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Abstract

The Brain Dynamics Toolbox provides a graphical tool for simulating user-
defined dynamical systems in matlab. It supports three classes of differen-
tial equations commonly used in computational neuroscience: Ordinary Dif-
ferential Equations, Delay Differential Equations and Stochastic Differential
Equations. The design of the graphical interface fosters intuitive exploration
of the dynamics, yet there is no barrier to scripting large-scale simulations
and parameter explorations. System variables and parameters may range in
size from simple scalars to large vectors or matrices. The toolbox is intended
for dynamical models in computational neuroscience but it can be applied to
continuous dynamical systems from any domain.
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1. Introduction1

Computational neuroscience relies heavily on numerical methods for sim-2

ulating non-linear models of brain dynamics. Software toolkits are the man-3

ifestation of those endeavors. Each one represents an attempt to balance4

mathematical flexibility with computational convenience. Toolkits such as5

GENESIS [1], NEURON [2] and BRIAN [3] provide convenient methods to6

simulate conductance-based models of single neurons and networks thereof.7

The Virtual Brain [4] scales up that approach to the macroscopic dynamics of8

the whole brain. It combines neural field models [5] with anatomical connec-9

tivity datasets for the purpose of generating realistic EEG, MEG and fMRI10

data. Toolkits such as AUTO [6], XPPAUT [7], MATCONT [8], PyDSTool11

[9] and CoCo [10] provide numerical methods from applied mathematics for12
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analyzing non-linear dynamical systems. These toolkits are highly appli-13

cable to computational neuroscience but assume a substantial background14

in mathematical theory. Many of the toolkits described above also require15

substantial computer programming effort from the user.16

2. Problems and Background17

In our experience of publishing and teaching computational neuroscience,18

the existing toolkits often present technical barriers to a broader audience.19

The Brain Dynamics Toolbox aims to bridge that gap by allowing those with20

diverse backgrounds to explore neuronal dynamics through phase space anal-21

ysis, time series exploration and other methods with minimal programming22

burden. A custom model can typically be implemented with our toolbox in23

fewer than 100 lines of standard matlab code. Object-oriented program-24

ming techniques are not required. Once the model is implemented, it can25

be loaded into the graphical interface (Figure 1) for interactive simulation or26

run without the graphical interface using command-line tools. The graphical27

controls are themselves accessible to the user as workspace variables. This28

makes it easy to use the matlab command window to orchestrate quick29

parameter surveys within the graphical interface. The command-line tools30

are useful for scripting larger surveys since they utilize the same toolbox31

infrastructure but do not invoke the graphical interface. The Brain Dynam-32

ics Toolbox thus provides intuitive access to neurodynamical modeling tools33

while retaining the ability to automate large-scale simulations.34

3. Software Framework35

The toolbox operates on user-defined systems of Ordinary Differential36

Equations (ODEs), Delay Differential Equations (DDEs) and Stochastic Dif-37

ferential Equations (SDEs). The details differ slightly for each type but the38

overall approach is the same. The right-hand side of the dynamical system,39

dY

dt
= F (t, Y ),

is implemented as a matlab function of the form dYdt=F(t,Y). The toolbox40

takes a handle to that function and passes it to the relevant solver routine41

on the user’s behalf. The solver repeatedly calls F(t,Y) in the process of42

computing the evolution of Y (t) from a given set of initial conditions. The43
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Figure 1: Screenshots of selected display panels in the graphical interface as it simulates a
network of n=20 Hindmarsh-Rose [11] neurons. Display panels can be added or removed
at run-time. The parameters of the model are manipulated with the control panel on the
right-hand side of the application window. Individual controls can represent scalar, vector
or matrix values. A The mathematical equations panel. B Time portraits. C Phase
portrait. D Space-time portrait. E Hilbert transform. F Solver step sizes.
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toolbox uses the same approach as the standard matlab solvers (e.g. ode45,44

dde23) except that it also manages the input parameters and plots the solver45

output. To do so, it requires the names and values of the system parameters46

and state variables. Those details (and more) are passed to the toolbox47

via a special data structure that we call a system structure. It encapsulates48

everything needed to simulate a user-defined model. Once a system structure49

has been constructed, it can be shared with other toolbox users.50

3.1. Software Architecture and Functionality51

The architecture is modular so that solver routines and visualization tools52

can be applied to any model in any combination (Figure 2). The combinato-53

rial power of this approach brings great efficiency to the exploration of new54

models, as well as fostering the long-term evolution of the toolbox itself. The55

