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Abstract  

 

Short-term memories link events separated in time, such as past sensation and future actions. 

Short-term memories are correlated with selective persistent activity, which can be maintained 

over seconds. In a delayed response task that requires short-term memory, neurons in mouse 

anterior lateral motor cortex (ALM) show persistent activity that instructs future actions. To 

elucidate the mechanisms underlying this persistent activity we combined intracellular and 

extracellular electrophysiology with optogenetic perturbations and network modeling. During the 

delay epoch, both membrane potential and population activity of ALM neurons funneled towards 

discrete endpoints related to specific movement directions. These endpoints were robust to 

transient shifts in ALM activity caused by optogenetic perturbations. Perturbations occasionally 

switched the population dynamics to the other endpoint, followed by incorrect actions. Our 

results are consistent with discrete attractor dynamics underlying short-term memory related to 

motor planning. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

3

Introduction 

 

Short-term memory is the ability of the brain to maintain information over times of seconds. 

Neurons in the frontal cortex and related brain regions show persistent changes in spike rates 

during various types of short-term memory tasks 1-15. This persistent activity is a neural correlate 

of memory maintenance.  

 

Short-term memory-related persistent activity has been extensively studied in delayed response 

tasks in non-human primates 1,4-6. An instruction informs the type of action to be performed. A go 

cue determines the timing of action. The instruction and go cue are separated by a delay epoch, 

during which animals maintain a memory of the instruction and/or plan an upcoming movement. 

Persistent delay activity that predicts future actions is referred to as preparatory activity. 

Recently, preparatory activity has been observed in rodent models 11-13{Inagaki et al, in prep} 

(Fig. 1a).  

 

In both tactile and auditory delayed response tasks, a large proportion of neurons in anterior 

lateral motor cortex (ALM) exhibit selective persistent activity, or preparatory activity, that 

predicts directional licking 11,16. Multiple lines of evidence indicate that preparatory activity in 

ALM is part of a multi-regional network mediating motor planning. First, unilateral inactivation 

of ALM during the delay epoch impairs future licking to the contralateral direction 11 {Inagaki et 

al, in prep }. Second, unilateral activation of pyramidal tract neurons in ALM during the delay 

epoch biases the future licking to the contralateral direction 17. Third, complete transient bilateral 

inactivation of ALM during the sample or delay epoch results in chance level performance 18 

{Inagaki et al, in prep }, and loss of selective persistent activity 18. Yet, future licking directions 

can be decoded from population spiking activity in a trial-by-trial basis 18. The chance level 

performance after bilateral silencing during the sample epoch implies that other brain regions 

cannot rescue preparatory activity in ALM. 

 

When current is injected into isolated neurons, activity decays within milliseconds, reflecting an 

interplay of rapid repolarizing currents and the neuronal membrane time constant 19 (Fig. 1b, left). 

A variety of theoretical models have been proposed to fill the gap in time scales between neuronal 

and network time constants 7,20-37. First, neurons might have specialized cell-autonomous 

mechanisms that maintain multi-stable persistent activity 29,35,38-42. Second, neurons could be 

wired into networks that effectively extend network time constants by sequential neuronal 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

4

activation 24,43,44. Third, feedback excitation and inhibition 22 can compensate for dissipation of 

excitation. Depending on the structure of the circuit and the properties of individual neurons, the 

network can behave as an integrator with a continuum of stable (or quasi-stable) states 22,30, or a 

discrete attractor 21,36,37 (Fig. 1b, middle and right). Integrator and discrete attractor models can 

explain many aspects of neuronal activity and have been proposed to underlie short-term memory 

and decision making 20-23,31-33,45. Our previous analysis did not detect sequential activity in ALM 

during the delay epoch {Inagaki et al, in prep}. Here we focus on distinguishing between other 

models of persistent activity, including cell-autonomous multi-stability, integrator networks and 

discrete attractor networks. 

 

Based on dimensional reduction methods, population activity in ALM during the delay epoch can 

be mostly (more than 80 % of variance) explained by two modes {Inagaki et al, in prep}. Such 

low-dimensional activity dynamics of short-term memory provides an opportunity to analyze 

neural activity and its response to optogenetic perturbations with little influence from non-

mnemonic activity.  Membrane potential measurements with whole cell recordings did not reveal 

evidence for cellular intrinsic multi-stability. We found that membrane potential and spiking 

dynamics funneled towards discrete endpoints and that these dynamics were robust to optogenetic 

perturbations. Occasionally, perturbations caused switches from one trajectory to the other, 

followed by incorrect choices. These data are inconsistent with integrator models, but are 

consistent with discrete attractor dynamics underlying short-term memory.  
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Results 

 

The membrane potential underlying preparatory activity 

 

We performed whole-cell recordings from left ALM (AP 2.5mm, LM 1.5mm, bregma) neurons 

during the delayed-response task (42 cells, tactile task; 37 cells, auditory task) (Fig. 2 and 

Extended Data Fig. 1, 2). Twenty of the recorded neurons were selective during the delay epoch 

(spike rate significantly different between correct lick-right (contra) and correct lick-left (ipsi) 

trials) (ranksum test, p < 0.05). Consistent with extracellular recordings 11{ Inagaki et al, in prep 

}, selectivity increased during the delay epoch (Fig. 2d, e). The membrane potential (Vm) to 

spike rate (SR) relationship was threshold linear 46 (Extended Data Fig. 1, 2). Even small and 

rapid features in the average Vm were reflected in parallel changes in SR (Extended Data Fig. 1, 

2). The selectivity of Vm ramped during the delay epoch, similar to SR (Fig. 2d, e). Therefore, 

persistent changes in Vm underlie persistent changes in SR during the delay epoch.  

 

 

Testing for intracellular multi-stability 

 

The membrane time constant limits how long isolated neurons can maintain activity after a 

transient input. The membrane time constant was short for selective cells (21.3 ± 19.7 ms, mean ± 

s.d., n = 19) and non-selective cells (20.5 ± 16.9 ms, mean ± s.d., n = 54). Moreover, the 

membrane fluctuations were faster in the delay epoch compared to the pre-sample epoch 

(Extended Data Fig. 3). Long membrane time constants therefore do not explain preparatory 

activity. 

 

We next tested for other cell-autonomous mechanisms of multi-stability 29,35,38-41. First, spike 

bursts can activate voltage-dependent channels to trigger cell-autonomous persistent activity 
29,35,40,41. However, only a small fraction of neurons (12/79 cells, 4/20 selective cells; > 1 complex 

spike / 5 trials) showed spike bursts (Extended Data Fig. 1c and 2c), and in these neurons spike 

bursts did not precede preparatory activity (Extended Data Fig. 1d and 2d). Therefore, spike 

bursts do not contribute to persistent activity in ALM.  

 

Second, cell-autonomous mechanisms underlying persistent activity involve conductances 

activated by depolarization 29,35,40,41. Persistent activity should then be perturbed by 
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hyperpolarization 40. For recordings with sufficiently long durations, we hyperpolarized cells by 

12.0 ± 4.9 mV (mean ± s.d., n = 10). Hyperpolarized cells ceased to fire spikes but still showed 

selective changes in Vm (Fig. 3a, b and Extended Data Fig. 4a). Selectivity in Vm was similar 

after current injection; differences are most likely due to changing conductances (Extended Data 

Fig. 4b, c) and decreased inhibitory currents (hyperpolarization moved the membrane potential 

closer to the reversal potential for chloride). Although it is unlikely that we controlled membrane 

potential throughout the dendritic arbors 47, the fact that we silenced complex spikes, which 

require dendritic electrogenesis 48, with somatic hyperpolarization (Extended Data Fig. 4d) 

suggests that dendritic membrane potential was manipulated in some cases. In addition, cells with 

extremely low spike rates still showed selectivity in Vm (Extended Data Fig. 4e). These results 

indicate that spiking and conductances activated by depolarization are not necessary for 

selectivity in Vm. Altogether, cell-autonomous mechanisms do not explain persistent activity in 

ALM 49. Instead, spike rate changes and membrane potential changes during the delay epoch 

were most likely driven by synaptic input.  

 

 

Funneling of membrane potential 

 

We now focus on network mechanisms (Fig.1b). In a system following discrete attractor 

dynamics, activity is expected to converge to discrete endpoints over time (funneling). In 

contrast, in a system following integrator dynamics, funneling is not expected (Fig. 1b). During 

the delay epoch, Vm funneled to a narrow distribution at the time of movement onset (Fig. 4a, 

Extended Data Fig. 5a). We quantified funneling by computing the across-trial fluctuations in Vm 

(the difference between the first and third quartiles of Vm across trials at each time point). 

Across-trial Vm fluctuations decreased during the delay epoch, and reached a minimum 

immediately after the go cue (Fig. 4b, Extended Data Fig. 5d, f). This decrease was strong in 

contra trials but weak in ipsi trials (Fig. 4c, d, Extended Data Fig. 5) (Hierarchical bootstrap 

comparing across-trial fluctuations in the baseline and the delay epoch, Methods). The reduction 

in Vm fluctuations was stronger in selective neurons (Fig.4c, d, Extended Data Fig. 5d-g).  

 

The reduction in across-trial Vm fluctuations was not caused by a ceiling effect imposed by the 

spike threshold. First, the threshold linear Vm-to-SR relationship (Extended Data Fig. 1 and 2) 

indicates that the activity during the delay epoch was not close to saturation. Second, the 
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reduction in across-trial Vm fluctuations was independent of the distance to spike threshold 

(Extended Data Fig. 5h).  

 

Altogether we found that the across-trial Vm fluctuations decayed during the delay epoch in 

contra trials, especially in selective cells, consistent with funneling. A reduction in across-trial 

variability in spike count has been reported during motor planning in non-human primates 50,51. 

However, the interpretation of fluctuations based on spike counts is complex because both the 

across-trial variance of SR and the variance of the point process contribute to the overall variance 
52. Our whole-cell recording data show a reduction in variability of Vm, which controls SR. 

 

 

Funneling of delay activity  

 

The attractor model predicts funneling of population activity along dimensions that predict 

movement direction. We analyzed populations of ALM neurons recorded simultaneously using 

high-density silicon probes during the auditory task (28.2 ± 12.4, mean ± s.d., putative pyramidal 

cells per session, from 6 animals, 20 sessions). The activity of n neurons describes an n-

dimensional activity space. In this space we refer to the direction that best predicts the future 

action (i.e. right or left lick) as the coding direction (CD) 18  (Extended Data Fig. 6a) (Methods).  

 

For each recording session, we projected population activity of individual trials to the CD (Fig. 

5a) (Methods). We observed large variability in the projected population activity (Fig. 5a, 

Extended Data Fig. 6b). Since we were interested in variance related to fluctuations in the SR, but 

not in the point-process noise, we averaged trajectories as follows: trajectories were rank-ordered 

based on their activity 1.3 seconds before the go cue and 15 neighboring trajectories were 

averaged. The averaged trajectories reflect SR dynamics starting from a similar activity level. 

Averaged trajectories funneled toward discrete endpoints, depending on the trial type (Fig. 5b). 

Across-trial fluctuations of the trajectories decreased during the delay epoch (Fig. 5d, Extended 

Data Fig. 6c). This reduction was bigger in the contra than in the ipsi trials, consistent with the 

Vm measurements (Fig. 5d, e). 

 

The distribution of the endpoints just before the go cue was bimodal (Fig. 5c, Extended Data Fig. 

6d, e). One peak corresponds to the contra trials, and the other to ipsi trials. Therefore, activity 

along the CD funneled toward discrete endpoints.  
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We next analyzed how the activity along CD relates to the drift of trajectories along the CD 53. 

For integrators, drift should be independent of the activity level. For discrete attractor models 

drift should be larger further from the endpoints, and near zero close to the endpoints (Projection 

to CD near 0 or 1). The negative slopes around the endpoints indicate stable fixed points (Fig. 5f, 

Extended Data Fig. 6f) 53. Furthermore, the slope around the contra endpoint was sharper 

compared to the ipsi endpoint (Fig. 5f, Extended Data Fig. 6f). This indicates stronger attraction 

of ALM dynamics to the contra endpoint, consistent with the stronger funneling in contra trials 

(Fig. 5b). This dynamic behavior is consistent with discrete attractor dynamics (Extended Data 

Fig. 7). 

