple left-right traversals of a 1-dimensional environment,
and plotting the histogram of spikes as a function of position in the environment. (i) Same as
(g), for the interactions in (d). (j) 2-dimensional pattern formation and module emergence for a
2-dimensional neural strip with interactions as in (a). (Bottom) 2d autocorrelation function of
the local (single-module) patterns in the neural strip.

c. This fixed interaction scale could represent a general constraint on the extent of neural ar-

borization, independent of location. With the addition of a fixed-scale interaction, the network

spontaneously and robustly exhibits modular pattern formation, Fig. 2b, with spatially periodic
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activity patterns and a discrete number of periods with discontinuous jumps in between. Note

that the formed modules are generally much larger than both interaction scales d, σ(nDV ). Re-

markably, the results are similar across varied shapes of the smoothly varying and fixed-range

interactions (cf. Fig. 2a-g with 2d-i), and regardless of whether the fixed-range interaction is

spatially diffuse over d (Fig. 2b), or localized at a distance d (Fig. 2a).

When the network is driven by velocity inputs, the activity bumps move across the cortical

sheet (reflecting the velocity-integration function of grid cells) and notably, despite this bump

movement the modules and sharp modular boundaries persist at the same cortical locations

(Fig. 2g,i). This produces spatially periodic tuning in individual cells (Fig. 2h), with the

pattern phase changing at different rates in each module so that co-modular cells have the same

spatial tuning curves with various phase offsets, but cells in different modules have discretely

different spatial periods (Fig. 2h). Thus, the network is also fully modular in its velocity

integration functionality. All the results on discrete module formation and modular function

hold for 2-dimensional neural sheets as well, Fig. 2j (See SI Sec. 3.8 for additional analytical

and numerical results.)

Theory of module formation: multiscale instability and topological peak selection If we

initialize the network at a uniform activity state, the modularization process begins at the earliest

time-steps, appearing before most neurons have crossed their nonlinear thresholds, and coinci-

dent with the process of local patterning (Fig. 3a,b). This suggests that it should be possible to

explain both local pattern formation and larger-scale module emergence within a unified linear

instability framework.

A multiscale analysis in Fourier space makes conceptually clear how and why this hap-

pens: If the graded interaction width varies sufficiently slowly along the neural strip, the sys-

tem is locally translation-invariant. At any location nDV in the neural strip, we can thus con-
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Figure 3: Theory of module formation: multi-scale linear instability and peak selection.
(a) Snapshots of population activity in the neural strip within a few neural time-constants (τ ) of
running the dynamics: modules appear at the same time as the local pattern, and both appear
before most neurons have hit their nonlinear thresholds. (b) Top: Schematic of the fixed-range
(orange) and graded (green) interactions from two different DV locations on the neural strip
(top), and bottom: their Fourier transforms. Fourier peaks of the fixed-range interaction remain
unchanged dorsoventrally but the graded interaction peak slides smoothly inward when moving
ventrally. (c) Peak selection process: the global maximum in Fourier space is based on the
combination (blue) of the shallow graded-interaction peak (green)and the multiple narrow fixed-
interaction peaks (orange). The smoothly shifting graded-interaction peak “selects” which of
the local maxima from the fixed interaction is the global maximum. Thus, the global maximum
jumps abruptly from one local maximum to the next. (d) The Fourier transform of the combined
interactions, for a dorsal and a ventral location (top), and the Fourier-space location of the global
maximum of just the graded interaction as a function of DV location (middle) and the combined
interaction (bottom).

sider how local perturbations behave by decomposing them into Fourier-space activity modes

(defined by k =
2π

λ
, see SI Fig. 6) that decay or grow exponentially, dominated by the

fastest-growing mode corresponding to the peak of the combined lateral interaction (k∗(nDV ) =

arg maxk W̃ (k;nDV ) = arg maxk{W̃ f (k) + W g(k;nDV )}) (35, 39–42, 46). When W̃ (k∗) is

positive, the result is a locally patterned state with period λ(nDV ) = 2π/k∗(nDV ). The com-

ponent W f sets up a set of local maxima in Fourier space, with spacings ∼ 1/d. Because

this interaction does not vary along the neural strip, the set of local maxima remains the same

(Fig. 3b, orange). The graded component W g(nDV ) sets up a much broader Fourier peak (of

scale ∼ 1/σ(nDV )� 1/d), which smoothly contracts more ventrally (Fig. 3b, green). Though
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the graded component, with its smoothly moving maximum, is ultimately responsible for any

changes in spatial period along the neural sheet, the peak is too shallow to fully determine the

maximum. Rather, the narrow peaks from W̃ f (k) determine the set of potential locations of

the global maximum, while the smoothly moving peak from W̃ f (k) performs “peak selection”

(cf. SI Movie 1) to determine which of the narrow peaks will form the global maximum at a

given dorsoventral location (Fig. 3c). Thus, the only permitted peaks are those whose positions

in Fourier space fall between ∼ 1/max(σ) and ∼ 1/min(σ), and moving smoothly along the

neural strip causes flat steps with discrete jumps in the local periodicity of the formed activity

pattern through discrete peak selection.

The analytical result further predicts the number of modules, and reveals that this number

is independent of the length of the neural sheet, of the shape of the lateral interactions, and

of the shape of the monotonic function that describes how σ(nDV ) varies across the neural

sheet. Instead, it is determined only by the extremal widths min(σ),max(σ) of the graded

interaction, because it is given by how many integer multiples of 1/d fit into the interval

[1/min(σ), 1/max(σ)] (SI Sec. 3.7). If the extremal widths are fixed, the modularization pro-

cess generates the same number of modules regardless of neural sheet size and the details of

the boundary conditions. Moreover, small changes in the extremal values also have no effect

on the number of modules, until a critical point at which another module would be added; thus,

the number of modules is a topological invariant (47). As a corollary, the average module size

grows linearly with network size and has little relationship to the lateral interaction widths, ex-

plaining why the formed modules in Fig. 2b,e are much larger than the length-scales of the the

lateral interactions. In sum, the module formation mechanism is at its essence a topological

process with each module arising as a topologically protected phase (47) which is independent

of most details and parametric variations (SI Sec.3.7). Thus, a combination of interactions with

a smoothly varying scale and a fixed larger scale leads to module formation through a robust
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peak selection process in Fourier space. This robustness and the genericity of the peak-selection

mechanism for module emergence explains the striking similarity of results across the varied

lateral interaction profiles of Fig. 2 and the additional profiles in SI (SI Fig. 6).

Finally, the peak selection process can be reformulated as minimization on an energy land-

scape (SI Sec. 4); thus, the principle applies beyond Fourier space and it can be used to generate

modular solutions involving not just periodic patterns but a range of problems that admit multi-

ple potential solutions (local optima), SI Sec. 5.

Detailed prediction of pairwise module period ratios The theory further generates a quan-

titative prediction about how different module periods scale relative to each other, another prop-

erty that is invariant to the detailed shapes of lateral interactions and the shape of the gradient

for the lateral interaction width. Unlike existing experimental fits in which all period ratios

rm = λm+1/λm are described by a single parameter α ∼ 1.4, the prediction of the present

model gives further detail on the sequence of successive period ratios as a function of m.

Suppose as before thatW g generates locally periodic activity patterns with a smoothly vary-

ing scale σ(nDV ) and that the fixed-range interaction W f has a dominant scale d � σ(nDV ).