list of numerical solver routines and graphical panels that the toolbox sup-56

ports continues to grow rapidly. As of this writing, it includes the standard57

ODE solvers (ode45, ode23, ode113, ode15s, ode23s) and DDE solver58

(dde23) that are shipped with matlab. As well as a fixed-step ODE solver59

(odeEul) and two SDE solvers (sdeEM, sdeSH) that are specific to the Brain60

Dynamics Toolbox. The two SDE solvers are specialized for stochastic equa-61

tions that use Itô calculus and Stratonovich calculus respectively. Custom62

solvers can also be added provided that they adhere to toolbox conventions.63

The display panels include time plots, phase portraits, space-time plots,64

linear correlations, Hilbert transforms, surrogate data transforms, solver65

statistics and mathematical equations rendered with LaTeX. New panels are66

being added on a regular basis and we encourage users to write custom panels67

for their own projects. Display panels not only visualize the solver output68

but can be used to apply transformations or custom metrics to it. The panel69

outputs themselves are accessible to the user as workspace variables where70

they can be readily saved for further analysis or publication.71

4. Illustrative Example72

We demonstrate the implementation of a network of recurrently-connected
Hindmarsh-Rose [11] neurons,

Ẋi = Yi − aX3
i + bX2

i − Zi + Ii − Ji, (1)

Ẏi = c− dX2
i − Yi, (2)

Żi = r (s (Xi − x0) − Zi), (3)

4
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Figure 2: Software architecture of the Brain Dynamics Toolbox. Display panels, numerical
solver routines and user-defined models are all implemented separately as inter-changeable
modules. New models can thus be explored quickly with existing tools. Custom tools can
also be defined for specialized investigations. Numerical solvers marked with an asterisk
are unique to the toolbox.
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where Xi is the membrane potential of the ith neuron, Yi is the conductance73

of that neuron’s excitatory ion channels, and Zi is the conductance of its74

inhibitory ion channels. Each neuron in the network is driven by a locally ap-75

plied current Ii and a network current Ji = gs (Xi−Vs)
∑

j KijF (Xj−θ) that76

represents the synaptic bombardment from other neurons. The sigmoidal77

function F (x)=1/(1 + exp(−x)) transforms that synaptic bombardment to78

an equivalent ionic current. The connectivity matrix Kij defines the weight-79

ings of the synaptic connections between neurons. All other parameters in80

the model are scalar constants although their meaning is unimportant here.81

Suffice to say that this model represents a typical example of using coupled82

ODEs to model a neuronal network.83

4.1. Defining the model84

Listing 1 shows the code required to implement equations (1-3) with the85

toolbox. It consists of three functions: The main function, HindmarshRose,86

constructs the model’s system structure (sys) for a given connectivity ma-87

trix, Kij. The odefun function defines the right-hand side of the differential88

equations (1–3). All but the first two input parameters of that function cor-89

respond to the ODE parameters (i.e. Kij, a, b, . . . ) as defined in the system90

structure (lines 8–20). The third function (lines 65–68) defines the sigmoid91

function used by this particularly model. It has no special significance to the92

toolbox.93

Listing 1: Implementation of a network of Hindmarsh-Rose neurons (equations 1–3). The
HindmarshRose(Kij) function takes a connectivity matrix Kij as input and returns a
corresponding system structure for the model. The number of neurons (equations) in the
model is determined from the size of Kij which is fixed for the life of the system structure.

1 function sys = HindmarshRose(Kij)94

2 % determine the number of nodes from Kij95

3 n = size(Kij ,1);96

497

5 % Handle to our ODE function98

6 sys.odefun = @odefun;99

7100

8 % Our ODE parameters101

9 sys.pardef = [ struct(’name’,’Kij’, ’value’,Kij);102

10 struct(’name’,’a’, ’value’ ,1);103

11 struct(’name’,’b’, ’value’ ,3);104

12 struct(’name’,’c’, ’value’ ,1);105

13 struct(’name’,’d’, ’value’ ,5);106

14 struct(’name’,’r’, ’value’ ,0.006);107

6
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15 struct(’name’,’s’, ’value’ ,4);108