 

 

Robustness to perturbations 

 

Funneling of activity along the CD is consistent with discrete attractor dynamics. However, it is 

possible that this funneling reflects dynamics outside of ALM 54 (Extended Data Fig. 7l). To 

further distinguish between integrator and attractor models, we transiently distorted neural 

trajectories by applying optogenetic manipulation in the middle of the delay epoch (Fig. 6a). If 

ALM preparatory activity evolves with discrete attractor dynamics, activity should still funnel 

toward one of the discrete endpoints after the perturbation (Fig. 6b, c and Extended Data Fig. 7).  

 

We activated GABAergic neurons in mice expressing ChR2 in fast-spiking interneurons 

(photoinhibition, Methods). We performed bilateral photoinhibition of ALM during the first 0.6 s 

(with additional 0.4 s of ramping down) of the delay epoch. Consistent with previous work18 

{Inagaki et al, in prep}, photoinhibition with strong laser power (1.5 mW per spot; median 

activity 2.4 % of baseline) resulted in near chance level performance (Extended Data Fig. 8a, b), 

confirming that ALM is required for the short-term memory. For perturbations, we used more 

modest photoinhibition (median activity 20 ~ 60 % of baseline; Extended Data Fig. 8 and 9a, b). 

Under these conditions rebound spiking11 was small and did not cause early behavioral responses.  

 

In perturbed trials that resulted in correct movement, selectivity recovered (784 ± 259 ms, mean ± 

s.e.m.) to the trajectories of unperturbed trials on average (Fig. 6d and Extended Data Fig. 9b-d). 

In trials with incorrect movement direction, these neurons switched trajectories to that of the 

other trial type (Fig. 6d and Extended Data Fig. 9d). This switching effect was more prominent in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

9

preparatory cells, which predict future licking direction (Extended Data Fig. 9d top), compared to 

other cells (Extended Data Fig. 9d bottom). Therefore, the activity trajectories snap to one of the 

two discrete endpoints, independent of behavioral outcome (correct or incorrect).  

 

Similar to individual neurons, trajectories along CD recovered in perturbed trials followed by 

correct movement (Fig. 6e, middle). The Pearson correlation of CD trajectories at each time point 

to that at the endpoint showed recovery of trajectories after the perturbation (Fig. 6f). 

Furthermore, we found that CD trajectories moved toward the opposite endpoint in perturbed 

trials followed by incorrect lick (Fig. 6e, right). Endpoints of activity along CD were discrete for 

both perturbed and unperturbed trials with peaks at identical locations (Fig. 6g, h and Extended 

Data Fig. 9e-g).  The convergence to endpoints was weaker for lick left trials (correct ipsi trials 

and incorrect contra trials; red in Fig. 6e middle, and blue in Fig. 6e right), consistent with weaker 

attraction to this endpoint (Fig. 5f). 

 

Since animals made errors even without perturbation (Performance, 87.0 ± 8.4 %, mean ± s.d.), 

some of the perturbed trials may reflect errors independent of the perturbation. We decoded the 

future licking direction based on activity before the perturbation (Methods). Trials decoded to be 

correct before the perturbation (performance of decoder, 77.2 ± 16.2 %, mean ± s.e.m.) (Extended 

Data Fig. 9h) showed switching in the endpoints in incorrect trials (Extended Data Fig. 9i, j), 

implying that switches were caused by the perturbation. Similarly, we observed trials that were 

decoded to be incorrect before the perturbation and then switched trajectories after perturbation to 

become correct (Extended Data Fig. 9k, l). The recovery and switching of CD trajectories toward 

discrete endpoints after perturbation is consistent with discrete attractor dynamics in ALM. 

 

 

Relationship between discrete attractor dynamics and ramping activity 

 

In a variety of behavioral tasks and species, preparatory activity ramps up to a movement 4-7,9-13,15 

{Inagaki et al, in prep} (Fig. 6). In contrast, discrete attractor models show stationary activity 

once the fixed points are reached. Ramping dynamics with discrete attractor networks either 

requires tuning of network parameters to generate slow decay to the fixed points18, or a non-

selective ramping input that moves fixed points apart over time (Extended Data Fig. 11a-i vs. j-q).  
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We explored these possibilities further. Ramping predicts the timing of movement 10,55,56. We 

performed a separate set of recordings with randomly selected delay durations (Fig. 7a, b and 

Extended Data Fig. 10a, b) (302 units, 11 sessions, 4 animals), which precludes prediction of the 

timing of movement. Similar to the fixed delay task {Inagaki et al, in prep}, many neurons (99 

out of 260 pyramidal neurons) showed selective persistent activity during the delay epoch.  

 

Spike rates and selectivity ramped up rapidly, before the first possible go cue, and then remained 

near stationary during the delay epoch (Fig. 7b, c and Extended Data Fig. 10c, d). The CD and 

non-selective mode together explained 81.1 ± 11.8 % (mean ± s.e.m) of variability in activity 

during the delay epoch (Methods). Neither mode shows ramping up during the delay epoch, 

unlike in the fixed delay task (Extended Data Fig. 10e-i). To examine the possible contribution of 

ramping activity to the reduction in across-trial fluctuations, discreteness of endpoint 

distributions, and CD phase portrait, we repeated these analyses on data from the random delay 

task (Fig. 7d and Extended Data Fig. 10j, k). In all cases, the results are similar to those observed 

in the fixed delay task. These analyses confirmed that CD in the random delay task still followed 

discrete attractor dynamics.  

 

Previous studies have shown that the non-selective mode recovers to ramp even after bilateral 

silencing of ALM, unlike activity along the CD 18. The parsimonious explanation is that ramping 

is not an intrinsic property of the preparatory activity in ALM. Instead, ramping may be explained 

by an external input, which shifts the location of the discrete attractors (Fig. 7e, f, Extended Data 

Fig. 11a-i).  
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Discussion 

 

We performed a series of experiments to probe the mechanisms underlying persistent preparatory 

activity in ALM. First, membrane potential dynamics and modulation of membrane potential 

were inconsistent with cell-autonomous mechanisms as a primary mechanism for persistent 

activity. Second, during the delay epoch, activity funneled toward two discrete endpoints, both at 

the level of membrane potential and spike rate, consistent with discrete attractor dynamics, but 

not with integrators. Third, after perturbations, detailed activity trajectories recovered to reach 

one of the two discrete endpoints, again consistent with discrete attractor dynamics. Fourth, when 

delay duration was randomly varied, activity during the delay epoch was approximately 

stationary, showing that ramping is not a necessary component of preparatory activity. These 

experiments provide direct evidence for discrete attractor dynamics as a mechanism underlying 

short-term memory. 

 

How does ALM form a network with discrete attractors dynamics? ALM neurons with the same 

selectivity show high spike count correlations {Iangaki et al, in prep}, implying preferential 

coupling among neurons sharing the same selectivity 57. Together with synaptic or postsynaptic 

non-linearities, such a network is expected to create discrete attractors without fine-tuning 20. In 

addition to the local excitatory connections, ALM is bidirectionally connected with several 

thalamic nuclei that show similar preparatory activity 58. Given the strong coupling between ALM 

and thalamus 58, our bilateral perturbations of ALM likely modified activity not only in ALM but 

also in these thalamic nuclei. The most parsimonious explanation is that attractor dynamics is 

generated by ALM within a cortico-thalamocortical loop.  

 

One challenge in reconciling the measured activity with attractor models are large and systematic 

changes in neuronal activity during the delay epoch observed in this and other studies 31,33, 

whereas standard attractor models generate stationary activity once the network converged to the 

attractor. The disappearance of ramping up in the random delay task (Fig. 7) indicates that 

complex dynamics during the delay is not a necessary component of preparatory activity 55. 

 

An additional question is how models should incorporate dynamics such as ramping 31,33. 

Ramping activity observed in the fixed delay task could be due to a non-selective external input 

to the network, reflecting for instance an urgency or timing signal 55 (Extended Data Fig 11b-i). 

Alternatively, ramping could be due to intrinsic aspects of the network dynamics, for instance a 
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slow convergence towards the attractor (Extended Data Fig 11j-q). The coexistence of a slow 

ramping dynamics during the delay with a relatively fast recovery from perturbation, and the 

absence of ramping in some of our experiments, suggest that ramping is inherited rather than 

internally generated. Additional experiments are needed to clearly identify the source and the role 

of the ramping dynamics. 

 

In contrast to transient bilateral perturbations of ALM, transient unilateral perturbation early in 

the delay epoch has no behavioral effect 18. Consistently, activity and selectivity recovers rapidly 

after unilateral perturbation. Recovery relies on input from the contralateral ALM via the corpus 

callosum 18. Previous studies have shown that multiple mechanisms, including integrators and 

discrete attractors, can be combined with a modular architecture to explain the robustness to 

unilateral inactivation. Models in which modular discrete attractor networks are distributed across 

the two hemispheres and coupled via the corpus callous account for all experimental results in 

this paper and also those in Li / Daie et al (2016) 18 (Extended Data Fig. 11).  

 

Our task design only has two behavioral choices. This likely explains two stable endpoints in 

ALM dynamics. The attractor model can accommodate a large range of endpoints 59. It is possible 

that each learned movement corresponds to a discrete attractor. Testing this hypothesis represents 

an important area for future investigation. 

 

Previous studies have reported evidence for discrete attractor dynamics. First, selective persistent 

activities in PFC of primates are robust to sensory distractors 60,61, and remain discrete even in 

response to continuously varying sensory stimuli 62-64. Our direct manipulation of ALM activity 

confirms that this robustness and discreteness are internal properties of circuit involving frontal 

cortex. Second, in a rat frontal cortex (FOF), behavioral effects of perturbation are consistent with 

discrete attractor dynamics 65. Third, across-trial variability of spike rate decays in a primate 

motor planning task 50,51. This led to the idea of “optimal initial conditions” required for specific 

movements 15. Our whole-cell recordings confirmed that such convergence of spike rates indeed 

reflects variance changes underlying membrane potential. Altogether, we propose that flexible yet 

robust discrete attractor dynamics subserves short-term memory in frontal cortex in a wide-range 

of behaviors. 
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Figure Legends 

  

Figure 1.  Models of persistent preparatory activity  

a. Behavioral task. The instruction (tones for the auditory task, Fig2-7; pole location for the 

tactile task, Fig 2-4) was presented during the sample epoch. The mouse reported its 

decision following the delay epoch by directional licking. The duration of the delay 

epoch was 1.2 (Fig.2-4) or 2.0 s (Fig.5, 6).  

b. Potential mechanisms underlying persistent activity. Left, in an isolated neuron, activity 

caused by a brief input (arrow) decays following the membrane time constant of the cell. 

Middle, excitatory feedback can compensate for the decay to produce an integrator (w = 

1), which has a continuum of stable states. Right, non-linear excitatory feedback, g(r) 

(inset), can convert the same circuit into one with two discrete attractors. Here activity 

has only two stable states. 

 

 

Figure 2.  Whole cell recordings in ALM 

a. Whole-cell recordings from left ALM. 

b. An example ALM neuron. Top, mean spike rate (SR); bottom, mean membrane potential 

(Vm). Blue, contra trials (correct lick-right trials); red, ipsi trials (correct lick-left trials). 

Time is aligned to the timing of the go cue. Dashed lines separate epochs. S, sample 

epoch; D, delay epoch; R, response epoch.  

c. Three example contra trials (same cell as b). Green lines, licks to the right lick port. 

d. Selectivity of ALM neurons based on SR (top) and Vm (bottom) in the auditory task. 

e. Same as d, tactile task. 

 

 

Figure 3.  Hyperpolarization of ALM neurons 

a. Example ALM neurons. Top, mean Vm without current injection; bottom, mean Vm with 

negative current injection. 

b. Delay activity of Vm (increase during the delay epoch relative to the baseline pre-sample 

epoch) with and without current injections (n = 10). Contra trials (blue) and ipsi trials 

(red) are shown separately. Crosses, S.E.M. (bootstrap). Dashed line, linear regression. 

