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Abstract 
Predicting gene function is indispensable to our understanding of biology. However, these 
predictions hinge on large collections of experimentally characterized genes, the compilation of 
which is not only labor-intensive and time-consuming but rendered near-impossible given the 
volume and diversity of scientific literature. Here, we tackle this challenge by deploying the text-
mining capacities of Generative Pre-trained Transformer (GPT) to process over 100,000 plant 
biology abstracts. Our approach unveiled nearly 400,000 functional relationships between a 
wide array of biological entities—genes, metabolites, tissues, and others—with a remarkable 
accuracy of over 85%. We encapsulated these findings in PlantConnectome, a user-friendly 
database, and demonstrated its diverse utility by providing insights into gene regulatory 
networks, protein-protein interactions, as well as developmental and stress responses. We 
believe that this innovative use of AI in the life sciences will significantly accelerate and direct 
research, drive powerful gene function prediction methods and help us keep up to date with the 
rapidly growing corpus of scientific literature.   
 
Introduction 
Gene function prediction is the keystone to our microscopic and macroscopic understanding of 
biology, revealing how genes contribute to the formation and mechanism of biological systems 
(Rhee and Mutwil, 2014) and providing insights into biological diversity and evolution (Yu et al., 
2020; Guo et al., 2020). Besides verifying existing hypothetical connections between genes and 
their functions, gene predictions guide the identification of new gene-function relationships and 
elucidate evolutionary processes that shape biological mechanistic intricacies (Ruprecht et al., 
2017; Julca et al., 2021). Moreover, predictive modeling can significantly refine experimental 
approaches, eliminating unnecessary tests on already-characterized genes and directing efforts 
toward the ones most likely to yield novel insights (Persson et al., 2005; Brown et al., 2005). 
Accordingly, numerous tools and databases providing gene function services have been 
developed, including STRING (Szklarczyk et al., 2015), GeneMANIA (Franz et al., 2018), 
CoNeKT (Proost and Mutwil, 2018), ATTED-II (Aoki et al., 2016), and others (Lim et al., 2022).  
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Predicting gene function requires two components: i) gene property data (e.g., coding 
sequence, expression patterns, and protein structure) and ii), gold standard data (i.e., genes 
with experimentally verified functions) (Rhee and Mutwil, 2014; Radivojac et al., 2013). The 
former is firstly used to connect uncharacterized genes with characterized ones similar in 
sequence or expression; based on the 'guilt-by-association' principle, the uncharacterized genes 
are subsequently labeled according to the functions of the characterized genes (i.e., the gold 
standard data) to which they were connected (Rhee and Mutwil, 2014). 

Nonetheless, gene function prediction remains highly challenging due to the complexity 
and vastness of biological data, plateauing our understanding of plant genomes (Rhee and 
Mutwil, 2014) and, thus, our ability to address ever-exacerbating concerns in agriculture, 
medicine, and industry (National Research Council (US) Committee on Examination of Plant 
Science Research Programs in the United States, 1992). Specifically, establishing the gold 
standard necessitates manual, work-intensive extraction of gene functional information from 
scientific articles (Oughtred et al., 2021), preventing public repositories that harbor the gold 
standard data, such as BioGRID (protein-protein interactions, or PPIs) and AGRIS (gene 
regulatory networks, or GRNs)(Oughtred et al., 2021; Yilmaz et al., 2011), from keeping up to 
date with state-of-the-art knowledge. Furthermore, such repositories are typically restricted to 
specific data types (e.g., PPI or GRNs), precluding the integration of various data kinds that is 
critical to deepening our understanding of plant biology.  

We, thus, seized the recent developments in Artificial Intelligence to revive this 
understanding plateau, deploying the advanced text mining capacities of a high-performance 
language model, Generative Pre-trained Transformer (GPT), to process over 100,000 research 
abstracts from leading journals in plant biology. Our approach excavated upwards of 300,000 
functional relationships between more than 100,000 entities comprising genes, metabolites, 
tissues, organs, and other biological components. The manual inspection of these relationships 
revealed not only their impressive accuracy but exceptionally complementary insights, even 
doubling the amount of functional information relative to the current coverage of gene regulatory 
networks. Recognizing the potential of this data to enhance plant understanding, we constructed 
PlantConnectome, a user-friendly database comprising novel visuals that can illuminate gene 
function, organ development, gene regulatory networks, protein-protein interactions, and much 
more. PlantConnectome is available at the following URL: https://connectome.plant.tools/.   
 
