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Abstract 

A downside of upgrading MRI acquisition sequences is the discontinuity of technological 

homogeneity of the MRI data. It hampers combining new and old datasets, especially in a 

longitudinal design. Characterizing upgrading effects on multiple brain parameters and 

examining the efficacy of harmonization methods are essential. This study investigated the 

upgrading effects on three structural parameters, including cortical thickness (CT), surface area 

(SA), cortical volume (CV), and resting-state functional connectivity (rs-FC) collected from 

64 healthy volunteers. We used two evaluation metrics, Cohen’s d and classification accuracy, 

to quantify the effects. In classification analyses, we built classifiers for differentiating the 

protocols from brain parameters. We investigated the efficacy of three harmonization methods, 

including traveling subject (TS), TS-ComBat, and ComBat methods, and the sufficient number 

of participants for eliminating the effects on the evaluation metrics. Finally, we performed age 

prediction as an example to confirm that harmonization methods retained biological 

information. The results without harmonization methods revealed small to large mean Cohen’s 

d values on brain parameters (CT:0.85, SA:0.66, CV:0.68, and rs-FC:0.24) with better 

classification accuracy (>92% accuracy). With harmonization methods, Cohen’s d values 

approached zero. Classification performance reached the chance level with TS-based 

techniques when data from less than 26 participants were used for estimating the effects, while 

the Combat method required more participants. Furthermore, harmonization methods 

improved age prediction performance, except for the ComBat method. These results suggest 

that acquiring TS data is essential to preserve the continuity of MRI data. 
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Introduction 

Structural and functional MRI (sMRI and fMRI) are primary non-invasive neuroimaging 

techniques for investigating the neural basis of psychiatric and neurological disorders 

[Nogovitsyn et al., 2020; Stephane et al., 2019]. To examine neural bases, several 

neuroimaging-based markers have been developed so far [Gordon et al., 2018; Prigge et al., 

2018; Sintini et al., 2020; Wallace et al., 2015]. Because age is one of the major factors for 

psychiatric and neurological disorders, studies with longitudinal design are prevailing [Huang 

et al., 2020; Okada et al., 2019]. In addition, as MRI acquisition is costly and time-consuming, 

some cross-sectional studies need to recruit participants in a wide range of periods. In these 

cases, upgrading the protocol during the study is inevitable.  

 

Upgrading the acquisition protocol improves the data quality and accuracy. Despite such a 

positive aspect, a downside of upgrading is discontinuity of the technical homogeneity of MRI 

data, which hampers longitudinal and long-lasting cross-sectional studies. Thus, combining the 

data acquired with the prior protocol and the data with the latest protocol is a challenge to 

conduct studies on aging successfully.  

 

Although integrating two sets of MRI data is essential, previous studies have mainly 

investigated the impacts of MR system upgrading on sMRI data. For instance, upgrading the 

MRI scanner from Siemens TimTrio to Prisma fit showed increased cortical thickness (CT) 

values in the frontal, temporal, and cingulate cortices [Plitman et al., 2021; Potvin et al., 2019]. 

Despite the extensive use of resting-state fMRI (R-fMRI), only a few studies have examined 

the effects of upgrading acquisition protocol (e.g., choice of multi-band factors) on fMRI data 

[Demetriou et al., 2018; Risk et al., 2018; Risk et al., 2021; Srirangarajan et al., 2021].  
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The harmonization method may be one of the practical approaches to mitigate such effects. 

Several harmonization methods have been proposed [Beer et al., 2020; Fortin et al., 2017; 

Fortin et al., 2018; Maikusa et al., 2021; Yamashita et al., 2019]. These harmonization methods 

might be plausible to resolve discontinuities with existing MRI data, yet no prior studies have 

investigated their efficacy on MRI data before and after upgrading acquisition techniques. In 

addition, these methods require MRI data acquired from both protocols to estimate the 

measurement bias, and thus it is crucial to identify the minimum number of participants to 

avoid unnecessary costs and time. 

 

The current study investigated the effects of upgrading acquisition protocols on structural 

parameters and resting-state functional connectivity (rs-FC) data collected from healthy adult 

volunteers. First, we performed univariate analyses to quantify differences of brain parameters 

using Cohen’s d and paired t-tests. We also applied classification analyses to ask whether brain 

parameters could provide information about protocols in a multivariate manner. We then used 

the three most frequently utilized harmonization methods, including TS [Yamashita et al., 

2019], TS-ComBat [Maikusa et al., 2021], and ComBat [Fortin et al., 2017; Fortin et al., 2018; 

Yu et al., 2018], to investigate whether these methods alleviate the effects of protocol upgrades 

and how many participants are necessary for estimating the impacts. We selected these methods 

because of their simplicity and applicability. Finally, we performed age prediction to 

investigate whether harmonization methods preserve critical biological information. 

