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Abstract

In the past two decades, substantial amount of work characterized the
odorant receptors, neuroanatomy and odorant response properties of the early
olfactory system of Drosophila melanogaster. Yet many odorant receptors
remain only partly characterized, the odorant transduction process and the
axon hillock spiking mechanism have yet to be fully determined.

The essential functionality of olfactory sensory neurons (OSNs) is to jointly
encode both odorant identity and odorant concentration. We model identity
and concentration by an odorant-receptor binding rate tensor modulated by
the odorant concentration profile and an odorant-receptor dissociation rate
tensor, and quantitatively describe the ligand binding/dissociation process.

To validate our modeling approach, we first propose an algorithm for es-
timating the affinity and the dissociation rate of an odorant-receptor pair.
We then apply the algorithm to estimate the affinity and dissociation rate for
(acetone, Or59b) using two different datasets of electrophysiology recordings.
Second, we evaluate the temporal response of the Or59b OSN model to acetone
with a multitude of stimuli, including step, ramp and parabolic odorant wave-
forms. We further interrogate the model with staircase and noisy waveforms.
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Lastly, we evaluate the affinity and the dissociation rate for different odorant-
receptor pairs including (methyl butyrate, Or59b) and (butyraldehyde, Or7a).

We demonstrate how to evaluate the odorant transduction process and
biological spike generator cascade underlying the fruit fly OSN model at the
circuit level of the antennae and maxillary palps under two scenarios. First, we
empirically estimate the odorant-receptor affinity of the active receptor model
in response to constant concentration odorants using the spike count records
in the DoOR database. Second, we evaluate and graphically visualize the tem-
poral response of the antennae and maxillary palps using a staircase odorant
concentration waveform. Finally, we describe how to construct, execute and
explore various instantiations of the antennae and maxillary palps as a paral-
lel information preprocessor in the open-source Fruit Fly Brain Observatory
platform.
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1 Introduction

The olfactory sensory system is arguably the oldest sensory modality known [1].
Compared to the visual sensory system, the olfactory system contains a smaller num-
ber of neurons, a simpler connectivity, and an uncomplicated spatial structure while
exhibiting a high sensitivity for recognizing different odorants and for extracting the
temporal information of stimuli [2]. The early olfactory system in vertebrates and in-
sects share a similar functionality and biological structure [1, 3]. Thus, the olfactory
system in insects provides some of the key elements and insights for understanding
odor signal processing in the olfactory system of vertebrates.

In the past thirty years, odorant receptors (ORs) and olfactory sensory neurons
(OSNs) of the early olfactory system of Drosophila melanogaster have been exten-
sively studied in the literature [4, 5].

The odorant receptors and olfactory sensory neurons are distributed across the sur-
face of maxillary palp and the third segment of antenna. Since there is no commonly
accepted terminology in the literature for naming these two olfactory appendages as
a single entity, and in order to avoid potential confusion, we will refer to the set of
all odorant receptors simply as ORs and the set of all olfactory sensory neurons as
an antenna/maxillary palp (AMP) local processing unit (LPU).

In what follows, we will refer for simplicity to a group of OSNs expressing the same
receptor type as an OSN group. The odorant response of OSN groups has been
experimentally characterized by multiple research groups [6, 7, 8], and their results
combined into a single consensus database, called the DoOR database [9, 10]. These
studies, among others, suggest a number of OSN models of odorant encoding and
odor signal representation. Odorant identity and odorant concentration are jointly
encoded [11, 12, 13]. A single odorant stimulus usually activates multiple OSN
groups, while different odorants activate different OSN groups. Odorant identity
is hence combinatorially encoded by the identity of the activated ORs and their
cognate glomeruli [14]. An OSN expressing a certain receptor type responds to a
specific range of concentrations. Population activity of OSN groups hence covers a
wide concentration range of a single odorant stimulus [15]. Moreover, OSNs encode
both the concentration and concentration gradient of the odorant waveforms also
known as 2D odorant encoding [16].