Materials and Methods 
Retrieval of paper abstracts 
Using BioPython version 1.81, we downloaded all abstracts published after 2005 from Plant 
Physiology, New Phytologist, the Journal of Experimental Botany, the Plant Journal, BioMed 
Central Plant Biology, Plant Cell, Plant Signal Behavior, Planta, Plant Cell Physiology, the 
Journal of Plant Physiology, Plant Cell Environment, Plant Molecular Biology, Physiol Plant, 
International Journal of Molecular Biology, Molecular Plant-Microbe Interactions, Molecular 
Plant, Proceedings of the National Academy of Sciences, Nature Plants, and the Journal of 
Integrated Plant Biology. Plant Science was one exception, from which we downloaded its post-
2020 papers due to the relatively small number of gene functions that it captures (Figure S1). 
For each abstract, OpenAI’s Python API for davinci 3.5 model was utilized as a part of a prompt 
(Table 1). The returned results were subsequently processed to remove single letter entities 
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(i.e., Gene !affects! X) and convert passive edges (i.e., Photosynthesis !is affected by! Sunlight)
to active edges (Sunlight !affects! Photosynthesis), while edges with very similar meanings were
grouped together and repesented by one edge. The model was run with default parameters,
with the exception of temperature=0 to obtain deterministic results. In total, 101,341 abstracts
were processed within two weeks.  

 
Figure 1. Meta-analysis of the article abstracts. A) Journal sources and the number of
articles pertaining to plant research. B) Clustering of journals (rows), topics (columns), and the
percentage of papers on a given topic per journal (cell color). C) The number of articles
corresponding to the 49 major classes of topics. D) Co-occurrence network of keywords
associated with ‘root’ and ‘drought’. Nodes represent keywords, while edges connect keywords
connected with the Jaccard Index value within the top 1% of the maximum JI values. E) t-SNE
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visualization of the abstracts with a focus on plant organs (left panel), membranes (right, top 
panel), and RNA biosynthesis (right, bottom panel). Each point represents an article, and the 
colors indicate the different organs. 
 
Construction of PlantConnectome database 
The PlantConnectome is hosted on a Google Cloud server. The backend was implemented 
using the Python framework Flask and the Python packages networkx version 3.1, pickle 
version 3.11.4, json version 3.11.4, and regex version 3.11.4. We used JavaScript 
dependencies jQuery v3.6, Cytoscape.js v3.23, ChartJS v4.3, and FileSaver v2.0.5 to visualize 
the KnowledgeNetwork graphs. 
 
API for PlantConnectome 
PlantConnectome is also equipped with an Application Programming Interface to allow users to 
conduct search queries remotely. The API accepts GET requests and is implemented using the 
same set of packages described earlier. For each successful call to PlantConnectome’s API, a 
JSON object is returned, containing the functional abbreviations, GO terms, other nodes, and 
text summaries associated with the search query. To perform searches using the API, users can 
add “/api/<search type>/<search query>” to the web address, where “<search type>” and 
“<search query>” are placeholders representing the type of search and user’s query, 
respectively.  
 
Results 
Semantic Analysis of 101,341 Paper Abstracts 
To retrieve articles that describe gene functions, we first investigated which journals contain the 
highest sources of experimentally-characterized genes. Our analysis revealed that Plant Cell, 
Plant Physiology, and Plant Journal are the top three, followed by journals not constrained to 
plant research, such as PNAS and the Journal of Biological Chemistry (Figure S1). All abstracts 
published after 2005 were then acquired, resulting in a total of 101,341, involving plant-specific 
journals and plant kingdom-specific manuscripts from generalist journals. A considerable 
number of abstracts came from both old journals, such as Plant Physiology (established in 
1924), New Phytologist (1902), and the Journal of Experimental Biology (1950), as well as 
newer journals, such as Frontiers in Plant Science (2010) (Figure 1A). 

We determined the surveyed journals' discussion of cellular compartments, organs, and 
biological functions to assess their considered research topics. Most journals did not show 
particular specificity for any topic, except Nucleic Acid Research, which focused on ‘chromatin 
organization’ (Figure 1B). The most common topics were leaves, roots, plant reproduction, and 
responses to the environment (Figure 1C), while the most frequent topic pairs were root-auxin 
and drought-proline (Figure 1D, Table S1).  

To visualize the relationships among abstracts, we constructed a 2D neighbor 
embedding tSNE plot (Macosko et al., 2015) using the recommended 40 perplexity and 1,000 
iterations, which resulted in a stable layout (Figure S2). The plots demonstrate clear groupings 
by organ, subcellular compartments, and biological processes (Figure 1E); the majority of 
entities studied also exhibit clear grouping (Figures S3, S4, and S5). However, we also 
observed certain overlaps: articles discussing roots (Figure 1E, left panel, orange points), for 
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example, overlap with membrane studies (Figure 1E, top right panel, red points), and RNA
biosynthesis (Figure 1E, bottom right panel).  
 

