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ABSTRACT

Detecting objects that move in a scene is a fundamental computation performed
by the visual system. This computation is greatly complicated by observer motion,
which causes most objects to move across the retinal image. How the visual system
detects scene-relative object motion during self-motion is poorly understood. Human
behavioral studies suggest that the visual system may identify local conflicts between
motion parallax and binocular disparity cues to depth, and may use these signals to
detect moving objects. We describe a novel mechanism for performing this computation
based on neurons in macaque area MT with incongruent depth tuning for binocular
disparity and motion parallax cues. Neurons with incongruent tuning respond
selectively to scene-relative object motion and their responses are predictive of
perceptual decisions when animals are trained to detect a moving object during self-
motion. This finding establishes a novel functional role for neurons with incongruent

tuning for multiple depth cues.

INTRODUCTION

When an observer moves through the environment, image motion on the retina
generally includes components caused by self-motion and objects that move relative to
the scene, both of which depend on the depth structure of the scene. Because self-
motion typically causes a complex pattern of image motion across the visual field (optic
flow, Gibson et al. 1959; Koenderink and van Doorn 1987), detecting the movement of
objects relative to the world can be a difficult task for the brain to solve. An object that
is moving in the world might appear to move faster or slower in the image than objects
that are stationary in the scene, depending on the specific viewing geometry. Thus, a
critical computational challenge for detecting scene-relative object motion is to identify
components of image motion that are not caused by one’s self-motion and the static
depth structure of the scene. This is a form of causal inference problem (French and
DeAngelis 2020; Shams and Beierholm 2010).

Object movement may be relatively easy to distinguish from self-motion when the
object’s temporal motion profile is clearly different from that of image motion resulting

from self-motion (Layton and Fajen 2016b) or when the object moves with a direction
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that is incompatible with self-motion (Royden and Connors 2010). Neural mechanisms
with center-surround interactions in velocity space have been proposed as potential
solutions to the problem of detecting object motion under these types of conditions
(Royden and Holloway 2014; Royden et al. 2015). However, the brain has a remarkable
ability to detect object motion even under conditions in which the image velocity of a
moving object is very similar to that of stationary background elements during self-
motion. Rushton et al (2007) demonstrated that object movement relative to the scene
“‘pops out” when 3D structure is specified by binocular disparity cues, but not in the
absence of disparity cues. They suggested that disparity cues help the visual system to
discount the global flow field resulting from self-motion, thereby identifying object
motion. How the brain might achieve this computation has remained a mystery.

We previously reported that many neurons in area MT have incongruent tuning
for depth defined by binocular disparity and motion parallax cues (Nadler et al. 2013).
We speculated that such neurons might play a role in detecting object motion during
self-motion by responding selectively to local conflicts between disparity and motion
parallax cues (Kim et al. 2016a; Nadler et al. 2013). Here, we test this hypothesis
directly by recording from MT neurons while monkeys perform a task that requires
detecting object motion during self-motion. We show that monkeys perform this task
based mainly on local differences in depth as cued by disparity and motion parallax. We
demonstrate that MT neurons with incongruent tuning for depth based on disparity and
motion parallax are generally more sensitive to scene-relative object motion, and that
their responses correlate preferentially with animals’ perceptual decisions. We further
demonstrate that training a linear decoder to detect object motion based on MT
responses largely reproduces our major empirical result. Our findings establish a novel
neural mechanism for detecting moving objects during self-motion, thus revealing a
sensory substrate for a specific form of causal inference. Because this mechanism
relies on sensitivity to local discrepancies between disparity and motion parallax cues, it
allows detection of object motion without the need for more complex computations that
discount the global flow field. Thus, this mechanism for detecting object motion in the

world may be relatively economical for the nervous system to implement.
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METHODS
Subjects and surgery

Two male monkeys (macaca mulatta, 8-12 kg) participated in these experiments.
Standard aseptic surgical procedures under gas anesthesia were performed to implant
a head restraint device. A Delrin (Dupont) ring was attached to the skull using a
combination of dental acrylic, bone screws, and titanium inverted T-bolts (see Gu et al.
2006 for details). To monitor eye movements using the magnetic search coil technique,
a scleral coil was implanted under the conjunctiva of one eye.

A recording grid made of Delrin was affixed inside the ring using dental acrylic.
The grid (2 x 4 x 0.5 cm) contains a dense array of holes spaced 0.8 mm apart. Under
anesthesia and using sterile technique, small burr holes (~0.5mm diameter) were drilled
vertically through the recording grid to allow the penetration of microelectrodes into the
brain via a transdural guide tube. All surgical procedures and experimental protocols
were approved by University Committee on Animal Resources at the University of

Rochester.

Experimental apparatus

In each experimental session, animals were seated in a custom-built primate
chair that was secured to a six degree-of-freedom motion platform (MOOG
6DOF2000E). The motion platform was used to generate passive body translation along
an axis in the fronto-parallel plane and the trajectory of the platform was controlled in
real time at 60 Hz over a dedicated Ethernet link (see Gu et al. 2006 for details). A field
coil frame (C-N-C Engineering) was mounted on top of the motion platform to measure
eye movements.

Visual stimuli were rear-projected onto a 60x60 cm tangent screen using a
stereoscopic projector (Christie Digital Mirage S+3K) which was also mounted on the
motion platform (Gu et al. 2006). The display screen was attached to the front side of
the field coil frame. To restrict the animal’s field of view to visual stimuli displayed on the
tangent screen, the sides and top of the field coil frame were covered with matte black
enclosures. Viewed from a distance of ~30cm, the display subtended ~90° x 90° of

visual angle.
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To generate accurate visual simulations of the animal’s movement through a
virtual environment, an OpenGL camera was placed at the location of one eye and the
camera moved precisely according to the movement trajectory of the platform. Since the
motion platform has its own dynamics, we characterized the transfer function of the
motion platform, as described previously (Gu et al. 2006), and we generated visual
stimuli according to the predicted motion of the platform. To account for a delay
between the command signal and the actual movement of the platform, we adjusted a
delay parameter to synchronize visual motion with platform movement. Synchronization
was confirmed by presenting a world-fixed target in the virtual environment and
superimposing a small spot by a room-mounted laser pointer while the platform is in
motion (Gu et al. 2006).