Detailed biophysical models for the odorant transduction process have been pro-
posed for worms and vertebrates. Such models are scarce for insects and, in partic-
ular, for fruit flies. Dougherty et al. proposed a frog odorant receptor model that
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exhibits a complex temporal response [17]. Rospars proposed a model that charac-
terizes the steady state response of OSNs for rats and moths [18, 19]. The model
stands out for its simplicity and modeling clarity, while lacking temporal variabil-
ity. Other notable models appeared in [20, 21]. Recently, Cao et al. published a
phenomenological model to characterize the peak and the steady response of sen-
sory adaption for fruit fly OSNs [22]. Gorur-Shandilya et al. proposed a two-state
model for the fruit fly odorant receptors that can reproduce Weber-Fechner’s law ob-
served in physiological recordings [23]. In addition, De Palo et al. [24] proposed an
abstract/phenomenological model with feedback mechanism that characterizes the
common dynamical features in both visual and olfactory sensory transduction.

Except for the transduction current recorded for studying sensory adaptation [22],
reproducing the temporal response of the AMP LPU has been scarcely investigated
in the literature. In particular, 2D odorant encoding has not yet been successfully
modeled. Building an AMP LPU as an experimental platform, while highly desirable
for the research and education community, has not been attempted to date and it is
not available in the public domain. Such a platform would, however, greatly enable
fly researchers and educators to collaborate and develop comparative models of odor
signal processing of the fruit fly olfactory system and beyond.

To address these challenges we provide in this Request for Comments (RFC) a com-
prehensive approach to modeling and model execution of the olfactory sensory neu-
rons of the fruit fly spread across the antennae/maxilary palps. We model the OSNs
as a cascade consisting of an odorant transduction process (OTP) and a biophys-
ical spike generator (BSG). The OTP model consists of an active receptor model
and a co-receptor channel model. The BSG model we employ here is based on the
Connor-Stevens neuron model [25].

The active receptor encodes odorant identity and odorant concentration with a bind-
ing rate tensor modulated by the odorant concentration profile and a dissociation
rate tensor. The odorant concentration profile is defined as the weighted sum of the
filtered odorant concentration and the filtered concentration gradient. Modulation
is modeled here as a product. The spike trains generated by the BSGs contain the
odorant identity, odorant concentration, and concentration gradient information that
the fly brain uses to make odorant valence decisions.

The product between the odorant-receptor binding rate and the odorant concen-
tration profile and the dissociation rate are the key signal components that are first
receptor encoded and then processed by the OTP of each OSN. Overall, odorant iden-
tity is encoded combinatorially by groups of OTPs. The size of the combinatorial
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groups that encode the odorant identity is modulated by the odorant concentration
profile and, in time domain, by the dissociation rate. Importantly, the size of these
groups is odorant concentration dependent. The BSG of each OSN samples the
transformed triple of odorant-receptor binding rate, concentration profile and disso-
ciation rate, and then maps the samples into the spike domain. Overall, each OSN is
a two-stage sampler [26] that encodes information about the odorant-receptor bind-
ing rate, odorant concentration profile and odorant-receptor dissociation rate into
a train of spikes. Thus, the AMP LPU is a multidimensional sampler that already
sorts out the key characteristics of odorant identity at the very periphery of the early
olfactory system for further processing by higher brain centers.

Finally, we describe how to construct, execute and explore various instantiations of
the AMP LPU as an information preprocessor in the Fruit Fly Brain Observatory
(FFBO) open-source platform. This enables the community of fly researchers and
educators to compare various computational models of the early olfactory system
in fruit flies and vastly accelerate collaborative efforts geared towards a better un-
derstanding of the function of the early olfactory system. The open-source AMP
LPU also provides a common platform for creating novel hypotheses to be tested
and verified through biological experiments.

This Request for Comments (RFC) is organized as follows. In Section 2, we briefly
review the anatomy and functionality of the olfactory receptors and of the olfactory
sensory neurons of the Drosophila. In Section 3, we introduce the I/O model of a
single OSN, extensively characterize and evaluate its temporal response and qualita-
tively reproduce its key 2D odorant encoding feature. We also validate our modeling
approach by estimating the affinity and dissociation rate for (acetone, Or59b) using
two different datasets of electrophysiology recordings and by evaluating the tempo-
ral response of the Or59b OSNs to acetone with a multitude of stimuli, including
step, ramp and parabolic odorant waveforms. We further interrogate the model with
staircase and noisy waveforms. Lastly, we evaluate the affinity and the dissocia-
tion rate for different odorant-receptor pairs including (methyl butyrate, Or59b) and
(butyraldehyde, Or7a). In Section 4 we provide an estimate of odorant-receptor
affinity using the spike count datasets in the DoOR database. Using these estimates,
we then qualitatively reproduce and visualize the temporal response of the AMP
LPU. In Section 5, we evaluate the AMP LPU as an information pre-processor in
the FFBO environment [27] and describe its open-source implementation. Finally,
in Section 6, we summarize and discuss future directions.
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2 Anatomy and Functionality of Odorant Recep-
tors and OSNs