Figure 2. GPT analysis of abstracts. A) Distribution of correct, incorrect, and missing
statements in fifty manually-inspected abstracts. B) Total number of correct, incorrect, and
missing statements. C) Distribution of the number of edges across each of the randomly
selected 50 abstracts. 
 
Text-Mining Abstracts with GPT 
We tasked OpenAI's GPT API with identifying functional relationships between pairs of entities
(e.g., gene A interacts with gene B), proposing functional annotations of genes (gene A is
involved in photosynthesis), and extracting any abbreviations (e.g., CESA is Cellulose Synthase
A). To find the most effective prompt, we asked ChatGPT to propose a prompt for a given task.
After several iterations, we arrived at the three prompts (Table 1), which were used to process
all abstracts, yielding 387,777 relationships (Table S2), 112,128 function annotations (Table
S3), and 73,591 abbreviations (Table S4).  
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Figure 3: Properties of the Connectome network.  A) Gephi visualization of the network. For 
the layout, we used the ForceAtlas 2 algorithm until convergence with a stronger gravity law and 
a scaling factor of 0.5.  Light blue nodes and green nodes represent those with the fewest and 
highest degrees, respectively.  B) Regression plot of the number of edges (y-axis) versus the 
number of nodes (x-axis) in the Connectome network. C) Top 50 most frequently-appearing 
nodes.  The y-axis is log-transformed. D) Top 50 most frequently-appearing edges.   
 
To quantitatively benchmark the accuracy of these results, we randomly selected 50 abstracts 
and manually evaluated the number of correct, incorrect, and missing relationships identified by 
GPT (Supplemental Data 1). Our analysis revealed that, overall, the majority of relationships 
were correct (Figure 2A, blue bars, Table S5). Still, a fraction of relationships remained 
undetected (orange bars) or wrong (red bars), inciting our defining of five additional categories 
within the inaccurate results: incorrect entities, incorrect relationship type, misunderstood 
sentence (i.e., both the involved entities and relationship type were misidentified), returned 
prompt (i.e., an output identical to the inputted prompt), and not found in the abstract. The 
predominating error type was ‘wrong entity’ (Figure 2B), suggesting GPT's limitations in 
correctly identifying entities discussed in the given text (Figure S6). Closer inspection of the 
associated abstract revealed that this error type occurs when it mentions no gene names, 
resulting in GPT's "hallucination" of an entity termed "gene" (Supplemental Data 1, Table S5, 
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abstracts 16 and 28). That we were able to extract around 4-6 relationships from each abstract 
(Figure 2C) indicates our overall ability to harvest information from the abstracts.  
 
Construction of the Connectome Network 
As GPT returned pairwise relationships between entities, we leveraged this to construct a 
network summarizing all entity-entity relationships. This network–the PlantConnectome–
comprises regions of dense node clusters (Figure 3A). Certain networks, such as protein-protein 
interactions, display scale-free behavior, where most nodes have few connections and few 
nodes have many connections (Broido and Clauset, 2019). To investigate whether the 
Connectome is scale-free, we constructed a scatterplot of its log-transformed node frequency 
and node degrees, observing that it resembles a scale-free pattern (Figure 3B).  
 While GPT was instructed to focus on genes (Table 1), it still identified genes, 
hormones, metabolites, organs, and other biological entities (Figure 3C). Because many 
abstracts discussed gene function without explicitly stating the gene's name, "gene" was the 
Connectome's mode node (Figure 3C). The second, third, and fourth most frequently occurring 
nodes, however, were the plant hormones "aba," "auxin," and "ethylene," respectively. 
Importantly, GPT also recognized the types of relationships, where some of these most frequent 
edges were ‘affects’, ‘enhances’, and ’interacts with’ (Figure 3D).  
 
Features of PlantConnectome 
To provide access to the Connectome network, we constructed PlantConnectome 
(https://connectome.plant.tools/), which offers numerous methods of searching for genes, 
metabolites, organs, and other entities by terms, author names, and PubMed IDs, alongside a 
catalog page (accessible under the "entities" tab) listing all entities in the database.  An entire 
information page is also provided for each entity in the connectome, containing its GPT-
generated abbreviations and GO term predictions in addition to appropriate links. To make the 
PlantConnectome easier to use, we manually identified synonymous edges (e.g., ENCODE, 
CODES FOR, ENCODES FOR, CODE FOR become ENCODE, Table S6). 