Slope of linear regression, Pearson correlation coefficient (Corr. Coef.), and the t-

statistic of Pearson correlation coefficient (p) are shown.  
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Figure 4.  Funneling of Vm 

a. Example ALM neurons. Top, mean Vm; Bottom, all contra trials overlaid. Vm was 

averaged over 200 ms. Horizontal dashed line (Cell 139), spike thresholds. In other cells, 

spike thresholds were higher than the range shown in the figure. 

b. Across-trial fluctuations of selective cells in the auditory task (top, n = 10 cells) and in 

the tactile task (bottom, n = 10 cells). Line, mean of across-trial fluctuations among cells; 

Shadow, S.E.M. (hierarchical bootstrap, Methods). Across-trial fluctuations are the 

difference between first and third quartile of all trials within the same trial type.  

c. Relationship between across-trial fluctuations during the pre-sample epoch and during the 

delay epoch in the contra trials. For c and d, n = 79 cells; Black, selective cells (n = 20 

cells).  

d. Distribution of difference in across-trial fluctuations between the pre-sample epoch and 

the delay epoch (Δ across-trial fluc.). P-values, signrank test examining a null hypothesis 

that Δ across-trial fluc is 0. The first p-value, all cells (2.8×10-5); second p-value, 

selective cells only (5.2×10-4). 

 

 

Figure 5.  Funneling of activity trajectories along the coding direction  

a. Projection of trials to coding direction (CD) in an example session (HI125_030317). 

Projections were normalized so that the medians of contra and ipsi distributions 

correspond to 1 and 0, respectively (See c.). Randomly selected 10 trials are overlaid. The 

pink box shows the time window analyzed in b and d.  

b. Trajectories in the example session. Trajectories (as in a) were rank ordered based on 

activity -1.3 s before the go cue and 15 adjacent trials were averaged. 

c. Distribution of endpoints (activity level in the last bin before the go cue; Methods). Mean 

of all sessions. Shading, S.E.M. (hierarchical bootstrap). Distribution of contra trials 

(blue), and ipsi trials (red) are shown.  

d. Across-trial fluctuations of the pooled trajectories in the example session (same as a, b). 

Across-trial fluctuations are normalized to the value at -1.2 s before the go cue. Solid 

line, data; dashed line, shuffled data (Methods). 

e. Difference of across-trial fluctuations between time 0 and -1.2. Central line in the box 

plot indicates median. Top and bottom edges are 75 % and 25 % points, respectively. The 

whiskers show the lowest datum still within 1.5 interquartile range (IQR) of the lower 
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quartile, and the highest datum still within 1.5 IQR of the upper quartile. **: p < 0.01 in 

one-sided signrank test with Bonferroni correction, testing a null hypothesis that decrease 

in fluctuations is 0. From left to right p = 4.8×10-5, 1.1×10-4,  p > 0.99, 0.99 (p-values 

without Bonferroni correction) 

f. Phase portrait of trajectories along CD, Solid line, data; dashed line, shuffled data; 

shading, S.E.M. (hierarchical bootstrap). The non-linearity disappeared in trajectories 

based on shuffled data.  

 

 

Figure 6.  Robustness of discrete trajectories 

a. Schematics of experiments. ALM was photoinhibited bilaterally during the first 600 ms 

of the delay epoch with 400 ms ramp down. 

b. Circuit model (related to c). R, L, and I correspond to lick right selective pyramidal 

neurons, lick left selective excitatory neurons, and inhibitory interneurons, respectively. 

Blue and red arrows, selective external input.  

c. Expected behavior of integrator (left) and discrete attractor (right) (Methods). 

d. Example single units. Top, spike raster. Fifteen trials per trial type were randomly 

selected. Bottom, mean SR. Blue, contra trials; red, ipsi trials; dark blue, incorrect lick 

right trials; dark red, incorrect lick left trials. Blue box, photoinhibition.  

e. Trajectories along CD. Grand mean trajectories of unperturbed correct trials (left). Grand 

mean trajectories of perturbed trials followed by correct lick (middle) or incorrect lick 

(right) are overlaid on top of trajectories of unperturbed correct trials (dashed lines). 

Trials from all sessions were pooled. Line, mean; shading, S.E.M. (hierarchical 

bootstrap). 

f. Pearson correlation of CD trajectories at each time point to that at the endpoint. Black, 

unperturbed correct trials; magenta, perturbed correct trials. Both contra and ipsi trials 

were pooled. 

g. Distribution of endpoints in e. Shading, S.E.M. (hierarchical bootstrap). Distributions of 

contra trials (blue), and ipsi trials (red) are shown. 

h. Median of the endpoint distributions in g. X-axis, Median of endpoint distributions in lick 

right trials (blue in g) ; Y-axis, Median of endpoint distributions in lick left trials (red in 

g). Black, unperturbed correct trials (left in g); Grey, unperturbed incorrect trials; 

Magenta, perturbed correct trials (middle in g); Green, perturbed incorrect trials (right in 

g). Each dot represents one iteration of hierarchical bootstrap. 
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Figure 7.  Stationary preparatory activity 

a. Delays in each trial were randomly selected from six durations (0.3, 0.6, 1.2, 1.8, 2.4, 3.6 

s). The cumulative distribution function (C.D.F.) of delay durations (black bar) 

approximated the C.D.F. of the exponential distribution (green line). 

b. Example cells. Top, spike raster. Lines separate epochs. Ten trials per delay duration 

were randomly selected. Bottom, mean SR pooling spike before the go cue across trials 

with different delay durations. Because delay durations were different across trials, the 

time axis was aligned to the onset of the delay epoch (same in c and d). 

c. Selectivity. Solid line, mean selectivity in random delay task. Shading, S.E.M. 

(bootstrap). Dashed lines, selectivity in fixed delay tasks (grey, 1.2 s; black, 2.0 s. Data 

from {Inagaki et al, in prep}).   

d. Phase portrait of trajectories along CD. Solid line, data; dashed line, shuffled data; 

shading, S.E.M. (hierarchical bootstrap). 

e. Model schematics. Top, circuit architecture. Bottom, timing of external input. Black 

arrows, non-selective external input. 

f. Phase portrait of the model. Blue and red lines, nullclines of lick right and left 

populations, respectively. Black, blue, and red arrows indicate the effect of non-selective 

input, contra instruction and ipsi instruction, respectively.  
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Extended Data Figures Legends 

 

Extended Data Figure 1.  Whole-cell recordings during the auditory task 

a. Example cells. Each column represents data from each cell. Top, mean SR; 2nd row, mean 

Vm; 3rd row, spike-triggered median of Vm. Spikes in the pre-sample epoch (black) and 

the delay epoch (blue) in the contra trials were analyzed. Shadow, S.E.M. (hierarchical 

bootstrap). P-value, probability of null hypothesis that spikes shapes are the same 

between epochs (Methods, hierarchical bootstrap); 4th row, relationship between Vm and 

SR (Vm-to-SR curve). Vm-to-SR curves of the pre-sample epoch (black), the delay 

epoch (blue), and all epochs (grey) are shown. Bar, S.E.M. (hierarchical bootstrap). P-

value, probability of null-hypothesis that Vm-to-SR curves are the same between the pre-

sample and delay epoch (Methods, hierarchical bootstrap). When there was no overlap 

between the curves from the two epochs, we did not test (p = N.A). 

b. Difference in SR and Vm between the pre-sample epoch and the delay epoch (“Delay 

activity”). For each cell, contra and ipsi trials are shown separately (n = 37). Black, 

selective cells (n = 10). Red line, linear regression. Linear regression, Pearson correlation 

coefficient (Corr. coef.), and the t-statistic of Pearson correlation coefficient (p) are 

shown. 

c. Distribution of number of spike bursts per trial. White, all cells; black, selective cells. 

Inset, an example spike bursts. 

d. Spike raster of contra trials in an example cell with high occurrence of spike bursts (cell 

120, arrow in c). Blue, regular spikes; green, spikes belonging to spike bursts. 

 

 

Extended Data Figure 2.  Whole-cell recordings during the tactile task 

a-d. The same format as in Extended Data Fig. 1 for cells recorded during the tactile task. 

All cells, n = 42; selective cells, n = 10. 

 

 

Extended Data Figure 3.  Autocorrelation and power spectral density of Vm 

a. Autocorrelation of Vm during the pre-sample (baseline) epoch (left) and the delay epoch 

in contra trials (middle). Subtraction of these two autocorrelation curves are shown on 

right to emphasize the difference between epochs. Thick line, mean across cells. Thin 
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lines, individual cells. Shorter time constant during the delay epoch is presumably due to 

increase in conductance. 

b. Comparison of time-constant of membrane fluctuations based on autocorrelation between 

the pre-sample epoch and the delay epoch. Left, scatter plot of the time constant; Right, 

histogram of the difference in time-constant between the delay epoch compared to the 

pre-sample epoch (Δ time constant). P-value, signrank test examining a null hypothesis 

that Δ time constant is 0. The first p-value, all cells (left); second p-value, selective cells 

(right). 

c. Power spectral density of Vm. Left, Power spectral density of Vm during the pre-sample 

epoch; Middle and right, Change in spectrum density in each epoch compared to the pre-

sample epoch. Different colors indicate different epochs (box).  

 

 

Extended Data Figure 4.  Negative current injection 

a. Example cells with negative current injection. Top, mean Vm without negative current 

injection; Bottom, mean Vm with negative current injection.  

b. Input resistance (Rin) of cells with and without current injection (n = 10). Data was 

pooled from cells analyzed in c. 

c. Delay activity of Vm (increase in Vm from the pre-sample epoch to the delay epoch) 

with and without current injections (n = 10). Delay activity during the current injection 

was normalized by the change in input resistance. Contra trials (blue) and ipsi trials (red) 

are shown separately. Crosses, S.E.M. (bootstrap). Dashed line, linear regression. Slope 

of linear regression, Pearson correlation coefficient (Corr. Coef.), and the t-statistic of 

Pearson correlation coefficient (p) are shown. 

d. Loss of spike bursts after current injection. Top, Vm of two example cells with high 

occurrence of spike bursts. Overlay of all contra trials. Black horizontal line, spike 

threshold. Regular spikes were trimmed and Vm was averaged over 100 ms in this plot. 

Sharp overshoots above the spike threshold indicate spike bursts (Method). Bottom, Vm 

of the same example cells with negative current injection. There was no spike to trim. 

Vm was averaged over 100 ms. Note the loss of sharp depolarizing events. 

e. Example cells without spikes or with low SR during the delay epoch. Top, mean SR; 2nd 

row, mean Vm. All of these cells showed significant difference in Vm between the contra 

and ipsi trials (ranksum test, p <0.05).  
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Extended Data Figure 5.  Funneling of Vm 

e. Three example ALM neurons. Top, mean Vm; middle, all contra trials overlaid; bottom, 

all ipsi trials overlaid.  To remove fast within trial fluctuations, Vm was averaged over 

200 ms. 

f. The same plot as in Fig. 4c, d.  

g. Same as b for the ipsi trials. 

h. Across-trial fluctuations of all cells (n = 37) (left), and selective cells (n = 10) (right) in 

the auditory task (same as Fig. 4b). Line, mean of across-trial fluctuations; Shadow, 

S.E.M. (hierarchical bootstrap).  

i. Testing the decrease in across-trial fluctuations. P-value indicates the probability of a 

null-hypothesis that across-trial fluctuations during the delay epoch was higher than that 

during the pre-sample epoch (hierarchical bootstrap, n =1000 iteration). Across-trial 

fluctuations was measured as the quartile difference (left) or trimmed-standard deviation 

(right) of Vm across the same trial type (blue, contra trials; red, ipsi trials) (Methods). 