Let us additionally assume that all other scales in W f are� σ(nDV ). Then, the Fourier trans-

form W̃ f is typically (except for a set of measure zero; SI Sec. 3.5.1 for details) an approx-

imately periodic oscillatory function (∼ cos(kd + φ)), with relatively evenly spaced peaks

occurring every m/d for integer m (Fig. 4a). Thus, the positions of successive peaks (and thus

the module periods) are specified simply by successive integers together with a single phase

φ that depends on the shape of the fixed-range interaction, Fig 4a-b. Since module periods

correspond to successive peaks of this function, it follows that the period ratio is given by:

rm = rm(φ) = (m + φ/2π)/(m − 1 + φ/2π) (details in SI Sec. 3.6). The predicted average

period ratio from this formula for the first three period ratios is 1.37 (averaging also over all φ),

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/


deviationprediction
1.514

1.343

1.247

3/2

4/3

5/4

observation

a b

c 98.4
65.0

48.438.8

pe
rio

d 
(c

m
)

3350 μm
ventral

2050 μm
dorsal30

100

40
50
60
70
80
90

diffuse

decaying

localized

0.93%

0.75%

0.24%

Figure 4: Robust prediction of pairwise module period ratios for simple fixed-scale inter-
action profiles. (a) Examples of diffuse, decaying, and localized fixed-scale lateral interactions
W f , together with the dominant terms in their Fourier transforms W̃ f . (b) The phases of the
Fourier transforms for the fixed-scale interactions in (a). (c) Observed periods of grid cells from
multiple modules (34) (left), successive period ratios computed from the observation (table, left
column), and predicted period ratios for φ = 0 (table, middle column). Ratios match predicted
values with R2 = 0.999 (table, right column).

in good agreement with known results (34), but further, successive period ratios are predicted

to have distinct values with a simple relationship between them. Given the specific form of

our prediction for successive period ratios, and that is nevertheless generic across different lat-

eral interaction profiles, we compare it with experimental results, Fig. 4c. The prediction with

φ = 0 matches the sequence of observed period ratios strikingly well for this dataset and others

(comparison with additional data presented in SI Sec. 3.9).
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Discussion We have shown that the combination of fixed-range lateral interactions with smooth

gradients in the lateral interaction width can lead to spatially discretely varying solutions in a

pattern forming dynamical system, through discrete selection of global maxima from a set of

local maxima. This is a novel recipe for bottom-up modularization in neural circuits, that could

be incorporated into neural models beyond grid cells. Our analytical formulation thus simpli-

fies and extends existing approaches that have also examined the role of smooth gradients in

patterning and functional specialization (37, 43, 48).

We have shown that the number of formed modules is independent of the size of the neu-

ral strip and the shape of the gradient in the lateral interaction, if the extremal values of the

interaction widths are held fixed. The addition of complementary mechanisms to maintain the

overall gradient magnitude across the neural sheet regardless to size will thus lead to invari-

ance with the size of the system (49, 50). For grid cells, our model and its sound match with

experimental data suggests that MEC may contain a fixed-width interaction that co-exists with

known smooth gradients in a broad range of cellular and network-level properties. The fact that

φ = 0 provides the best description of the data also helps to constrain possible forms of the

fixed-width lateral interaction. These predictions are testable with connectomic reconstructions

of the network (51–53).

The same principles may be relevant for biology outside the brain: just as pattern forma-

tion is a critical process both for morphogenesis and the formation of functional neural cir-

cuits (35, 39, 54), multi-scale interaction-driven pattern formation may be relevant not just for

modularization in the brain but also for the morphogenesis of discrete structures, for example

in making the process of body segmentation more robust (7).
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Supplementary materials

Materials and Methods

We use a continuous attractor network (CAN) model (55–57) for grid cells (35, 58–60), with

neural dynamics obeying

∂s(i, t)

∂t
+
s(i, t)

τ
= φ

[∑
j

W0(i, j)s(j, t) +B(i, t)

]
, (1)

where s(i, t) represents the synaptic activation of neuron i at time t, W0(i, j) represents the

synaptic strength of the coupling from neuron j to neuron i, B(i, t) represents the feed-forward

bias to neuron i, and φ is a non-decreasing nonlinearity, for which we use the rectification

function (φ(z) = [z]+ = z for z > 0 and 0 otherwise). Each neuron i has a preferred direction

θi that is used to perform velocity integration. In the one-dimensional version of our setup,

each spatial location x on the neural sheet has two neurons, with preferred directions θ = 0

and θ = π. Correspondingly, in the two-dimensional version of our setup, each location on the

neural sheet has four neurons, with preferred directions θ = nπ/4 for n ∈ {0, 1, 2, 3}. The

synaptic weights W0(i, j) are defined via an interaction kernel W (∆x) such that

W0(i, j) = W (|xi − xj − l(θj)|), (2)

where xi represents the spatial location of neuron i, and l(θ) is a vector with length l oriented

parallel to the angle θ. The feed-forward bias B(i, t; θ) is given by

B(i, t) = b+ bvel|v| cos(θi − ψ), (3)

where ψ is the direction of the input velocity signal and |v| is the speed. This results in neurons

with direction preference θ driving activity in the network towards the direction of their outgoing

weight shifts l(θ). This mechanism is responsible for velocity integration by the network (35).
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Wavenumber

Random initialization

Steady state pattern

Interaction
   kernel

Figure 5: Local pattern formation in continuous attractor models of grid cells

As noted in the main text, the interaction weight kernel W is given by the sum of two

components W = W g
x + W f . The first, W g

x drives local pattern formation, and has a spatial

scale σ(x), which varies smoothly in a gradient along the dorso-ventral axis, and the second,

W f has a fixed spatial scale d everywhere on the neural sheet. A variety of functions W g
x can

drive local pattern formation. For concreteness, we use two specific examples: the Mexican-hat

profile (35) (used in Figs. 1-3 and SI Fig. 6)

W g
mexican-hat(∆x) = αE exp

[
−γ (∆x)2

2σmh(x)2

]
− αI exp

[
− (∆x)2

2σmh(x)2

]
, (4)

and the box-function profile (61) (used in Fig. 2 and SI Fig. 6)

W g
box(∆x) = α0 × 1|∆x|<σb(x) =

{
α0 if |∆x| < σb(x),

0 if |∆x| ≥ σb(x).
(5)

For the fixed-width interaction W f (∆x), we implement 3 main types — localized (used in
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Figs. 2,3 and SI Fig. 6), diffuse (used in Fig. 2 and SI Fig. 6) and decaying (used in SI Fig. 6).

W f
localized(∆x) = αS exp

[
−(|∆x| − dloc)2

2ε2S

]
,

W f
diffuse(∆x) = α1 × 1|∆x|<ddif ,

W f
decaying(∆x) = αT × [ddec − |∆x|]+.

In particular,

• In Figs. 1e-g we use only a smoothly varying Mexican-hat pattern forming kernel W =

W g
mexican-hat

• In Figs. 2a-c,g,h and 3a,e we use W = W g
mexican-hat +W f

localized

• In Figs. 2d-f,i we use a ‘Lincoln hat’ profile W = W g
box +W f

diffuse

• and, in SI Fig. 6 we present numerical simulations of other combinations of pattern

forming and fixed-scale kernels.

In Table 1 we present a list of common parameters used across all numerical simulations.

Then, in Tables 2,3 we present the parameter values used for the kernels used in our numerical

simulations

Supplementary Text

The supplemental information is structured as follows: We will first present the mathematical

analysis for pattern formation, and demonstrate in SI Sec. 1 that simply introducing a gradient

in the pattern forming kernel of the continuous attractor model is not sufficient to result in

modularization, as demonstrated in Fig. 1 of the main text. Then, in Sec. 1.1 we show how

the addition of a Gaussian localized kernel results in self-organized modularization. We then
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Parameter Value
τ 30
dt 0.05

b

{
70 in 1D
1 in 2D

bvel

{
105 in 1D
1 in 2D

l 2

Table 1: Parameters held constant across all numerical simulations

W g
mexican-hat parameters Value

αE 1000
αI 1000
γ 1.05

N1D 3000
N2D
y 100

N2D
x 1000

σmh(x) 1/
√

2β(x)
β(x) β0 + (β1 − β0)x/N ′

N ′

{
N1D in 1D
N2D
x in 2D

β0

{
2.5× 10−2 in 1D
3/676 in 2D

β1

{
2.5× 10−1 in 1D
9/338 in 2D

W g
box parameters Value

N1D 5000
α0 -40
σb(x) 15 + 30x/N

Table 2: Pattern forming kernel parameters used for numerical simulations
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W f
localized parameters Value

