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Abstract

Polygenic Risk Scores (PRS) have huge potential to contribute
to biomedical research and to a future of precision medicine,
but to date their calculation relies largely on European-
ancestry GWAS data. This global bias makes most PRS sub-
stantially less accurate in individuals of non-European ancestry.
Here we present BridgePRS, a novel Bayesian PRS method that
leverages shared genetic effects across ancestries to increase
the accuracy of PRS in non-European populations. The per-
formance of BridgePRS is evaluated in simulated data and real
UK Biobank (UKB) data across 19 traits in African, South
Asian and East Asian ancestry individuals, using both UKB
and Biobank Japan GWAS summary statistics. BridgePRS
is compared to the leading alternative, PRS-CSx, and two
single-ancestry PRS methods adapted for trans-ancestry pre-
diction. PRS trained in the UK Biobank are then validated
out-of-cohort in the independent Mount Sinai (New York)
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BioMe Biobank. Simulations reveal that BridgePRS perfor-
mance, relative to PRS-CSx, increases as uncertainty increases:
with lower heritability, higher polygenicity, greater between-
population genetic diversity, and when causal variants are
not present in the data. Our simulation results are consis-
tent with real data analyses in which BridgePRS has better
predictive accuracy in African ancestry samples, especially
in out-of-cohort prediction (into BioMe), which shows a 60%
boost in mean R2 compared to PRS-CSx (P = 2 × 10−6).
BridgePRS performs the full PRS analysis pipeline, is com-
putationally efficient, and is a powerful method for deriving
PRS in diverse and under-represented ancestry populations.

Introduction

Polygenic Risk Scores (PRS) are mostly derived using European ancestry
genome-wide association study (GWAS) data, which results in substantially
lower predictive power when applied to non-European samples, in particular
African ancestry samples [1, 2]. The PRS trans-ancestry portability problem is
well-established and is due to marked linkage disequilibrium (LD) differences,
allele frequency differences driven by genetic drift and natural selection, and
GxE interactions affecting causal effect sizes [3]. Consequently, the aetiological
insights and clinical utility provided by PRS derived in Europeans may have
limited relevance to individuals of non-European ancestries.

Increasing GWAS sample sizes of underrepresented populations will help to
improve their PRS, but optimal power will be achieved by utilising all GWAS
available across ancestries for PRS prediction into any one ancestry. This is the
approach of PRS-CSx [4], developed to tackle the PRS portability problem,
which makes cross-population inference on the inclusion of each SNP across
the genome (or more precisely, the degree of shrinkage of variant effect sizes to
zero). PRS-CSx utilises Bayesian modelling with a prior that strongly shrinks
small effect sizes to zero, reducing the number of candidate SNPs to a minimal
set. This is analogous to fine-mapping of causal variants. However, while the
inclusion of causal variants in the PRS is ideal, fine-mapping approaches may
not be as effective when causal variants are missing or are underpowered to be
identified.

We introduce BridgePRS, a novel Bayesian PRS method that also inte-
grates trans-ancestry GWAS summary statistics. Unlike the fine-mapping
approach of PRS-CSx, BridgePRS aggregates information across putative loci
by estimating optimal SNP weights to best tag causal variants. The focus is
on correctly estimating effect sizes, rather than location, which is key when
prediction is the goal. This approach is less reliant on the inclusion of causal
variants. BridgePRS is most applicable to combining the information of a well-
powered GWAS performed in a (discovery) population(s) not matched to the
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ancestry of the target sample, with a second GWAS of limited power in a
(target) population that is well-matched to the ancestry of the target sample.

We apply BridgePRS to simulated data and compare its performance to
PRS-CSx and two single ancestry PRS methods adapated to use trans-ancestry
GWAS data. The simulations demonstrate the different scenarios in which
BridgePRS and PRS-CSx are optimal. We then utilise UK Biobank (UKB) [5]
and Biobank Japan (BBJ) [6, 7] GWAS data to construct PRS for African,
South Asian and East Asian ancestry samples. Resultant PRSs are then vali-
dated in the UKB and in the entirely independent Mount Sinai BioMe Biobank
(BioMe) [8], producing results consistent with the simulations.

Results

Overview of BridgePRS method

An overview of the BridgePRS modelling employed is shown in Figure 1. The
key modelling (see Methods) is broken into two stages: (1) a PRS is trained and
optimised using discovery population (e.g. European) data, with a zero-centred
Gaussian prior distribution for SNP effect sizes (analogous to ridge regression)
within putative loci, (2) the SNP effect sizes of this PRS are treated as priors
and updated in a Bayesian framework by those of the target population (e.g.
African) GWAS. Thus, this two-stage Bayesian-ridge approach of BridgePRS,
“bridges” the PRS between the two populations.