To detail PlantConnectome's search result page, we performed a standard query with 
the gene "CESA" (cellulose synthase A, https://connectome.plant.tools/normal/CESA), which is 
involved in the biosynthesis of primary and secondary cell walls of plants (Lampugnani et al., 
2019). Following a statement of the total number of contributing publications is an 
"abbreviations" section, listing all descriptions of CESA abbreviations (Figure 4). The 
subsequent KnowledgeNetwork is a visual depiction of the various relationships the search 
query shares with other entities in the database. Upon selection of a given node, the user is 
provided a tooltip displaying the node’s abbreviations, functional annotations, and a set of 
options enabling removal of the node, isolation of the node’s neighborhood, and visiting the 
node's corresponding entity page. Users may, thus, customize the network by erasing nodes or 
entire clusters of choice and/or filtering out specific relationship types (e.g., "activates," "binds," 
"encodes for," etc.), enabled by the "Layout Option" button; to facilitate this process, a search 
box is also provided above the network. As an excessively large network is associated with 
certain entities (e.g., "heat" has 970 papers https://connectome.plant.tools/normal/heat), the 
networks are limited to 500 nodes; nonetheless, the user can still download the full version as a 
tab-delimited file (visualizable in Cytoscape, for example). 
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Figure 4. Outline of the ConnectomeDatabase gene search page contents. After inputting
our query entity (CESA), the result page returns information specific to the searched term(s),
including gene names, functions, entity relationship graph, as well as a text and table summary.
Users may also save the network as a vector graphic (i.e., SVG) or tab-delimited file (i.e., TSV). 
 
 Below the KnowledgeNetwork is its text summary, arranged in order of decreasing node
degree (i.e., the number of other entities to which a given node is connected). Each paragraph
contains the entities, corresponding association types, and PubMed IDs of the publications from
which the relationships were mined. Clicking on a given PubMed ID will prompt a popup
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containing the corresponding abstract and published article link, streamlining the manual
confirmation of relationships (as warranted by GPT's potential errors, Figure 2). Selecting
edges/nodes will condense this text summary to the said selection, providing users with an
expeditious means of gathering information on relationships of interest. The network can also be
found in the table representation at the lowermost section of the results page.  

Finally, PlantConnectome enables users to perform searches through an API, which
returns a JSON object containing relevant network and functional information, extending its
functionality to bioinformaticians who desire programmatic access to our database. As an
example, a normal search on the CESA gene may be performed by accessing the URL
“https://connectome.plant.tools/api/normal/cesa”. 

 
Figure 5. Comparative analysis of Connectome’s gene regulatory networks with AGRIS
and protein-protein interaction networks with BioGRID. A) Venn diagram showing the
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intersection of Connectome’s and AGRIS' gene regulatory networks. While AGRIS (confirmed) 
refers to gene regulatory networks that have been validated experimentally, AGRIS 
(unconfirmed) refers to those that are suggested by large-scale studies without experimental 
evidence of gene regulation by the respective TF. Networks formed by TFs that are not found in 
both Connectome and AGRIS were excluded to ensure fair comparison. B) Top 20 types of 
Connectome’s edges that do not overlap with AGRIS. C) Venn diagram showing the intersection 
of Connectome’s and BioGRID's protein-protein interaction networks. D) Top 20 types of 
overlapping edges between Connectome and BioGRID, excluding the “interacts with” edges. E) 
Knowledge Network of MYB46. F) Knowledge Network of TOC75. 
 
Evaluation of the coverage and accuracy of the PlantConnectome 
Our main motivation in this study was to expand the amount of the gold standard data capturing 
experimentally-verified gene functions. We, thus, investigated the overlap of relationships 
detected by GPT with data provided in the public repositories.   

To compare the coverage and the accuracy of gene regulatory networks (GRNs), we 
obtained the Arabidopsis thaliana gene regulatory network from AGRIS (https://agris-
knowledgebase.org/downloads.html, updated March 2019) (Yilmaz et al., 2011).  Next, we 
identified 4,249 transcription target-gene edges in the Connectome and calculated the overlap 
between AGRIS and Connectome. A very minor overlap between them was observed (Figure 
5A), indicating the high dissimilarity between the two networks and that Connectome plays a 
complementary role to AGRIS.  

To understand the types of edges associated with transcription factors in the 
Connectome, we investigated these edges, finding that “interacts with,” “represses,” “maintains,” 
“binds,” and “activates” were the top five, which demonstrates the Connectome's ability to 
identify the various functions of transcription factors (Figure 5B). A total of 40 edges were also 
randomly sampled to validate the edge-detection accuracy of the Connectome, where 95% of 
them were correct (Table S7), corroborating that the Connectome is an accurate, 
complementary companion to AGRIS (Figure 5C). 
 Furthermore, we compared the protein-protein (PPI) network from BioGRID to the 
Connectome’s network. While there was a greater overlap between the two networks (1,050 out 
of 3,675 of ‘interacts with’ edges), Connectome was still able to identify 2,625 interaction edges 
that were not found in BioGRID (Figure 5C). Additionally, 759 edges that overlapped with 
BioGRID but were not of the "interacts with" type was detected by the Connectome, upon 
examination of which we discerned that more niche interactions types, such as "phosphorylates" 
and "inhibits," were, too, captured by the Connectome. After manually inspecting 20 randomly-
sampled edges, we determined an edge accuracy rate of 85% (Figure 5D, Table S8), indicating 
the Connectome's valuable companionship and alternative role to not only AGRIS but also 
BioGRID. A full list of all entity pairs that are assigned Arabidopsis gene identifies are available 
(Table S9). 
 