 

Materials and Methods 

Participants 

Sixty-five healthy adult volunteers [2 females; mean age ± standard deviation (SD): 32.3 ± 7.5 

years old); age range: 20–45 years] participated in this study. Participants underwent two MRI 
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sessions using a 3T MRI scanner (MAGNETOM Verio dot, Siemens Medical Systems, 

Erlangen, Germany). In one session, we used a single-band fMRI acquisition protocol used in 

a multi-site, multi-disease cohort study [Strategic Research Program for Brain Science 

(SRPBS) protocol] with a 12-ch head coil [Tanaka et al., 2021]. We used a multiband fMRI 

acquisition (Harmonized Protocol; HARP) with a 32-ch head coil in the other session. The 

HARP protocol has been developed for minimizing the scanner differences [Koike et al., 2021]. 

Of note, 30 out of 65 participants underwent an MRI session with the HARP protocol within 

one month after an MRI session with the SRPBS protocol because the HARP protocol was not 

available at that time. We excluded one male participant from our analyses because of 

excessive head motion during the scans. We provided the MRI acquisition parameters in Table 

S1. 

 

The study was approved by the Institutional Review Board of Showa University Karasuyama 

Hospital and was prepared in accordance with the ethical standards of the Declaration of 

Helsinki. Written informed consent was obtained from all the participants after fully explaining 

the purpose of this study. 

 

Structural MRI preprocessing 

We preprocessed sMRI data using FreeSurfer version 6.0.1. The details of preprocessing steps 

are described in detail in earlier studies [Dale et al., 1999; Fischl et al., 1999]. Briefly, this 

software performed a series of preprocessing procedures, including spatial normalization, bias 

field correction, intensity normalization, skull-stripping, segmentation, and reconstruction of 

surface mesh. For each participant, we then computed three parameters: cortical thickness (CT), 

surface area (SA), and cortical volume (CV). To characterize the structural characteristics, we 

used Schaefer’s 400 cortical parcels [Schaefer et al., 2018] as regions of interest (ROIs) to 
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extract the mean values for the three parameters. These procedures yielded a 400-dimensional 

feature vector for each structural parameter in each participant. 

 

R-fMRI data preprocessing 

We preprocessed R-fMRI data using FMRIPREP version 1.1.8 [Esteban et al., 2019]. We used 

the same preprocessing pipeline to avoid bias introduced by differences in the pipeline. 

FMRIPREP performs a series of preprocessing steps, including head motion estimation, slice 

timing correction, co-registration of echo-planar image data to the corresponding T1-weighted 

anatomical image, distortion correction, and normalization to a standard Montreal Neurological 

Institute (MNI) space. To analyze the preprocessed data using the Human Connectome Project 

(HCP) style surface-based methods, we used the ciftify toolbox version 2.1.1 [Dickie et al., 

2019] that allowed us to analyze our non-HCP style data using an HCP-like surface-based 

pipeline. 

 

For each vertex, we performed nuisance regression to remove the effects of artifactual and non-

neural sources. Nuisance regressors consisted of six head-motion parameters, averaged signals 

from subject-specific white matter and cerebrospinal fluid masks, global signal, their temporal 

derivatives, and linear detrending. After nuisance regression, we applied a band-pass filter 

(0.008–0.08 Hz) to the residuals. We computed framewise displacement (FD) [Power et al., 

2012] for each participant to characterize the frame-by-frame head motion during the scans. 

We used FD as a measure for detecting occasional head movement. To reduce spurious changes 

in FC due to head motion, we removed volumes with FD > 0.5 mm, as proposed in a previous 

study [Power et al., 2012].  
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We used Schaefer’s 400 cortical atlas [Schaefer et al., 2018] in combination with 17 subcortical 

regions [Fischl et al., 1999] and 10 cerebellar regions [King et al., 2019] as ROIs to characterize 

the whole-brain connectivity pattern. The Pearson correlation coefficient was computed among 

all possible pairs of ROIs to characterize the functional connectome, resulting in a 427 ✕ 427 

functional connectivity matrix for each participant. 

 

Evaluation measures 

We computed three measures to characterize the effects of protocol upgrades and assess how 

the harmonization methods mitigate the effects.  

 

Cohen’s d: 

We computed the effect size (Cohen’s d) to characterize the effects of protocol upgrades on 

brain parameters. The Cohen’s d for the j-th brain parameter, dj, is computed as 

!! =
"̄!,#$%&#$"̄!,'($%
%!,#$%&#)'($%

, 

where #&'()&$*+'(  stands for the standard deviation of the difference from the SRPBS 

protocol to the HARP one; brain parameter with positive Cohen’s d value indicates that the 

brain parameter of the SRPBS protocol shows a higher value than that of the HARP protocol. 