The input stage of the fruit fly olfactory system consists of the olfactory sensory
neurons that are located in a pair of antennae and maxillary palps [28]. These and
other details about the anatomy of the OSNs are briefly presented in Section 2.1.
Odorant receptors bind with odorant molecules, resulting in a transduction current,
which is then encoded by olfactory sensory neurons into a spike sequence. Thus,
an odorant is represented by the ensemble of OSNs as a multidimensional spike
sequence. More details about the functionality and encoding properties of the OSNs
are briefly discussed in Section 2.2. Key OSN recordings and their availability will
also be reviewed in Section 2.2.

2.1 Anatomy of the Olfactory Sensory Periphery

All odorant receptors and their coupled OSNs are spread across the third segment
of antennae and maxillary palps [29, 30]. These two olfactory front ends are covered
with hundreds of sensilla, hair like structures that are exposed to odorants environ-
ment. Based on their different shape and morphology, sensilla are categorized into
three types: basiconic, trichoid, and coeloconic. The cuticle wall of each sensillum
contains small pores, through which air and odorant molecules diffuse.

An OSN is a bipolar-cell with the apical side of the sensory dendrites facing toward
the cuticle that covers the surface of the third segment of the antenna. The outer
dendritic segment sends off many branches [29, 30], known as cilia, that fill the
entire inner space of the sensilla. The surface of the cilia is covered with odorant
receptors.

Similar to vertebrate OR genes, fly OR genes encode receptor proteins with seven
membrane-spanning domains [31]. In vertebrates and worms, the odorant receptor
is a G-type protein-coupled receptor (GPCR) [32]. Each olfactory sensory neuron
genetically expresses only a single type of odorant receptor, also known as the one-
neuron one-receptor rule [33]. In fruit flies, however, ORs have no homology to
GPCRs and contain a family of membrane proteins with inverted membrane topology
relative to that of GPCRs. Furthermore, each fly OSN typically expresses two ORs,
that jointly form a heteromeric complex with one conventional OR serving as the
ligand receptor and an atypical OR, Or83b, serving as the ligand gated ion channel.
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2.2 Functionality of the Odorant Receptors and OSNs 9

The atypical receptor Or83b is co-expressed along with other ORs in all but the CO2
sensitive OSNs. The latter express the Gr21a and Gr63a receptors [34].

There are about 60 genetically identified OR types, each of which is expressed in
about 25 OSNs on each side of the brain [35]. Each OSN extends a single axon from
the basal end of the soma, branching to each side of the brain and converging onto a
single glomerulus in the respective antennal lobe. Each antennal lobe contains some
50 glomeruli usually characterized by their functionality, size, shape, and relative
position [36]. Axons of OSNs expressing the same receptor type project to the
same glomerulus, despite the fact that OSNs are irregularly distributed on the third
segment of the antenna and maxillary palp [37]. The convergence of OSNs expressing
the same receptor type to the same glomerulus is known as the one-receptor one-
glomerulus rule [38]. There are exceptions to this rule [39].

2.2 Functionality of the Odorant Receptors and OSNs

In the past three decades, a substantial amount of research was focussed on vari-
ous abstraction levels of fruit fly’s olfactory system, ranging from receptor induced
molecular dynamics to neural population activity. These results provide researchers
with mechanistic insights and constraints for modeling the olfactory system in silico.
Here, rather than providing an extensive review of the literature, we list some of
the most essential characteristics of odorant receptors and olfactory sensory neurons
that will be taken into account in modeling and emulating the antenna/maxillary
palp local processing unit.