αS 4

dloc

{
84 in 1D
50 in 2D

εS

{
4.77 in 1D
1.6 in 2D

W f
diffuse parameters Value

αdif -0.25
ddif 135

W f
decaying parameters Value

αT 25
ddec 150

Table 3: Fixed-scale kernel parameters used for numerical simulations

generalize this result in SI Sec. 2, to show that arbitrary fixed-scale kernels will almost always

result in module formation as demonstrated in Fig. 3. Among arbitrary kernels, we will show

in Sec. 3 that kernels with a simple features result in a simple equation describing the detailed

period ratios of the formed grid modules as shown in Fig. 4. This will lead to simple estimates

for the number of modules and their sizes in terms of other system parameters, which we derive

in SI Sec. 3.7. After having described our results primarily for the case of one-dimensional grid

cells, we then demonstrate in Sec. 3.8 that our arguments extend naturally to two dimensions,

and we present numerical results demonstrating the same. In SI Sec. 3.9 we then demonstrate

that our results and predictions of grid period ratios are consistent with available data sources to

a large extent. We then end with some brief remarks relating our result to the context of energy

minimization in neural networks (SI Sec. 4), and providing broader perspectives of our results

in the contexts of general loss optimization (Sec. 5) and eigenvector localization (SI Sec. 6).

We will largely restrict our analysis to the continuum limit of a large number of neurons

(a neural field model) for mathematical convenience. However, as shown in the main text, the

results hold for and accurately predict the dynamics of networks of discrete neurons. We will
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use a continuous index to represent position along the neural sheet. In this limit, the dynamics

of rate-based neurons is given by:

∂s(x, t)

∂t
+
s(x, t)

τ
= φ

[∫ +∞

−∞
W (x,x′)s(x′, t)dx′ +B(x)

]
, (6)

where s(x) is the synaptic activation of the neuron at the vector position x on the neural sheet,

τ is the biophysical time-constant of individual neurons, φ is a monotonic non-decreasing non-

linearity, and B(x) is the feedforward input to the neuron. For simplicity, we will use the the

rectification function (φ(z) = [z]+ = z for z > 0 and 0 otherwise) as the nonlinearity in all of

our results.

In nonlinear continuous attractor models the interaction weights W (x,x′) are chosen to

have a continuous symmetry, usually a translation-invariant symmetry such that W (x,x′) =

K(|x − x′|), where the weight between neurons at locations x and x′ depends only on their

separation, and not on their absolute locations. One example of such a weightK is the so-called

Mexican-hat function described by a difference-of-Gaussians, in which neurons excite their

immediate neighbors and inhibit those slightly further away; there is no interaction between

faraway neurons:

W (x,x′) = W (∆x) = αE exp

(
−∆x2

2σE

)
− αI exp

(
−∆x2

2σI

)
. (7)

Continuous attractor grid cell models of individual modules rely principally on a local inhibitory

interaction (the excitatory center interaction is dispensable) (35, 61).

Motivated by the experimental observations described in the main text, we modify the

Mexican-hat function to introduce a smooth gradient in the characteristic interaction widths

σE, σI .

W g
x(∆x) = αE exp

(
− ∆x2

2σE(x)

)
− αI exp

(
− ∆x2

2σI(x)

)
, (8)

where σE(x) and σI(x) are now functions that depend on position in the neural sheet, and
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encode the smoothly varying characteristic scale of the Mexican-hat interaction, say

σE/I(x) = σE/I + σ′E/I(0) · x. (9)

For such graded kernels, we will use W (x,x′) and Wx(x− x′) = Wx(∆x) interchangeably.

1 Pattern formation with graded kernels

In the limit of very slow changes in the length-scale of the interaction kernel Wx(∆x) along

the dorso-ventral axis of the MEC, we can analyze the pattern formation process at position x

by assuming that Wx(∆x) is locally constant.

Under this approximation, we perform a linear stability analysis of the neural dynamics, to

identify the the growing periodic modes locally at the position on the neural sheet x.

We first identify an unstable steady-state solution to Eq. (6), which we denote as s0(x). This

solution satisfies
s(x)

τ
= φ

[∫ +∞

−∞
Wx(x− x′)s0(x′)dx′ +B(x)

]
. (10)

In the limit of very slowly varying changes in Wx(∆x) as a function of x, the unstable steady

state solution will be

s0(x) =
τB̄

1− τW̄
, (11)

where B̄ =
∫
B(x)dx and W̄ =

∫
Wx(x− x′)dx′.

We then consider a perturbative analysis, by examining the evolution of s(x, t) = s0(x) +

ε(x, t). We apply our analysis to the early time evolution of this initial condition, such that

ε(x, t)� s0(x). Inserting our form of s(x, t) in Eq. (6), we obtain

∂ε(x, t)

∂t
+
ε(x, t)

τ
= φ′(γW̄s0(x) +B)

∫ ∞
−∞

Wx(x− x′)ε(x′, t)dx′ (12)

Since Wx(x− x′) is a local kernel, we approximate the above integral with one evaluated over

the region {x′ : |x− x′| < L}, with L much larger than the length-scale of the kernel Wx at all
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x. Over this interval, we posit that ε(x′, t) = εeik·x
′+α(k)t, where α(k) denotes the growth rate

of this ε perturbation. Inserting this form into Eq. (12) yields,

α(k) + 1/τ = φ′(W̄s0(x) +B)

∫ ∞
∞

Wx(x− x′)e−ik·(x−x′)dx′, (13)

= φ′[W̄s0(x) +B]F [Wx(x− x′)], (14)

= φ′[W̄s0(x) +B]FWx(k) (15)

where F [Wx(x−x′)] = FWx(k) is the Fourier transform of the interaction kernel correspond-

ing to position x on the neural sheet.

Note that since Wx(∆x) is a kernel, it is a radially-symmetric real function, and hence the

Fourier transform FWx(k) will also be real function that is radially-symmetric in k. Thus, for

simplicity, we will only focus on the magnitude of k, which we denote as k = |k| ≥ 0 (In this

context, for the two-dimensional case, one may re-interpret the radial component of the Fourier

transform of Wx(∆x) as the Hankel transform of Wx(|∆x|)).

By definition, the magnitude of the wave vector k∗ that corresponds to the fastest growing

mode locally around position x on the neural sheet will be the k that maximizes α(k). Under

the approximation of slow changes in the length-scale of the interaction kernel Wx(∆x), we

see from Eq. (15) that

k∗(x) = arg maxk FWx(k), (16)

since Wx(∆x) (and hence s0(x)) has been assumed to have a negligible dependence on x.

For Wx(∆x) given by Eq. (8), i.e., without any additional fixed-scale interaction, we obtain

from Eq. (16)

[k∗(x)]2 =
2

σE(x)2 − σI(x)2
log

(
αEσE(x)3

αIσI(x)3

)
. (17)

If we assume that σE/I(x) = ηE/Iσ(x), where ηE and ηI are x-independent constants, then we

obtain

k∗(x) ∝ 1/σ(x), (18)
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and hence

λ∗(x) ∝ σ(x), (19)

where λ∗(x) is the periodicity of the grid pattern formed locally around position x. This results

in a smooth change of grid period, corresponding to the observation in Fig. 1g of the main text.

Note that this result is generally true for any pattern forming kernel W g
x(∆x) that has a

Fourier transform with at least one local maximum, and does not rely on the specific form of

a Mexican-hat interaction. Indeed, Eq. (19) holds for any kernel W g
x (∆x) that depends on a

length-scale σ(x). As an example, we present the corresponding analysis for the box-shaped

kernel employed for pattern formation in Ref. (61). In this case

W g
x(∆x) = −W01∆x≤σ(x). (20)

As discussed above, the quantity of interest is FW g
x(k)

FW g
x(k) =

∫ ∞
−∞
−W01|x|≤σ(x)e

ik·xdx (21)

= −W0

∫
|x|≤σ(x)

eik·xdx. (22)

The above integral can be calculated in a one-dimensional setup to obtain

FW g
x (k) = −2W0

sin(kσ(x))

k
(23)

and can be calculated in a two-dimensional setup to obtain

FW g
x(k) = −2πW0σ(x)

J1(kσ(x))

k
. (24)

In both of the above cases, note that k∗ ∝ 1/σ(x) since σ(x) is the only length-scale character-

izing the kernel W g
x . In particular, numerical maximization yields

k∗ ≈

{
4.493/σ(x) if x is one-dimensional, and
5.136/σ(x) if x is two-dimensional.