The main causes of poor trans-ancestry PRS portability are differences in
LD and allele frequencies between populations [3]. Differences in LD result in
the best tag for a causal variant differing between populations. To account for
the resultant uncertainty in the location of causal variants, BridgePRS aver-
ages SNP effects across putative loci, instead of selecting a single best SNP as
performed by standard clumping+thresholding (C+T) PRS [9]. BridgePRS is
first applied to the discovery population GWAS, using Bayesian modelling with
zero-centred Gaussian priors, equivalent to penalised likelihood ridge regres-
sion, at putative loci. Given summary data from large GWASs in Europeans,
we find that this procedure alone significantly improves predictive accuracy in
African and South Asian target data compared to choosing single best SNPs
at putative loci.

This first stage modelling results in multivariate Gaussian posterior dis-
tributions for SNP effect sizes at each locus. In the next stage, BridgePRS
integrates the (smaller) target population GWAS data into the PRS by using
this posterior distribution as a prior distribution for SNP effect sizes of the
target population. This stage allows for different effect size estimates between
the populations, accounting for differences in allele frequencies driven by drift
or selection, LD and GxE interactions affecting causal effect sizes. Both stages
of the modelling use conjugate prior-posterior updates, providing computa-
tionally efficient analytical solutions and enabling BridgePRS analyses to be
performed rapidly.
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where ω = ridge regression coefficients and W = weights obtained from goodness of fit from best fitting ridge glm model

PRSFinal = PRS1 . W1 + PRS2 . W2  + PRS3 . W3

Ridge regressions are combined to obtain PRSFinal

Fig. 1 Flow diagram describing the modelling of BridgePRS.

Variation in causal allele frequencies between populations can mean that
causal variants with relatively low minor allele frequency in the discovery pop-
ulation are estimated with large errors or are missed altogether. To ameliorate
this problem, PRS are derived by applying BridgePRS stage 1 modelling to
the target population data alone (see Methods).

Each stage of the modelling is fit across a spectrum of prior parameters and
criteria to select loci for inclusion in the PRS calculation, with each combina-
tion of parameters giving rise to a unique PRS. These PRS are then combined
in a ridge regression fit using available genotype-phenotype test data, choosing
the optimum ridge penalty parameter by cross-validation (see Methods).

Benchmarking methods via simulation

We used the HAPGEN2 software [10] to simulate HAPMAP3 variants for 100K
Europeans, 40K Africans and 40K East Asian ancestry samples using 1000G
Phase 3 samples [11] as reference. Simulations were restricted to 1,295,289
variants with minor allele frequency > 1% in at least one of the three popula-
tions. Phenotypes were subsequently simulated under three models of genetic
architecture in which causal variants were sampled from 1%, 5% and 10% of
the available HAPMAP3 variants. Population-specific effect sizes were sampled
from a multivariate Gaussian distribution with between-population correlation
of 0.9. Genetic effects were combined assuming additivity and Gaussian noise
at two levels of variance were added to generate phenotypes with 25% and 50%
SNP-heritability. For each of the six scenarios of polygenicity and heritability,
ten independent phenotypes were generated and analyses were run with and
without including the causal variants.

Data were split into training for GWASs (80K European, 20K non-
European) with the remainder split equally into 10K samples for model
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optimisation (test data) and assessment of model performance (validation
data). The performance of BridgePRS was compared with PRS-CSx, an
alternative trans-ancestry PRS method, PRS-CS-mult and PRSice-meta. PRS-
CS-mult applies the single ancestry PRS-CS method [12] to the populations
under study and combines them by estimating weights in a linear regression
utilising the test data. PRSice-meta applies clumping and thresholding, as
implemented in PRSice [13], to the meta-analysis of the populations under
study using reference LD panels from the same populations and selecting the
PRS that optimises prediction in the test data.

Polygenicity varying between 1%-10% (fraction of variants with non-zero
effect sizes) is consistent with a recent study of 28 complex traits in the UK
Biobank [14]. Between-population correlation of causal variant effect sizes of
0.9 is consistent with a recent multi-ancestry lipids GWAS in which causal
variants were fine-mapped [15]. Approximately one-third to two-thirds of her-
itability is captured by common SNPs [16] and, therefore, our simulation at
25% heritability implies a total heritability 37.5% - 75%. Power of GWAS, and
therefore PRS, is a function of sample size and heritability, such that doubling
heritability is equivalent to doubling sample size in terms of power. Therefore,
our simulations at 50% heritability and GWASs with 80K European samples
are equivalent to 25% heritability and GWASs with 160K European samples.