 

Classification accuracy: 

To investigate how the classification accuracy changes before and after applying the 

harmonization methods, we performed classification analyses using three machine learning 

algorithms: logistic regression with the least absolute shrinkage and selection operator 

(LASSO) [Tibshirani, 1996], a ridge logistic regression, and a support vector machine (SVM). 

We used a 10-fold nested cross-validation scheme similar to our previous study [Yamagata et 

al., 2019]. We divided participants into ten folds in the 10-fold cross-validation framework 
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while keeping the pair information. Of note, the term “pair” refers to the same subject in 

different datasets (i.e., SRPBS and HARP). We used all-but-one folds as training data to train 

classifiers in each fold, while we treated the remaining fold as test data for testing the 

classification performance. We then evaluated the impacts of protocol differences using 

classification accuracy. 

 

We used the “lassoglm” function implemented in MATLAB (2020b, Mathworks, USA) for the 

LASSO method. In this function, we set “NumLambda” to 25 and “CV” to 10. In the inner 

loop, this function first computes a value of λ that is just large enough such that the only optimal 

solution is an all-zero vector. This function then creates a total of 25 equally spaced λ values 

from 0 to λmax. It then determines the optimal λ according to the one-standard-error rule. This 

function selects the largest λ within the standard deviation of minimum prediction error among 

all λ. For ridge logistic regression, we used the “fitclinear” function implemented in MATLAB. 

We used the “fitcsvm” function implemented in MATLAB for the SVM classifiers. We set 

“KernelFunction” to ‘linear’ and “OptimizeHyperparameters” as ‘BoxConstraint’ and 

‘KearnelScale.’ 

 

Prediction performance: 

We performed age prediction as an example to investigate whether the harmonization methods 

retained age information. We used two machine learning algorithms for these analyses: support 

vector regression (SVR) and linear regression with the LASSO method. Of note, we did not 

apply ridge regression here because of poor prediction performance. Similar to the 

classification analyses, we used 10-fold nested cross-validation while preserving the pair 

information. In each fold, we used all-but-one folds as training data to construct a prediction 

model, while we treated the remaining fold as test data for testing the prediction performance. 
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We then computed the Pearson correlation coefficient between predicted age and actual age to 

evaluate the prediction performance. Once the prediction results were obtained from the data 

before and after harmonization methods, we computed the percentage of improvement on the 

prediction performance. 

 

We used the “lassoglm” and “fitrsvm” functions implemented in MATLAB (2020b, 

Mathworks, USA) for the LASSO and the SVR, respectively. We set the hyperparameters 

similar to those used in the classification analyses. 

 

Harmonization methods 

We used three harmonization methods to remove the protocol bias from brain parameters: TS, 

ComBat, and TS-ComBat methods. 

 

Traveling subject (TS) harmonization method: 

The TS method is an extension of the general linear model (GLM) based method for correcting 

the protocol bias [Yamashita et al., 2019]. The uniqueness of this method is to use TS data.  

We estimated the participant factor and measurement bias (i.e., protocol bias) by fitting a linear 

regression to each brain parameter. We used a 1-of-K binary coding scheme for the participant 

factor and protocol bias. Let us consider the i-th participant from the m-th protocol. The 

corresponding coding vector, xim, becomes a row vector whose the m-th element is one and the 

rest are zeros. Similarly, the coding vector for the participant factor, xip, is a row vector whose 

the p-th element is one and the rest are zeros. For each brain parameter, we considered the 

following regression model: 

$,!- = %,-&!. + %,/(!. + )*+,-	 +	/,!-, 
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where yijm represents the j-th feature for the i-th subject with the m-th protocol. The vectors, α 

and β, represent the protocol bias and participant factor, respectively. The superscript, ⊤, stands 

for the transpose of a vector or matrix.  

 

We estimated the measurement bias and participant factors under the constraints such that the 

mean values of the participant factor and measurement bias are zero. We used the “quadprong” 

function implemented in MATLAB (R2020b, Mathworks, USA) for estimation. In contrast to 

the original TS method [Yamashita et al., 2019], the regression model did not incorporate 

sampling bias inside the design matrix. Thus, we did not add any regularization. After 

estimating the protocol bias and participant factor are computed, the harmonized feature, $2,!-, 

is calculated by subtracting the protocol bias from the brain parameters such that 

$2,!- = $,!- − %,-&2!.. 