(25)
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1.1 Fixed-scale interactions and modularization

We now claim that the addition of a fixed-scale kernel, W f (∆x) is sufficient to result in mod-

ularization of grid periods, with discrete changes in grid period as a function of spatial position

along the dorso-ventral axis. This set of interactions can effectively be implemented by two

populations of interneurons - one with fixed arborization and weaker synaptic connections and

one with varying arborization length and stronger synaptic connections.

For simplicity, we shall present the specific Fourier transform computations for the one-

dimensional problem, although we note that all of the qualitative results hold in two dimensions

as well, with the Fourier transforms of the relevant functions replaced with their Hankel trans-

forms (as shown in Sec. 3.8).

We include an additional weak interaction term W f that critically does not depend on

the neural sheet position x. For reasons that will become apparent soon, we choose kernels

W f (∆x) such that the Fourier transform changes sign a sufficiently large number of times. We

hypothesize that this requirement is not particularly restrictive, and will demonstrate that this

holds for most kernels W f .

The entire interaction profile is then given by

Wx(∆x) = W g
x (∆x) +W f (∆x). (26)

We first demonstrate our result with an example of a simple kernel, to justify how Eq. (16)

leads to the emergence of discrete grid modules. Consider the localized excitatory interaction

W f (∆x) = αS exp

(
−(∆x− d)2

2σ2
S

)
+ αS exp

(
−(∆x+ d)2

2ε2S

)
. (27)

Corresponding to our interpretation of W f (∆x) above being a localized kernel, we choose

εS � d.
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This choice of Wx(∆x) = W g
x (∆x) +W f (∆x) leads to the the Fourier transform,

FWx(k) = FW g
x (k) + FW f (k), (28)

=
√

2π

[
αEσE(x) exp

(
−σE(x)2k2

2

)
− αIσI(x) exp

(
−σI(x)2k2

2

)
+ 2αSεS cos(kd) exp

(
−ε

2
Sk

2

2

)]
.

(29)

In our model, the magnitude of the W f (∆x), i.e., αS , is chosen to be smaller than the

magnitude of the Mexican-hat interaction. Thus we interpret FW f (k) in Eq. (29) as being a

small perturbation to the Fourier transform of the standard Mexican-hat interaction, FW g
x (k).

Further, since d is assumed to be much larger than the scale of the Mexican-hat, σE/I , then

the term cos(kd) in FW f (k) oscillates at a k-scale much smaller than the relevant scales of

FW g
x (k) (see Fig. 3b-c of the main text). Additionally, since εS � d, the gaussian envelope

multiplying the rapidly oscillating term has a scale 1/ε, which is much larger than the periodicity

1/d.

Thus, in k-space, the rapidly oscillating term, FW f (k) can be thought of as predefining a

set S = {k1, k2, . . .} of local maxima. Under the approximations made above, the addition of

the smoother function FW g
x (k), will not change the position of the local maxima. This results

in the local maxima of FWx(k) also being the same set S. Importantly, we note that since S

was predefined purely via FW f (k), there is no x dependence on the set S.

Following Eq. (16), the wave-vector corresponding to the pattern formation at point x on

the neural sheet corresponds to the global maxima of FWx(k). Thus, at all points, the pattern

formation corresponds to one of the discrete set of choices of wave vectors, S = {k1, k2 . . .}.

As can be seen from Fig. 3c, the smoothly varying gradient in the Mexican-hat term, FW g
x as

a function of x picks different choices of ki depending on the position x — the k ∈ S that is

nearest to the maxima of FW g
x (k) will be chosen as the global maxima, and will be the wave

vector corresponding to the pattern at x. We refer to this mechanism as “peak selection”.
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For our particular choice of W f (x) made in Eq. (27), we obtained

FW f (k) = 2αSεS cos(kd) exp

(
−ε

2
Sk

2

2

)
. (30)

We can then approximate the local maxima of FW f (k) as occurring at

S =

{
2mπ

d

∣∣∣∣m ∈ Z+

}
. (31)

This immediately indicates that the ratios of periods of successive grid modules will be given

by
λm+1

λm
=
m+ 1

m
. (32)

Thus, the addition of a fixed-scale interaction, W f such as Eq. (27) results in discrete grid

modules. We now show that this peak-selection mechanism, and hence modularization, occurs

for arbitrary choices of the fixed-scale interaction kernel W f (∆x).

2 Kernels that lead to modularization

The peak-selection modularization mechanism described above arises naturally from the pres-

ence of the rapidly oscillating term in FW f (k). In fact, for discrete grid modules to occur, the

only constraints imposed on the fixed-scale kernel W f are: (a) the Fourier transform FW f (k)

must have a sufficiently large number of maxima (at least 4 maxima, corresponding to the 4

grid modules observed in experimental observations); and, (b) these maxima must be at scales

smaller than 1/σ in k-space. Here we argue that this is generally true for arbitrary kernels,

modulo a single scaling parameter.

We hypothesize and give support, without formal proof, that almost every arbitrarily chosen

kernel W f (∆x) will have a Fourier transform with multiple maxima satisfying condition (a).

We will then argue that this kernel can always be scaled to satisfy condition (b).
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To motivate our hypothesis, we first note that it is actually possible to construct specific

kernels W f (∆x) whose Fourier transform does not present multiple maxima. For example,

the Gaussian kernel, Wgauss(∆x) = exp[−(∆x)2/2], results in a Fourier transform that is uni-

modal. However, we hypothesize that such functions are rare in the space of all continuous

functions in L2. Indeed, we can construct a function that is arbitrarily close to the Gaussian

kernel whose Fourier transform will have an infinite number of maxima: Let f0(∆x) = 1[−1,1]

be the box function. Define

fn = f ∗ fn−1

for all n ≥ 1, where f ∗ g represents the convolution of functions f and g. By the central limit

theorem,
√
nfn(
√
n∆x) will approach Wgauss(∆x). However,

Ffn(k) = [2 sin(k)/k]n, (33)

which clearly has an infinite number of maxima. Thus, even though the Gaussian kernel has

a unimodal Fourier transform, we can construct a function gn(∆x) =
√
nfn(
√
n∆x) that is

arbitrarily close to the Gaussian kernel (for sufficiently large n) but has a Fourier transform that

presents an infinite number of maxima.

In this context, we claim that almost every arbitrarily chosen kernel W f (∆x) will have a

Fourier transform with multiple maxima. This may be intuited as follows: First note that Fourier

space is a dual space, and hence instead of considering arbitrary kernels in real space we may

equivalently choose arbitrary kernels in Fourier space. Further assuming that FW f (k) is a

smooth function, we hypothesize that generically smooth functions that are in L2 will almost

always have multiple maxima and minima.

Thus condition (a) may be satisfied for arbitrary kernels W f (∆x). Next, note that scaling a

function in real space results in an inverse scaling of the Fourier transform, i.e., F [W f (a∆x) =

FW f (k/a). Hence, we can always scale the function W f (∆x) to obtain a Fourier transform
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with maxima that are within any desired scale, allowing condition (b) to be satisfied.

In Fig. 6, we show examples of modularization arising from different combinations of

graded pattern forming kernels (W g) and fixed-scale kernels (W f ). In each case, we also present

the expected periodicity in each module as a function of spatial position as given by the per-

turbative analysis Eq. (16). The analytical result based on linear stability provides an excellent

prediction of the pattern periods per module (see also Main text, Fig. 3e). It also predicts the

locations of the module boundaries (see also Main text, Fig. 3e) though not as accurately: mod-

ule boundary predictions tend to be slightly but systematically offset relative to the simulated

dynamics, due to the effects of nonlinearity in the later stages of pattern formation.