Figure 2 summaries the results from PRS analyses performed on simulated
data. Both BridgePRS and PRS-CSx outperform the single ancestry methods
across all scenarios. BridgePRS outperforms PRS-CSx in all analyses of African
samples with 5% and 10% of variants assigned as causal. With 1% of variants
causal the methods have similar accuracy when causal variants are not included
and PRS-CSx performs better with causal variants included. In analyses of
East Asian samples, the same relative pattern is observed, but the differences
are less pronounced and PRS-CSx performs better in all scenarios in which 1%
of variants are causal. Across all analyses, BridgePRS performs relatively bet-
ter compared to PRS-CSx when the causal variants are not included in the data
(Supplementary Figure 1). Overall, the simulations reveal that BridgePRS
performance, relative to PRS-CSx, increases as uncertainty increases: at lower
heritability, higher polygenicity, greater between-population genetic diversity,
and when causal variants are not present in the data.

These analyses used 1000G data as their reference LD panel, i.e. the correct
LD panel. To assess the sensitivity of the methods to misspecification of LD,
analyses were rerun using UKB data to estimate ancestry-specific LD. Supple-
mentary Figure 2 shows the performance of BridgePRS and PRS-CSx using
an LD reference panel constructed from African and East Asian UKB samples
relative to their performance using the 1000G reference panel. Both methods
exhibit a minimal loss in predictive accuracy using UKB reference panels.
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Fig. 2 Phenotypic variance explained by BridgePRS, PRS-CSx, PRS-CS-mult and PRSice-
meta across six siumulation scenarios, with and without the causal variants included in the
model, ten simulated phenotypes per scenerio. a African ancestry samples for phenotypes
with h2

snp = 0.25. b East Asian ancestry samples for phenotypes with h2
snp = 0.25. c

African ancestry samples for phenotypes with h2
snp = 0.5. d East Asian ancestry samples

for phenotypes with h2
snp = 0.5.

Benchmarking methods via real data: UK Biobank and
BioMe Biobank

The four PRS methods were applied to UK Biobank (UKB) [5] samples of
African and South Asian ancestry across 19 continuous biometric and bio-
chemical traits (for East Asian ancestry see below). These traits were selected
to maximise heritability and samples sizes of non-European individuals and
to minimise their pairwise correlation (maximum r2 < 0.3; see Methods). For
each trait, UKB samples of European, African and South Asian ancestry were
split into training, test and validation sets in proportions of 2/3, 1/6 and 1/6,
respectively. Sample sizes are shown in Supplementary Table 1. The training
data were used to generate GWAS summary statistics and the test data used
to select optimal model parameters. Results are shown for the resultant PRS
in the unseen UKB validation data. In addition, an entirely out-of-sample val-
idation study was performed by applying the PRS derived in the UKB to the
Mount Sinai BioMe Biobank (BioMe) [8] for the nine traits also available in
BioMe.

Within the UKB there are 2,472 East Asian samples, which is too few to
split into training (GWAS), test and validation sets as above. However, GWAS
summary statistic data from Biobank Japan (BBJ) are available for download
[6, 7]. We combined these data with the European UKB GWAS summary
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statistics described above for ten overlapping traits to estimate PRS for East
Asians ancestry (as above). BridgePRS combines SNP effect size estimates
across GWASs (as does the PRSice-meta method) and, therefore, requires
effect sizes to be on the same scale. However, the BBJ summary statistics were
generated after standardising the trait values to have mean zero and standard
deviation of one, whereas the UKB GWASs were applied to raw trait data.
Therefore, before applying the methods, the BBJ effect estimates and standard
errors were transformed to the respective scale of the UKB measures assuming
that the BBJ and UKB trait values had the same variance. UKB East Asian
samples were then split equally into test data for model optimisation and
validation data to assess model performance, as above. PRS were also validated
in East Asian BioMe samples across eight overlapping traits.

Trait sample sizes for each ancestral population in the UKB and BioMe
cohorts are shown in Supplementary Tables 1 and 2. For all analyses, imputed
genotype data were used.

Figure 3 shows the PRS variance explained (R2 with CIs; see Methods)
by BridgePRS, PRS-CSx, PRS-CS-mult and PRSice-meta, averaged across
all traits, for prediction into African, South Asian and East Asian ancestry
samples in the UKB and BioMe cohorts. Also shown are P -values comparing
R2 between BridgePRS, PRS-CSx and PRS-CS-mult (not PRSice-meta since
it is universally inferior across all comparisons). For prediction into African
ancestry samples, BridgePRS has the highest average R2 in both cohorts, sig-
nificantly so (P=2x10−6 Vs PRS-CSx) for the out-of-cohort prediction into
BioMe with an average relative boost in R2 of 60%. For prediction into
South Asian ancestry there are no significant differences between methods.
For prediction into East Asians, BridgePRS is inferior to both PRS-CSx and
PRS-CS-mult in both UKB and BioMe, but only significantly so within-cohort
in the UKB, and there are no significant differences between PRS-CSx and
PRS-CS-mult in both cohorts.