 

ComBat harmonization method: 

The ComBat method is originally proposed for correcting the batch effects in microarray data 

[Johnson et al., 2007]. This method has been used for adjusting the site effects in neuroimaging 

data [Fortin et al., 2017; Fortin et al., 2018; Yu et al., 2018] because of its simplicity and 

effectiveness. The ComBat method is based on location and scale adjustment model: 

$,!- = &! + 5,-(!. + 6!- + 7!-/,!-, 

where &! is the overall constant term for the j-th feature, zim is the row vector whose elements 

are covariates of interest (e.g., age, sex, and disease status), and βj is a feature-specific vector 

of regression coefficients corresponding to zim.  The terms, 6jm and 7jm, represent the additive 

and multiplicative protocol effects of the m-th protocol for the j-th feature, respectively. In the 

current study, we incorporated age and sex as covariates of interest into the ComBat model. 

The ComBat method uses an empirical Bayes framework to estimate the bias terms, 6jm and 
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7jm. Finally, the j-th harmonized feature for the i-th participant from the m-th protocol is 

computed as 

$2,!- = $,!- − (&2! + 9,-(:!
. + 62!-)

7:!-
+ &2! + 9,-(:!

.. 

 

TS-ComBat harmonization method: 

The TS-Combat method is a recently-developed method for adjusting the site effects using TS 

data in the framework of the ComBat method [Maikusa et al., 2021]. The TS-Combat method 

replaces the row vector, zim, with the coding vector for the participant factor, xip, such that 

$,!- = &! + %,/(!. + 6!- + 7!-/,!-. 

In contrast to the TS method, the TS-ComBat method does not incorporate any constraints on 

the participant factor. This method uses the Moore-Penrose pseudo inverse matrix to avoid the 

problem of rank deficiency in the design matrix. After estimating the coefficients, the j-th 

harmonized feature for the i-th participant from the m-th protocol is computed as 

 $2,!- = 0*!+$(23!4"*,56!
-473!+)

96!+
+ &2! + %,/(:!

.. 

 

Effects of the number of participants used for the estimation of protocol bias 

We conducted additional analyses to investigate how many participants are necessary to 

estimate the effects of protocol bias. First, we randomly selected a subset of participants and 

fitted a GLM to assess the impacts of protocol upgrades. We repeated this random selection 

ten times. After subtracting the protocol bias from each brain parameter, we computed Cohen’s 

d and performed classification analyses as functions of the proportion of participants used in 

the harmonization method. The ratio of participants used to estimate the protocol bias was 

varied from 10% to 100% in 10% increments. 
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Results 

Effects of protocol upgrades on Cohen’s d 

Structural parameters: 

Figures 1A and 1C showed that the HARP protocol exhibited increased CT and CV values (i.e., 

negative Cohen’s d values) in the frontal regions and insular cortices compared to the SRPBS 

protocol. In contrast, the SRPBS protocol exhibited increased SA values (i.e., positive Cohen’s 

d values) in the frontal pole and orbitofrontal cortex (OFC) compared to the HARP protocol 

(Figure 1B). Before applying the harmonization methods, we observed medium to large mean 

Cohen’s d values (CT: 0.85 ± .23, SA: 0.66 ± 0.19, and CV: 0.68 ± 0.17 [mean ± SD]).  

 

rs-FCs: 

Figure 1D showed that, compared to the HARP protocol, the SRPBS protocol showed higher 

rs-FC strengths (positive Cohen’s d values) stemming from default mode network (DMN) to 

other networks (e.g., somatomotor, dorsal attention [DAN], and ventral attention networks 

[VAN]). In addition, the SRPBS protocol showed decreased rs-FC strength (negative Cohen’s 

d values) in within-network connections, except for the limbic network. Before applying the 

harmonization methods, we observed a small mean Cohen’s d value (0.24 ± 0.06 [mean ± SD]). 

 

Effects of protocol upgrades on classification accuracy 

Structural parameters: 

As shown in Table 1, the three classifiers achieved higher classification performance 

(classification accuracy > 92%) for all the structural parameters before applying the 

harmonization methods. 

 

rs-FCs: 
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Similar to the results of structural parameters, all the classifiers exhibited higher classification 

performance (> 96% accuracy) (Table 1).  

 

Effects of protocol upgrades on age prediction 

Structural parameters: 

Before applying the harmonization methods, prediction models showed the following 

prediction performance (CT: rLASSO = 0.27 and rSVR = 0.33; SA: rLASSO = 0.49 and rSVR = 0.47; 

and CV: rLASSO = 0.61 and rSVR = 0.54) (Table 2).  

 

rs-FCs: 

As shown in Table 2, prediction models showed the following performance (rLASSO = 0.32 and 

rSVR = 0.36) before applying the harmonization methods. 