Electrophysiological recordings

We recorded extracellular single unit activity using single-contact tungsten
microelectrodes (FHC Inc.) having a typical impedance of 1-3 MQ. The electrode was
loaded into a transdural guide tube and was manipulated with a hydraulic micro-
manipulator (Narishige). The voltage signal was amplified and filtered (1 kHz - 6 kHz)
using conventional hardware (BAK Electronics). Single unit spikes were detected using
a window discriminator (BAK Electronics), whose output was time-stamped with 1ms
resolution.

Eye position signals were digitized at 1kHz, then digitally filtered and down
sampled to 200 Hz (TEMPO, Reflective Computing). The raw voltage signal from the
microelectrode was digitized and recorded to disk at 25 kHz using a Power1401 data
acquisition system (Cambridge Electronic Design). If necessary, single units were re-
sorted off-line using a template-based method (Spike2, Cambridge Electronic Design).

The location of area MT was initially identified in each animal through analysis of
structural MRI scans, which were segmented, flattened, and registered with a standard
macaque atlas using CARET software (Van Essen et al. 2001). The position of area MT
in the posterior bank of the superior temporal sulcus (STS) was then projected onto the
horizontal plane, and grid holes around the projection area were explored systematically

in mapping experiments. In addition to the MRI scans, the physiological properties of
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neurons and the patterns of gray matter and white matter encountered along electrode
penetrations provided essential evidence for identifying MT. In a typical electrode
penetration through the STS that encounters area MT, we first encounter neurons with
large receptive fields and visual motion sensitivity (as expected for area MSTd). This is
typically followed by a very quiet region as the electrode passes through the lumen of
the STS, and then area MT is the next region of gray matter. As expected from previous
studies, receptive fields of MT neurons are much smaller than those in MSTd (Komatsu
and Wurtz 1988) and some MT neurons exhibit strong surround suppression (DeAngelis
and Uka 2003) which is typically not seen in MSTd. Confirming a putative localization of
the electrode to MT, we observed gradual changes in the preferred direction, preferred
disparity, and receptive field location of multiunit activity, consistent with those
described previously (Albright et al. 1984; DeAngelis and Newsome 1999).

Visual stimuli

Visual stimuli were generated by a custom-written C++ program using the
OpenGL 3D graphics library, and were displayed using a hardware-accelerated
OpenGL graphics card (NVIDIA Quadro FX 1700). The location of the OpenGL camera
was matched to the location of the animal's eye, and images were generated using
perspective projection. We calibrated the display such that the virtual environment had
the same spatial scale as the physical space through which the platform moved the
animal. To view stimuli stereoscopically, animals wore anaglyphic glasses with red and
green filters (Kodak Wratten 2 Nos. 29 and 61, respectively). The crosstalk between
eyes was measured using a photometer and found to be very small (0.3% for the green
filter and 0.1% for the red filter).

Stimulus to measure depth tuning from motion parallax. We used an established

procedure to generate random-dot stimuli to measure depth tuning from motion parallax
(Nadler et al. 2008). A circular aperture having slightly greater (~10%) diameter than
optimal size was located over the center of the receptive field of the neuron under study.
The position of each dot in the image plane was generated by independently choosing
random horizontal and vertical locations within the aperture. To present stimuli such that

they appear to lie in depth at a specific equivalent disparity, the set of random dots
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within the circular aperture was ray-traced onto a cylinder corresponding to the desired
equivalent disparity, as described in detail previously (Nadler et al. 2008). This ray-
tracing procedure ensured that the size, location, and density of the random dot patch
were constant across simulated depths. Size and occlusion cues were eliminated by
rendering transparent dots with a constant retinal size (0.39 deg). Critically, this
procedure removed pictorial depth cues and rendered the visual stimulus depth-sign
ambiguous, thus requiring interaction of retinal object motion with either extra-retinal
signals (Nadler et al. 2009) or global visual motion cues (Kim et al. 2015b) that specify
eye rotation relative to the scene.

The above description assumes lateral translation of the observer in the
horizontal plane. However, in our experiments, animals were translated along an axis in
the fronto-parallel plane that was aligned with the preferred-null axis of the neuron
under study (to elicit robust neural responses). In this case, we rotated the virtual
stimulus cylinder about the naso-occipital axis such that the axis of translation of the
observer was always orthogonal to the long axis of the cylinder. This ensures that dots
having the same equivalent disparities produce the same retinal speeds regardless of
the axis of observer translation (Nadler et al. 2008).

Stimulus for object detection task. Visual stimuli for the main task consisted of a

dynamic target object (which could be either moving or stationary in the world), one or
three stationary objects (distractors), and a cloud of background dots that appeared
outside of a central masked region (Supplementary Fig. 1A, Supplementary Video 1).
Background dots were masked out of this central region around the target and distractor
objects to avoid having the background dots directly stimulate the receptive field of the
neuron under study. The two-object version of the task (one dynamic target, one
stationary distractor) was used in all neural recording experiments, whereas the four-
object task (one dynamic target, 3 stationary distractors) was used during training and in
some behavioral control experiments.

For the two-object task, one object was located in the center of the receptive field
of the neuron under study, and the other object was presented on the opposite side of
the fixation target (180 deg apart) at the same eccentricity (Fig. 1A, B). For the four-
object task, one object was centered on the receptive field, and the other three objects
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were distributed equally (90 deg apart) around the fixation target at equal eccentricities.
To present each object at the same retinal position regardless of its depth, the positions
of objects were initially determined in screen coordinates and then were ray-traced onto
surfaces in the simulated environment (Supplementary Fig. 1B, left).