Figure 4 shows the individual results for each trait (R2 with CIs) analysed
in the out-of-sample prediction into the BioMe cohort. While the methods
show similar results across many of the traits, the relative performance of the
methods is highly variable and for some traits there are distinct differences in
accuracy of the methods, especially in African ancestry samples. For example,
in African ancestry samples, BridgePRS performs markedly better for mean
corpuscular volume (MCV) and LDL, but markedly worse for Eosinophil count
(Eos). In both African and South Asian ancestry, the PRS-CSx prediction of
height is highly inaccurate, which may be due to the impact of variant over-
lap between cohorts when applying PRS-CSx out-of-sample (see Discussion).
The corresponding trait-specific results for prediction into UKB are shown in
Supplementary Figures 3 and 4, with a similar pattern of results observed. Of
note, BridgePRS again performs markedly better for mean corpuscular volume
and LDL in African ancestry samples.
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Fig. 3 Average phenotypic variance explained by BridgePRS, PRS-CSx, PRS-CS-mult and
PRSice-meta in samples of African, South Asian and East Asian ancestry in the UK Biobank
and BioMe cohorts . a African ancestry samples in UK Biobank. b South Asian ancestry
samples in UK Biobank. c East Asian ancestry samples in UK Biobank. d African ancestry
samples in BioMe. e South Asian ancestry samples in BioMe. f East Asian ancestry samples
in BioMe.
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Fig. 4 Phenotypic variance explained (R2 point estimates and 95% confidence intervals)
by BridgePRS, PRS-CSx, PRS-CS-mult and PRSice-meta in samples of African, South
Asian and East Asian ancestry in the BioMe cohort. a African ancestry samples. b South
Asian ancestry samples. c East Asian ancestry samples. Neutro count=Neutrophil count,
MCV=Mean corpuscular volume, Platelets=Platelet count, Mono count=Monocyte count,
BMI=Body mass index, RDW=Red blood cell distribution width, Eos count=Eosinophil
count.
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Discussion

We have introduced a novel trans-ancestry PRS method, BridgePRS, that
leverages shared genetic effects across ancestries to increase the accuracy of
PRS in non-European populations. We benchmarked BridgePRS and leading
trans-ancestry PRS method PRS-CSx, as well as single ancestry PRS methods
PRS-CS and PRSice adapted for trans-ancestry prediction, across a range of
simulated and real data. In all analyses, target population PRS utilise GWAS
summary statistics from Europeans and the target population. Results from
our simulated data reveal that BridgePRS has higher performance relative to
PRS-CSx when uncertainty is greater: for lower heritability traits, for lower
GWAS sample sizes (especially for the target population), when genetic sig-
nal is dispersed over more causal variants (higher polygenicity), for greater
between-population diversity (e.g. with European base and African target,
rather than Asian target), and when the causal variants are not included in
the analyses. In all analyses of simulated data, BridgePRS and PRS-CSx had
superior performance relative to the single-ancestry PRS methods.

Application of the methods to real GWAS summary statistics from the
UK Biobank (UKB) and Biobank Japan (BBJ) and validation in independent
samples of African, South Asian and East Asian ancestry in UKB and BioMe
(recruited in the New York City area of the USA) gave results consistent with
the simulations. Specifically, BridgePRS has superior average R2 across the
traits analysed for samples of African ancestry in which uncertainty is high
due to greater differences in LD between Africans and Europeans, and because
of the relatively small African GWASs used. Likewise, PRS-CSx has superior
average R2 for samples of East Asian ancestry for which differences in LD are
smaller and the contributing East Asian GWASs are much larger (90K-160K).
For prediction into South Asian ancestry, in which LD is relatively similar, but
the South Asian GWASs used are small, the methods perform similarly.

The stronger performance of PRS-CSx in the real data analysis of East
Asians may also be due to PRS-CSx not requiring GWASs to be on the same
scale and, thus, being unaffected by the rescaling of the BBJ effect estimates.
PRS-CSx is unaffected by GWAS scale as it combines information across ances-
tries on the shrinkage (to zero) of the effect estimate of each SNP and does
not combine information on effect sizes. The final PRS-CSx PRS estimate is
derived by combining ancestry-specific PRSs with relative weights estimated
in a linear regression in the test data. Differences in scale between the base
GWASs will be accounted for by the linear regression weights. BridgePRS
should have improved performance when the GWASs used are performed on
the same scale, since it shares information on effect sizes across ancestries.