Examples of how to use PlantConnectome 
In building PlantConnectome, we have distilled the knowledge from the majority of research 
abstracts, providing a versatile tool to the plant community covering diverse topics. We now 
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demonstrate how the Connectome can be used to study gene regulatory networks, protein 
complexes, cell types, and stress resilience. 
 
Example 1: Secondary Cell Wall Master Regulator 
In this example, we selected the secondary cell wall biosynthesis regulator, MYB46 
(https://connectome.plant.tools/normal/myb46). A literature search on the gene regulatory 
network underlying secondary cell wall formation revealed that Connectome has a GRN rivaling 
those in a review regarding this topic (Figure 5E) (Xiao et al., 2021). While the 
KnowledgeNetwork viewer did not contain several other transcription factors that work alongside 
MYB46 (MYB42, MYB58, MYB103, MYB7, and MYB32), we nonetheless observed transcription 
factors SND1, MYB43, MYB52, MYB46, MYB85, KNAT7, and MYB63 (Figure 5A).  

Since the KnowledgeNetwork is summarized in a human- and machine-readable format, 
we investigated whether ChatGPT is able to generate publication-ready passages. To this end, 
the network summary (Figure 4, below the network) was fed into ChatGPT4 with the following 
prompt: "I will give you several statements about gene function, where the numbers in "()" 
contain PubMed IDs.  Rewrite the text so that it reads like a scientific article, and group logically 
the different statements.  Make sure to keep all PubMed IDs." The outcome is, in our opinion, on 
par with some review articles:  
 

Introduction: 
The MYB46 transcription factor is essential in the regulation of secondary cell wall 
biosynthesis in plants. It has been characterized as a master switch that integrates with 
cell wall remodeling and defense-related signaling pathways (PubMed ID: 33826618, 
21282403). This article presents an overview of the role of MYB46 in secondary cell wall 
biosynthesis, as well as its interaction with other genes and regulatory elements. 
 
Expression and Function of MYB46: 
MYB46 is predominantly expressed in fibers and vessels (PubMed ID: 17890373). The 
primary function of MYB46 involves the maintenance of secondary wall biosynthesis 
through the induction of several genes including EP5C (PubMed ID: 19838072, 
21282403), MYB43, MYB52, MYB54, MYB58, MYB63, KNAT7, ATC3H14, and genes 
involved in cellulose synthesis such as CESA and CSLA9 (PubMed ID: 22197883, 
22271306, 23726771, 24243147, 24879533, 26011122). Additionally, MYB46 promotes 
the transcription of xylan and lignin biosynthetic genes, PAL genes, and affects xylose 
and lignin content, as well as crystalline cellulose content (PubMed ID: 24879533, 
26011122, 32706429). 
 
MYB46 Activation and Binding: 
MYB46 has the ability to activate several genes including ATC3H14, MYB52, MYB63, 
and secondary wall biosynthetic genes (PubMed ID: 19674407, 22197883, 24879533). It 
achieves this by binding to various regulatory elements such as EP5C gene, SMRE, the 
native promoter of CSLA9, and promoters of lignin and xylan biosynthesis genes 
(PubMed ID: 21282403, 22197883, 23726771, 24243147, 24879533, 26011122). 
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Interestingly, MYB46 recognizes a specific element known as M46RE, which also has 
been shown to inhibit MYB46 binding (PubMed ID: 22271306, 23726771). 
 
Interactions with Other Factors: 
MYB46 is transcriptionally reprogrammed by SND1, which activates MYB46 and binds to 
its promoter (PubMed ID: 17890373). Moreover, MYB46 operates in conjunction with 
MYB83, activating similar direct targets (PubMed ID: 19808805, 22197883). MYB46 is 
also subject to repression by AN and miR395c (PubMed ID: 32706429, 35755696). 
Additionally, MYB46 is targeted to the nucleus (PubMed ID: 17890373). MPK6 is 
another regulatory protein that interacts with MYB46 by phosphorylating it, which leads 
to the degradation of MYB46 and helps to maintain the in planta secondary wall-forming 
function of MYB46 (PubMed ID: 33826618). 
 