3 Simple kernels and period ratios

What kinds of fixed-scale interactions might be present in the medial-Entorhinal cortex? As

described in the main text, in the context of biology, we might expect simple interaction kernels

W f to be relevant i.e., the fixed-scale interaction profile W f has the following characteristics:

(a) there exists a single length-scale d that primarily characterizes the shape of W f ; (b) any

other length-scales relevant to W f , say scales ε1, ε2, ... are each much smaller than the primary

length scale d. Further, we assume that the primary length-scale associated with the fixed-scale

interaction is larger than the length-scales of the pattern forming kernel, i.e., d� σE/I(x).

We will demonstrate that simple fixed-scaled interaction kernels result in analytic expres-

sions for grid periods that are characterized by a single angular variable φ

λm+1

λm
=
m+ 1 + φ/(2π)

m+ φ/(2π)
. (34)

Before filling in the details of our argument, we present an intuitive explanation of the

general idea:

Consider the following basic classes of simple kernels that satisfy the above-described cri-
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Figure 6: Examples of modularization and (right column) population activity with (left column)
various pattern forming and fixed interactions.

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/


external space (m)

fir
in

g 
ra

te
 (H

z)

Figure 7: Sample tuning curves from several neurons in all modules from the network of Fig
2a.

teria corresponding to a length-scale d:

(a) g(|∆x| − d), for arbitrary functions g(ρ) that are nonzero only over scales |ρ| < εi (a

localized kernel), and,

(b) A constant term, that is uniform everywhere up to ∆x = d, after which it falls to zero (a

diffuse kernel),

(c) A decaying term, that decreases from a constant value at ∆x = 0 to zero at ∆x = d (a

decaying kernel).

We also define short-range kernels, as any arbitrary function h(∆x) that is nonzero only

over scales |x| < εi.

Any simple kernel W f (∆x) can be generally constructed as a linear combination of the

above basic classes. In addition, simple kernels may also contain an added component of a

short-range kernel.

To see that simple kernels will generally result in grid period ratios corresponding to Eq.

(34), we will examine the approximate Fourier transform structure for each component of the

linear combination of simple kernels corresponding to a given length-scale d. We first demon-

strate that each of the basic simple kernels will result in Fourier transforms that are sinusoidal

functions with phase shifts and decaying envelopes and hence each basic simple kernel will sat-
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isfy Eq. (34). We then show that short-range kernels present Fourier transforms that vary only

at large scales, and can be ignored in our analyses of simple kernels. We then use these results

to demonstrate that all simple kernels constructed as the above-described linear combination

will have sinusoidal Fourier transforms and will satisfy Eq. (34).

local maximas set by W 

dorsal

ventral

�xed

smooth change in maxima discrete jump in maxima 

g

A

Figure 8: Peak selection process demonstrating how the additional of the oscillatory fourier
transform of the fixed interaction leads to discrete jumps in maxima despite smooth movement
of the primary peak.

3.1 Localized kernels

For a general localized kernel W f (∆x) = g(|∆x| − d) we obtain

FW f (k) = <[e−ikdFg(k)]. (35)

Since g(x) is supported over a scale ε, the Fourier transform Fg(k) will only vary at scales

k ∼ 1/ε� 1/d. Thus for 1/d� k � 1/ε, we can approximate Eq. (35) as

FW f (k) = |Fg(k)| cos (kd− ψ) , (36)

where ψ = arg[Fg(k)]. The local maxima of FW f (k) will then occur at

S =

{
2mπ + ψ

d

∣∣∣∣m ∈ Z+

}
, (37)
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resulting in period ratios described by

λm+1

λm
=
m+ 1 + ψ/(2π)

m+ ψ/(2π)
, (38)

which is identical to Eq. (34) for φ = ψ. We also note that we can now ascribe an interpretation

to the phase angle φ — it is the phase difference between FW f (k) and cos(kd).

3.2 Diffuse kernels

We model a diffuse interaction kernel W f (x) as

W f (x) = −W01[−d,d] =

{
−W0 if |x| ≤ d

0 if |x| > d
. (39)

Corresponding to the discussion above, we look at the Fourier transform FW f (k)

FW f (k) =

∫ +∞

−∞
−W01[−d,d]e

ikxdx =

∫ +d

−d
−W0e

ikxdx (40)

= −2W0
sin(kd)

k
= −2W0d sinc(kd). (41)

Note that once again, similar to Eqn. (30), we obtain a functional form consisting of a periodic

function (sin(kd)) that is multiplied by a decaying envelope 1/(kd). Ignoring the effects of the

envelope function, the maxima of this function occur at

S ≈
{

2mπ − π/2
d

∣∣∣∣m ∈ Z+

}
, (42)

which immediately results in period ratios of the form

λm+1

λm
≈ m+ 1− 1/4

m− 1/4
, (43)

which corresponds to the result in Eq. (34) for φ = π/2.

More precisely, the extrema of FW f (k) occur at kmd = q − 1/q − 2/3q3 +O(q−5)

where q =

(
m+

1

2

)
π. Notably, the errors decay approximately as 1/(πm), and thus for

modules generated corresponding to m & 2 will result in period ratios that approximate Eq.

(34) closely.
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3.3 Decaying kernels

Decaying kernels with a scale d may be modeled as any monotonically decreasing function that

decays from some constant W0 at ∆x = 0, to zero, at ∆x = d. For simplicity, we consider the

simplest linear approximation to such a kernel, modeled as a triangular kernel. For additional

subtleties in the treatment of other decaying kernels, see 3.5.1 The triangular kernel can be

written as:

W f (∆x) =

{
W0(∆x− d)/d if ∆x < d

0 if ∆x ≥ d
(44)

This function can be written as the convolution of 2 diffuse box functions:

W f (∆x) = (−W01[−d/2,d/2]) ∗ (W01[−d/2,d/2]).

Thus, its Fourier transform is:

FW f (k) = −W 2
0 d

2

(
sin(kd/2)

(kd/2)

)2

= −2W 2
0

k2
[1− cos(kd)].

Once again, we obtain a simple trigonometric function, with maxima at

S ≈
{

2mπ

d

∣∣∣∣m ∈ Z+

}
, (45)

which immediately results in period ratios of the form

λm+1

λm
≈ m+ 1

m
, (46)

which corresponds to the result in Eq. (34) for φ = 0.

3.4 Short-range kernels

For the case of a short-range kernel W f (∆x) that extends upto a scale ε, we note from the

Fourier uncertainty principle that the characteristic k-scales of FW f (k) will ∼ 1/ε � 1/d.
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Thus, unlike the three other types of simple kernels discussed above, short range kernels do not

have structure at the scale of 1/d. Since all relevant scales are much larger than 1/d, adding

short range kernels to any of the other types of simple kernels will not change the structure of

local maxima at scales of 1/d.

3.5 Arbitrary simple kernels

We now consider a general form for simple kernels, by constructing linear combinations of the

above described three basic classes of simple kernels each corresponding to the same length

scale d and additional short-range kernels.

W f = alocalW
f
local + adiffuseW

f
diffuse + adecayingW

f
decaying + ashortW

f
short. (47)

As demonstrated in the preceding sections, the Fourier transform FW f (k) will be given as

FW f (k) = alocal|Fg(k)| cos(kd− ψ)− 2W0adiffuse sin(kd)/k − 2W 2
0 adecaying(1− cos(kd))/k + Fh(k)

(48)

= H0(k) +
3∑
i=0

Hi(k) cos(kd+ φi) (49)

for some constants φi, and some envelope functions Hi(k) for i = 0, 1, 2, 3 that are slowly

varying for kd & O(1). Under this approximation, FW f (k) is simply the sum of multiple

sinusoidal waves with different phases and identical frequencies. Thus,

FW f (k) ≈ cos(kd− φ) (50)

for some φ and kd & O(1). Hence, the maxima of FW f (k) occur at

S ≈
{

2nπ + φ

d

∣∣∣∣n ∈ Z+

}
, (51)

which immediately results in period ratios of the form Eq. (34). Note that the approximations

made above imply that there may be deviations from our results for the maxima corresponding
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Figure 9: Randomly constructed fixed-scale interactions (left column) and their fourier tran-
forms (right column), in addition to the hand-designed ones in Fig.4a, that give φ = 0 .

to small k values — this may manifest as deviations in the largest period grid module away

from Eq. 34.