16 struct(’name’,’x0’, ’value’ ,-1.6);109

17 struct(’name’,’Iapp’, ’value’ ,1.5);110

18 struct(’name’,’gs’, ’value’ ,0.1);111

19 struct(’name’,’Vs’, ’value’ ,2);112

20 struct(’name’,’theta ’, ’value’ ,-0.25) ];113

21114

22 % Our ODE variables115

23 sys.vardef = [ struct(’name’,’x’, ’value’,rand(n,1));116

24 struct(’name’,’y’, ’value’,rand(n,1));117

25 struct(’name’,’z’, ’value’,rand(n,1)) ];118

26119

27120

28 % Latex (Equations) panel121

29 sys.panels.bdLatexPanel.title = ’Equations ’;122

30 sys.panels.bdLatexPanel.latex = {123

31 ’\textbf{HindmarshRose}’;124

32 ’’;125

33 ’Network of coupled Hindmarsh -Rose neurons ’;126

34 ’\qquad $\dot X_i = Y_i - a\,X_i^3 + b\,X_i^2 - Z_i +127

I_{app} - g_s\,(X_i -V_s) \sum_j K_{ij} F(X_j -\ theta)$’;128

35 ’\qquad $\dot Y_i = c - d\,X_i^2 - Y_i$’;129

36 ’\qquad $\dot Z_i = r\,(s\,(X_i -x_0) - Z_i)$’;130

37 ’where’;131

38 ’\qquad $K_{ij}$ is the connectivity matrix ,’;132

39 ’\qquad $a , b, c, d, r, s, x_0 , I_{app}, g_s , V_s$133

and $\theta$ are constants ,’;134

40 ’\qquad $I_{app}$ is the applied current ,’;135

41 ’\qquad $F(x) = 1/(1+\ exp(-x))$,’;136

42 ’\qquad $i{=}1 \dots n$.’ };137

43 end138

44139

45 % The ODE function for the Hindmarsh Rose model.140

46 function dY = odefun(t,Y,Kij ,a,b,c,d,r,s,x0,I,gs,Vs,theta)141

47 % extract incoming variables from Y142

48 Y = reshape(Y,[],3); % reshape Y to (nx3)143

49 x = Y(:,1); % x is (nx1) vector144

50 y = Y(:,2); % y is (nx1) vector145

51 z = Y(:,3); % z is (nx1) vector146

52147

53 % The network coupling term148

54 Inet = gs*(x-Vs) .* (Kij*F(x-theta));149

55150

56 % Hindmarsh -Rose equations151

57 dx = y - a*x.^3 + b*x.^2 - z + I - Inet;152
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58 dy = c - d*x.^2 - y;153

59 dz = r*(s*(x-x0)-z);154

60155

61 % return result (3n x 1)156

62 dY = [dx; dy; dz];157

63 end158

64159

65 % Sigmoid function160

66 function y=F(x)161

67 y = 1./(1+ exp(-x));162

68 end163

The bulk of the code is dedicated to constructing the system structure164

(lines 1–43) which is described in detail in the Handbook for the Brain Dy-165

namics Toolbox [12]. Among other things, the system structure requires166

a handle to the ODE function (line 6) as well as the names and values of167

the ODE parameters (lines 8–20) and the ODE variables (lines 22–25). It168

also defines the latex strings for rendering the mathematical equations in the169

display panel (lines 28–42). Those LaTeX strings are important for docu-170

menting the model but they play no part in the simulation itself. It is not171

unusual for LaTeX strings to be larger than the differential equations they172

describe.173

4.2. Running the model.174

The model is run by constructing an instance of its system structure and175

loading that into the toolbox graphical user interface, which is called bdGUI.176

>> n = 20; % Define number of neurons.177

>> Kij = circshift(eye(n),1) ... % Define connection matrix,178

+ circshift(eye(n),-1); % as a chain in this case.179

>> sys = HindmarshRose(Kij); % Construct the sys struct.180

>> bdGUI(sys); % Run the model in the GUI.181

The graphical user interface (Figure 1) automatically recomputes the solution182

whenever any of the controls are adjusted. That includes the parameters of183

the model, the initial conditions of the state variables, the time domain of the184

simulation and the solver options. The computed solution can be visualized185

with any number of display panels, all of which are updated concurrently.186

The display panels in Figure 1 are from this very model.187
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4.3. Controlling the model188