Impact of MYB46 Regulation: 
When overexpressed, MYB46 leads to ectopic deposition of secondary walls (PubMed 
ID: 17890373). However, it has also been shown to repress secondary wall thickening 
(PubMed ID: 17890373). In MYB46 mutant plants, selective transcriptional 
reprogramming of cell wall proteins and extracellular remodeling enzymes occurs 
(PubMed ID: 21617373). Furthermore, MYB46 is identified as a downstream target of 
NST1/2 and VND6/7, which play crucial roles in secondary wall biosynthesis (PubMed 
ID: 19122102). 

 
Since ChatGPT was asked to use the existing Pubmed IDs, it does not hallucinate non-existing 
references.  
 
Example 2: Chloroplast Protein Translocation and Channel Member TOC75 
Translocase complexes on the outer and inner envelope membranes (TOC and TIC, 
respectively) are used to import proteins into the chloroplast (Stengel et al., 2009).  We 
conducted a search on “TOC75” (https://connectome.plant.tools/normal/TOC75), where 
comparison of the output to a review revealed known interactions with other translocase 
components, such as TOC34, TOC159, and TIC236 (Figure 5E) (Richardson and Schnell, 
2020). The associated edges also provide additional functional information: its role (i.e., a pre-
protein translocation channel), supercomplex membership, subcellular compartments, and 
mutant phenotypes. Only one known interactor - TIC22 - was not found in the network. 
Furthermore, while Connectome states that TOC75 is implied to interact with TIC110 in the 
network, these two proteins do not interact directly (Richardson and Schnell, 2020). Closer 
inspection of the sentence in the corresponding abstract, which states, “Antibody-shift assays 
showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, 
Toc34 and Tic110", implies that GPT likely inferred that all proteins in the supercomplex were 
interacting. Additionally, the identified relationship “TOC75 represses protein import” is incorrect, 
as the downregulation of TOC75 represses protein import rather than TOC75 activity. 
Regardless, because PlantConnectome significantly simplifies the process of scrutinizing the 
abstracts underpinning all edges, such inconsistencies are easy to spot.  
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Example 3: Root Hair Development 
Root hair development can be described in several stages and is influenced by a magnitude of 
external and internal factors (Shibata and Sugimoto, 2019).  The word “hair” was searched on 
PlantConnectome (https://connectome.plant.tools/normal/hair), the result of which (based on 
397 papers) revealed a high number of connected nodes such as “root hair development”, “root 
hair initiation”, and “root hair elongation”. To identify entities that are important for root hair 
maintenance, we selected the “maintains” and “affects” edges, reducing the network’s 
complexity (Figure S7). This subsequent network revealed an extensive amount of internal and 
external factors such as calcium (30153078), reactive oxygen species (16720604), soil acidity 
(21062319), growth media (21062319), phytohormones ethylene (30153078, 16531464), auxin 
(35401627,  27799284), and jasmonic acid (35401627). Genes such as KOJAK/ATCSLD3 
(17259288), ETC1 (23432399), NPC4 (23432399), and SQD2 (23432399) were also revealed 
in the network. These results demonstrate that PlantConnectome is able to integrate knowledge 
across different types of entities. 
 
Example 4: Thermotolerance 
Thermotolerance is a widely studied phenomenon that enables plants to withstand high 
temperatures (Ali et al., 2020).  We navigated to the following search results page 
https://connectome.plant.tools/substring/thermotolerance, which revealed 397 publications on 
the topic. To identify entities that promote thermotolerance, we selected the network's 
“enhances” edges.  Both a range of molecules, such as isoprenes (17468218), DGDG 
(Digalactosyl diacylglycerol, 17080965), abscisic acid (15923322), and nitric oxide (18326829), 
and a  host of genetic factors, such as HSFA2 (30187931), HSA32 (24520156), HOT1 
(10760305), HSP101 (24520156) (Figure S7), were illuminated.  
 The network can also be used to reveal entities that inhibit thermotolerance. Namely, by 
selecting “represses” and “inhibits” edges, we determined that MGDG 
(Monogalactosyldiacylglycerol, 17080965) is an inhibitor of thermotolerance.  A closer 
inspection of the abstract suggested that a decreased ratio of DGDG to MGDG is responsible 
for lowering thermotolerance; thus, while the network’s implications are not strictly correct, 
MGDG is still implied to play a role in thermotolerance. Moreover, the network revealed several 
genes, such as CLPC1 (33326777) and SLMAPk3 (31412779) that repress thermotolerance, 
and while the genes HSA32 (16500991) and APX2 (33711164) were implied to be 
thermotolerance repressors, manual review of the abstract exposed that GPT missed that it was 
these genes' mutants that were discussed and that the two genes actually enhanced 
thermotolerance. To conclude, the dynamic selection option of edge types in the network 
enables scrutinizing different relationship types between the entities found in PlantConnectome. 
 