Each object was rendered as a square-shaped “plate” of random dots (density:
1.1 dots/deg?), and was displayed binocularly as a red-green anaglyph. The retinal size
of dots was constant (0.15 deg) regardless of object depth, such that dot size was not a
depth cue. The target and distractor objects were all of the same retinal size (which was
tailored to the receptive field of the neuron under study) regardless of their location in
depth, such that the image size of objects was also not a depth cue. Thus, the only
reliable cues to object depth were binocular disparity and motion parallax.

Dynamic target objects had two independent depth parameters, one based on
binocular disparity (dep) and the other based on motion parallax (dwe). The left-eye and
right-eye half-images of the dynamic object were rendered based on the depth defined
by binocular disparity, dsp. We then computed the image motion of the dynamic object
during translation of the monkey such that it had motion parallax that was consistent
with a different depth, dvwe. Based on the predicted trajectory of the camera on each
video frame, we ray-traced the position of the dynamic object (at dwp) onto the depth
plane defined by binocular disparity, dsp (Supplementary Fig. 1B, right). This procedure
ensures that the dynamic object had a particular difference in depth (ADepth, in
equivalent disparity units) specified by (dve — dep), but that it was not possible to detect
the dynamic object solely based on its relative motion in the scene (Supplementary Fig.
2). In other words, when viewed monocularly, the image motion of the dynamic object
would be consistent with that of a stationary object at dwe. When viewed binocularly, if
ADepth # 0, the dynamic object’s image motion would not be consistent with its depth

specified by disparity, dsp.

Experimental Protocol

Preliminary measurements. After isolating the action potential of a single neuron,

the receptive field was explored manually using a small (typically 2-3 deg) patch of
random dots. The direction, speed, position, and binocular disparity of the random-dot
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patch were manipulated using a computer mouse, and instantaneous firing rates were
plotted on a display interface that represents the spatial location of the patch in visual
space and the stimulus velocity in a direction-speed space. This procedure was used to
estimate the location and size of the receptive field as well as to estimate the neuron’s
preferences for direction, speed, and binocular disparity.

After these qualitative tests, we measured the direction, speed, binocular
disparity, and size tuning of each neuron using quantitative protocols (DeAngelis and
Uka 2003). Each of these measurements was performed in a separate block of trials,
and each distinct stimulus was repeated 3-5 times. Direction tuning was measured with
random dots that moved in eight different directions separated by 45 deg. Speed tuning
was measured, at the preferred direction, with random dot stimuli that moved at speeds
of 0, 0.5, 1, 2, 4, 8, 16, and 32 deg/s. The stimuli in our main task contained speeds of
motion that were < 7 deg/s. If a neuron gave very little response (< 5 spk/s) to these
slow speeds, the neuron was not studied further. Next, the spatial profile of the
receptive field was measured by presenting a patch of random dots at all locations on a
4 x 4 grid that covered the receptive field. The height and width of the grid were 1.5-2.5
times larger than the estimated receptive field size, and each small patch was
approximately ¥ the size of the receptive field. Responses were fitted by a 2D Gaussian
function to estimate the center location and size of the receptive field. To measure
binocular disparity tuning, a random dot stereogram was presented at binocular
disparities ranging from -2 deg to +2 deg in steps of 0.5 deg. For this disparity tuning
measurement, dots moved in the neuron’s preferred direction and speed. Finally, size
tuning was measured with random-dot patches having diameters of 0.5, 1, 2, 4, 8, 16,
32 deg.

Depth tuning from motion parallax was then measured as described previously
(Nadler et al. 2008; Nadler et al. 2013). Dots were presented monocularly and were
rendered at one of nine simulated depths based on their motion (-2 deg to +2 deg of
equivalent disparity in steps of 0.5 deg), in addition to the null condition in which only
the fixation target was presented. Each distinct stimulus was repeated 6-10 times.
During measurement of depth tuning from motion parallax, animals underwent passive

whole-body translation which followed a modified sinusoidal trajectory along an axis in
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the frontoparallel plane (Supplementary Fig. 1C). To smooth the onset and offset, the 2s
sinusoidal trajectory was multiplied by a Gaussian function that was exponentiated to a
large power as follows:

()"

G(t)=e

where to= 1.0s, 0 = 0.92, and n = 22. On half of the trials, platform movement started
toward the neuron’s preferred direction. On the other half, motion started toward the
neuron’s null direction (Supplementary Fig. 1C). During body translation, animals were
required to maintain fixation on a world-fixed target, which required a compensatory
smooth eye movement in the direction opposite to head movement.

Moving object detection task. We presented one dynamic (i.e., moving) object

and one (or three) stationary object(s) while the animal experienced the modified
sinusoidal lateral motion as described above. The animal was trained to identify the
dynamic object by making a saccadic eye movement to it (Fig. 1A). At the beginning of
each trial, the fixation target first appeared at the center of the screen. After the animal
established fixation for 0.2s, the dynamic object, stationary object(s), and background
cloud of dots appeared and began to move as the animal was translated sinusoidally for
2.1s (see Supplementary Video 1). Because the fixation target was world-fixed,
translation of the animal required a counter-active smooth eye movement to maintain
visual fixation. An electronic window around the fixation target was used to monitor and
enforce pursuit accuracy. The initial size of the target window was 3-4 deg, and it
shrunk to 2.1-2.8 deg after 250 ms of translation. This allowed the animal a brief period
of time to initiate pursuit and execute a catch-up saccade to arrive on target. At the end
of visual stimulation, both the fixation target and the visual stimuli disappeared and a
choice target (0.4 deg in diameter) appeared at the center location of each object. The
animal then attempted to make a saccadic eye movement to the location of the dynamic
object, and received a liquid reward (0.2-0.4 ml) for correct answers.