Using UK Biobank and BioMe data, we have demonstrated that BridgePRS
has superior out-of-cohort predictive accuracy in genetic prediction in individ-
uals of African ancestry. However, PRS-CSx has better accuracy when using
UKB European and BBJ East Asian summary statistics to predict into individ-
uals of East Asian ancestry. In general, in simulated and real data, BridgePRS
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performs better than PRS-CSx when uncertainty in mapping of causal vari-
ants is higher. Given the complementary nature of the two methods, either
can be optimal depending on the trait and study characteristics, and therefore
we recommend applying both methods until it is known which offers greater
power in the given setting.

BridgePRS is a fully dedicated PRS tool that performs the entire PRS
process and offers a novel theoretical approach to tackling the PRS portability
problem, with particularly strong performance for deriving PRS in African
and other diverse and under-represented ancestry populations.

Software availability

Software implementing BridgePRS with documentation
and example data can be downloaded from GitHub
(https://github.com/clivehoggart/BridgePRS).
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Methods

The BridgePRS model

All modelling is performed at the locus level and each locus is assumed to
be independent of all others. Within loci, SNP effect sizes β are modelled
by a multivariate Gaussian distribution and we assume the trait, y, of indi-
viduals with genotype data, X, at the locus follows a Gaussian distribution
y ∼ N(Xβ,ψI). Throughout, the Gaussian distribution is parameterised by
its mean and precision matrix (=inverse covariance matrix).

Below we describe BridgePRS methodology to derive a PRS for a target
population, population 2, (in our applications: African, South Asian and East
Asian) for which we have summary statistics from a relatively under-powered
GWAS and GWAS summary statistics from a well powered GWAS from a
different ancestral population, population 1 (in our application: European).
We also assume we have small data sets of genotype-phenotype data from both
populations.

Stage 1: PRS informed by a single population

In stage 1 modelling, we train and optimise PRS using GWAS summary statis-
tics and test genotype-phenotype data from a single population. To determine
the PRS for population 2, this modelling stage is applied to populations 1 and
2 independently. Application to population 1 determines the prior distribu-
tions for population 2 SNP effects used in stage 2, see below, and application
to population 2 is used to identify population 2 specific effects and thus missed
in population 1.

In stage 1, a zero-centred conjugate Gaussian prior is assigned for the SNP
effects at each locus β ∼ N(0, ψλI), where I is the identity matrix and λ is
a vector of SNP specific shrinkage parameters. The use of a conjugate prior
allows the posterior distribution of SNP effects to be determined analytically
[18]:

β ∼ N
(
(λI +XTX)−1XT y, ψ(λI +XTX)

)
XT y can be calculated from the vector of maximum likelihood marginal effects
β̂ available from GWAS summary statistics by (XT y)i = 2nθi(1−θi)β̂i, where
n is the sample size, θ is the vector of allele frequencies (AF) and (XT y)i is the
ith element of XT y, i indexes SNPs. XTX = nΦ, where Φ is the pairwise geno-
typic covariance which can be estimated from a reference panel representative
of the population used in the GWAS. Thus, rescaling λ by n, the posterior is
estimated as

β ∼ N
(

(λI + Φ)−1θ(1− θ)β̂, ψ(λI + Φ)
)

β ∼ N
(
β̃, ψΩ

)
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To accommodate the effects of natural selection, we allow the prior on SNP
effects to be dependent on AF such that the prior precision for the kth

SNP is λk = λ0(θk(1 − θk))α and α ∈ (0, 1) [19]. When α = 0 AF and
effect size are a priori independent, α = 1 is the value implicitly assumed
by many methods [20], which implies a strong assumption of larger effects
at lower minor allele frequency SNPs. Multiple models are fit at each locus
under priors defined by all combinations of α = (0, 0.25, 0.5, 0.75, 1) and
λ0 = (0.05, 0.1, 0.2, 0.5, 1, 2, 5). Loci are ranked by the P -value of their most
associated SNP and assigned to subset Sk if the top SNP P -value < 10−k, val-
ues of k = 1, . . . , 8 are considered. Multiple genome-wide PRS are calculated
for a test set of phenotype and genotype data by summing the effects across
all contributing loci across all combinations of α, λ0 and k:

PRSijk =
∑
l∈Sk

Xlβ̃
(l)

λ
(i)
0 α(j)

where Xl is the genotype data at locus l, β
(l)

λ
(i)
0 α(j)

is the posterior mean at locus

l with prior defined by parameters λ
(i)
0 and α(j), and Sk is the subset of loci

with top SNP P -value < 10−k. A single PRS is calculated by a weighted sum
of the PRS across all i, j and k, with weights determined by a ridge regression
fit to the test data utilising leave-one-out cross-validation to select the ridge
shrinkage parameter, which minimises out-of-sample deviance as implemented
in the R package glmnet [21].