Discussion  
We have illustrated GPT's text mining capacities in the context of scientific literature, processing 
over 100,000 research abstracts at a moderate cost (1,500 USD) within two weeks and 
harvesting invaluable functional information therein. GPT was capable of extracting key entities 
and relationships from research paper abstracts with high accuracy and few prompts (Table 1, 
Figure 2). The amount of functional information excavated from the abstracts vastly increased 
the amount of machine-readable data, as demonstrated by our gene regulatory networks that 
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doubled the quantity of available data. Moreover, PlantConnectome overcomes the limitations of 
typical databases that employ only one data type, as it draws upon numerous sources of data in 
its establishing of gene functions, organ development, gene regulatory networks, protein-protein 
interactions, and other phenomena, all in a user-friendly manner. 

Our evaluation has shown that PlantConnectome is not only comprehensive and 
accurate but complementary to existing databases (Figure 5). The comparison of 
PlantConnectome's gene regulatory networks against AGRIS and its protein-protein interaction 
networks against BioGRIDdemonstrate that PlantConnectome's retrieved networks do not 
largely overlap with these reference databases. Rather, the GPT-extracted networks 
complement them, bearing witness to the effectiveness of our text mining approach in utilizing 
the vast amount of literature that has not been captured by manual curation.  

However, GPT’s outputs are not entirely accurate and still warrant manual verification, of 
which our own has shown that the OpenAI model has a tendency to misidentify entities and 
relationships or to not detect them at all (Figure 2) which is perhaps attributable to each 
abstract’s varying language and content. The correction of errors may be carried out by fine-
tuning the models with manually curated examples containing the expected output (as, for 
instance, that found in Supplemental Data 2). Moreover, while we asked GPT to annotate genes 
with GO terms, GPT, in many cases, formulated new terms; for example, ‘Preprotein 
translocation channel,’ assigned to TOC75, is a valid but non-existing term 
(https://connectome.plant.tools/normal/TOC75). A possible means to address this could involve 
using Natural Language processing methods that match GPT annotations with valid GO terms 
(Wang et al., 2020).     

In conclusion, PlantConnectome is an innovative tool, combining the power of a state-of-
the-art language model with the comprehensive information embedded in a massive collection 
of research articles. The tool offers an efficient and diversified way to retrieve information for 
genes, metabolites, tissues, organs, and other biological components. The potential applications 
of PlantConnectome are wide-ranging and extend beyond those we have highlighted in this 
article. Furthermore, since we only analyzed article abstracts, we anticipate that analysis of 
complete articles will return even more information. We anticipate that PlantConnectome will 
become a valuable resource for the plant science community to facilitate various research 
activities, from a preliminary investigation of gene functions to an in-depth study of a particular 
biological process. 
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Tables 
Table 1. An example of an abstract, prompts and outputs from GPT. The three prompts ask 
GPT to identify relationships between genes, identify Gene Ontology terms and find 
abbreviations, respectively. 
Abstract In plants, regulation of cellulose synthesis is fundamental for morphogenesis and plant growth. Cellulose is synthesized 

at the plasma membrane, and the orientation of synthesis is guided by cortical microtubules; however, the guiding 
mechanism is currently unknown. We show that the conditional root elongation pom2 mutants are impaired in cell 
elongation, fertility, and microtubule-related functions. Map-based cloning of the POM-POM2 locus revealed that it is 
allelic to CELLULOSE SYNTHASE INTERACTING1 (CSI1). Fluorescently tagged POM2/CSI1s associated with both 
plasma membrane-located cellulose synthases (CESAs) and post-Golgi CESA-containing compartments. Interestingly, 
while CESA insertions coincided with cortical microtubules in the pom2/csi1 mutants, the microtubule-defined movement 
of the CESAs was significantly reduced in the mutant. We propose that POM2/CSI1 provides a scaffold between the 
CESAs and cortical microtubules that guide cellulose synthesis. 

Prompt Write a very short summary about 
the functions of genes in this 
abstract. The summary must 
show pair-wise relationships, for 
example: 
gene: !affects! Process 
gene: !localizes to! X 
gene: !interacts with! Y 
gene: !enhances! Z 
gene: !represses! U 
gene: !synthesizes! I 
 
Please provide only one 
statement per line, and ensure 
that each line contains exactly two 
actors. If a relationship involves 
more than two actors, please 
break it down into multiple 
separate lines. 
 