The bdGUI application returns a handle to itself which can be used to189

control the simulation from the matlab command window.190

>> gui = bdGUI(sys)191

gui =192

bdGUI with properties:193

version: ’2017c’ % toolbox version string194

fig: [1x1 Figure] % application figure handle195

par: [1x1 struct] % system parameters (read-write)196

var0: [1x1 struct] % initial conditions (read-write)197

var: [1x1 struct] % solution variables (read-only)198

t: [1x9522 double] % solution time points (read-only)199

lag: [] % DDE lag parameters (read-write)200

sys: [1x1 struct] % system structure (read-only)201

sol: [1x1 struct] % solver output (read-only)202

sox: [] % auxiliary variables (read-only)203

panels: [1x1 struct] % display panel outputs (read-only)204

The parameters of the model are accessible by name via the gui.par struc-205

ture. Likewise, the computed solution variables are accessible by name via206

the gui.var structure. The output of the solver is also accessible in its native207

format via the gui.sol structure. The parameters and the initial conditions208

are read-write properties whereas the computed solutions are read-only. Any209

value written into the gui handle is immediately applied to the graphical user210

interface, and vice versa. Thus it is possible to use workspace commands to211

orchestrate parameter sweeps in the graphical user interface. For example,212

>> for r=linspace(0.05,0.001,25); gui.par.r=r; end;213

sweeps the r parameter (time constant of inhibition) from 0.05 to 0.001 in214

25 increments. The computed solution is updated at each increment and a215

bursting phenomenon is observed for r . 0.01.216

4.4. Scripting the model217

The toolbox provides a small suite of command-line tools for running218

models without invoking the graphical interface. Of these, the most notable219

commands are bdSolve(sys,tspan) — which runs the solver on a given220

model for a given time span — and bdEval(sol,t) which interpolates the221

solution for a given set of time points.222
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>> t = 0:1000;223

>> sol = bdSolve(sys,[t(1) t(end)]);224

>> X = bdEval(sol,t);225

>> plot(t,X);226

The bdEval function is equivalent to the matlab deval function except that227

it also works for solution structures (sol) returned by third-party solvers. See228

the Handbook for the Brain Dynamics Toolbox [12] for a complete description229

of the command-line tools.230

5. Conclusions231

The Brain Dynamics Toolbox provides researchers with an interactive232

graphical tool for exploring user-defined dynamical systems without the bur-233

den of programming bespoke graphical applications. The graphical interface234

imposes no limit the size of the model nor the number of parameters involved.235

System parameters and variables can range in size from simple scalar values236

to large-scale vectors or matrices without loss of generality. The design also237

imposes no barrier to scripting large-scale simulations and parameter surveys.238

The toolbox is aimed at students, engineers and researchers in computational239

neuroscience but it can also be applied to general problems in dynamical240

systems. Once a model is implemented, it can be readily shared with other241

toolbox users. The toolbox thus serves as a hub for sharing models as much242

as it serves as a tool for simulating them. Indeed, we anticipate the number243

of available models and plotting tools to continue to grow as the user base244

expands.245
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Required Metadata279

Current executable software version280

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version 2017c
S2 Permanent link to executables of

this version
https://github.com/breakspear/
bdtoolkit/releases/tag/bdtoolkit-
2017c

S3 Legal Software License BSD 2-clause
S4 Computing platform/Operating

System
Matlab 2014b or newer

S5 Installation requirements & depen-
dencies

Signal Processing Toolbox (op-
tional). Statistics and Machine
Learning Toolbox (optional).

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

https://bdtoolkit.blogspot.com

S7 Support email for questions stewart.heitmann@gmail.com

Table 1: Software metadata (optional)

Current code version281
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Nr. Code metadata description Please fill in this column
C1 Current code version 2017c
C2 Permanent link to code/repository

used of this code version
https://github.com/breakspear/
bdtoolkit/releases/tag/bdtoolkit-
2017c

C3 Legal Code License BSD 2-clause
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Matlab 2014b or newer

C6 Compilation requirements, operat-
ing environments & dependencies

Signal Processing Toolbox (op-
tional). Statistics and Machine
Learning Toolbox (optional).

C7 If available Link to developer docu-
mentation/manual

https://bdtoolkit.blogspot.com

C8 Support email for questions stewart.heitmann@gmail.com

Table 2: Code metadata (mandatory)
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