Based on the preliminary tests described above, we set the axis of translation
within the frontoparallel plane to align with the preferred-null axis of the neuron under
study. In the main detection task, we systematically varied the depth discrepancy

(ADepth) between disparity and motion parallax cues for the dynamic object, to

10
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manipulate task difficulty (Supplementary Fig. 1B). ADepth is defined as the difference
between depths specified by motion parallax and binocular disparity cues, (dve — dep).
Different values of ADepth were applied to the dynamic object around a fixed “pedestal
depth” (red line, Supplementary Fig. 1B). For the vast majority of recording sessions,
the pedestal depth was fixed at -0.45 deg (103/106 sessions), although it deviated from
this value slightly in a few early experiments. We elected to use a fixed pedestal depth
such that all neurons were tested with the same stimulus values, thereby allowing for
decoding analyses (described below). The pedestal depth was chosen as the average
midpoint between the preferred depths obtained from tuning curves for disparity and
motion parallax, based on data from a previous study (Nadler et al. 2013). We used the
following ADepth values: -1.53, -0.57, -0.21, 0, 0.21, 0.57, 1.53 deg. Stationary objects
were presented at one of seven possible depths (-1.6 deg to +1.6 deg in steps of 0.4
deg). The vast majority of recording sessions were conducted using these ‘standard’
pedestal depth, ADepth, and stationary depth values (101/106 sessions). Thus, the
maximum range of depths of dynamic objects (-1.215 to +0.315 deg) was well within the
range of depths for stationary objects, which ensured that the animals could not perform
the task solely based on depth outliers (either in binocular disparity or motion parallax).
The identity of each object (dynamic/stationary) and its depth values were chosen from
the above ranges randomly on each trial._ Each ADepth value of the dynamic object was
repeated at least 14 times (mean: 35, sd: 9.6).

For 3 sessions, a monkey performed the object detection task without binocular
disparity cues in a fraction of trials (Supplementary Fig. 2, monocular condition). In this
control condition, the visual stimulus (except for the fixation point) was displayed to only
one eye in 16% of trials, while the rest of the task structure remained the same.
Monocular conditions were presented in a small percentage of trials in order not to

frustrate the animal, given that performance was poor on these monocular trials.

Animal training procedure
Although the object detection task is conceptually simple, it required extensive
behavioral training, involving a number of steps. Here, we outline the series of operant

conditioning steps required to teach animals to perform the task. Following basic chair
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training and habituation to the laboratory, animals were trained to maintain visual
fixation on a target during sinusoidal translation of the motion platform.

Once smooth eye movements tracked the fixation target with pursuit gains
approaching 0.9, we initially trained animals to detect a moving object without any self-
motion, such that any motion of an object on the display resulted from object motion
relative to the scene. After fixation, four objects appeared on the display and only one of
them moved sinusoidally along a horizontal trajectory for 2.1s. In the early stages of this
training, a saccade target appeared only at the location of the moving object.
Subsequently, we introduced a fraction of trials in which saccade targets appeared at
the locations of all four objects, and we gradually increased the proportion of these trials.
During this phase of training, the depths of the objects, as defined solely by binocular
disparity since there was no self-motion, were randomly drawn from a uniform
distribution spanning the range from -1.6 to +1.6 deg, to help animals generalize the
task.

Once animals performed the task well in the absence of self-motion, we began to
introduce small amounts of sinusoidal self-motion, which induced subtle retinal image
motion of all objects. During the initial stages of this training period, the dynamic object
had a large motion amplitude such that it was quite salient relative to the motion of
stationary objects that was due to self-motion. As the animals became accustomed to
performing the task during self-motion, we gradually increased the magnitude of self-
motion (up to 2.8cm) and decreased the motion amplitude of the dynamic object. Once
the retinal motion amplitude of the dynamic object became comparable to that of
stationary objects, we began to introduce a depth discrepancy between disparity and
motion parallax (ADepth). That is, the motion trajectory of the dynamic object began to
follow that of an object at a different depth, dwe (Supplementary Fig. 1B, right). We used
a staircase procedure to train animals over a range of values of ADepth. During this
phase of training, we interleaved three different pedestal depths (-0.51 deg, 0 deg, 0.51
deg) to help animals generalize the task, and we randomly chose the depths of the
three stationary objects from the range -1.6 to +1.6 deg.

Once we observed stable ‘v-shaped’ psychometric functions for all three pedestal

depths over a span of more than 10 days (e.g., Supplementary Fig. 3A,B), we
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transitioned to the final stimulus configuration for recording experiments. To keep the
number of stimulus conditions manageable for recording, this configuration included one
pedestal depth and two objects (one dynamic, one stationary). Following recording
experiments, we revisited the more general version of the task involving four objects
and 3 pedestal depths to make sure that behavioral performance did not reflect any

change in strategy (e.g., Supplementary Fig. 3C).

Data analyses

Regression analysis of behavior. We used multinomial regression to assess the

relative contributions of dsp, dvp, and ADepth to perceptual decisions. If animals
perform the task primarily based on the discrepancy between disparity and motion
parallax cues to depth, we expect to see a much greater contribution of ADepth relative
to dsp and dwvp. For each possible choice location, i, (i.e., a chosen location or a not-

chosen location), we performed the following regression:

log (M) = fo + Zﬁy(ﬁBD,i,jldBD,i,jl'{' BMP,i,j'dMP,i,jl + ﬁA,i,leDepthi.jD (1)

1-P(choice;)
where j denotes the locations of objects on the screen, and N is the total number of
objects (2 or 4). Once beta values were obtained, we averaged betas across the two (or
four) possible choice locations and also averaged betas across the two (or 12) not
chosen locations (Fig. 1D, Supplementary Fig. 3D,E).