As already mentioned above, there are about 60 types of genetically identified odorant
receptors. Some receptor types are highly selective, and only respond to specific types
of chemicals, such as a specific pheromone, while some other receptor types react to
many different odorants. Different odorants trigger responses of different OSN groups
that may overlap with each other. A set of odorants could trigger a set of OSN groups
that entirely covers the OSN groups triggered by another odorant, thereby resulting
in a limited number of odorant identities that can be faithfully and simultaneously
encoded in a mixture [40]. Encoding of odorant mixtures and the related olfactory
cocktail party problem are both important questions that require further study [41,
42]. In this RFC, we only focus on the encoding of stimuli comprised of a single
odorant.

Odorants are in general excitatory to OSNs. In the absence of odorants, OSNs
spontaneously fire on average 8 spikes/sec [43, 6], i.e., they are noisy. An odorant
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can inhibit OSNs expressing certain receptor types and thereby drive their firing
rate below the average spontaneous rate. However, most odorants that inhibit OSNs
expressing a certain receptor type are reported to excite many other OSNs expressing
other receptor types, and hence no odorant is purely inhibitory by its very own nature
[7].

The diversity of OSN responses to a single odorant is believed to originate in the
transduction process initiated by the expressed receptor types and not in the process
of spike generation. That is, the spike generation mechanisms of OSNs expressing
different receptor types are I/O equivalent. Genetically swapping receptors between
OSNs expressing distinctly different receptor types switches their odorant response
profiles, as well as the temporal dynamics of their response to odorants [44].

Figure 1: 2D encoding in Or59b OSN. The OSN encodes both the odorant concentration and its
gradient into spike activity (rate) [16]. (left) 3D view; (right) top view. (Reproduced from Figure
3 in [16] using the original raw data)

The temporal response of OSNs in response to odorants is strongly nonlinear. OSNs
encode both the concentration and concentration gradient of the odorant waveforms
as shown in Fig. 1 [16]. The 2D encoding property of a single OSN has been verified
for various odorants and odorant concentration waveforms as well as receptor types.
Fig. 2 shows the peri-stimulus time histogram (PSTH) of an OSN expressing the
OR59b receptor in response to an acetone staircase waveform. The OSN spike rate
rises to peak value during odorant onset (positive gradient), then gradually decreases
to a constant value (zero gradient), and finally goes below the spontaneous rate after
odorant offset (negative gradient).
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Figure 2: Or59b OSN responses to an acetone staircase waveform. (top) acetone concentration
waveform; (bottom) PSTH of the Or59b OSN in response to the acetone staircase waveform;
(Reproduced from Figure 2 in [16] using the original raw data)

The odorant response of OSN groups has been experimentally characterized by mul-
tiple research groups using different techniques, including lose-patch recording in
wild-type sensilla [6], lose-patch recording of spike count in the “empty neuron” [7],
calcium imaging of cellular responses [8], among others. In addition to the technical
differences, these studies used different OSN groups, and no study has so far covered
all receptor types with the same odorant sets. Furthermore, the concentration of
odorants used in these studies might have been different. To overcome the hetero-
geneity of odorant responses caused by different techniques, different receptors, and
non-overlapping odorants, Galizia et al. developed a computational approach that
numerically compares and combines odorant responses from all studies into a single
consensus database, called the DoOR database [9, 10].

The approach developed by Galizia et al. is based on the assumption that if, for a
given OSN, odorant A triggers a higher response than odorant B, it will do so in all
studies, regardless of the recording technique used. Such an assumption has been
shown to be valid for calcium imaging and lose-patch recording [45]. The proposed
algorithm of merging datasets for a given OSN type in the DoOR database is given
in [9, 10] and will not be repeated here.