3.5.1 Caveats

Clearly there exist simple kernels with Fourier transforms that are not given by FW f (k) ≈

cos(kd − φ). For example the Gaussian kernel, W f (∆x) = exp[−∆x2/(2d2)]/(d
√

2π) is

a simple decaying kernel (since it has only a single scale d). Yet, its Fourier transform is

simply FW f (k) = exp[−k2d2/2], which has only a single maximum! However, as we have

shown earlier, there exist kernels that are arbitrarily close to the Gaussian kernel, whose Fourier

transforms are given by powers of trigonometric functions, and hence have multiple regularly-

spaced maxima with a spacing of ∼ 1/d. Similarly, there exist additional simple functions (62,

63), f(∆x), (like the Gaussian kernel) whose Fourier transforms Ff(k) have a small number

of maxima. We hypothesize that for all such functions f(∆x) there exist simple kernels g(∆x)

that are arbitrarily close to f(∆x) and possess regularly spaced maxima.
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3.6 Period ratios

Having demonstrated analytically that simple kernels result in a sequence of period ratios given

by Eq. (34), we now address the question of the mean period ratio over the sequence and over

different values of φ. In the main text we have demonstrated that setting φ = 0 results in a

detailed period ratio sequence that is in close agreement with the sequence of experimentally

observed values. Here we consider the period ratios obtained for other values of φ, to demon-

strate that the experimental observation of mean period ratios being approximated by 1.4 (34)

emerges naturally from our setup.

From Eq. (34), we obtained that the period ratio, rm = λm+1/λm can be written as

rm = 1 + 1/(m+ f), (52)

where f = φ/(2π). We ignore m = 1, since that results in a period ratio close to 2, which

does not correspond to experimental observations. Averaging the period ratio over the next 4

modules (corresponding to rm for m ∈ {2 . . . 4}) results in

〈rm〉m = 1 +
1

3

(
1

φ+ 2
+

1

φ+ 3
+

1

φ+ 4

)
(53)

As can be seen in Fig. 10, this mean period ratio lies in the range [1.3,1.45], indicating that

at all values of φ, the period ratio obtained from Eq. (34) matches well with experimental

observations. The average of these period ratios over all values of φ can also be calculated as

〈rm〉φ,m = 1 +
1

3

[
log

(
5

3

)
+ log

(
7

5

)
+ log

(
9

7

)]
(54)

which is approximately equal to 1.37.

3.7 Module size; number of modules as a topological quantity

As discussed in the main text, peak-selection for modularization is a highly robust mechanism

that is largely indifferent to system parameters such as the the particular forms of the fixed-

scale interaction and the shape of the gradient. Here we provide an analysis of the number
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Figure 10: Mean grid-period ratios Ratios of grid periods averaged over 4 modules as a func-
tion of the phase shift φ in Eq. (34)

Figure 11: The number of modules is a topological invariant and hence invariant to the
gradient shape (the function σ(x)) since it is set only by the fixed interaction width and the
extremal/endpoint values of σ(x), even though changing the gradient shape shifts the locations
of module boundaries.
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of modules, the scaling of module sizes, and the positions of module boundaries, which also

exhibit the same robustness. Further, we also describe how this robustness may be interpreted

as arising from a topological origin, similar to topological robustness in other physical systems

like the quantum hall effect.

Recall that for the continuously graded kernelW g
x (∆x) with characteristic spatial scale σ(x)

at position x, the wave-vector of the formed pattern was proportional to 1/σ(x):

k∗g(x) = η/σ(x), (55)

where η is an x-independent constant that depends on only the particular form of the graded

kernel. Let the spatial extent of the system be x ∈ [0, L], with σ(x) monotonic such that

σmin = σ(0) ≤ σ(x) ≤ σ(L) = σmax.

We assume for simplicity that the fixed-scale lateral interaction is a simple kernel, such

that FW f (k) ∼ cos(kd + φ). Thus, the local maxima generated by FW f (k) occur at kn ≈

(2nπ − φ)/d, where n are the natural numbers. As discussed in the main text, each of these

local maxima is ‘selected’ in turn by the moving broad peak of the Fourier transform of the

graded kernel, whose position according to Eq. 55 occurs at k∗g(x) = η/σ(x).

Notably, the selected maximum km will be robust to small perturbations in the selection

function FW g
x (k), since km will remain quantized to one of the discrete values prespecified

by the set {kn‖n ∈ N}. In this sense, the chosen maximum km (and hence the corresponding

module) presents the hallmarks of a topologically protected state (47). The topological number

corresponding to a given module is the module number m, which is a topological invariant

similar to a winding number (47)2.

The set of modules expressed through the length of the system corresponds to the set of

local maxima kn that lie within the range [η/σmax, η/σmin] that is delineated by the range of

2Note that in our convention the module number m is ordered such that the largest grid period module is the
first module. This is opposite to the numbering usually used in the literature, such as in (34).
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peak positions of the graded interaction. It follows that the maxima selected by the graded

interaction obey:
η

σmax
≤ 2nπ − φ

d
≤ η

σmin
. (56)

Thus, the set of formed modules are determined by the set of integers n that fit in the following

interval:
φ+ ηd/σmax

2π
≤ n ≤ φ+ ηd/σmin

2π
(57)

and hence the number of modules νmod is:

# modules ≡ νmod =

⌊
φ+ ηd/σmin

2π

⌋
−
⌈
φ+ ηd/σmax

2π

⌉
=

⌊
φ+ k∗g(0)d

2π

⌋
−
⌈
φ+ k∗g(L)d

2π

⌉
(58)

where b c, d e indicate the floor and ceiling operations, respectively.

The above result leads to the following observations: First, the central quantity essential

for determining the number of modules is the difference in the integer ratios of the fixed-scale

interaction width to the extremal lateral interaction widths, d/σmin, d/σmax. Second, the num-

ber of modules depends only on the end-point values σmin, σmax of the smoothly varying width

σ(x) the graded interaction; notably, it does not depend on the detailed shape of σ(x). More-

over, if σmin, σmax are varied smoothly (while d is held fixed), or if d is varied smoothly (while

σmin, σmax are held fixed), the number of modules will remain fixed, until the change becomes

large enough to accommodate one additional or one less module. Thus, the number of modules

is also a topological invariant of the system, through the module number m. Third, the number

of modules does not depend on the system size L, or the number of neurons nDV the system

is discretized into (cf. SI Fig. 11). Fourth, since the average module size will be L/νmod, the

module sizes are extensive in L. Thus, for sufficiently large L, the module sizes can be orders

of magnitude larger than the scales of the lateral interaction d and σ.

Note that the above argument on topological robustness of the modularization of the system
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is not restricted to the case of simple fixed-scale kernels. Indeed, for any fixed-scale interaction

W f , the topological number m for any given expressed module will correspond to selecting the

mth maximum of FW f (k), for k > 0.

3.7.1 Module boundary locations

Following the peak-selection arguments made earlier, the module boundaries will occur at spa-

tial locations that have k∗g(x) in between kn and kn+1 (the specific location will depend on

the particular forms of the kernels). As a zeroth order approximation, we can assume that the

module boundaries will occur near (kn + kn+1)/2,

k∗g(xboundary) ≈
(2n+ 1)π − φ

d
(59)

and thus

xboundary ≈ σ−1

(
ηd

(2n+ 1)π

)
. (60)

where σ−1 is the inverse function of σ(x), σ−1 ◦ σ(x) = x. Thus, while the specific positions

of the module boundaries are dependent on the shape of the gradient σ(x), qualitative features

such as the number of modules, module periods and module sizes are indifferent to the particular

forms of the gradient (cf. Fig. 11).