<ABSTRACT> 
 
VERY SHORT, CONCISE 
SUMMARY CONTAINING ALL 
INFORMATION WITH TWO 
ACTORS PER LINE:  

Your job is to identify GO 
terms of genes from 
scientific abstracts. For 
example, given an 
abstract: 
'LUCKY localizes to 
plasma membrane, 
where it interacts with the 
extracellular protein 
HAPPY' 
 
You should return: 
LUCKY: plasma 
membrane, protein 
binding 
HAPPY: extracellular 
region, protein binding 
 
For each gene in this 
abstract, annotate it with 
fitting GO Terms.  
 
<ABSTRACT> 

Return abbreviations and their corresponding 
definitions from scientific abstracts. The input to the 
function should be a string representing the abstract, 
and the output should be a dictionary where the keys 
are the abbreviations and the values are their 
definitions. 
 
For example: 
Input: "Cellulose synthase complexes (CSCs) at the 
plasma membrane (PM) are aligned with cortical 
microtubules (MTs) and direct the biosynthesis of 
cellulose. We identified a unique small molecule, 
CESA TRAFFICKING INHIBITOR (CESTRIN), which 
reduces cellulose content and alters the anisotropic 
growth of Arabidopsis (Arabidopsis thaliana) 
hypocotyls." 
 
Output: {'CSCs': 'Cellulose synthase complexes', 
'PM': 'plasma membrane', 'MTs': 'cortical 
microtubules', 'CESTRIN': 'CESA TRAFFICKING 
INHIBITOR'} 
 
<ABSTRACT> 

Output Cellulose: !synthesized at! Plasma 
Membrane  
 
Cortical Microtubules: !guide! 
Cellulose Synthesis  
 
POM2/CSI1: !associates with! 
CESAs  
 
POM2/CSI1: !provides scaffold 
between! CESAs and Cortical 
Microtubules 

CELLULOSE 
SYNTHASE 
INTERACTING1 (CSI1): 
plasma membrane, 
protein binding, 
microtubule binding 
 
CESAs: plasma 
membrane, cellulose 
biosynthetic process, 
microtubule binding 
 

{'CESAs': 'plasma membrane-located cellulose 
synthases', 
 
 'CSI1': 'CELLULOSE SYNTHASE INTERACTING1', 
 
 'POM2': 'conditional root elongation pom2 mutants'} 
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Supplemental Figures 

Figure S1. The number of articles that contain experimentally described genes.
Experimentally described genes were downloaded from
https://arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/
ATH_GO_GOSLIM.txt.gz 
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Figure S2. tSNE analysis of the abstracts at the different perplexity and iteration values.
A) The evolution of the plot at a perplexity of 40 and different ranges or iterations. The plot at
1000 iterations resembles the plot at 800 iterations, indicating a plateau. B) The plot at a low
perplexity (10) and maximum perplexity (100).  
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Figure S3. tSNE analysis of the abstracts of the different biological processes, as defined
by MapMan. A red point indicates an abstract that contains a keyword (e.g., pollen is a keyword
for the plant reproduction), while gray point indicates an absence of the keyword match. 
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‘

Figure S4. tSNE analysis of the abstracts of the different cellular compartments.  
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Figure S5. tSNE analysis of the abstracts of the different major organs and cell types.  
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Figure S6. Manual curation of 50 abstracts.  
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Figure S7. KnowledgeNetwork view of ‘hair’ (top) and ‘thermotolerance’ (bottom)
networks.  
 
Supplemental Tables 
Table S1. Jaccard index between keywords found in the article abstracts. The pairs are
sorted by the decreasing JI values. 

 
) 

re 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.11.548541doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548541
http://creativecommons.org/licenses/by-nc/4.0/


 

Table S2. All entity relationships identified by GPT. The two entities are in columns A and C, 
while the edge type is specified in column B. 
 
Table S3. Entity annotations identified by GPT. Column A contains the entity, while column B 
contains the outcome of asking GPT for GO terms. Each ‘GO term’ is separated by comma. 
Table S4. Abbreviations identified by GPT. Column A and B contain the key and value of an 
abbreviation, respectively. Abbreviations identified from multiple abstracts are separated by 
comma. 
Table S5. Accuracy summary of GPT inferences using 50 abstracts. The columns indicate 
the abstract ID, and the correct (B), incorrect  (C) and missing  (D) statements. 
Table S6. Edge alias table. Column A shows the representative edge of the other edges 
(column B).  
Table S7. Comparison of the GRN inferred by GPT and AGRIS. Columns I and J indicate 
whether an edge is found in AGRIS and if the edge is correct upon manual inspection, 
respectively. 
Table S8. Comparison of the PPI inferred by GPT and BioGRID. Column J indicate whether 
an edge is correct upon manual inspection. 
Table S9. The list of all entities that could be assigned AGI codes.  
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