After performing the merging algorithm for every single OSN group, the proposed

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2017. ; https://doi.org/10.1101/237669doi: bioRxiv preprint 

https://doi.org/10.1101/237669
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2 Functionality of the Odorant Receptors and OSNs 12

(a)

7
9

-2
0

-9
1

4
1

-7
8

-6
7

8
-9

3
-3

6
2

3
-4

2
-7

9
7

-6
4

-3
4

3
1

-0
3

-8
6

7
-6

4
-1

1
0

5
-3

7
-3

1
0

9
-6

0
-4

7
5

-1
8

-3
7

5
-0

7
-0

1
0

7
-8

7
-9

6
2

8
-6

3
-7

7
1

-4
1

-0
9

8
-0

1
-1

1
2

3
-8

6
-4

1
0

5
-5

4
-4

1
1

0
-1

9
-0

7
4

5
2

-7
9

-1
7

1
-3

6
-3

9
2

8
-9

6
-1

6
1

6
-2

5
-1

6
0

3
2

-2
9

-7
1

4
2

-9
2

-7
2

4
9

7
-1

8
-9

1
0

5
-8

7
-3

1
2

3
-9

2
-2

5
4

0
5

-4
1

-4
1

1
1

-2
7

-3
1

0
3

-4
5

-7
9

2
8

-9
7

-2
1

1
0

-4
3

-0
7

9
-3

1
-2

1
4

2
-6

2
-1

5
0

3
-7

4
-2

1
0

9
-9

4
-4

5
5

6
-8

2
-1

9
2

8
-9

4
-9

6
4

-1
8

-6
7

9
-0

9
-4

1
0

9
-5

2
-4

6
4

-1
9

-7
1

2
4

-3
8

-9
so

lv
e
n
t

1
2

3
-5

1
-3

1
4

9
-5

7
-5

9
7

-5
3

-0
1

0
7

-9
2

-6
1

2
7

-1
7

-3
1

0
7

-0
2

-8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
r4

2
a

O
r5

9
b

G
r2

1
a

O
r9

a
O

r4
7
b

O
r1

3
a

O
r7

a
O

r2
2
a

O
r6

7
b

O
r8

5
b

O
r4

2
b

O
r3

5
a

O
r9

8
a

O
r8

5
f

O
r6

7
a

O
r4

3
b

O
r1

9
a

a
b
5
B

O
r8

8
a

O
r6

5
a

O
r4

3
a

O
r1

0
a

O
r8

5
a

O
r6

7
c

O
r2

a
O

r4
7
a

a
b
3
B

O
r8

2
a

O
r9

2
a

O
r4

9
b

a
b
2
B

O
r7

1
a

O
r3

3
b

O
r2

3
a

a
b
4
B

a
c1

a
a
c1

b
a
c2

a
a
c2

b
a
c3

a
a
c4

O
r1

a
O

r2
2
b

O
r2

2
c

O
r2

4
a

O
r3

0
a

O
r3

3
a

O
r3

3
c

O
r4

5
a

O
r4

5
b

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b)

Figure 3: OSN response profile in response to odorant stimuli in the DoOR database [9, 10]. The
DoOR database integrates OSN-odorant responses from multiple independent studies using different
recording techniques, such as calcium imaging and lose-patch recording. Each data entry in the
DoOR database, hence, represents calcium activity level or spike count. (a) The response matrix
of 50 receptors and 50 odorants. The 50 receptors have the most odorant recordings in the DoOR
database among all 78 receptor types. The 50 odorants have the most prevalent recordings for the
50 receptor types. Each row represents a receptor while each column stands for an odorant. The
normalized odorant-receptor response is color coded. The response matrix is incomplete, and the
missing entries are assumed to be 0. (b) Two normalized histograms of the OSN response profile.
(top) Odorant response profile of an OSN expressing the OR59b receptor, taken from a row of (a);
For compactness the odorant identity is expressed using the Chemical Abstracts Service number.
(bottom) Different OSN types in response to acetone, taken from a column of (a).

approach then applies global rescaling across all OSN groups by introducing a weight-
ing factor for each receptor (the weight factor is a hand-signed scalar that emphasizes
studies with more odorants and receptors used.) The DoOR database contains the
odorant-responses for 78 odorant receptors, listing 693 odorants, for a total of 7, 381
data points. Currently, the response matrix is incomplete. Or19a/Or19b has the
most records with responses to 497 odorants, whereas Or33c has the least records
with responses to only 12 odorants. Fig. 3a shows the odorant response of OSNs
each expressing one of 50 receptor types that have the most odorant recordings in
the DoOR database. The 50 odorants included have most prevalent recordings for
the 50 indexed receptors. The response is assigned a value between 0 and 1.
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3 I/O Characterization of Single OSNs

In general, olfactory transduction in insects from airborne molecules to transduc-
tion current involves a number of steps [46, 47]: 1. absorption of odorant molecules
through the sensillum surface, binding between odorant molecules and odorant-
binding proteins (OBP), and diffusion of bound OBP through the aqueous sensillar
lymph to OSN dendrites, 2. odorant-receptor binding/dissociation, and 3. opening
of ion channels that results in transduction current. The first step is known as the
“peri-receptor” processing, the second step is referred as the bound receptor gener-
ator and the third step as the co-receptor channel. Taken together, they represent
the fruit fly odorant transduction processing model. See also Figure 6.