Stage 2: PRS informed by stage 1

In stage 2 modelling, SNP effect sizes estimated by the application of stage 1
modelling to population 1 (eg. Europeans) are updated based on population
2 GWAS summary statistics and optimised using population 2 genotype-
phenotype data. The prior used is taken as the posterior derived from the λ0
and α prior parameters which optimise prediction in the test data of population
1. As for stage 1, this prior is also a multivariate Gaussian. A parameter τ is
added to the precision parameter of the Gaussian to control the contribution of
population 1 to population 2, thus the prior is specified as β2 ∼ N(β̃1, ψτΩ1).
This is similarly a conjugate model with a Gaussian posterior [18]:

β2 ∼ N
(

(τΩ1 + Φ2)
−1
(
τΩ1β̃1 + β̂2θ2(1− θ2)

)
, ψ (τΩ1 + Φ2)

)
β2 ∼ N(β̃2,Ω2)

where Φ2 is the SNP covariance at the locus in population 2, β̂2 is the vector
of marginal maximum likelihood SNP effect sizes and θ2 is the vector of allele
frequencies. Small values of τ correspond to using effect estimates close to
those from population 2, as τ increases more weight is assigned to population
1, such that as τ →∞, β2 → β1.
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Ranking Loci in Stage 2

Because of differences in LD between populations, we do not rank loci by the
P -value of a single best SNP, we aggregate information across loci by adapting
the F-test. It can be shown that the F-test in a multivariate linear regression
model for the null H0: β = 0, is well approximated by (see Supplementary
Material for proof):

Fstat =
n− k
knσ2

βTXTXβ

with degrees of freedom k and n − k, where k is the dimension of of β, n is
the number of observations and σ2 is the phenotypic variance. The maximum
likelihood estimate and XTX are substituted by the posterior mean and pre-
cision matrix and n with neff = n(1+τ), the effective number of observations
accounting for the prior giving the statistic

FBayes =
neff − k
kσ2

β̃2Ω2β̃2.

The resultant tail probability is analogous to a P -value, although the param-
eter estimates β and λ include prior information and, thus, it cannot be
interpreted as such. Instead, for each τ , a locus with test statistic F is assigned
to Sk if F > qk, where qk is the F quantile corresponding to Prob(p < 10−k),
where p are the locus-specific top SNP P -values. This ranking ensures the
pseudo F-statistic ranking assigns the same number of loci to each subset as
the SNP P -value ranking. As for the one stage single-ancestry PRS, multiple
genome-wide PRS are constructed by:

PRSik =
∑
l∈Sk

Xlβ
(l)
τi

where β
(l)
τi is the posterior mean at locus l with prior defined by param-

eters τ (i), and Sk is the subset of loci with F > qk. Models are fit for
τ = 1, 2, 5, 10, 15, 20, 50, 100, 200, 500 and the same P -value thresholds as used
in the first stage of the modelling. A single PRS is estimated via a ridge
regression fit using population 2 test data as described above using glmnet.

The average R2 achieved by ranking loci by the pseudo F-statistic versus P -
value from the European GWASs across the 19 traits analysed in this paper for
African and South Asian UKB sample are 0.0413 v 0.0403 and 0.0683 v 0.0688
respectively, while we observed a more pronounced improvement in analyses
in genotyped data (not shown here) of: 0.0413 v 0.0359 and 0.0694 v 0.0646,
with P -value for superiority of F-statistic ranking 0.086. All results presented
used the pseudo F-statistic loci ranking. However, the BridgePRS script allows
users to rank loci in stage 2 using either ranking methods.
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Incomplete SNP overlap between populations 1 and 2

Quality control (QC) is performed separately in each population, see below.
This results in variants included in analyses differing between populations.
Thus, stage 2 analyses are performed on the intersection of variants passing
QC in both populations and the prior is calculated conditional on effects of
non-overlapping variants set to zero. Thus, given a prior of β2 ∼ N(β̃1, ψτΩ1),
the prior on the overlapping variants is given by [18]

p
(
β
(a)
2 | β(b)

2 = 0
)

= N

(
β̃
(a)
1 +

(
Ω

(aa)
1

)−1
Ω

(ab)
1 β̃

(b)
1 , ψτΩ

(aa)
1

)
where a represents the overlapping variants, b the non-overlapping variants

and Ω
(aa)
1 and Ω

(ab)
1 are the appropriate submatrices of Ω1. SNP overlap is

taken at stage 2 to allow models fit in stage 1 to be applied to other data sets
with different SNP sets.