 

Effects of the harmonization methods on Cohen’s d 

Structural parameters: 

As shown in Figures 2A-C, all the harmonization methods reduced Cohen’s d values of all the 

structural parameters. In the TS and TS-ComBat methods, Cohen’s d values approached zero 

for all the structural parameters when increasing the number of participants used for estimating 

the protocol bias. In the ComBat method, Cohen’s d values could not reach zero (CT: 0.19 ± 

0.05, SA: 0.19 ± 0.05, and CV: 0.32 ± 0.08). 

 

rs-FCs: 

Cohen’s d values were decreased when applying harmonization methods. By applying the TS 

method, Cohen’s d values reached zero when 40% of participants were used (Figure 2D). In 
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contrast, Cohen’s d values could not reach zero (TS-ComBat: 0.03 ± 0.01; and ComBat: 0.08 

± 0.02) 

 

Effects of harmonization methods on classification accuracy 

Structural parameters: 

For all the structural parameters with TS and TS-ComBat methods, the classification 

performance of the LASSO method reached the chance level (i.e., 50%) when 20% to 30% of 

participants were used for estimating the protocol bias. In contrast, the LASSO method with 

the ComBat method required more participants to reach the chance level (the upper panels in 

Figure 3). Although the classification performance of SVM classifiers with three 

harmonization methods decreased in all the structural parameters, those for CT with TS and 

TS-ComBat methods decreased below 50% when more than half of the participants were used 

for estimating the protocol bias (the middle panels in Figure 3). The classification performance 

decreased below 50% for ridge logistic regression when more than 50% of participants were 

used (the lower panels in Figure 3). 

 

We showed the distribution of posterior probabilities for ridge logistic regression with CT after 

applying the TS and TS-ComBat methods as an example (see Figure S1). In these results, we 

used all the participants to estimate the protocol bias. The posterior probabilities for both 

protocols were distributed around 0.5 with opposite directions, indicating a possibility of 

information leakage. 

 

rs-FCs: 

Similar to the structural parameters, the classification of the LASSO method reached the chance 

level when 30% to 40% of participants were used for estimating the protocol bias (Figure 3D). 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.31.466635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.31.466635
http://creativecommons.org/licenses/by-nd/4.0/


In contrast to the TS and TS-ComBat methods, the ComBat method required 90% of 

participants to reach the chance level. Similarly, the classification performance of SVM and 

ridge logistic regression decreased below the chance level. 

 

We also showed the distribution of posterior probabilities for ridge logistic regression with FC 

after applying the TS and TS-ComBat methods (see Figure S2). In these results, the protocol 

biases were estimated using all the participants. The posterior probabilities for both protocols 

were distributed around 0.5 with opposite directions, indicating a possibility of information 

leakage. 

 

Effects of harmonization methods on age prediction 

Structural parameters: 

Table 2 and Figures 4A-4C show the results of age prediction performance. After applying the 

harmonization methods, the LASSO methods exhibited improved prediction performance for 

all the structural parameters (rCT = 0.34, rSA= 0.53, and rCV = 0.63 for the TS and the TS-

ComBat methods), except for the ComBat method (rCT = 0.16, rSA= 0.51, and rCV = 0.51). By 

applying the TS and TS-ComBat methods, SVR showed improved prediction performance for 

the CT and CV (TS: rCT = 0.38, and rCV = 0.54; TS-ComBat: rCT = 0.38, and rCV = 0.55), but 

not for SA (TS:  rSA= 0.47; and TS-ComBat:  rSA= 0.47). For the ComBat method, SVR showed 

decreased prediction performance in all the structural parameters (rCT = 0.12, rSA= 0.40, and 

rCV = -0.10). 

 

rs-FCs: 
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In contrast to the structural parameters, the prediction performance were deteriorated by 

applying the harmonization methods (TS: rLASSO = 0.30 and rSVR = 0.35; TS-ComBat: rLASSO = 

0.30 and rSVR = 0.35; and ComBat: rLASSO = 0.21 and rSVR = 0.09) (Figure 4D).  

 

Discussion 

This study investigated the effects of upgrading acquisition techniques and harmonization 

methods on structural parameters and rs-FCs. Before applying the harmonization methods, we 

showed the impacts of protocol upgrades by Cohen’s d values and the classification accuracies. 