Both methods provided similar results. Vm was averaged over 100 (triangle), or 200 

(square) ms to remove fast within trial fluctuations. The result was robust to the 

averaging bin size. The dashed line, p = 0.025 (α = 0.05 for two sided test). Box below g, 

Schematic of statistical test in e and g. Across-trial fluctuations during the pre-sample 

epoch (0.6 s) was compared with the across-trial fluctuations during the delay epoch 

(variable durations: window size in e and g). The window ends at the time t, which is t = 

(time of the go cue) – (bin size)/2, to exclude the signal after the go cue.  

j. Same as d for the tactile task. 

k. Same as e for the tactile task.  

l. Relationship between Vm and ∆ across-trial fluctuations. Vm during the delay epoch was 

averaged and normalized to the spike threshold. Dashed line, linear regression. Slope of 

linear regression, Pearson correlation coefficient (Corr. Coef.), and the t-statistic of 

Pearson correlation coefficient (p) are shown. Pooling both tactile and auditory task (n 

=73). Note that the slope of regression line is opposite from what is expected for the 

ceiling effect 

 

 

Extended Data Figure 6.  Characterization of funneling along CD 

a. Schematics. Projection to coding direction (CD).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

21

b. Projection of trials to coding direction (CD) in example sessions. The same format as in 

Fig. 5a. 

c. Across-trial fluctuations in all sessions. Trials from all sessions were pooled. Solid line, 

grand mean. Dashed line, shuffled data (Methods). Shading, S.E.M. (hierarchical 

bootstrap).  

d. Distribution of endpoints (activity level at the last bin before go cue). Distribution of 

endpoints in each session is overlaid (n = 20 sessions). Distribution of contra trials (blue), 

ipsi trials (red) are shown.  

e. Distribution of endpoints of all trial types (both correct and incorrect trials, but not early 

lick or no-response trials). Distribution of endpoints in each session is overlaid (n = 20 

sessions).  

f. Relationship between activity level along the CD, and the drift speed of trajectories. Solid 

line, data. Dashed line, shuffled data. Shading, S.E.M. (hierarchical bootstrap). Data of 

correct lick right trials (blue) and correct lick left trials (red) were analyzed separately. 

The same dataset as used in Fig. 5f.  

 

 

Extended Data Figure 7.  Discrete attractor and integrator models 

a. Schematic of simulated one-hemisphere networks. b-f, integrator model. g-k, discrete 

attractor model. R, L, and I correspond to lick right selective excitatory neurons, lick left 

selective excitatory neurons, and inhibitory interneurons, respectively. Blue and red 

arrows, selective external input. 

b. Trajectories projected along CD. Activity in unperturbed trials (left), and distribution of 

endpoints (right).  Line, mean; Shading, standard deviation.  

c. Activity in perturbed correct trials (left), and distribution of endpoints (right). Blue box 

on top, photoinhibition; Traces with lighter colors correspond to higher intensity of 

photoinhibition  (Methods). 

d. Activity in perturbed incorrect trials (left), and corresponding distribution of endpoints 

(right). 

e. Trajectories during the delay epoch (1/6 of single trials are shown) (left), and across-trial 

fluctuations calculated based on these trajectories (right). Across-trial fluctuations are 

normalized for the value at -2.0 s before the go cue. 

f. Phase portrait of trajectories. Lick right and lick left trials were pooled together (left) or 

analyzed separately (right).  
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j-q. Dynamics of one-hemisphere discrete attractor model. 

l. Across-trial fluctuations in integrator with decreasing external noise (Methods), 

normalized by their value 2.0 s before the go cue. 

 

 

Extended Data Figure 8.  Characterization of bilateral photoinhibition of ALM 

a. Schematic of bilateral photoinhibition of ALM. Eight spots surrounding ALM in both 

hemispheres (1 mm interval) were photoinhibited to silence whole ALM. Photoinhibition 

started at the onset of the delay epoch (-2 s to the go cue) or at the middle of the delay 

epoch (-1 s to the go cue) and lasted for 600 ms with 400 ms ramping down (Methods). 

b. Effect of the photoinhibition with different laser power on behavioral performance. 

Black, early delay inhibition; magenta, late delay inhibition. Thick lines, grand mean 

performance (n = 5 animals); thin lines, mean performance of each animal. Error bar, 

S.E.M (hierarchical bootstrap). Laser power is a mean power per spot.  

c. Effect of the photoinhibition with different laser power on early lick rates. Early lick rate 

after the early delay photoinhibition is shown. The same format as in b. 

d. Schematic of silicon probe recording during bilateral photoinhibition of ALM in non-

behaving animals (relevant to e-j).  

e. SR of fast spiking (FS) neurons (top) and regular spiking (RS) neurons (bottom) during 

the eight spots photoinhibition of ALM. Each column represents data with different laser 

power. Mean SR is shown. Blue box, photoinhibition. 

f. SR of RS neurons during the photoinhibition. Mean SR during the photoinhibiton (100 to 

600 ms) was divided by mean SR before the photoinhibiton (-1 to 0 s) to calculate the 

normalized SR in each cell (Same for h and j). Increasing laser power resulted in stronger 

inhibition. **: p < 0.01, signrank test with Bonferroni correction. From left to right p = 

2.1×10-19, 2.2×10-25, 2.1×10-27, 4.2×10-27, 1.6×10-27, 2.7×10-31 (p-values without 

Bonferroni correction), n = 188. 

g. SR of RS neurons after the photoinhibition. Mean SR after photoinhibiton (1 to 2 s) was 

divided by the mean SR before the photoinhibiton (-1 to 0 s) to calculate normalized SR 

in each cell. Increasing laser power resulted in stronger rebound. *: p < 0.05, **: p < 

0.01, signrank test with Bonferroni correction. From left to right p = 0.37, 7.1×10-3, 

3.1×10-2, 1.4×10-2, 3.6×10-5, 1.4×10-6 (p-values without Bonferroni correction), n = 188. 

h. Relationship between depth and SR of RS neurons during the photoinhibition. SR were 

averaged based on the depth of neurons. Photoinhibition affected neurons across layers. 
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i. SR of RS neurons during the photoinhibition at different locations. Mean SR is shown for 

each laser power (control, black). Distance of recording site (ALM) and center of laser 

stimulation  (center of four spots in the same hemisphere) is shown. Laser spots were 

moved from ALM to posterior locations. 

j. SR of RS neurons during the photoinhibition at different locations.  Photoinhibition 

affected neurons 1 mm away from the laser, consistent with previous report 11. **: p < 

0.01, signrank test with Bonferroni correction. From left to right p = 1.1×10-15, 6.0×10-7, 

0.61, 0.55, 0.52 (p-values without Bonferroni correction), n = 87. 

 

 

Extended Data Figure 9.  Robustness of trajectories to the photoinhibition 

a. Proportion of cells with significant SR difference between unperturbed and perturbed 

trials at each time point (Methods). Blue box, photoinhibition. 

b. Selectivity during bilateral photoinhibition. Line, mean of all cells; Shadow. S.E.M 

(bootstrap). Black, unperturbed trials. Blue box, photoinhibition. 

c. Relationship between selectivity in correct and incorrect trials. Mean selectivity during 

the last 600 ms of the delay epoch is shown. Inset, definition of θ (Methods). 

d. Mean SR of contra-preferring neurons with different θ. Lines, grand mean of peri-

stimulus time histogram (PSTH); Shading, S.E.M. (bootstrap). Mean PSTHs of 

unperturbed correct trials (1st row) are also shown as dashed lines in 2nd to 4th row.  

e. Trajectories along CD for correct trials photoinhbitied with different laser intensities. The 

same format as in Fig. 6e. Trials from all sessions were pooled. 

f. Distribution of endpoints in e. Shading, S.E.M. (hierarchical bootstrap). Distributions of 

contra trials (blue) and ipsi trials (red) are shown. 

g. Distribution of endpoints in Fig. 6e pooling all trial types (both correct and incorrect 

trials, but not early lick or no-response trials). Unperturbed (left) and perturbed (right) 

trials. Shading, S.E.M. (bootstrap). P-value indicates the chance that proportion of trials 

at the middle of two endpoints (Projection to CD = 0.5) are higher than the mean 

proportion of trials at the endpoints (projection to CD = 0 and 1) (hierarchical bootstrap, 

n = 1000 iteration). Low p value indicates bimodal distribution.  

h. Decoding of licking direction based on projection to CD just before perturbation. Left, 

we developed a decoder based on unperturbed trials (Methods). Arrow, the time bin used 

for decoding (the last bin before perturbation); Right, relationship between projection to 

CD and performance in lick right (blue) or left (red) trials. Dashed lines and arrows 
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indicate decoders (the point crossing 70 % performance) for contra (blue) and ipsi (red) 

trials. Shading, S.E.M. (bootstrap). 

i. Trajectories along CD in trials decoded to be “correct trials” before the onset of 

perturbation. The same format as in Fig. 6e. 

j. Median of the endpoint distributions in i. The same format as in Fig. 6h. 

k. Trajectories along CD in trials decoded to be “incorrect trials” before the onset of 

perturbation. The same format as in Fig. 6e. 

l. Median of the endpoint distributions in k. The same format as in Fig. 6h. 

 

 

Extended Data Figure 10.  Performance in the random delay task 

a. Behavioral performance (left), early lick rate (middle) and no-response rate (right) in the 

random delay task. Thin lines, individual sessions (n = 11). Thick line, grand mean 

among sessions. 

b. Relationship between decay in performance (∆ performance) and decay in selectivity (∆ 

selectivity) during the delay epoch. Both decays were calculated as differences between 

trials with the shortest delay (0.3 s) and the longest delay (3.6 s). Individual circle 

represents individual session. Corr. Coeff., Pearson correlation coefficient. Selectivity 

during the delay epoch had a high correlation with performance, which indicates that the 

decay in selectivity may reflect loss of short-term memory over time. 

c. Example cells. Top, spike raster. Dashed lines separate epochs. Ten trials per delay 

duration were randomly selected; Bottom, mean SR based on spikes before the go cue 

across trials with different delay durations. Because delay durations are different among 

trials, time axis is aligned to the onset of the delay epoch (same in d, g). 

d. Grand mean SR of contra-preferring neurons (top) and ipsi-preferring neurons (bottom). 

Shadow, S.E.M. (bootstrap).  

e. Schematics. Projection of trials to CD (top) and ramping mode (RM) (bottom).  

f. Projection of trials to CD (top) and RM (bottom) in fixed delay task with 2 s delay. Time 

axis is aligned to the onset of the delay epoch to be consistent with g. Line, grand mean 

across sessions. S.E.M. bootsrap across sessions. CD is not normalized to the endpoints 

(unlike in Fig.6).  

g. The same as in f for the random delay task. 

h. Selectivity during the delay epoch explained by each mode (left), and variance during the 

delay epoch explained by each mode (right) in fixed delay task with 2 s delay. RM, 
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ramping mode. M3 and M4, third and fourth SVD component (Methods). Sum of four 

modes are shown on top (mean across sessions).  

i. The same as in h for the random delay task. 

j. Across-trial fluctuations in all sessions. Trials from all sessions were pooled (hierarchical 

bootstrap). The same format as in Extended Data Fig. 6c. 

k. Distribution of activity at 0.55 s after the onset of the delay epoch (we did not include 

trials with 0.3 s delay). The same format as in Fig. 5c. 

 

 

Extended Data Figure 11.  Discrete attractor models with two hemispheres 

We built two-hemisphere models in order to explain 1) ramping dynamics during the delay 

epoch, and 2) effect of unilateral ALM perturbation described in Li et al 18. The circuit 

architecture in each hemisphere is the same as in Extended Data Fig.7. Slow ramping was caused 

by external non-selective input (b-i) or internal slow dynamics (j-q). All panels contain results 

from the left hemisphere. 