We also quantified the proportion of fits that produced significant values of each
beta coefficient (Fig. 1E). The number of beta values significantly different from zero
(alpha = 0.05) were summed across locations (2 or 4) and across sessions. The results
were then divided by the total number of beta values (2 * number of valid sessions or 4 *
number of valid sessions, respectively). For not-chosen objects in the 4-object task, the
number of significant fits were summed across three locations and then divided by 12 *
number of valid sessions.

Depth-sign tuning and discrimination index. Average firing rates during stimulus

presentation were plotted as a function of simulated depth (Fig. 2A-C) to construct
depth tuning curves. To quantify the relative strength of neural responses to near and
far depths defined by binocular disparity or motion parallax, we computed a depth-sign

discrimination index (DSDI) from each tuning curve (Nadler et al. 2008; Nadler et al.
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2009).
E 2 Rfar(i) -R

near (i) (2)
43 ‘szarﬁ) -R

+0

DSDI =

near (i) avg(i)
For each pair of depths symmetrical around zero (for example, £2 deg), the difference in
mean response between far (Rrar) and near (Rnear) depths was computed relative to
response variability (cavg, the average SD of responses to the two depths). This quantity
was then averaged across the four pairs of depth magnitudes to obtain the DSDI (-1 <
DSDI < +1). Near-preferring neurons have negative DSDI values, whereas far-preferring
neurons have positive DSDI values. Statistical significance of DSDI values was
evaluated using a permutation test in which DSDI values were computed 1000 times
after shuffling responses across depths. If the measured DSDI value is negative, the p
value is the proportion of shuffled DSDIs less than the measured DSDI value. If the
measured DSDI is positive, the p value is the proportion of DSDIs greater than the
measured DSDI value.

Depth sign discrimination index for dynamic object tuning. Average firing rates

during stimulus presentation were plotted as a function of depth difference (Fig. 2D-F) to
construct dynamic object tuning curves. To quantify the relative strength of neural
responses to negative and positive values of ADepth, we computed a DSDI metric for

the dynamic object responses (DSDlgyn) as follows:

DSDId — 1 3 Rpos(i)~Rneg(i) (3)
Y 3 A= Ry o))~ Rneg( [+ avg (i

For each pair of ADepth values symmetrical around zero (e.g., £ 1.53 deg), the
difference in mean response between positive (Rpos) and negative (Rneg) ADepth was
computed relative to response variability (oavg, the average SD of responses to the two
ADepth values). This quantity was then averaged across the three pairs of ADepth
values to obtain DSDlgyn (-1 < DSDlgyn < +1).

Depth tuning congruency. Congruency of depth tuning curves obtained by

manipulating binocular disparity and motion parallax cues was quantified using a
correlation coefficient. The Pearson correlation was computed between the two cues
using the average responses across nine depths (-2 to 2 deg in steps of 0.5 deg) for
each cue; this coefficient is noted as Rwe_sp (Fig. 3B). Neurons were classified as
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“congruent” or “opposite” if their value of Rvp_sp was significantly greater or less than
zero, respectively.

Neurometric performance. We used an ideal observer analysis to measure how

reliably single neurons can signal whether an object is dynamic or stationary. For each
value of ADepth, the distribution of firing rates across trials was sorted into two groups
according to the type of object in the receptive field (dynamic vs. stationary). A receiver
operating characteristic (ROC) curve was computed from the pair of response
distributions for each ADepth (Britten et al. 1992), and performance of the ideal
observer was defined as the area under the ROC curve. ROC areas were then plotted
as a function of ADepth to construct a neurometric function (Fig. 5B, E). To obtain a
single measure of neurometric performance (NP), we then averaged the ROC areas
across nonzero values of ADepth to obtain a single metric for each neuron. This
average ROC area will be > 0.5 if a neuron responds preferentially to dynamic objects
overall, and < 0.5 if it responds preferentially to stationary objects overall.

Detection probability. Detection probability (DP) is a measure of the relationship

between neural responses and perceptual decisions in a detection task (Bosking and
Maunsell 2011), and is similar to the choice probability metric (Britten et al. 1996). The
procedure for computing DP is analogous to the ROC analysis described above, except
that responses are sorted into two groups according to the animal’s perceptual decision
(dynamic vs. stationary object in the receptive field). To eliminate any contamination
from stimulus effects, only ambiguous trials (ADepth = 0) were used to compute DP (Fig.
4). A permutation test was used to determine whether each DP value was significantly
different from the chance level of 0.5 (Uka and DeAngelis 2004).

Decoding analyses. We constructed an optimal linear decoder to detect moving

objects based on simulated responses from a population of 97 model neurons. Model
neurons correspond to the dominant subset of recorded neurons for which data were
collected under identical stimulus conditions, thus allowing us to construct pseudo-
population responses. We randomly selected 100,000 samples of stimulus conditions
from the datasets with replacement (16 unique stimulus conditions within the RF). The

mean and standard deviation of measured responses to each stimulus condition were

15


https://doi.org/10.1101/2021.11.16.468843
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.16.468843; this version posted November 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

then used to generate simulated responses according to the following equation (Cohen
and Newsome 2009; Gu et al. 2014; Shadlen et al. 1996).

Response = pu+ Q X Tygng X0 (4)
where y and o are vectors of means and SDs of the population across stimulus
conditions, r,,,4 IS @ vector of standard normal deviates (MATLAB ‘normrnd’ function
with zero mean and unity standard deviation), and Q is the square root of the correlation
matrix. The correlation matrix was modeled such that pairs of neurons with similar
neurometric performance (NP) values have stronger correlated noise, and pairs of

neurons with dissimilar NP values show weaker correlated noise:
r_noise;; = 1.1 x (0.5 — [|NP; — NP;|) (5)

where NP; is the neurometric performance of neuron i. This generated noise
correlations (0.15 + 0.17, mean = sd) of roughly similar strength to those observed in
empirical studies of MT neurons (Huang and Lisberger 2009; Zohary et al. 1994).