We also observed reduced upgrading effects by using three harmonization methods (i.e., TS, 

TS-ComBat, and ComBat). The TS and TS-ComBat methods showed that classification 

accuracy dropped to the chance level if data from 19 to 26 participants were available. On the 

other hand, the ComBat method required more participants to achieve the same level of 

performance. Furthermore, except for the Combat method, the harmonization methods 

improved the performance of age prediction using the structural parameters. In contrast, 

prediction models with rs-FCs could not improve the prediction performance after applying 

harmonization methods. These results suggest that the harmonization methods are promising 

methods for resolving the discontinuities with existing MRI data, especially sMRI, and TS data 

from 19 to 26 participants might be necessary before upgrading acquisition techniques. 

 

Prior studies showed systematic effects of MRI scanner upgrades on the structural parameters, 

especially CT [Medawar et al., Plitman et al., 2021; Potvin et al., 2019]. The HARP protocol 

exhibited higher CT values in the medial, superior, and middle frontal gyri bilaterally, 

compared with the SRPBS protocol, those of which are in line with prior findings on upgrading 

MRI scanners. To complement our results on Cohen’s d, we assessed the effects of upgrading 

the acquisition techniques using the intra-class correlation (ICC) coefficients (see 
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Supplementary Information). Compared with other structural parameters, CT showed relatively 

poor ICC coefficients (mean ICC = 0.49 for CT; Figure S3), which is consistent with prior 

findings [Iscan et al., 2015; Potvin et al., 2019]. FreeSurfer computes a CT value as a distance 

metric between white matter and pial surfaces [Fischl and Dale, 2000]. This metric, thus, is 

sensitive to the image quality (e.g., contrast-to-noise ratio). The improved image quality due to 

the protocol upgrades may offer the benefits of accurate estimation of these surfaces. 

 

The current study observed a small mean Cohen’s d value in rs-FCs compared with the 

structural parameters. The HARP protocol exhibited lower rs-FC values in the basal ganglia 

(BG) and limbic networks, those networks of which might be sensitive to the scanner effects 

[Yamashita et al., 2019] and multiband acceleration [Risk et al., 2021]. This metric also showed 

poor ICC coefficients (mean ICC = 0.31; Figure S4), which is consistent with previous studies 

[Noble et al., 2019; Wang et al., 2017]. Furthermore, the DMN and the fronto-parietal network 

exhibited higher ICC coefficients than those in the BG and limbic networks (Figure S4C). 

Although Cohen’s d values reached zero when the TS method, but not other methods, was 

applied, the limited improvements of the ICC coefficients (6.1% to 7.0%) were also observed 

in rs-FCs. These results indicate that other confounds and state-like factors, such as arousal, 

might hinder the improvements of ICC coefficients in rs-FCs. 

 

The current study confirmed the effectiveness of three harmonization methods on Cohen’s d 

values and classification accuracies. By applying the harmonization methods, Cohen’s d values 

were decreased in all the structural parameters and rs-FCs. For the TS and TS-Combat methods, 

classifiers could not distinguish participants from both protocols when data from 19 to 26 

participants were available for estimating the protocol bias. We also observed the limited 

effectiveness of the Combat method, which is consistent with a prior study [Maikusa et al., 
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2021]. The limited efficacy might be attributed to the specificity of the dataset used in this 

study. Indeed, a previous study showed the effectiveness of the Combat method on rs-FCs 

similar to the TS method [Yamashita et al., 2019]. Further research is necessary to generalize 

our findings on other datasets for examining the upgrading effects. 

 

The current study showed that the classification performance of SVM and ridge logistic 

regression decreased below the chance level when increasing the number of participants for 

estimating the effects, raising the possibility of information leakage due to overfitting. By 

plotting the distributions of posterior probabilities, we observed the flipped distributions of 

posterior probabilities, and this effect was more severe in rs-FCs with TS and TS-ComBat 

methods (Figures S1 and S2). Since the TS and TS-ComBat methods incorporate the 

participant factor into the GLM, the estimates of participant factor might re-introduce the 

protocol bias in the opposite direction, especially if the brain parameter with poor ICC 

coefficients (e.g., rs-FCs and CT) is used. Future research is necessary to investigate the cause 

of this phenomenon. 

 

The current study showed the improved performance of age prediction, especially when 

applying LASSO with TS and TS-ComBat methods, except for rs-FCs and the Combat method. 

These observed improvements might be attributed to the increased consistency within the 

dataset, especially by applying TS and TS-ComBat methods. Indeed, SVR also showed limited 

improvements in the prediction performance. This might be due to the fact that SVR exploits 

the overall pattern as prediction while LASSO methods select the most reliable features within 

the dataset. In contrast to TS and TS-ComBat methods, the ComBat methods showed 

degradation of prediction performance on almost all brain parameters with the two prediction 

models, which are inconsistent with prior findings [Fortin et al., 2018; Yamashita et al., 2019]. 
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The main reason for these observations might be attributed to the specificity of TS data used 

in this study and to the fact that the inclusion of age and sex as covariates of interest in the 

ComBat method might be not sufficient to characterize the individuals. It is important to 

investigate the generalizability of our findings on other datasets in future research. 