Combining PRS

We consider three alternative models for the PRS of population 2: (1) PRS
estimated using only population 2, i.e. European GWAS does not inform the
PRS of population 2, (2) PRS estimated using only the two-stage European
informed PRS, i.e. the population 2 GWAS is under-powered and contributes
insufficient information on its own and (3) both the population 2 only PRS
and the two-stage PRS contribute independent information. The estimation
of models (1) and (2) are determined by a cross-validated ridge regression fit
as described above using glmnet. Model (3) is estimated similarly by merging
all single ancestry and two stage PRS and weighting by a cross-validated ridge
regression fit.

The final PRS is a weighted average of these three PRS, with weights
determined by the estimated marginal likelihood of each. The log-marginal
likelihood of a linear regression model Mi can be approximated by [22]

log p(y,X |Mi) =
n

2
log σ2

i + κ

where σ2
i is the residual model variance estimated from cross-validation and

κ is a constant. With equal prior weight for each of the models, the posterior
model weights for models M1,M2 and M3 are given by:

p(Mi | y,X) =
exp

{
n log σ2

i /2
}∑3

i=1 exp {n log σ2
i /2}

Combining PRS in this way can be extended to any number of contribut-
ing PRS. For example, we additionally combined PRS for African ancestry
samples constructed from East Asian BBJ and African UKB GWAS summary
statistics to PRS constructed in our main analysis which used African and
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European UKB GWAS summary statistics. Supplementary Figure 5 compares
trait R2 for AFR+EUR PRS with AFR+EUR+EAS PRS for UKB and BBJ
overlapping traits. Marginal improvement is observed by the addition of the
BBJ East Asian data, for monocyte count, BMI and height, for the other traits
R2 is practically unaltered.

Definition of loci

Loci for the two-stage modelling were defined by clumping and thresholding of
European GWAS summary statistics and LD structure using PLINK v1.9 [23]
with the following parameters: --clump-p1 0.01 --clump-p2 0.01 --clump-
kb 1000 --clump-r2 0.01. The P -value for each locus was determined by the
P -value of the lead SNP of the locus in the European GWAS. The ancestry
specific loci were defined similarly but used GWAS data from the appropriate
ancestry.

Application of PRS-CSx

PRS-CSx is a python based software package that integrates GWAS summary
statistics and LD reference data from multiple populations to estimate popula-
tion specific PRS. PRS-CSx applies a continuous shrinkage prior to SNP effects
genome-wide in which the sparseness of the genetic architecture across popu-
lations is controlled by a parameter φ. PRS-CSx does not make inference on φ
but instead estimates separate PRS for each value of φ considered. Through-
out we follow the implementation described in Ruan et al [4], thus values of
φ = (10−6, 10−4, 10−2, 1) were considered. For each φ, PRS-CSx first estimates
population specific PRS, eg PRSφ,EUR and PRSφ,AFR, where PRSφ,x is the
standardised PRS for population x. For each φ, PRS-CSx fits the following
linear regression to the target population test data y

y ∼ wφ,EURPRSφ,EUR + wφ,AFRPRSφ,AFR

The φ value and the corresponding regression coefficients for the linear com-
bination of PRS that maximise the coefficient of determination (R2) in the
target population (eg. Africans) test set were used in the validation dataset to
calculate the final PRS:

PRSfinal = ŵφ̂,EURPRSφ̂,EUR + ŵφ̂,AFRPRSφ̂,AFR

Unlike BridgePRS, PRS-CSx does not use European test data to estimate non-
European PRS. Therefore, to ensure both methods use the same data GWASs
were performed on the European test samples using PLINK v2.0 [23] and then
meta-analysed with the GWAS data from the European data METAL [24].
The meta-analysed European GWAS, the GWAS generated from the training
samples of the target population, and the LD reference panel generated by the
authors of PRS-CSx were provided to PRS-CSx.
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UK Biobank genotype and sample QC

The UK Biobank (UKB) is a prospective cohort study of around 500,000 indi-
viduals recruited across the United Kingdom during 2006-2010. The genetic
data is comprised of 488,377 samples genotyped at 805,426 SNPs. Population
ancestries were defined by 4-means clustering performed on the first two Prin-
cipal Components (PCs) of the genotype data. The ancestry of each cluster
was defined by the country of birth (field ID: 20115) of the majority of indi-
viduals in the cluster. Standard quality control (QC) procedures were then
performed on each ancestry cluster independently, any SNP with minor allele
frequency <0.01, genotype missingness >0.02 or Hardy Weinberg Equilibrium
Test P -value < 10−8 was removed. Samples with high levels of missingness
or heterozygosity, with mismatching genetic-inferred and self-reported sex, or
with aneuploidy of the sex chromosomes were removed as recommended by
the UKB data processing team. A greedy algorithm [25] was used to remove
related individuals, with kinship coefficient > 0.044, in a way that maximised
sample retention. In total, 557,369 SNPs and 387,392 individuals were retained
for analysis.