In this section we introduce a novel olfactory sensory neuron model of the fruit
fly. The olfactory sensory neuron model consists of an odorant transduction model,
described in Section 3.1 and a biophysical spike generator model, described in Sec-
tion 3.2. In Section 3.3, the I/O characterization of the OTP/BSG cascade is
discussed and the 2D-encoding capabilities of model OSNs is reproduced. Finally, in
Section 3.4 the response of the OSN model proposed here is biologically validated
using odorant waveforms that have been previously used in experiments with different
odorants and receptors, and compared with electrophysiological recordings.

3.1 The Odorant Transduction Process Model

Two research groups have published widely different results on the OR transduction
process in fruit flies [48, 49]. As the exact signaling of the transduction cascade in
fruit flies is still inconclusive, our approach focusses here on constructing a minimal
transduction model. Called the fruit fly odorant transduction process (OTP) model,
it extends the model proposed by Rospars et al. [18, 19] by incorporating the essen-
tial features of temporal dynamics of other computational models, such as the one
proposed by Dougherty et al. [17], while at the same time exhibiting the calcium
dynamics of [22]. In the latter work, the temporal dynamics of fly’s OSN vanish
in the absence of extracellular calcium. Notably, the calcium dynamics considered
here constitutes a feedback mechanism that is similar to but also different from the
one in the abstract model proposed by De Palo et al. [24]. The differences will be
addressed in Section 3.1.2.

The odorant transduction process model consists of the active receptor model, de-
scribed section Section 3.1.1, and the co-receptor channel model, described in Sec-
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3.1 The Odorant Transduction Process Model 14

tion 3.1.2. In Section 3.1.1 we model odorant identity by an odorant-receptor
binding rate tensor modulated by the odorant concentration profile and an odorant-
receptor dissociation rate tensor, and quantitatively describe the ligand binding pro-
cess. In Section 3.1.2 the co-receptor channel including the calcium channel that
provides an essential feedback mechanism is described. In Section 3.1.3, we evaluate
the temporal response of the proposed odorant transduction process model for three
different odorant concentration waveforms (step, ramp, and parabolic stimuli).

3.1.1 The Active Receptor Model

The fruit fly active receptor model quantifies the binding and the dissociation process
between odorant molecules and odorant receptors. As introduced here, the model
centers on the rate of change of the ratio [x0] of free receptors versus the total number
of receptors expressed by neuron n:

d

dt
[x0]ron = −[b]ron · [v]ron · [x0]ron + [d]ron · [x1]ron, (1)

where [x1]ron is the ratio of ligand-bound receptors, and v is the odorant concentra-
tion profile given by

[v]ron =
∫
R
h(t− s)u(s)ds+ [γ]ron

∫
R
h(t− s)du(s), (2)

if the RHS is positive and zero otherwise. The RHS is the weighted sum of the
filtered odorant concentration u and filtered concentration gradient du/dt with [γ]ron
denoting a weighting factor. The impulse response of the linear filter h(t) models the
“peri-receptor” process that describes the transformation of odorant concentration
waveform as odorant molecules diffuse through sensilla walls towards the dendrites
of OSN [39]. For simplicity, the dependence of h(t) on the geometry of the sensillum
and the diffusion of odorant molecules across the sensillar lymph is not considered
here. Note that the odorant transduction models in the literature only consider the
odorant concentration but not the odorant concentration profile as the input to the
transduction cascade [21, 24, 18, 19, 22]. As we will show in Section 3.1.2, the
odorant concentration profile is critical for modeling 2D odorant encoding.