3.8 2D analysis

We have presented a majority of the above analysis for the case of one-dimensional grid cells.

Here we briefly present the analogous computations for the Fourier transforms in two dimen-

sions. We first demonstrate a classical result relating the Fourier transform of radially symmetric

functions to the Hankel transform, which we shall then use to compute the relevant transforms.
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Consider the Fourier transform of a function f(x) = f(x, y)

Ff(k) =

∫
f(x)eik·xdx

Ff(kx, ky) =

∫
f(x, y)eikxx+ikyydxdy.

Define polar coordinates in real and Fourier space such that:

x = r cos θ

y = r sin θ

kx = k cosφ

ky = k sinφ

This leads to the dot product k · x to be simplified as

kxx+ kyy = rk(cos θ cosφ+ sin θ sinφ)

= rk cos(θ − φ)

Thus,

Ff(kx, ky) = Ff(k, φ) =

∫ ∞
0

∫ 2π

0

rdrdθf(r, θ)eikr cos(θ−φ)

In all cases of interest, the function f is a kernel, and is hence a radially-symmetric real function

f(r, θ) = f(r). Similarly, the Fourier transform Ff will also be a real radially-symmetric

function Ff(k, φ) = Ff(k). Thus

Ff(k) =

∫ ∞
0

∫ 2π

0

rdrdθf(r)eikr cos(θ−φ), (61)

=

∫ ∞
0

rdrf(r)

∫ 2π

0

eikr cos(θ−φ)dθ, (62)

= 2π

∫ ∞
0

rf(r)J0(kr)dr, (63)
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where J0 is the Bessel function of the first kind, defined by

J0(x) =
1

2π

∫ 2π

0

eix cos(θ−φ)dθ.

Equation (63) defines the Hankel transform (of order zero) of f(r) — the radial component of

the Fourier transform of the kernel f(x) is simply the Hankel transform of f(|x|).

For the localized gaussian secondary interaction, we can calculate the Fourier transform

analytically.

FWlocal(k) = 2π

∫ ∞
0

r
[
αEe

−r2/2σ2
E − αIe−r

2/2σ2
I + αSe

−(r−d)2/2σ2
S

]
J0(kr)dr

= 2π
[
αEσ

2
Ee
−k2σ2

E/2 − αIσ2
Ie
−k2σ2

I/2 + αSJ0(kd)σ2
Se
−k2σ2

S/2
]

We can also analytically calculate the Fourier transform for a box-like interaction:

FWdiffuse(k) = 2πW

∫ d

0

rJ0(kr)dr

=
2πW

k2

∫ kd

0

ρJ0(ρ)dr

=
2πW

k2
[kdJ1(kd)]

=
2πWd2J1(kd)

kd

We can similarly also define a two-dimensional equivalent of the decaying kernel, as the

convolution of the half-sized circular box kernel with itself. Thus, by applying convolution

theorem to the result on diffuse kernels we obtain

FWdecaying(k) =

[
πWdJ1(kd/2)

k

]2

.

Note that J0(x) and J1(x) display qualitatively similar behavior to cos(x) and sin(x) respec-

tively, apart from an amplitude modulation of the peaks — particularly, we note that the Bessel

functions display approximately periodic maxima, which was the central property required for
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Figure 12: Bessel functions (left column) and period ratios for Bessel function maxima (right
column) with their best-fit values of φ for the period ratios corresponding to Eq. (34)

all of our results on modularization and peak selection to apply. We demonstrate this in Fig.12,

where we show that the maxima of the Bessel functions are approximately periodic, and fit the

form of Eq. (34) well. In particular, note that the best-fit value of φ for J0(k) is approximately

0, which is similar to cos(k), and the best-fit value of φ for J1(k) is approximately π/4, which

is similar to sin(k).

We implemented a 2d simulation that generates 3 discrete modules as shown in Figure 14.

For computational feasibility, the simulation was performed in 2 parts: one with x ∈ [0, 0.6N2d
x ]

and the other with x ∈ [0.6N2d
x , N

2d
x ]. The weight matrices for each network were of size

100x1000 each. The weight matrix for a single large 100x2000 network would have contained

4x1010 elements, which we found prohibitively difficult and slow to run.

Fig 15(a) shows another instance of a modular 2d network, the only difference being the

value of dloc, which changed from 50 to 45. Fig 15(b) shows the same simulation with 2

distinct random initializations. The pair of resulting modules in each simulation have different
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D

1D 2D

Figure 13: Fixed interactions(left, in orange) and their oscillatory Fourier transforms in 1D (left
column) and 2D (right column).

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/


G
rid

 s
pa

ci
ng

25

10

20

15

Theory (    )
Theory (           )
Simulation 

Figure 14: 2d simulation with 3 modules: (top) Snapshots of population activity showing 3
discrete 2d grid modules, (bottom) plot of grid spacing and comparision with Hankel transform
predictions. Grid spacing determined by calculating the (neural) spatial auto-correlation of the
population firing activity.

relative orientations. Because finite size effects from our simulations also partially constrain

the orientations of the modules (data not shown), we cannot make predictions about the relative

orientations of the grid modules found in experiments (34).

3.9 Comparison of experimental observations with predicted period ra-
tios

The general mechanism of peak-selection presented above describes how discrete modules can

spontaneously arise in the presence of continuous gradients, by consideration of an additional

fixed-scale lateral interaction W f . However, this mechanism does not provide any testable

predictions for the ratio of grid periods unless additional assumptions are made. If indeed we

assume that W f is a simple kernel, i.e., W f is primarily defined by a single spatial scale, then

we demonstrated in SI Sec. 3 that the period ratios will be given by the simple formula, Eq. 34.

In this section, we show that experimental observations of grid periods largely appear to match
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a

b

Figure 15: (a) Another instance of a spontaneously formed two dimensional network with pa-
rameters given in Table 4. (b) Two different random initializations of the network from Fig 2h
show different relative orientations between the 2 formed modules.
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our predicted period ratios for simple kernels with φ = 0.

For verification of our main results on the predicted form of period ratios, we examine the

literature for grid period measurements for multiple simultaneously measured grid modules in

rats (34, 64–66). We note that a large fraction of experimental observations of grid cells with

more than one module measure only two modules. For a single pair of grid periods λ1 and

λ2 > λ1, we can always explicitly solve for φ and m in Eq. (34), to obtain

φ

2π
=

{
λ2

λ1 − λ2

}
,m =

⌊
λ2

λ1 − λ2

⌋
, (64)

where {x} represents that fractional part of x, and bxc = x− {x} represents the integer part of

x. Thus, a single ratio, because it can always be fit by Eq. (34), imposes no constraints on the

accuracy of the expression.

It is possible to obtain a value of φ from Eq. (34) and a single pair of periods; however, the

estimate obtained from a single pair is not robust: rm depends too sensitively on φ. For example,

in (34), Rat 13388 exhibits grid periods of ≈ 53.24 cm and ≈ 43.00 cm (as estimated from SI

Fig. 12b in (34)); Eq. (34) then yields φ/(2π) = 0.199. Assuming a very small measurement

error of∼ 0.5cm in the larger period, such that if it were 53.75 cm instead of 53.24, would yield

φ exactly equal to zero. A simple sensitivity analysis of the magnitude of error in estimating φ

can be performed from Eq. (64):

δφ = 3ε
λ2

λ1 − λ2

≈ 3εm, (65)

where ε represents the fractional error in the estimate of grid period. Thus, particularly for

smaller grid periods (corresponding to larger m), even small errors in grid period estimation

can result in a large error in φ, making the errorbars in the estimation of φ from a single pair of

periods large.

To obtain results with significant statistical certainty, we focus our analysis on published

experimental studies that measure at least 50 grid cells per animal, spanning at least 3 distinct
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Figure 16: The 3 rats from Stensola et al. with 4 modules and their corresponding periods.

modules. This restriction results in grid period data sets for three rats — we present kernel

density estimates of the module periods for each of them in Fig. 16 (Fig. 16c corresponds to

the data presented in the main text in Fig. 4).