 

a. Schematic of two-hemisphere network models. Circuit architecture, common to both 

models (middle), and time course of external inputs in each model (Left and Right). R, L, 

and I correspond to lick right selective excitatory neurons, lick left selective pyramidal 

neurons, and inhibitory interneurons, respectively. Blue and red arrows, selective external 

input. Black arrows, non-selective external input. 

b. Trajectories projected along CD in model with external ramping input. Activity in 

unperturbed trials (left), and distribution of endpoints (right). Line, mean; shading, 

standard deviation. 

c. Projected activity in bilateral photoinhibition correct trials (left), and distribution of 

endpoints (right). Line, mean. Blue box on top, photoinhibition. As in Extended Data Fig, 

7, lighter colors correspond to higher intensity of photoinhibition (Methods).  

d. Projected activity during bilateral photoinhibition incorrect trials. 

e. Projected activity during unilateral photoinhibition correct trials. Effect of unilateral 

ALM photoinhibiton contralateral (left panel) or ipsilateral (right panel) to the analyzed 

hemisphere (left ALM) are shown. 

f. Trajectories during the delay epoch (1/6 of all trials are shown) (Left), and across-trial 

fluctuations during the delay epoch (Right), normalized by their value 2.0 s before the go 

cue. 
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g. Phase portrait of projected trajectories. Contra and ipsi trials were pooled together.  

h. Phase portrait of trajectories. Contra and ipsi trials were analyzed separately. 

i. Behavioral performance of the model (methods). 

j-q. Same as in b-i for internal slow dynamics model. 
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Methods 

 

Mice 

 

This study is based on data from 26 male mice (age > P60). We used four transgenic mouse lines: 

PV-IRES-Cre 66, Ai32 (Rosa-CAG-LSL-ChR2(H134R)-EYFP-WPRE, JAX 012569) 67, Gad2-cre 

(a gift from Boris Zemelman), and VGAT-ChR2-EYFP 68 (See Supplementary Information Table 

1-3 for detail).  

 

All procedures were in accordance with protocols approved by the Janelia Institutional Animal 

Care and Use Committee. Detailed information on water restriction, surgical procedures and 

behavior have been published 69. Surgical procedures were carried out aseptically under 1-2 % 

isofluorane anesthesia. Buprenorphine HCl (0.1 mg/kg, intraperitoneal injection; Bedford 

Laboratories) was used for postoperative analgesia. Ketoprofen (5 mg/kg, subcutaneous injection; 

Fort Dodge Animal Health) was used at the time of surgery and postoperatively to reduce 

inflammation. After the surgery, mice were allowed free access to water for at least three days 

before start of water restriction. Mice were housed in a 12:12 reverse light:dark cycle and 

behaviorally tested during the dark phase. A typical behavioral session lasted 1 to 2 hours and 

mice obtained all of their water in the behavior apparatus (approximately 1 ml per day; 0.3 ml 

was supplemented if mice drank less than 0.5 ml). On other days mice received 1 ml water per 

day. Mice were implanted with a titanium headpost. For ALM photoinhibition, mice were 

implanted with a clear skull cap 11. Craniotomies for recording were made after behavioral 

training.  

 

 

Behavior  

 

Mice were trained using established procedures 69. For the tactile task (Fig. 2-4), at the beginning 

of each trial, a metal pole (diameter, 0.9 mm) moved within reach of the whiskers (0.2 s travel 

time) for 1.0 second, after which it was retracted (0.2 s retraction time). The sample epoch (1.4 s 

total) was the time from onset of the pole movement to completion of the pole retraction. The 

delay epoch lasted for another 1.2 seconds after completion of pole retraction.  An auditory ‘go’ 

cue separated the delay and the response epochs (pure tone, 3.4 kHz, 0.1 s). 
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For the auditory task (Fig. 2-7), at the beginning of each trial, five tones were presented at one of 

two frequencies: 3 or 12 kHz.  Each tone was played for 150 ms with 100 ms intertone intervals. 

The sample epoch (1.15 s total) was the time from onset of the first tone to the end of the last 

tone. The following delay epoch lasted for another 1.2 (Fig. 2-4) or 2.0 (Fig.5-6) seconds.  An 

auditory ‘go’ cue (carrier frequency 6 kHz, with 360 Hz modulating frequency, to make it distinct 

from instruction tones) separated the delay and the response epochs (0.1 s). To compensate the 

sound intensity for tuning curve of C57BL6 auditory system 70, the sound pressure was 80, 70, 

and 60 dB for 3, 6 and 12 kHz sound, respectively. These frequencies are relatively invulnerable 

to hearing loss observed in C57BL6 mice 71. 

 

For the “random delay task” (Fig. 7), delay durations were randomly selected from six values 

(0.3, 0.6, 1.2, 1.8, 2.4, 3.6 s). Probability of the delay durations mimicked cumulative distribution 

function of the exponential distribution (� = 0.9 s) with 0.3 s offset (mean delay duration: 1.2 s) 

(Fig. 7a). Because the hazard function of the exponential distribution is constant, animals cannot 

predict the timing of the go cue (or reward). Performance in this “random delay task” was similar 

to that in a task with a fixed delay duration, or “fixed delay task” (Extended Data Fig. 9a). 

 

The “pre-sample” (baseline) epoch was 1.2 seconds long, unless otherwise described. A two-

spout lickport (4.5 mm between spouts) was used to record licking events and deliver water 

rewards.  After the ‘go’ cue, licking the correct lickport produced a water reward (approximately 

2 µL); licking the incorrect lickport triggered a timeout (0 to 5 s). Licking early during the trial 

(‘early lick’ trials) was punished by a timeout (1 s). Trials in which mice did not lick within 1.5 

seconds after the ‘go’ cue (‘no response’ trials) were rare and typically occurred at the end of 

behavioral sessions. These ‘no response’ trials and ‘early lick’ trials were excluded from 

analyses. For the random delay tasks, mice were first trained with a fixed delay duration of 1.2 s. 

After criterion performance was reached (80 % correct), we switched to the random delay task 

and trained at least one additional week before recordings. 

 

 

Photoinhibition 

 

Photoinhibition was deployed on 25-33 % behavioral trials (Fig. 6 and Extended Data Fig. 9). To 

prevent mice from distinguishing photoinhibition trials from control trials using visual cues, a 
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‘masking flash’ (1 ms pulses at 10 Hz) was delivered using 470 nm LEDs (Luxeon Star) 

throughout the trial. Photostimuli from a 473 nm laser (Laser Quantum) were controlled by an 

acousto-optical modulator (AOM; Quanta Tech) and a shutter (Vincent Associates).  

 

Photoinhibition of ALM was performed through the clear-skull cap (beam diameter at the skull: 

400 µm at 4 σ) 11. The light transmission through the intact skull is 50 %. We stimulated 

parvalbumin-positive interneurons in PV-IRES-Cre mice crossed to Ai32 reporter mice 

expressing ChR2. Behavioral and electrophysiological experiments showed that photoinihibition 

in the PV-IRES-Cre × Ai32 mice was indistinguishable from the VGAT-ChR2-EYFP mice 58.  

 

To silence ALM bilaterally during early or late delay (Fig. 6 and Extended Data Fig. 9), we 

photostimulated for 0.6 s (40 Hz photostimulation with a sinusoidal temporal profile) with 0.4 s 

ramping down, starting at the beginning of the delay epoch or 1.0 s after the beginning of the 

delay epoch, respectively. We photostimulatd four spots in each hemisphere, centered on ALM 

(AP 2.5 mm; ML 1.5 mm) with 1 mm spacing (in total eight spots bilaterally) using scanning 

Galvo mirrors. We photoinhibited each spot sequentially at the rate of 5 ms per step. The laser 

power noted in the figures and text indicates the mean laser power per spot. The total laser power 

was therefore eight-fold higher. The bilateral manipulation prevents rescue of neural dynamics 

from unaffected regions 18. 

 

 

Behavioral data analysis  

 

Behavioral performance was the proportion of correct trials, excluding ‘lick early’ and ‘no 

response’ trials (Extended Data Fig. 8b and 10a). Behavioral effects of photoinhibition were 

quantified by comparing the performance with photoinhibition with control performance. Early 

lick rate (Extended Data Fig. 8c and 10a) was the proportion of early lick trials excluding no 

response trials. For Extended Data Fig. 8c, only the early licks during the last 1 s of the delay 

epoch (post-photoinhibition) were counted. No response rate (Extended Data Fig. 10a) was the 

proportion of no response trial.  

 

 

In vivo whole-cell recording  
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All recordings were made from the left hemisphere. Whole-cell recordings were made using 

pulled borosilicate glass (Sutter instrument, CA). A small craniotomy (100 - 300 μm diameter) 

was created over ALM under isofluorane anesthesia and covered with cortex buffer (125 mM 

NaCl, 5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM MgSO4, 2 mM CaCl2. Adjust pH to 

7.4). Whole-cell patch pipettes (7-9 MΩ) were filled with internal solution (in mM): 135 K-

gluconate, 4 KCl, 10 HEPES, 0.5 EGTA, 10 Na2-phosphocreatine, 4 Mg-ATP, 0.4 Na2-GTP and 

0.3 % Biocytin (293-303 mOsm, pH 7.3). The membrane potential was amplified (Multiclamp 

700B, Molecular Devices) and sampled at 20 kHz using WaveSurfer (wavesurfer.janelia.org). 

Membrane potentials were not corrected for the liquid junction potential. After the recording, the 

craniotomy was covered with Kwik-Cast (World Precision Instruments). Each animal was used 

for two or three recording sessions. Recordings were made 235 to 818 μm (521.6 ± 120.8 μm, 

mean ± s.d) below the pia. Brief current injections (-100 pA, 100 ms) were applied at the end of 

each trial to measure input resistance, series resistance, and membrane time constant 72.  

 

For current injection experiments (Fig. 3), we partially compensated for series resistance and 

injected a ramping current until action potentials disappeared 73,74. Actual membrane potential 

was calculated post hoc based on injected current and series resistance. Mean membrane potential 

was -48.9 ± 3.4 mV (mean ± s.d., n = 10) without current injection. We injected -200 ± 153 pA, 

resulting in Vm = -60.9 ± 4.5 mV (mean ± s.d., n = 10). Series resistance did not change before 

and after current injections (p = 0.447, ranksum test, n = 10).  In 5 / 10 recordings we were able to 

release current injections at the end of experiments to confirm that 1) membrane potential 

returned to spontaneous levels, and 2) neurons still produced action potentials. 

 

 

Whole-cell recording data analysis 

 

Whole-cell recordings with more than 10 correct trials per direction (contra and ipsi trials) were 

analyzed (21.5 ± 8.2 correct trials per direction, mean ± s.d., n = 79). Performance during 

recording was 85.0 ± 11.8 % (mean ± s.d., n = 79). Only correct trials were analyzed. Cells 

recorded during the tactile task (n = 42) are from ref 58. (Supplementary Information Table 1). 

To measure membrane potential, spikes were clipped off (Fig. 2-4 and Extended Data Fig. 1-4). 

Neurons that differentiated correct trial-types during the delay epoch based on spike counts (100 

ms averaging window) were deemed as “selective” (20 / 79 in ALM). To compute selectivity, we 
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computed the difference in spike count or membrane potential between trial types (correct only) 

for each selective neuron (Fig. 2d, e).  

 

To obtain spike-triggered median (STM) of Vm (Extended Data Fig. 1 and 2), we selected spikes 

that were not preceded by any other spikes in a 50 ms window. To obtain Vm-to-SR relationship, 

Vm and SR were averaged over a 50 ms sliding window. Mean SR was calculated for each step 

of Vm (1 mV step. Mean was defined for a step with more than 500 data points). For statistics of 

STM and Vm-to-SR relationship, we tested the null hypothesis that STM (or Vm-to-SR curves) 

in the pre-sample epoch and the delay epoch were identical. We performed hierarchical 

bootstrapping 75-77: we first randomly selected trials with replacement and then spikes within a 

trial with replacement. We measured the Euclidian distance of each bootstrapped STM (or Vm-

to-SR curves) from the mean in the pre-sample epoch. The proportion of bootstrap trials with 

higher Euclidian distance in the delay epoch compared to that in the pre-sample epoch is shown 

as p-value. The results were robust to change in sliding bin size (50, 100 and 200 ms). 

 

Delay activity of Vm or spike count (Fig. 3b and Extended Data Fig. 1b, 2b and 4c) was defined 

as the difference in Vm or spike count between the delay epoch and the pre-sample epoch. Spike 

bursts (Extended Data Fig. 1c, d and 2c, d) were detected as depolarization events 5 mV higher 

than spike threshold lasting longer than 20 ms. Vm autocorrelation and power spectral density 

were calculated after spike clipping (Extended Data Fig. 3). The time constant of membrane 

fluctuations was based on the autocorrelation function (Extended Data Fig. 3b) (time point when 

the function drops below 1/e). 