The 3D tensor, b with entries [b]ron, where r = 1, 2, ..., R, is the receptor type,
o = 1, 2..., O, denotes the odorant and n = 1, 2, ..., N , denotes the neuron index,
is called the odorant-receptor binding rate and models the association rate between
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3.1 The Odorant Transduction Process Model 15

Figure 4: Three dimensional odorant-receptor binding rate tensor b. For a given neuron n =
1, 2, ..., N , the binding rate values are denoted by [b]ron, for all r = 1, 2, ..., R, and o = 1, 2, ..., O.
For the fruit fly, the total number of neurons expressing the same receptor type is about N = 50,
and the total number of receptor types is around R = 60. O is the number of all odorants that the
fruit fly senses.

an odorant and a receptor type. The 3D tensor d with entries [d]ron denotes the
odorant-receptor dissociation and models the detachment rate between an odorant
and a receptor type. The 3D binding rate tensor b is graphically depicted in Fig. 4
(A similar figure can be drawn for the dissociation rate tensor d). In what follows,
the biding rate [b]ron and the dissociation rate [d]ron, for a given odorant o and
a given receptor type r, are assumed for simplicity to take the same value for all
neurons n = 1, 2, ..., N .

We assume that receptors only have two states, either being “free” or “bound”, i.e.,
[x0]ron + [x1]ron = 1. Then, Eq. (1) amounts to,

d

dt
[x1]ron = [b]ron · [v]ron · (1− [x1]ron)− [d]ron · [x1]ron. (3)

Remark 1. Note that the equation above is indexed by r, o, n and the tensor x1
with entries [x1] has the same dimensionality as the binding rate tensor b and the
dissociation rate tensor d.

Eq. (3) maps the input given by the product between the binding rate and the odor-
ant concentration profile, and the dissociation rate [d]ron, i.e., ([b]ron · [v]ron, [d]ron),
into the ratio of bound receptors [x1]. In what follows this map will be called the
bound receptor generator (see Fig. 6).
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3.1 The Odorant Transduction Process Model 16

h(t) in Eq. (2) is the impulse response of a low-pass linear filter that is usually
defined in the literature in frequency domain. Alternatively, h(t) is the solution to
the second-order differential equation,

d2

dt2
z(t) + 2α1β1

d

dt
z(t) + α2

1z(t) = α2
1δ(t),

with the initial condition z(0) = 0 and dz/dt|t=0 = 0, where δ is the Dirac-function.
The value of α1 and β1 are given in Table 2, and the corresponding h(t) has an
effective bandwidth of 15 Hz.

An example providing intuition about the I/O map of the bound receptor generator
is given below.

Example 1. We evaluated the active receptor model using step stimuli us(t), ramp
stimuli ur(t), and parabola stimuli up(t), chosen as,

us(t) =
{
c, 0.5 ≤ t ≤ 2.5
0, otherwise,

(4)

ur(t) =


c 1

1.8(t− 0.5), 0.5 ≤ t < 2.3
c(1− 5(t− 2.3)), 2.3 ≤ t < 2.5

0, otherwise,
(5)

up(t) =


c( 1

1.9(t− 0.5))2, 0.5 ≤ t < 2.4
c(1− 10(t− 2.4))2, 2.4 ≤ t < 2.5

0, otherwise,
(6)

where c is a scalar ranging between 1 and 101 with a step size of 5 (color coded in
Fig. 5). The binding rates and the dissociation rates of all OTP models were set to
1 and 132, respectively, and values of the other parameters are listed in Table 2.

The response at the output of the peri-receptor process u∗h, the odorant concentration
profile [v]ron, and the ratio of bound receptor [x1]ron are shown in Fig. 5. The
slope of the rising phase of u ∗ h after the onset of odorant is due to the effect of
the filter h(t). The odorant concentration profile [v]ron encoded the gradient of the
concentration for the step stimuli (see the chair-shaped response), but less so for
the ramp and parabolic stimuli. Lastly, the bound receptor [x1]ron smoothened the
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3.1 The Odorant Transduction Process Model 17

(a) Step (b) Ramp (c) Parabola

Figure 5: Characterizing the odorant-receptor binding model (Eq. (3)) in response to pulse, ramp,
and parabola input stimuli. (a) Step stimulus given by Eq. (4). (b) Ramp stimulus given by
Eq. (5). (c) Parabola stimulus given by Eq. (6). All concentration amplitude values range between
1 and 101 with a step size of 5. The binding rate and the dissociation rate of all OTP models were
set to 1 and 132, respectively; the values of the other parameters are listed in Table 2.

odorant concentration profile, and have a bounded range between 0 and 1 (see also
Remark 2).