We have already demonstrated in Fig. 4 that Rat 14257 presents an extremely accurate

match to the period ratio prediction for φ = 0 (i.e., predicted period ratios of 2, 3/2, 4/3, 5/4,...);

in addition, Rat 14147 (observed period ratios of 1.27 , 1.46 ≈ 3/2, 1.37 ≈ 4/3) and Rat 15708

(observed period ratios of 1.31, 1.49 ≈ 3/2, 1.32 ≈ 4/3) also match φ = 0 very well (R2 values
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of 0.999, 0.979, and 0.968 for Rats 14257, 15708, 14147 resp.) for all grid modules except for

the module with the largest period.

Why is there an observed discrepancy for the largest grid module? Our predictions for grid

period ratios Eq. (34) are for the case of simple kernels that have a single spatial scale. A

discrepancy at only the largest grid module may thus be suggestive of fixed-scale interactions

that are primarily described by a single scale, with an additional low frequency perturbation

at a larger spatial scale. Alternately, this discrepancy may be a result of the approximation

made in Sec. 3.5 that would only affect the largest grid period module. However, note that

(particularly for Rats 14147 and 14257) there are relatively few grid cells observed from this

largest period module, and the resulting uncertainty in period estimation may instead contribute

to the error. In sum, apart from the possibility of some additional low frequency perturbations,

the experimental data for rats with several simultaneously observed grid modules is largely

consistent with the predicted period ratios for simple kernels with φ = 0.

Skipped modules: Sometimes, neural recordings can miss a module. This can cause a large

deviation from our predictions. For example, for a set of 5 modules following period ratios

M4/M5 = 1.20, M3/M4 = 1.25, M2/M3 = 1.33, M1/M2 = 1.5. If recordings had missed module

M4, the measured ratios would be M1/M2 = 1.5, M2/M3 = 1.33, M3/M5 = 1.5.

However, we do note that available data on multiple modules with a statistically large num-

ber of grid cells per module are quite sparse. To obtain further verification of our theoretical

results, including the prediction of Eq. (34) and even more specifically the hypothesis that φ

is close to zero, additional data with multiple simultaneously observed grid modules will be

important.
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4 Lyapunov Function

The energy function of continuous time neural networks can be written as (67):

E(s) = −1

2

∑
ij

s(i)Wijs(j) +
∑
i

1

Ri

∫ s(i)

0

φ−1 (s) ds−
∑
i

Iis(i), (66)

where s represents a vector of the synaptic activation at each neuron in the network, and Ii

is the input bias to neuron i. For simplicity and since linear analysis does a remarkably good

job in predicting the formed modules, let us restrict ourselves to the case of φ(x) = x. Also,

since the system is locally translationally invariant, we know that the dominant modes are going

to be periodic. Hence, we may evaluate the energy function of the network dynamics (in the

linearized regime) by assessing the energy of the periodic neural activity modes:

sk(x) = A sin(k · x + δ) +B, (67)

where k = kk̂ is an arbitrary Fourier space vector, and A,B and δ are arbitrary constants. For

these modes, we can write the energy function in the continuum limit as:

E[sk(x)] = −1

2

∫
dxdx′W (x,x′)sk(x)sk(x′) +

1

2

∫
dxsk(x)2

Assuming that the system size L is large,

2E[sk(x)] = −
∫
W (x− x′)[A sin(k · x + δ) +B][A sin(k · x′ + δ) +B]dxdx′ +

∫
[A sin(k · x + ∆) +B]2dx

= −A2

∫
dudvW (u) cos(k · u) + A2

∫
dudvW (u) cos(2k · v + δ) +B2

∫
dxdx′W (x− x′) + L(A2/2 +B2)

= −A2L

∫
dueik·uW (u) + A2

∫
duW (u)

∫
dv cos(2k · v + δ) +B2

∫
dudvW (u) + L(A2/2 +B2)/2

= −A2LW̃ (k) + LB2W̄ + L(A2/2 +B2),

= −constant1 × W̃ (k) + constant2

where have used the simple trigonometric identity, 2 sin(C) sin(D) = cos(C−D)−cos(C+D),

and a change of variables,
∫
dxdx′ = (1/2)

∫
d(x− x′)d(x + x′) =

∫
dudv, with u = x− x′

and v =
1

2
(x + x′).
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Thus, we obtain that the energy function E[sk] is a simple linear function of the Fourier

transform W̃ (k) of the recurrent weight matrix. The minimum energy solution corresponds to

the Fourier mode that maximizes W̃ (k). In other words, the dynamics is dominated by the k∗

that maximizes W̃ (k). This result, derived from an energy landscape perspective, is equivalent

to the result in Eq. (16), which we obtained earlier via perturbation analysis.

5 General formulation of module formation dynamics: Dis-
crete peak selection via loss minimization

In Sec. 4, we demonstrated how the pattern formation on the neural sheet can be derived via

an energy minimization approach. Here, we use an energy landscape view to describe how loss

function minimization results in modular solutions.

The key components for spatially modular solutions to arise from energy minimization are

as follows: 1) A spatially-independent loss function f(θ) with multiple local maxima and min-

ima; 2) A gradient in a spatially-dependent variable, θ0(x); and 3) A coupling between the

system parameters θ and θ0, that results in a combined loss function

L(θ, x) = f(θ) + α‖θ − θ0(x)‖2 (68)

Under appropriate constraints on f(θ), solving the following optimization at each x

θ∗(x) = arg maxθ L(θ, x) (69)

will produce discrete, step-like changes as a function of x. This happens because the smooth

minimum given by the ||θ − θ0(x)||2 term effectively selects one of the local minima in f(θ)

as the global minimum. As the function ||θ − θ0(x)||2 slides smoothly along with x,the peak

of f(θ) selected as the global minimum remains the same for some time, then jumps abruptly.

These step-like changes are modular solutions to the global optimization problem. The energy
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function defined in Eq. (68) can be viewed as a regularized optimization problem, with the

spatially-dependent regularizer ||θ − θ0(x)||2 acting as a prior that selects one of the minima of

f(θ) at each location (Fig. 17).

The correspondence of this general picture with the peak selection mechanism described

in the main text follows directly with the following identifications: the spatially independent

nonlinear loss function f(θ) with the fixed-scale interactionW f ; the spatially varying parameter

prior θ0(x) with the graded scale σ(x) of the pattern-forming kernel; the combined loss L(θ, x)

with the full kernel Wx; and the spatially-varying, multi-step-like set of optima θ∗(x) with the

grid periods λ∗(x), respectively. Similar to peak selection for grid cells, the formed modules in

this generalized setting will also inherit topological robustness and stability.
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Figure 17: A general setting for peak-selection Assuming a loss function f(θ) (blue) and a
spatially dependent quantity θ0 (red), a combined loss function L(θ, x) can be constructed such
that the x-dependent optimizer of L(θ, x) will be modular (green), since it will be constrained
to correspond to one of the minima of f(θ).

6 The emergence of modules corresponds to the formation of
localized eigenvectors

As has been observed before (68), a neural network endowed with slowly varying local in-

teractions shows diverse timescales that are spatially localized: different parts of the network

respond with disparate temporal dynamics.We also find a localization of eigenvectors in our

multi-module grid network, Fig. 18A. Similar to (68), our interaction matrix has a locally cir-

culant form (due to the slowly varying gradient in lateral inhibition width).
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We find that in the resulting set of localized eigenvectors, each has a different but constant

period, Fig. 18B. These periods exactly match the spatial periods of the modules formed in

steady state. In sum, the locally circulant matrix gives rise to eigenvector localization, and the

localized eigenvectors correspond to the modules.
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Figure 18: Localization of eigenvectors: A) Eigenvectors of various one-dimensional inter-
action weight matrices along with the corresponding inter-peak spacings are localized, B) The
periodicity within an eigenvector is constant.
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