Total trials were divided into training (90%) and test (10%) sets. A linear decoder
was trained to classify whether the stimulus in the RF was a dynamic or stationary
object based on population responses in the training set. We used linear discriminant
analysis (MATLAB ‘classify’ function) to determine the weights of the decoder.
Ambiguous trials (ADepth = 0) were excluded from the training set.

The test set was used to validate performance of the decoder. A predicted
detection probability (DPpred) was computed for each neuron in the model in the same
way we computed DP from the empirical data, except that the decoder’s ‘choice’ for
each trial was used instead of the monkey’s behavioral choice. Specifically, responses
to ambiguous stimuli (ADepth = 0) in the test set were sorted according to the decoder’s
output (dynamic vs. stationary object prediction).

Time course of choice-related responses. Spikes in the ambiguous trials (ADepth

= 0) were aligned to stimulus onset, compiled into peri-stimulus time histograms, and
then smoothed using a 150ms boxcar window. Trials were first sorted by the phase of
self-motion (phase 0 or phase 180), and then sorted by the animal’s choice (whether the
animal chose an object within the receptive field or not). Average responses were z-

scored using a session-wide mean and standard deviation. We plotted the mean and
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standard error of the z-scored responses, as well as the difference in z-scored
responses between choices (Supplementary Fig. 5). For each phase, we tested whether
the median responses for the two choices at each time point were significantly different
or not (alpha = 0.05, Wilcoxon signed-rank test).

Neuron samples and selection criteria. We analyzed data from a total of 123

single units (53 from monkey 1, 70 from monkey 2) for which we completed the basic
tuning measurements, including tuning for direction, speed, RF position, size, depth
from binocular disparity, and depth from motion parallax. Among these, we completed
the object detection task for 106 neurons (47 from monkey 1, 59 from monkey 2). This
set of 106 neurons constitutes the sample for the single neuron analyses of Fig. 3.
Except for two neurons, 104 of these 106 neurons were tested using a standard set of
ADepth values, including zero (47 from monkey 1, 57 from monkey 2).

To compute detection probability, we analyzed a subset of these 104 neurons for
which the monkey made at least five choices in favor of both target locations when
ADepth=0 (92 neurons, 39 from monkey 1, 53 from monkey 2). For population decoding
(Fig. 6), we required that each dataset contain responses to objects at all of the
standard depth values for the stationary object. Three neurons were excluded because
they were tested with slightly different stationary depth values, and 4 neurons were
excluded because they did not have responses to stationary objects at all of the
standard depth values (which can occur because the depths of stationary objects were
chosen randomly from the standard values in each trial). Thus, with these exclusions,
97 neurons contributed to the population decoding analysis (45 from monkey 1, 52 from

monkey 2).

RESULTS

We recorded from 123 well-isolated single neurons in area MT of two macaques
that were trained to perform an object motion detection task during self-motion (53
neurons from monkey 1, 70 from monkey 2). We begin by describing the task and
behavioral data, followed by analysis of the responses of isolated MT neurons during
this task. Finally, we demonstrate that a simple linear decoder trained to perform the

task based on responses of our MT population can recapitulate our main findings.
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Stimulus configuration and behavioral task

During neural recordings, monkeys viewed a display consisting of two square
planar objects that were defined by random dot patterns (Fig. 1A, B; Supplementary
Figure 1; Supplementary Video 1; see Methods for details). The animal viewed these
objects while being translated (0.5 Hz modified sinusoid, see Methods) along an axis in
the fronto-parallel plane which corresponded with the preferred-null motion axis of the
neuron under study. In the base condition of the task with no cue conflict between depth
from disparity and motion parallax, both objects were simulated to be stationary in the
world, such that their image motion was determined by the self-motion trajectory and
the location of the objects in depth. When the objects were stationary in the world, their
depth defined by motion parallax and disparity cues was the same, hence the difference
in depth between the two cues was zero (ADepth = dwp — dsp = 0).

In other conditions (ADepth # 0), one of the objects was stationary in the world
while the second “dynamic” object moved in space such that its depth defined by motion
parallax, dwp, was not consistent with its depth defined by binocular disparity, dsp (Fig.
1B, Supplementary Fig. 1B; see Methods for details). As a result of this cue conflict
between disparity and motion parallax, the dynamic object should appear to be moving
in the world based on previous work in humans (Rushton et al. 2007). As ADepth
becomes greater in magnitude, it should be easier for the animal to correctly determine
which object is the dynamic object. Animals indicated their decision by making a
saccade to one of two targets that appeared at the locations of the two objects at the
end of the trial (Fig. 1A). Critically, due to the experimental design (see Methods for
details), animals could not simply detect the dynamic object based on its retinal image
velocity since the stationary object(s) in the display also moved on the retina due to self-
motion combined with depth variation.

Average psychometric functions for the two animals across 104 recording
sessions are shown in Fig. 1C. As expected, the animals perform at chance when
ADepth = 0 and their percent correct increases with the magnitude of ADepth. This
demonstrates that monkeys can perform the task as expected from human behavioral

work (Rushton et al. 2007). Furthermore, we found that performance was very poor
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without binocular disparity cues (Supplementary Fig. 2), as also expected from previous
work (Rushton et al. 2007).