Imputation

Imputed variants were extracted from imputed UK Biobank data using PLINK

v2.0, converting the imputed data into hard-coded genotypes and retaining
variants with the following filters: biallelic variants (--max-alleles 2), minor
allele frequency greater than 0.001 (–maf 0.001), genotype missingness less
than 1% (--geno 0.01) and a MACH info score greater than 0.8 (--mach-r2-
filter 0.8).

Trait selection

We extracted all continuous traits from unique samples in the UK Biobank
and performed basic filtering, discarding samples with phenotypic values 6
standard deviation away from the mean. Traits with more than 2,000 samples
of African ancestry were extracted. For each trait 300,000 European samples
were extracted (retaining at least 10,000 samples for test and validation for
each trait) and GWASs run on the genotype data using PLINK v2.0 using
--glm. Sex (field ID: 31), age (field ID: 21003), genotyping batch, UK Biobank
assessment centre (field ID: 54) and 40 PCs were included as covariates, with
fasting time (field ID: 74) and dilution factor (field ID: 30897) also included
for blood biochemical traits. LD Score regression [26] was run on the resul-
tant summary statistics and traits were further filtered discarding those with
heritability less than 1%. The remaining traits were ranked according to their
heritability, and traits correlated with a more heritable trait (absolute Pearson
correlation greater than 0.3) were removed resulting in 27 traits. Results are
presented for 19 traits which have an R2 in Africans of greater than 1% for at
least one analysis. The sample sizes for each trait and ancestry are shown in
Supplementary Table 1.
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Implementation

European, African and South Asian UKB samples were split into three inde-
pendent groups: training data to construct the GWAS summary statistics; test
data, to select best fitting parameters; and validation data, to calculate out-
of-sample predictive accuracy. The proportion of samples allocated to each set
were 2/3 training, 1/6 test and 1/6 validation. Each GWAS was run in PLINK

v2.0 as described above. East Asian samples were split equally between test
and validation.

For each trait analyses were run with imputed variants. GWASs were run
separately for the training samples of European, African and South Asian
ancestry for each of the 27 traits using PLINK v2.0 as described above. All
PRS were calculated using two populations: African PRS used African and
European UKB GWAS data, South Asian PRS used South Asian and Euro-
pean UKB GWAS data and East Asian PRS used BBJ and European UKB
GWAS.

Application to BioMe

BioMe BioBank samples were genotyped on the Infinium Global Screening
Array v1.0 (GSA) platform. Samples were removed with a population-specific
heterozygosity rate of greater than ±6 standard deviations of population-
specific mean, along with a call rate of <95%. In addition, samples were
removed for exhibiting persistent discordance between EHR recorded and
genetic sex. Variants were removed that had a call rate <95%, a Hardy-
Weinburg Equilibrium P -value threshold of p < 10−5 in African-American
and European-American ancestry, or p < 10−13 in Hispanic and South Asian
ancestry.

PCA was performed; African, South Asian and East Asian samples were
selected by clusters on PC plots corresponding to self-reported ancestry.
African samples were selected as those with PC 1> 0.0075, PC 2 < -0.0005
and PC 3 > -0.002. South Asian samples were selected as those with -0.01 <
PC 3 < -0.004, -0.003 < PC 4 < 0.001 and PC 5 < -0.015. East Asian sam-
ples were selected as those with PC 3 < -0.01, PC 4 > 0.001, PC 5 > -0.005
and PC 6 > -0.0035. Supplementary Fig. 6-8 plot the top 6 PCs, with sam-
ples coloured by self-reported ancestry and show the thresholds used to select
African, South Asian and East Asian ancestry samples.

Imputation was performed using IMPUTE2 [27] with the 1000G Phase3 v5
reference panel [11]. Variants were first filtered by info score > 0.3. Genotype
data for the calculation of PRS in unique individuals was generated for in each
of the two ancestry groups separately by first removing variants with minor
allele frequency < 1% in the respective BioMe population and then removing
one of each pair of variants with duplicate genomic position. BioMe variants
were mapped onto the UKB PRS by genomic position (build 37). Variants
were coded by their expected allele count (dosage) for the calculation of PRS.
Samples with phenotypic values 3 standard deviation away from the mean
were excluded.
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Measure of PRS accuracy

Variance explained was calculated as

R2 = 1− Var(y |M1)

Var(y |M0)

where Mi is the regression model with the PRS (i = 1) and without (i = 0)
and with both models including covariates for top 40 PCs, age, sex, centre and
batch, fasting and dilution for the biochemical traits. Variance explained in
the applications to BioMe included covariates for age, sex and the top 32 PCs.
Standard errors and confidence intervals were calculated by bootstrapping in
the R package boot [28] using 10,000 replicates.
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