 

To obtain across-trial fluctuations (Fig. 4 and Extended Data Fig. 5), we averaged Vm over 100 

or 200 ms sliding window. We used first and third quartile difference (difference between 75 % 

point – 25 % point) or trimmed std (standard deviation after trimming off max and min data 

point) to calculate the across-trial fluctuations at each time point. This procedure removed the 

effects of a few outlier trials with spike bursts.  For statistics, we performed hierarchical 

bootstrapping: first we randomly selected cells with replacement, and second randomly select 

trials within a cell with replacement.  

  

Extracellular electrophysiology 
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A small craniotomy (diameter, 0.5 mm) was made over the left ALM hemisphere one day prior to 

the recording session.  Extracellular spikes were recorded using Janelia silicon probes with two 

shanks (250 µm between shanks) (Part# A2x32-8mm-25-250-165).  The 64 channel voltage 

signals were multiplexed, recorded on a PCI6133 board (National instrument) and digitized at 

400 KHz (14 bit).  The signals were demultiplexed into 64 voltage traces sampled at 25 kHz and 

stored for offline analysis.  One to five recording sessions were obtained per craniotomy. 

Recording depth (between 800 µm to 1100 µm) was inferred from manipulator readings 

(Supplementary Information Table 1).  The craniotomy was filled with cortex buffer and the brain 

was not covered. The tissue was allowed to settle for at least five minutes before the recording 

started.  

 

 

Extracellular recording data analysis 

 

The extracellular recording traces were band-pass filtered (300-6000 Hz).  Events that exceeded 

an amplitude threshold (4 standard deviations above the background) were sorted using JRclust 
78. 

 

For the fixed delay auditory task with 2 s delay (Fig. 5, 6 and Extended Data Fig. 6, 9), in total 

755 single units were recorded across 20 behavioral sessions from 6 animals (Supplementary 

Information Table 2). The same dataset was analyzed in {Inagaki et al, in prep}. For the random 

delay auditory task (Fig. 7 and Extended Data Fig. 10), in total 302 single units were recorded 

across 11 behavioral sessions from 4 animals (Supplementary Information Table 3). For the 

calibration of photoinhibition without a behavioral task, 316 single units were recorded from 2 

animals (Extended Data Fig. 8).   

 

Spike widths were computed as the trough-to-peak interval in the mean spike waveform. The 

distribution of spike widths was bimodal (data not shown); units with width < 0.35 ms were 

defined as putative fast-spiking (FS) neurons (142 / 1373), and units with width > 0.5 ms were 

defined as putative pyramidal neurons (1202 / 1373).  This classification was verified by 

optogenetic tagging of GABAergic neurons (data not shown) 11.  Units with intermediate spike 

widths (0.35 - 0.5 ms, 29 / 1373) were excluded from our analyses.  
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Neurons with significant selectivity (ranksum test comparing spike counts in two correct trial 

types, p < 0.05) during the delay epochs were classified as selective cells. Selective cells were 

classified into “contra-preferring” versus “ipsi-preferring”, based on their total spike counts 

during the delay epoch. To compute selectivity, we took the firing rate difference between two 

correct trial types for each selective neuron.  For the random delay task, selective neurons were 

defined based on the delay epoch of trials with 1.2 s delay (ranksum test, p < 0.05).  

 

For the peri-stimulus time histograms (PSTHs; Fig. 6, 7), only correct trials were included. For 

the PSTHs and selectivity of random delay task (Fig. 7), only spikes before the go cue were 

pooled. Spikes were averaged over 100 ms with a 1 ms sliding window. Bootstrapping was used 

to estimate standard errors of the mean.  

 

For Extended Data Fig. 9a, we compared spike rates of all unperturbed trials versus all perturbed 

trials using t-test. Cells with p-value lower than 0.05 was counted as significant cell at each time 

bin. For this plot, we did not correct for multiple comparisons.  

 

For Extended Data Fig. 9c, d, we calculated selectivity for correct and incorrect trials based on 

the last 1 s of the delay epoch. We defined the polar coordinates r and θ as below: 

 

� �  �����	
���
 �� 	����	
 
������ � ����	
���
 �� ��	����	
 
������ 

                                            θ � tan��� ������	
	�� 	 ������� ��	���

������	
	�� 	 	������� ��	���
�   

 

For Extended Data Fig. 9d, we pooled cells with r > 2 and θ in the range indicated in the figure. 

Many selective neurons in ALM have θ not at -45�, indicating mixed coding {Inagaki et al, in 

prep}.  

 

To quantify the recovery time course of selectivity after photoinhibition (600 ms after the onset of 

photoinhibition, see main text), we looked for the first time bin when selectivity in 

photoinhibition trials reached 80 % of the control selectivity.  

 

 

Coding direction analysis  
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To calculate coding direction (CD) for a population of n simultaneously recorded neurons, we 

looked for an n × 1 vector maximally distinguishing two trial types (contra and ipsi trials), in the 

n dimensional activity space. For each neuron, we calculated average spike rates in the contra and 

ipsi trials separately (with 100 ms average window and 10 ms sliding step). rcontra and ripsi are n × 

1 vectors of average spike rate at one time point. The difference in the mean response vector, wt = 

rcontra - ripsi , showed high correlation during the delay epoch 18 {Inagaki et al, in prep}. We 

averaged wt during the last 600 ms of the delay epoch and normalized by its own norm to obtain 

the CD. We calculated CD based on randomly selected 20 % of unperturbed correct trials. To 

obtain trajectories along CD, we projected the spike rate in the remaining trials to the CD as an 

inner product.  

 

Approximately half of selective cells show preparatory activity {Inagaki et al, in prep}, which 

anticipates upcoming movements, regardless of behavioral outcome (correct or incorrect). To 

analyze CD trajectories in incorrect trials, for Fig. 6 and Extended Data Fig. 9, we only analyzed 

sessions with more than 5 preparatory neurons (11 / 20 sessions, see Supplementary Information 

Table 2 for trial number). Preparatory cells were defined as cells with r > 2 and -22.5� >θ>-67.5� 

(Extended Data Fig. 8d, above). In Fig. 5, 7 and Extended Data Fig. 6, 10, all sessions were 

included as we only analyze correct trials (see Supplementary Information Table 2 for trial 

number). For Fig. 5, results were similar even when we only analyzed the sessions with more 

than 5 preparatory neurons (data not shown).   

 

In Fig. 5, 6, projection to CD was normalized based on the value at the endpoint in each session. 

The distribution of endpoint values was bimodal (Fig. 5, 6). We calculated the median of each 

distribution (contra and ipsi) in unperturbed correct trials. The projection to CD was normalized 

by the difference of these two medians (ipsi peak at 0; contra peak at 1) in unperturbed correct 

trials. For Fig. 6e-h, and Extended Data Fig. 9e-g, we pooled trials from all sessions (with 

preparatory cells) after normalizing projections to CD in each session. Hierarchical bootstrapping 

was used to estimate standard errors of mean: first we randomly selected session number with 

replacement and, second randomly select trial number within a session with replacement.  

 

Single trial projections to CD were noisy, because the point process noise scales with spike rate 
79. To calculate across-trial fluctuations of projection to CD (Fig. 5d, e and Extended Data Fig. 

6c) and drift (Fig. 5f and Extended Data Fig. 6f) for the fixed delay task, we rank-ordered and 

pooled trajectories per trial type based on the value 1.3 s before the go cue. For the random delay 
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task (Fig. 7d and Extended Data Fig. 10j), we rank ordered and pooled trials based on the value at 

the onset of delay epoch, and analyze activities in the first 0.6 s of the delay epoch (we did not 

include trials with 0.3 s delay). Every 15 trials were pooled based on the rank order. Assuming 

that the point process noise is independent across trials, the averaging procedure reduced point 

process noise by √15. We calculated the standard deviation of the pooled trajectories at each time 

point. The first 100 ms was discarded, as the averaging window was 100 ms. The standard 

deviation was normalized by the value at 1.2 s before the go cue. As a control, we performed trial 

shuffling. We shuffled spike count among trials at each time bin independently. This procedure 

preserved the mean spike rate of each cell and CD but eliminates the time correlation within a 

trial. We performed the exact same procedure to calculate across-trial fluctuations of the shuffled 

data. 

 

To calculate the drift of trajectories (Fig. 5f, 7d and Extended Data Fig. 6f), we analyzed the last 

600 ms of the delay epoch. The drift of a trajectory at time t is defined as dx_CDt/dt = (x_CDt+1 – 

x_CDt-1)/2, where x_CDt denotes projection to CD at time t. The time step was 10 ms. After 

pooling all time points and trajectories, the mean dx_CDt/dt was calculated for each step of x_CD 

(0.05 (a.u.) step. The mean was defined for a step with more than 50 data points. We only 

analyzed correct trials. In Fig. 5f and 7d both contra and ipsi trials were pooled. In Extended Data 

Fig. 6f, contra and ipsi trials were analyzed separately. 

 

To decode future licking direction before the perturbation (Extended Data Fig. 9h-l), we analyzed 

the values of CD projection at the last bin 50 ms before the delay onset (x_CD-2.05). We first 

randomly selected 70 % of unperturbed correct trials. Next, we calculated the chance that animals 

lick right or left as a function of x_CD-2.05 (0.05 (a.u.) step) (Extended Data Fig. 9h). Based on 

this relationship we defined a decision boundary for lick right direction as the smallest x_CD-2.05 

with probability of licking right that was higher than 70 %. The decision boundary for lick left 

direction was based on a similar procedure. We cross-validated these boundaries using the 

remaining 30 % of unperturbed correct trials and all of the unperturbed incorrect trials. Cross-

validated performance was 76.6 ± 16.7 % and 77.8 ± 15.8 % (mean ± s.e.m.) for lick right and 

left trials, respectively. We defined decision boundary and putative correct (or incorrect) trials 

independently for each session. 

 

In extended Data Fig. 10e-i, to find modes explaining the remaining activity variance (RM, S1 

and S2), we first found eigenvectors of the population activity matrix using singular value 
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decomposition (SVD) at each time point and averaged over the last 600 ms of the delay epoch. 

The data for SVD at each time point was a n × trial-number matrix. We analyzed the first three 

eigenvectors from the SVD. All of these vectors were rotated using the Gram-Schmidt process to 

be orthogonal to CD and to each other. Since the projection to the first vector resulted in non-

selective ramping activity in a fixed delay task (Extended Data Fig. 10e), we referred to this 

vector as a ramping mode (RM) {Inagaki et al, in prep}. Projection to CD and RM were not 

normalized to the peak location in Extended Data Fig 10. To calculate the “selectivity explained”, 

we first calculated the total selectivity as a square sum of the selectivity across neurons (square 

sum of n × 1 vector). Then we calculated the square of selectivity of the projection along each 

mode, and divided it by the total selectivity. To calculate the “variance explained”, we first 

calculated the total variance as a square sum of the mean delay activity (difference between spike 

rate during the delay epoch and pre-sample epoch) across neurons in each trial type (contra and 

ipsi trial) (square sum of n × 2 matrix). Then we calculated the square sum of the mean delay 

activity in projection along each mode in each trial type. We divided this value by the total 

variance. For fixed delay tasks, we calculated selectivity and mean delay activity based on the last 

600 ms of the delay epoch. For the random delay task, we calculated selectivity and mean delay 

activity based on the first 600 ms of the delay epoch.  

 

 

Network model 

 

We built four firing rate models to simulate the average activity of neurons in ALM, (i) three 

discrete attractor network models (Fig. 6c right panel and Extended Data Fig. 7g-k, 11), and one 

integrator network model (Fig. 6c left panel and Extended Data Fig. 7b-f, l). We constructed 

attractor networks whose phase space contains two stable fixed points, corresponding to left and 

right licking, at the end of the delay epoch. Since we used the same laser power in both 

hemispheres to perturb neural activity in ALM, we first focused on modeling single-hemisphere 

dynamics, thereby ignoring inter-hemispheric interactions (Fig. 6c, Extended Data Fig. 7). To 

further account for the results of unilateral ALM perturbation experiments in Li et al, (2016) 18, 

we duplicated the one-hemisphere architecture shown in Fig. 6b, and linked the two identical 

modules together to portray both ALM hemispheres (Extended Data Fig. 11). Furthermore, we 

explored two potential mechanisms that may underlie slow ramping dynamics during the delay 

epoch: one where ramping was caused by a non-selective external input (Extended Data Fig. 11a-
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i), and one where ramping was a consequence of slow internal dynamics (Extended Data Fig. 11j-

q). See Supplementary Information Table 4 for parameters used in the models described below. 