The ranges of depths of the stationary and dynamic objects were overlapping but
not identical (see Methods). To determine whether the animals primarily made their
decisions based on ADepth, and not based upon the individual depths specified by
disparity or motion parallax, we performed a logistic regression analysis to determine
how animals perceptually weighted depth from motion parallax (Jdwr|), depth from
binocular disparity (|dep|), and the magnitude of ADepth (|dyp — dgpl; See Methods for
details). Results show that animals primarily weighted the |ADepth| cue to make their
decisions (Fig. 1D, E), although there were small contributions from the individual depth
cues. We initially trained each animal to perform the task with 4 objects present in the
display (3 stationary objects and 1 dynamic object), as well as three different pedestal
depths, to make it more difficult for animals to rely on dwe or dsp. Indeed, we found that
the logistic regression weights were also strongly biased in favor of |ADepth| in the 4-
object version of the task (Supplementary. Fig. 3D,E). To increase the number of
stimulus repetitions we could perform during recording experiments, we simplified the

task to the two-object case.

Congruency of depth preferences and responses to dynamic objects

We measured the tuning of well-isolated MT neurons for depth defined by either
binocular disparity or motion parallax cues, as described previously (Nadler et al. 2013,
see also Methods). Receptive fields and direction preferences of the population of MT
neurons are summarized in Supplementary Fig. 4. Fig. 2a shows data for a typical
“congruent” cell, which prefers near depth defined by both disparity and motion parallax
cues (see Methods for definition of congruent and opposite cells). Note that motion
parallax stimuli are presented monocularly, such that selectivity for depth from motion
parallax cannot be a consequence of binocular cues. In contrast, Fig. 2b,c show data for
two example “opposite” cells that prefer near depths defined by motion parallax and
moderate far depths defined by binocular disparity. Such neurons would, in principle,
respond more strongly to some stimuli with discrepant disparity and motion parallax

cues. Note that, for all of the example cells in Fig. 2a-c, responses to binocular disparity
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are substantially greater than responses to motion parallax. This is mainly because
binocular disparity tuning was measured with constant-velocity stimuli at the preferred
speed, whereas the range of speeds used to measure depth tuning based on motion
parallax is generally lower (and covaries with depth magnitude).

As done previously (Kim et al. 2015a; 2017; 2015b; Nadler et al. 2008; Nadler et
al. 2013; Nadler et al. 2009), we quantified the depth-sign preference of each MT
neuron using a depth sign discrimination index (DSDI, see Methods), which takes on
negative values for neurons with near preferences and positive values for neurons with
far preferences. Across the population of 123 neurons, depth-sign preferences for
motion parallax tended to be strongly biased toward near-preferring neurons, as
reported previously (Nadler et al. 2008; Nadler et al. 2013), whereas depth-sign
preferences for binocular disparity were rather well balanced (Fig. 3a). Importantly,
there are roughly equal numbers of neurons in the lower-left and upper-left quadrants of
Fig. 3a, indicating that congruent and opposite cells were roughly equally prevalent in
our sample of MT neurons (see also Nadler et al. 2013). Thus, there are many opposite
cells in MT that might respond selectively to dynamic objects over static objects.

Fig. 2d shows responses of the example congruent cell (from Fig. 2a) that were
obtained during the object detection task. Responses to the stationary object (red) are
plotted as a function of the depth values specified by motion parallax (which are
necessarily equal to binocular disparity values for a stationary object). Responses to the
dynamic object (blue) are plotted as a function of both depth defined by motion parallax
(lower abscissa) and depth defined by disparity (upper blue abscissa). This allows the
reader to determine the depth value for each cue that is associated with a dynamic
object having a particular ADepth value. For this example congruent cell (Fig. 2d),
responses to stationary objects with large near depths substantially exceeded
responses to any dynamic object.

A strikingly different pattern of results is seen for the example opposite cell in Fig.
2e. In this case, there are a few dynamic objects for which the neuron’s response (blue)
clearly exceeds the response to stationary objects of all different depth values (red).
More specifically, this incongruent cell responds most strongly to dynamic objects that

have large near depths defined by motion parallax and depths near the plane of fixation

20


https://doi.org/10.1101/2021.11.16.468843
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.16.468843; this version posted November 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(0 deg) as defined by binocular disparity. This pattern of results is expected from the
individual tuning curves in Fig. 2b, and demonstrates that this opposite cell is
preferentially activated by a subset of dynamic objects. The second example opposite
cell in Fig. 2c,f shows a generally similar pattern of results. For this cell, peak responses
to stationary and dynamic objects are similar, but the neuron responds more strongly to
dynamic objects over most of the stimulus range. Since we applied our ADepth
manipulation around a fixed pedestal depth of -0.45 deg (to facilitate decoding, see
Methods), we don’t expect dynamic objects to preferentially activate every opposite cell.
However, cells that are preferentially activated by dynamic objects should tend to be
neurons with mismatched depth tuning for motion parallax and binocular disparity cues.

Fig. 3b shows that this expected relationship holds across our population of MT
neurons. The ratio of peak responses for dynamic:stationary objects is plotted as a
function of the correlation coefficient, Rvp_sp, between depth tuning curves for disparity
and motion parallax. Neurons with Rmp_sp < O (opposite cells) tend to have peak
response ratios that lie in the upper-left quadrant, indicating that opposite cells tend to
be preferentially activated by dynamic objects. In contrast, neurons with Rvp_sp > 0
(congruent cells), tend to have peak response ratios in the lower-right quadrant,
indicating that they tend to be preferentially activated by stationary objects. Across the
population, peak response ratio is significantly anti-correlated with Rvp_sp (n = 106,
Spearman rank correlation, R= - 0.39, P = 2.8x10), indicating that the hypothesized
relationship between tuning congruency and response to scene-relative object motion is
observed.