 

The present findings have several limitations. First, we used two different scanning protocols 

with different head coils (i.e., 12-ch and 32-ch head coil). The difference in the number of 

channels affects the signal-to-noise ratio of images. We thus cannot rule out the possibility that, 

rather than protocol differences, differences in the head coils may hinder the improvements of 

test-retest reliability by applying the harmonization methods. Second, this study did not run 

MRI scanning twice with the same protocol to compute the test-retest reliability within the 

same protocol. We, thus, could not conclude that the harmonization methods completely 

eliminate the effects of protocol bias to achieve the level of true test-retest reliability. Third, 

we used the same preprocessing pipeline for both protocols instead of the state-of-art 

preprocessing pipeline [Glasser et al., 2013]. In addition, we did not apply ICA-FIX [Griffanti 

et al., 2014; Salimi-Khorshidi et al., 2014] or ICA-AROMA [Pruim et al., 2015a; Pruim et al., 

2015b] to remove the effects of artefactual signals. A previous study demonstrated that ICA-

based denoising could remove the site differences [Feis et al., 2015], suggesting that combining 

an ICA-based denoising method with a harmonization method might improve the test-retest 

reliability of rs-FCs. Further research is needed to investigate an optimal combination of 

preprocessing pipelines to mitigate protocol and scanner differences. Lastly, the current study 

did not examine the impact of protocol upgrades on other popular R-fMRI metrics, such as the 

amplitude of low-frequency fluctuations (ALFF) [Zang et al., 2007], fractional ALFF [Zou et 

al., 2008], degree centrality [Zuo et al., 2012], regional homogeneity [Zang et al., 2004], and 

voxel-mirrored homotopic connectivity [Zuo et al., 2010]. Further research is needed to 
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systematically investigate the impact of protocol upgrades on other commonly-used R-fMRI 

metrics. 

 

Conclusion 

We evaluated the effects of upgrading acquisition techniques on several brain parameters using 

univariate and multivariate analyses. Additionally, we showed the efficacy of three 

harmonization methods for mitigating the upgrading effects and the advantages of the TS and 

TS-ComBat methods over the ComBat method, at least in our dataset. The present findings 

provide implications for maintaining the continuity of MRI data before and after upgrading the 

MR system or acquisition techniques. 
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Table 1. Classification accuracy 
Accuracy [%] SVM LASSO Ridge 

CT 98.44 100 100 
SA 93.75 98.44 94.53 
CV 93.75 96.88 92.19 

rs-FC 98.44 99.22 96.88 
Abbreviations: CT: cortical thickness, CV: cortical volume, SVM: support vector 
machine, rs-FC: resting-state functional connection, 
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Table 2. Effects of harmonization methods on age prediction  
Metrics Methods Raw TS TS-ComBat ComBat 

r r % improvement r % improvement r % improvement 

CT LASSO 0.27 0.34 26.70 0.34 25.55 0.16 -40.63 

SVR 0.33 0.38 16.41 0.38 16.03 0.12 -64.39 

SA LASSO 0.49 0.53 7.36 0.53 6.22 0.51 2.44 

SVR 0.47 0.47 -0.47 0.47 -0.49 0.40 -15.03 

CV LASSO 0.61 0.63 3.56 0.63 4.16 0.51 -16.67 

SVR 0.47 0.54 14.59 0.55 18.48 -0.10 -121.14 

FC LASSO 0.32 0.30 -4.20 0.30 -4.75 0.21 -32.52 

SVR 0.36 0.35 -2.60 0.35 -1.21 0.09 -74.22 

*r stands for the prediction performance measured by the Pearson correlation coefficient between predicted and actual age. 

The bold numbers indicate the highest improvement among the three harmonization methods. 

Abbreviations: CT: cortical thickness, CV: cortical volume, FC: functional connection, SA: surface area, SVR: support vector regression, TS: 

traveling subject. 
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Figure legends 
Figure 1. The upgrading effects on brain parameters. 

(A) cortical thickness (CT), (B) surface area (SA), (C) cortical volume (CV), (D) and functional 

connectivity (FC). The red color indicated that the SRPBS protocol exhibited significantly 

higher values in brain parameters compared to the HARP protocol, while the blue color 

indicated that the HARP protocol exhibited significantly higher values in brain parameters 

compared to the SRPBS protocol. Cohen’s d was computed in each brain region and functional 

connectivity. Abbreviations: BG: basal ganglia, CER: cerebellar, DAN: dorsal attention 

network, DMN: default mode network, FP: fronto-parietal network, SomMot: somatomotor 

network, VAN: ventral attention network, and Vis: visual network. 