 

One-hemisphere discrete attractor model (Fig. 6c and Extended Data Fig. 7g-k) 

 

We simulated the average activity of two excitatory populations in the left hemisphere, one 

selective to the right licking direction and one selective to the left licking direction, and one 

inhibitory population. The membrane current dynamics of excitatory population � , �	�
�, was 

governed by the following nonlinear differential equation:  

 �	

��	�
�
�
 � ��	�
� � � �	�  �� ����
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� �	�  ��!���
�" � #	
�� � #	

����
� � $	�
� (1) 

�	� denotes the synaptic strength between postsynaptic population � and presynaptic population %, 

labels & and ' indicate the lick left and lick right selective excitatory populations, # denotes the 

inhibitory population, �	  is the integration time constant of the excitatory populations, #	
�� is the 

baseline input current, #	
����
� represents external input, $	�
� is a random Gaussian noise with 

zero mean and variance (� . Since we did not explicitly model the dynamics of synaptic 

interactions, we included slow excitatory input such as NMDA in the excitatory time constant and 

set it to �� � 100 +� in all attractor models. The time-dependent external input #	
����
� consisted 

in population-specific selective input representing the sensory stimulus #	
����
� (a 1 s long boxcar 

function exponentially filtered with time constant ���� � 20 +�) that was delivered during the 

sample epoch to either lick left or right excitatory neurons, depending on the trial type. The peak 

amplitude of #	
����
� was drawn, across trials, from a Gaussian distribution of mean -	

���  and 

standard deviation (	
���. The transduction function  �	 � �� ��	�, relating the firing rate  �	 to the 

current �	 , is sigmoidal. We chose an easily interpretable parametrization of the transduction 

function, mimicking the effect of short-term synaptic plasticity 80: 

 ����	� �  ./	  01	2	  ,               2	 � 2��	�, (2) 

  ./	 � ������� �!

������� �!
 ,         03	 � �

�� "#����� �!
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Variables  ./�  and 03�  are steady-state synaptic nonlinearities resulting from, respectively, short-

term facilitation (STF) and depression (STD) of excitatory synapses; 4 is the synaptic release 

probability, �$  and �� are the facilitation and depression recovery time constants (for their values 
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see Supplementary Information Table). The activation function 2�0�  displays an exponential 

behavior around 0 � 0 and a linear one for 0 5 6:  

 

 7�0� � 6 log!1 � ��/&". (4) 

 

With these choices, the transduction function  �	 � �� ��	�  exhibits a sigmoidal shape. This 

parameterization allowed us to make the basin of attraction of stable fixed points larger and more 

robust to noise. For the inhibitory population, we assumed instantaneous integration of the current 

received from the excitatory populations. We modeled the inhibitory transduction function ��  as 

threshold-linear. The inhibitory firing rate can thus be written as: 

 

  ���
� � ;∑ ���03�  ./�  ���
� � #�
�� � #�

��	'�
����,� 1 � ���

=
�

 (5) 

 

where #�
��	'�
� denotes the increase in the external input due to optogenetic photostimulation. 

#�
��	'�
� was modeled as a 600 ms long, exponentially filtered, positive input delivered at the end 

of the sample period. The value of the baseline input current #�
�� was such that ��  was always 

greater than zero. For this reason, we replaced ��!���
�" in (1) with the argument of the threshold 

linear function in (5) to obtain: 

 �	

��	�
�
�
 � ��	�
� � � �>	�  03�  ./�  ���
�

���,�

� #?��� � #	
����
� � $	�
� (6) 

where now the synaptic strengths �>	� and the baseline input #?	�� are rescaled according to: 

 �>	� � �	� � �	����1 � ���

, #?	�� � #	
�� � �	�#�

��

1 � ���

 .  (7) 

The synaptic weights were chosen such that the phase space contained two stable fixed points 

(Fig. 7f) during the delay epoch, corresponding to neural activity during contra and ipsi trials and 

one fixed point during the presample epoch, corresponding to baseline activity. The network 

switched between these two regimes 50 ms after the beginning of the sample epoch when the 

excitatory baseline currents #	
��  were significantly increased. The selective input current was 
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drawn from the normal distribution #	
����
� � B�-	

��� , (	
���� and was conveyed to lick right (left) 

population during sample epoch of contra (ipsi) trials. 

 

Two-hemisphere discrete attractor models (Extended Data Fig. 11) 

 

To model ALM in both hemispheres, we linked together two identical one-hemisphere circuits 

(Extended Data Fig. 7a) via mutually excitatory coupling (��) between lick left populations in 

one hemisphere and lick right in the other hemisphere. (Extended Data Fig. 11a). Each 

hemisphere, thus, contained one cell selective for licking right and one cell selective for licking 

left, both connected to an inhibitory cell. During the sample epoch the amplitude of the selective 

input, randomly varying from trial to trial #	
����
� � B�-��� , (����, was delivered to lick left or 

right excitatory neurons of both hemispheres, depending on the trial type.  

 

To reproduce the slow ramping of neural activity observed in the electrophysiological recordings 

(Fig. 6e), we considered two potential mechanisms in our simulations: i) a monotonically 

increasing nonselective external input #��'��
�; ii) the existence of a weak vector field along the 

direction of input integration, capable of slowing down the network dynamics during sample and 

delay epochs. In i), a nonselective input current #��'��
�, linearly ramping during the sample 

epoch and plateauing at the end of the delay epoch, was included in the external current #	
����
� of 

all excitatory populations. We set the network parameters, including the peak amplitude of 

#��'��
� such that the network would develop two stable fixed points during the delay period, 

corresponding to left and right licking directions. A single fixed point, corresponding to the 

baseline firing rate, was present all along the presample epoch. The nonselective ramping input 

destabilized the presample fixed point, while creating two stable fixed points during the sample 

epoch, corresponding to the left and right licking directions (Fig. 7f, and Extended Data Fig. 11a-

i). Conversely, in ii) the network parameters were chosen so that the neural activity would slowly 

converge towards the fixed points (Extended Data Fig. 11j-q). In this configuration, which 

demanded substantial fine tuning, the phase space displayed two decision-related fixed points 

(left or right licking) during all epochs. 

 

Integrator model (Fig. 6c and Extended Data Fig. 7b-i, l) 
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Integrator dynamics was modeled using the negative derivative feedback mechanism 22. The 

firing rates of three populations (Extended Data Fig. 7a), were driven by recurrent synaptic inputs 

�	��
�: 

 

�	

��	�
�
�
 � ��	�
� � � �	�  �	��
�

���,�,�

� #	
�� � #	

����
� � C	�
�, 

�	�

(��� �!

(�
� ��	��
� � ���
�,       for  �, % � &, ' �� #. 

(8) 

 

where �	�  are the recovery time constant of synaptic state variables connecting presynaptic 

population % to postsynaptic population �, the noise term C	�
� is a colored Gaussian noise with 

zero mean and two-point autocorrelation function DC	�
� C	�
 � ��E � )�

������	
��

|�|

�����	, where (� is 

the variance of the Gaussian distribution and ��	��  is the decay constant of the autocorrelation 

function. The other variables in Equation (8) play the same role as in the discrete attractor 

models. To maintain persistent activity during the delay epoch, the conditions were i) balanced 

synaptic strengths and ii) time constants of positive feedback are longer than those associated 

with negative feedback (Supplementary Information Table 4). The linear system in (8) can thus 

display persistent activity lasting several seconds (Fig. 6c, left panel). During contra trials, we 

delivered a positive input, with the same temporal dynamics as in the discrete attractor model, to 

the lick right selective population, while a negative input was delivered during ipsi trials. To 

obtain the reduction in across-trial variability as in Fig. 5d, we ran an additional set of simulations 

where the variance of C	�
� decreased exponentially with time, starting from the end of the 

sample period (Extended Data Fig. 7l).  

 

Analysis of simulated activity 

 

Numerical integration was performed using the Euler-Maruyama method for all attractor models 

and second-order Runge-Kutta method for the integrator model. To mimic the optogenetic 

activation of inhibitory neuron we chose, for each model, four values of #�
��	'�
� with increasing 

peak amplitude (see Supplementary Information Table). We simulated 1000 trials, of which 500 

were contra and 500 ipsi trials, for each condition and model. All trajectories were smoothed 

using a 100 ms average window with 1 ms sliding step. The CD was computed using the same 

procedure adopted in the analysis of extracellular recordings (rcontra - ripsi ). Neuronal activity in 

each trial was then projected onto the CD to obtain activity traces and subsequently normalized 
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using the distribution of endpoints in each session (see Coding direction analysis section). As 

with experimental data, we then analyzed correct and incorrect trials. Lick left trials were 

classified as correct if the neural activity of the lick left (lick right) selective population was 

higher than the neural activity of lick right selective neurons at the end of the delay period. In all 

attractor models, projected trajectories of trials classified as correct converged to the expected 

stable fixed point after bilateral or unilateral perturbation (Fig. 6c, Extended Data Fig. 7 and 11 

all panels except 7d ,i and 11d, i). Instead, trajectories of incorrect trials showed switching 

towards the wrong fixed point (Extended Data Fig. 7d and 11d). We calculated the drift of 

projected trajectories for each model using the last 1000 ms of the delay epoch. We applied the 

same method as in experimental data (Extended Data Fig. 7f, k and 11g, h, o, p). Fluctuations 

across trials were computed by taking the standard deviation across projected activity traces 

during correct trials, and normalizing them to their value at the beginning of the delay epoch 

(Extended Data Fig. 7e, j, l and 11f, n). Model performance was computed by dividing the 

number of correctly classified trials by the total number of trials in each condition (Extended Data 

Fig. 11i, q). 

 

 

Statistics and data 

 

The sample sizes are similar to sample sizes used in the field. No statistical methods were used to 

determine sample size. We did not exclude any animal for data analysis. During experiments, trial 

types were randomly determined by a computer program. During spike sorting, experimenters 

cannot tell the trial type, so experimenters were blind to conditions. All comparisons using 

signrank and ranksum-tests were two-sided except Fig. 5e where we tested decrease in value 

from the baseline. All bootstrapping was done over 1,000 iterations. Data sets will be shared at 

CRCNS.ORG in the NWB format. For network models, Matlab code will be made available for 

download. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

42

References 
 
1 Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. 

Science 173, 652-654 (1971). 

2 Kubota, K. & Niki, H. Prefrontal cortical unit activity and delayed alternation 

performance in monkeys. J Neurophysiol 34, 337-347 (1971). 

3 Tanji, J. & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to 

direction of an intended movement. J Neurophysiol 39, 1062-1068 (1976). 

4 Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields. I. Single neurons discharging 

before saccades. Journal of neurophysiology 53, 603-635 (1985). 

5 Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in 

the monkey's dorsolateral prefrontal cortex. Journal of neurophysiology 61, 331-349 

(1989). 

6 Riehle, A. & Requin, J. Monkey primary motor and premotor cortex: single-cell 

activity related to prior information about direction and extent of an intended 

movement. J Neurophysiol 61, 534-549 (1989). 

7 Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477-485 (1995). 

8 Miyashita, Y. Neuronal correlate of visual associative long-term memory in the 

primate temporal cortex. Nature 335, 817-820, doi:10.1038/335817a0 (1988). 

9 Romo, R., Brody, C. D., Hernandez, A. & Lemus, L. Neuronal correlates of parametric 

working memory in the prefrontal cortex. Nature 399, 470-473 (1999). 

10 Maimon, G. & Assad, J. A. A cognitive signal for the proactive timing of action in 

macaque LIP. Nat Neurosci 9, 948-955 (2006). 

11 Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 

81, 179-194 (2014). 

12 Erlich, J. C., Bialek, M. & Brody, C. D. A cortical substrate for memory-guided 

orienting in the rat. Neuron 72, 330-343 (2011). 