We further tested whether differences in depth tuning curves for binocular
disparity and motion parallax can predict whether neurons prefer positive or negative
ADepth values. Using responses to the dynamic object, we quantified each neuron’s
preference for positive/negative ADepth values using a variant of the DSDI metric,
DSDlayn (see Methods), and found that it is robustly correlated with the difference in
DSDI values (ADSDI) computed from depth tuning curves for disparity and motion
parallax (Fig. 3c, R =0.54, P = 2.7x10°, n = 106, Spearman correlation). Thus,
selectivity for ADepth during the detection task is reasonably predictable from the

congruency of depth tuning measured during a fixation task.
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Correlation with perceptual decisions

If neurons with mismatched depth tuning for disparity and motion parallax cues
are selectively involved in detecting scene-relative object motion, we hypothesized that
responses of these opposite cells would be correlated with the animals’ perceptual
decisions, whereas responses of congruent cells would not. To measure the correlation
of neural activity with perceptual decisions, we took advantage of the fact that our
design included a subset of trials in which both objects were stationary in the world and
were presented at the pedestal depth of -0.45 deg (Fig. 4a). These conditions allowed
us to quantify choice-related activity, for a fixed stimulus, by sorting responses into two
groups: trials in which the monkey chose the object in the neuron’s receptive field, and
trials in which the monkey chose the object in the opposite hemi-field.

Data for an example neuron (Fig. 4b) show somewhat greater responses when
the monkey chose the object located in the neuron’s receptive field. We quantified this
effect by applying ROC analysis to the two choice distributions (see Methods for
details), which yielded a Detection Probability (DP) metric. DP will be greater than 0.5
when responses are greater on trials in which the monkey reported that the stimulus in
the receptive field was the dynamic object. For the example neuron of Fig. 4b, the DP
value was 0.75, which is significantly greater than chance by permutation test (p =
0.006, see Methods). Across a population of 92 neurons for which there were sufficient
numbers of choices toward each stimulus (see Methods), the mean DP value of 0.56
was significantly greater than chance (P = 6.0 x10°, t(91) = 4.21, n = 92, t-test) with
13/92 neurons showing individually significant DP values (Fig. 4c, filled bars). All
neurons with significant DP values had effects in the expected direction, with DP > 0.5.
In addition, the mean DP value was significantly greater than chance for each monkey
individually (monkey 1: n = 39, mean = 0.59, P = 5.7 x104, t(38) = 3.76; monkey 2: n =
53, mean = 0.53, P =0.03, t(52) = 2.21, t-test).

Fig. 4 shows that many MT neurons have responses that are correlated with
detection choices in the task. We hypothesized that neurons with DP > 0.5 are more
likely to be those that respond preferentially to dynamic objects over stationary objects.

To obtain a signal-to-noise measure of each neuron’s selectivity for dynamic vs.
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stationary objects, we again applied ROC analysis as illustrated for an opposite cell in
Fig. 5a-c. This neuron responded more strongly to dynamic objects than stationary
objects across most of the depth range (Fig. 5a). To quantify this selectivity, for each
value of ADepth, responses were sorted into two groups: trials in which the dynamic
object was in the receptive field, and trials in which the dynamic object was located in
the opposite hemifield and a stationary object was in the receptive field (regardless of
the depth of the stationary object). Thus, the ROC value computed for each ADepth
value gave an indication of how well the neuron discriminated between that particular
dynamic object and stationary objects of any depth. By convention, ROC values > 0.5
indicate greater responses for a dynamic object in the receptive field.

Results of this analysis for the example opposite cell (Fig. 5b) show that ROC
values were greater than 0.5 for all ADepth # 0; thus, this neuron reliably responded
more strongly to dynamic objects than to stationary objects. To obtain a single metric
for each neuron, we simply averaged the ROC metrics for each non-zero ADepth value,
yielding a Neurometric Performance (NP) value of 0.78 for this neuron. The
corresponding DP value for this neuron was 0.77 (Fig. 5c, P = 0.0015, permutation test),
indicating that this neuron shows both strong selectivity for dynamic objects when
ADepth # 0 and stronger responses when the animal reports a dynamic object in the
receptive field when ADepth = 0.

Data for an example congruent cell (Fig. 5d-f) show a very different pattern of
results. This neuron generally responds more strongly to stationary objects of any
depth than to dynamic objects (Fig. 5d). As a result, ROC values are consistently < 0.5
when comparing responses to dynamic vs. stationary objects in the receptive field
(ADepth # 0, Fig. 5e), yielding an NP value of 0.23. The corresponding DP value for
this neuron (Fig. 5f) was 0.39 (P = 0.26, permutation test), indicating that it responded
slightly more to ambiguous stimuli when the monkey reports that the object in the
receptive field was stationary. Thus, the data from these two example neurons support
the hypothesis that neurons with preferences for dynamic objects are selectively
correlated with perceptual decisions.

To examine whether this hypothesis holds at the population level, we plotted the

DP value for each neuron against the corresponding NP value. These two metrics,
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which are computed from completely different sets of trials (ADepth = 0 for DP; ADepth
# 0 for NP), are strongly correlated (Fig. 5G, R = 0.47, p = 3.2x10°%, n = 92, Spearman
rank correlation) such that neurons with DP values substantially greater than 0.5 tend to
be neurons that are selective for dynamic objects (NP > 0.5). In addition, we observed a
significant positive correlation for each animal individually (monkey 1: n = 39, R = 0.59,
P = 7.9x10° monkey 2: n =53, R =0.33, P =0.015, Spearman correlation). It is also
worth noting that all neurons with large DP values (>0.7) also have NP values
substantially greater than 0.5. Thus, the MT neurons that most strongly predict
decisions to detect the dynamic object (on ambiguous trials) are those with incongruent
tuning that makes them selective for dynamic objects.

We examined the time course of choice-related activity and found that it
appeared within a few hundred milliseconds after the onset of self-motion
(Supplementary Fig. 5). This choice-related activity was largely sustained throughout
the rest of the stimulus period, even when motion of the object was in the 