 

Figure 2. The effects of three harmonization methods on brain parameters measured by 

Cohen’s d.  

The standardized effect size was computed using Cohen’s d for four brain parameters: (A) 

cortical thickness (CT), (B) surface area (SA), (C) cortical volume (CV), and (D) functional 

connectivity (FC). We varied the number of participants used for estimating the protocol bias 

from 0% to 100%. Of note, “0%” indicates that no harmonization methods are applied. The 

error bars indicated the standard error of the mean (SEM). Abbreviations: TS: traveling 

subject. 

 

Figure 3. The effects of the harmonization methods on the classification analyses. 

We evaluated the classification performance of three classifiers on four brain parameters: (A) 

cortical thickness (CT), (B) surface area (SA), (C) cortical volume (CV), and (D) functional 

connectivity (FC). We varied the number of participants used for estimating the protocol bias 

from 0% to 100%. Of note, “0%” indicates that no harmonization methods are applied. The 

upper panels show the results of logistic regression with LASSO; the middle panels show the 
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results of support vector machine (SVM); the lower panels show those of ridge logistic 

regression. We used classification accuracy as an index for classification performance. The 

error bars indicated the standard error of the mean (SEM). 

 

Figure 4. The effects of the harmonization methods on the age prediction. 

We evaluated the prediction performance of two prediction models on four brain parameters: 

A) cortical thickness (CT), (B) surface area (SA), (C) cortical volume (CV), and (D) functional 

connectivity (FC). We varied the number of participants used for estimating the protocol bias 

from 0% to 100%. Of note, “0%” indicates that no harmonization methods are applied. The 

upper panels show the results of logistic regression with LASSO, and the lower panels show 

the results of support vector regression (SVR). We used the Pearson correlation coefficient 

between predicted and actual age as an index for prediction performance. accuracy as an index 

for classification performance. The error bars indicated the standard error of the mean (SEM). 
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Figure 1. The upgrading effects on brain parameters. (A) cortical thickness (CT), (B) 

surface area (SA), (C) cortical volume (CV), (D) and functional connectivity (FC). The red 

color indicated that the SRPBS protocol exhibited significantly higher values in brain 

parameters compared to the HARP protocol, while the blue color indicated that the HARP 

protocol exhibited significantly higher values in brain parameters compared to the SRPBS 

protocol. Cohen’s d was computed in each brain region and functional connectivity. 

Abbreviations: BG: basal ganglia, CER: cerebellar, DAN: dorsal attention network, DMN: 

default mode network, FP: fronto-parietal network, SomMot: somatomotor network, VAN: 

ventral attention network, and Vis: visual network. 
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Figure 2. The effects of three harmonization methods on brain parameters measured by 

Cohen’s d. The standardized effect size was computed using Cohen’s d for four brain 

parameters: (A) cortical thickness (CT), (B) surface area (SA), (C) cortical volume (CV), and 

(D) functional connectivity (FC). We varied the number of participants used for estimating the 

protocol bias from 0% to 100%. Of note, “0%” indicates that no harmonization methods are 

applied. The error bars indicated the standard error of the mean (SEM). Abbreviations: TS: 

traveling subject. 
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Figure 3. The effects of the harmonization methods on the classification analyses. 

We evaluated the classification performance of three classifiers on four brain parameters: (A) 

cortical thickness (CT), (B) surface area (SA), (C) cortical volume (CV), and (D) functional 

connectivity (FC). We varied the number of participants used for estimating the protocol bias 

from 0% to 100%. Of note, “0%” indicates that no harmonization methods are applied. The 

upper panels show the results of logistic regression with LASSO; the middle panels show the 

results of support vector machine (SVM); the lower panels show those of ridge logistic 

regression. We used classification accuracy as an index for classification performance. The 

error bars indicated the standard error of the mean (SEM). 
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Figure 4. The effects of the harmonization methods on the age prediction. 

We evaluated the prediction performance of two prediction models on four brain parameters: 

A) cortical thickness (CT), (B) surface area (SA), (C) cortical volume (CV), and (D) functional 

connectivity (FC). We varied the number of participants used for estimating the protocol bias 

from 0% to 100%. Of note, “0%” indicates that no harmonization methods are applied. The 

upper panels show the results of logistic regression with LASSO, and the lower panels show 

the results of support vector regression (SVR). We used the Pearson correlation coefficient 

between predicted and actual age as an index for prediction performance. accuracy as an index 

for classification performance. The error bars indicated the standard error of the mean (SEM). 
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