13 Murakami, M., Vicente, M. I., Costa, G. M. & Mainen, Z. F. Neural antecedents of self-

initiated actions in secondary motor cortex. Nature neuroscience 17, 1574-1582 

(2014). 

14 Liu, D. et al. Medial prefrontal activity during delay period contributes to learning of 

a working memory task. Science 346, 458-463 (2014). 

15 Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a 

dynamical systems perspective. Annual review of neuroscience 36, 337-359, 

doi:10.1146/annurev-neuro-062111-150509 (2013). 

16 Chen, T. W., Li, N., Daie, K. & Svoboda, K. A Map of Anticipatory Activity in Mouse 

Motor Cortex. Neuron 94, 866-879 e864, doi:10.1016/j.neuron.2017.05.005 (2017). 

17 Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for 

motor planning and movement. Nature 519, 51-56 (2015). 

18 Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor 

cortex during motor planning. Nature 532, 459-464, doi:10.1038/nature17643 

(2016). 

19 Johnston, D. & Wu, S. M.-s. Foundations of cellular neurophysiology.  (MIT Press, 

1995). 

20 Chaudhuri, R. & Fiete, I. Computational principles of memory. Nat Neurosci 19, 394-

403, doi:10.1038/nn.4237 (2016). 

21 Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized 

populations of model neurons. Biophys J 12, 1-24, doi:10.1016/S0006-

3495(72)86068-5 (1972). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

43

22 Lim, S. & Goldman, M. S. Balanced cortical microcircuitry for maintaining 

information in working memory. Nat Neurosci 16, 1306-1314, doi:10.1038/nn.3492 

(2013). 

23 Wang, X. J. Synaptic reverberation underlying mnemonic persistent activity. Trends 

Neurosci 24, 455-463 (2001). 

24 Goldman, M. S. Memory without feedback in a neural network. Neuron 61, 621-634, 

doi:10.1016/j.neuron.2008.12.012 (2009). 

25 Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured 

activity during delay periods in the cerebral cortex. Cereb Cortex 7, 237-252 (1997). 

26 Wimmer, K., Nykamp, D. Q., Constantinidis, C. & Compte, A. Bump attractor dynamics 

in prefrontal cortex explains behavioral precision in spatial working memory. Nat 

Neurosci 17, 431-439, doi:10.1038/nn.3645 (2014). 

27 Amit, D. J. Modeling brain function : the world of attractor neural networks.  

(Cambridge University Press, 1989). 

28 Koulakov, A. A., Raghavachari, S., Kepecs, A. & Lisman, J. E. Model for a robust neural 

integrator. Nat Neurosci 5, 775-782, doi:10.1038/nn893 

nn893 [pii] (2002). 

29 Zylberberg, J. & Strowbridge, B. W. Mechanisms of Persistent Activity in Cortical 

Circuits: Possible Neural Substrates for Working Memory. Annu Rev Neurosci 40, 

603-627, doi:10.1146/annurev-neuro-070815-014006 (2017). 

30 Cannon, S. C., Robinson, D. A. & Shamma, S. A proposed neural network for the 

integrator of the oculomotor system. Biol Cybern 49, 127-136 (1983). 

31 Brody, C. D., Romo, R. & Kepecs, A. Basic mechanisms for graded persistent activity: 

discrete attractors, continuous attractors, and dynamic representations. Curr Opin 

Neurobiol 13, 204-211 (2003). 

32 Machens, C. K., Romo, R. & Brody, C. D. Flexible control of mutual inhibition: a neural 

model of two-interval discrimination. Science 307, 1121-1124, 

doi:10.1126/science.1104171 (2005). 

33 Barak, O. & Tsodyks, M. Working models of working memory. Curr Opin Neurobiol 

25, 20-24, doi:10.1016/j.conb.2013.10.008 (2014). 

34 Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 

319, 1543-1546, doi:10.1126/science.1150769 (2008). 

35 Major, G. & Tank, D. Persistent neural activity: prevalence and mechanisms. Curr 

Opin Neurobiol 14, 675-684, doi:10.1016/j.conb.2004.10.017 (2004). 

36 Hopfield, J. J. Neural networks and physical systems with emergent collective 

computational abilities. Proc Natl Acad Sci U S A 79, 2554-2558 (1982). 

37 Amari, S. I. Learning Patterns and Pattern Sequences by Self-Organizing Nets of 

Threshold Elements. Ieee T Comput C 21, 1197-+, doi:Doi 10.1109/T-C.1972.223477 

(1972). 

38 Sidiropoulou, K. et al. Dopamine modulates an mGluR5-mediated depolarization 

underlying prefrontal persistent activity. Nat Neurosci 12, 190-199, 

doi:10.1038/nn.2245 (2009). 

39 Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the 

dynamics of intrinsic membrane currents. Proc Natl Acad Sci U S A 93, 13481-13486 

(1996). 

40 Loewenstein, Y. et al. Bistability of cerebellar Purkinje cells modulated by sensory 

stimulation. Nat Neurosci 8, 202-211, doi:10.1038/nn1393 (2005). 

41 Fransen, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E. & Alonso, A. A. Mechanism 

of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron 

49, 735-746, doi:10.1016/j.neuron.2006.01.036 (2006). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

44

42 Loewenstein, Y. & Sompolinsky, H. Temporal integration by calcium dynamics in a 

model neuron. Nat Neurosci 6, 961-967, doi:10.1038/nn1109 (2003). 

43 Sompolinsky, H. & Kanter, I. I. Temporal association in asymmetric neural networks. 

Physical review letters 57, 2861-2864, doi:10.1103/PhysRevLett.57.2861 (1986). 

44 Kleinfeld, D. Sequential state generation by model neural networks. Proc Natl Acad 

Sci U S A 83, 9469-9473 (1986). 

45 Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the 

Drosophila central brain. Science 356, 849-853, doi:10.1126/science.aal4835 

(2017). 

46 Anderson, J. S., Lampl, I., Gillespie, D. C. & Ferster, D. The contribution of noise to 

contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968-

1972 (2000). 

47 Williams, S. R. & Mitchell, S. J. Direct measurement of somatic voltage clamp errors 

in central neurons. Nat Neurosci 11, 790-798, doi:nn.2137 [pii] 

10.1038/nn.2137 (2008). 

48 Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in 

hippocampal CA1 neurons. Nat Neurosci 18, 1133-1142, doi:10.1038/nn.4062 

(2015). 

49 Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R. & Tank, D. W. In vivo intracellular 

recording and perturbation of persistent activity in a neural integrator. Nat Neurosci 

4, 184-193, doi:10.1038/84023 (2001). 

50 Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G. & Shenoy, K. V. Neural 

variability in premotor cortex provides a signature of motor preparation. J Neurosci 

26, 3697-3712, doi:10.1523/JNEUROSCI.3762-05.2006 (2006). 

51 Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread 

cortical phenomenon. Nature neuroscience 13, 369-378, doi:10.1038/nn.2501 

(2010). 

52 Churchland, A. K. et al. Variance as a signature of neural computations during 

decision making. Neuron 69, 818-831, doi:10.1016/j.neuron.2010.12.037 (2011). 

53 Strogatz, S. H. Nonlinear dynamics and Chaos : with applications to physics, biology, 

chemistry, and engineering.  (Addison-Wesley Pub., 1994). 

54 Rajan, K., Abbott, L. F. & Sompolinsky, H. Stimulus-dependent suppression of chaos 

in recurrent neural networks. Phys Rev E Stat Nonlin Soft Matter Phys 82, 011903, 

doi:10.1103/PhysRevE.82.011903 (2010). 

55 Janssen, P. & Shadlen, M. N. A representation of the hazard rate of elapsed time in 

macaque area LIP. Nat Neurosci 8, 234-241, doi:10.1038/nn1386 (2005). 

56 Komura, Y. et al. Retrospective and prospective coding for predicted reward in the 

sensory thalamus. Nature 412, 546-549, doi:10.1038/35087595 (2001). 

57 Zagha, E., Ge, X. & McCormick, D. A. Competing Neural Ensembles in Motor Cortex 

Gate Goal-Directed Motor Output. Neuron 88, 565-577, 

doi:10.1016/j.neuron.2015.09.044 (2015). 

58 Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. 

Nature 545, 181-186, doi:10.1038/nature22324 (2017). 

59 Blumenfeld, B., Preminger, S., Sagi, D. & Tsodyks, M. Dynamics of memory 

representations in networks with novelty-facilitated synaptic plasticity. Neuron 52, 

383-394, doi:10.1016/j.neuron.2006.08.016 (2006). 

60 Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working 

memory in prefrontal cortex of the macaque. J Neurosci 16, 5154-5167 (1996). 

61 Suzuki, M. & Gottlieb, J. Distinct neural mechanisms of distractor suppression in the 

frontal and parietal lobe. Nat Neurosci 16, 98-104, doi:10.1038/nn.3282 (2013). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


Inagaki et al  

 

45

62 Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation 

of visual stimuli in the primate prefrontal cortex. Science 291, 312-316, 

doi:10.1126/science.291.5502.312 (2001). 

63 Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal 

cortex (area LIP) of the rhesus monkey. J Neurophysiol 86, 1916-1936 (2001). 

64 Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to 

evidence accumulation. Nature 520, 220-223 (2015). 

65 Kopec, C. D., Erlich, J. C., Brunton, B. W., Deisseroth, K. & Brody, C. D. Cortical and 

Subcortical Contributions to Short-Term Memory for Orienting Movements. Neuron, 

doi:10.1016/j.neuron.2015.08.033 (2015). 

66 Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to 

ETS transcription factor signaling. PLoS Biol 3, e159 (2005). 

67 Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-

induced activation and silencing. Nature neuroscience 15, 793-802 (2012). 

68 Zhao, S. et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic 

dissection of neural circuitry function. Nature methods 8, 745-752 (2011). 

69 Guo, Z. V. et al. Procedures for behavioral experiments in head-fixed mice. PloS one 

9, e88678 (2014). 

70 Taberner, A. M. & Liberman, M. C. Response properties of single auditory nerve 

fibers in the mouse. J Neurophysiol 93, 557-569, doi:10.1152/jn.00574.2004 (2005). 

71 Ison, J. R., Allen, P. D. & O'Neill, W. E. Age-related hearing loss in C57BL/6J mice has 

both frequency-specific and non-frequency-specific components that produce a 

hyperacusis-like exaggeration of the acoustic startle reflex. Jaro-J Assoc Res Oto 8, 

539-550, doi:10.1007/s10162-007-0098-3 (2007). 

72 Anderson, J. S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, 

excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84, 909-926 

(2000). 

73 Yu, J., Gutnisky, D. A., Hires, S. A. & Svoboda, K. Layer 4 fast-spiking interneurons 

filter thalamocortical signals during active somatosensation. Nat Neurosci 19, 1647-

1657, doi:10.1038/nn.4412 (2016). 

74 Monier, C., Chavane, F., Baudot, P., Graham, L. J. & Fregnac, Y. Orientation and 

direction selectivity of synaptic inputs in visual cortical neurons: a diversity of 

combinations produces spike tuning. Neuron 37, 663-680 (2003). 

75 Efron, B. & Tibshirani, R. An Introduction to the Bootstrap. 1 edn,  (Chapman and 

Hall/CRC, 1994). 

76 van der Leeden, R. in Handbook of Multilevel Analysis   (eds J.  de Leeuw & E.  Meijer)  

401-433 (Springer, 2008). 

77 Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to 

dependency: using multilevel analysis to accommodate nested data. Nat Neurosci 

17, 491-496, doi:10.1038/nn.3648 (2014). 

78 Jun, J. J. et al. Real-time spike sorting platform for high-density extracellular probes 

with ground-truth validation and drift correction. bioRxiv, doi:10.1101/101030 

(2017). 

79 Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent 

with temporal integration of random EPSPs. The Journal of neuroscience : the official 

journal of the Society for Neuroscience 13, 334-350 (1993). 

80 Barak, O. & Tsodyks, M. Persistent activity in neural networks with dynamic 

synapses. PLoS Comput Biol 3, e35, doi:10.1371/journal.pcbi.0030035 (2007). 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/203448doi: bioRxiv preprint 

https://doi.org/10.1101/203448