3.1.2 The Co-Receptor Channel Model

The fruit fly co-receptor channel and a calcium channel appear in a feedback config-
uration as shown in Fig. 6. Each of these components has its specific functionality.
The co-receptor channel represents the ion channel gated by the atypical co-receptor
(CR), Or83b, as discussed in Section 2. The calcium channel models the calcium
dynamics, and provides a feedback mechanism to the co-receptor channel.

Next, we walk through each of the three equations of the co-receptor channel model.
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3.1 The Odorant Transduction Process Model 18

Peri-Receptor
Process

Bound Receptor
Generator

Co-Receptor
Channel

Gating Variable
Generator

Calcium
Channel

Transduction
Current

Generator I

Active Receptor Model Co-Receptor Channel Model
Fruit Fly Odorant Transduction Process Model

Odorant
Stimulus

u u ∗ h x1 x2

x3

Figure 6: The fruit fly model for odorant transduction. The red blocks (�) represent the peri-
receptor process, the bound receptor generator, the co-receptor channel and the calcium channel,
respectively. The green block (�) denotes the transduction current generator. The variables are
summarized in Table 1.

variable description
u odorant concentration waveform
b odorant-receptor binding rate
v odorant concentration profile
d odorant-receptor dissociation rate
x1 ratio of ligand-bound receptors
x2 gating variable of the co-receptor channel
x3 state variable of the calcium channel
I transduction current generated by the co-receptor channel

Table 1: Summary of the variables in the fruit fly odorant transduction model.

The key variables involved in the proposed odor transduction model are summarized
in Table 1.

(1) The rate of change of the gating variable of the co-receptor channel [x2]ron:

d

dt
[x2]ron = α2 · [x1]ron(1− [x2]ron)− β2 · [x2]ron − κ · [x2]2/3

ron · [x3]2/3
ron, (7)

where α2 and β2 are scalars indicating the rate of activation and deactivation
of the gating variable, respectively, and κ · [x2]2/3

ron · [x3]2/3
ron models the calcium

feedback with κ a constant. The co-receptor channel model considered here
differs from the one proposed by De Palo et al. [24] in two important ways.
First, the input to the co-receptor channel is the ratio of the ligand-bound
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3.1 The Odorant Transduction Process Model 19

variable value description
α1 1.570 · 101 cutoff frequency of the filter modeling the peri-receptor process
β1 8.000 · 10−1 slope of the transition region of the peri-receptor process filter

[γ]ron 1.750 · 10−1 scaling factor of the filtered odorant concentration gradient
α2 8.877 · 101 rate of activation of the gating variable of the co-receptor channel
β2 9.789 · 101 rate of deactivation of the gating variable of the co-receptor channel
α3 2.100 · 100 rate of increase of the state variable of the calcium channel
β3 1.200 · 100 rate of decrease of the state variable of the calcium channel
κ 7.089 · 103 feedback strength from the calcium channel to the co-receptor channel
c 7.534 · 10−2 value achieving the half-activation of the co-receptor channel
p 1 the Hill coefficient of the co-receptor channel

Imax 7.774 · 101 maximum current amplitude generated by the co-receptor channel

Table 2: Summary of the parameters in the fruit fly odorant transduction model.

receptors [x1]ron driven, among others, by the odorant concentration profile
[v]ron, while De Palo et al. used the odorant concentration u . Second, the
feedback mechanism is based on the fractional power 2/3 for the variables
[x2]ron and [x3]ron, while De Palo et al. used the variables raised to power 1 in
their feedback model. The fractional power is key in facilitating the encoding
of the filtered concentration gradient.

(2) The rate of change of the state variable of the calcium channel [x3]ron:

d

dt
[x3]ron = α3 · [x2]ron − β3 · [x3]ron, (8)

where α3 and β3 are scalars indicating the rate of increase and decrease of the
state variable.

(3) Finally, the transduction current [I]ron is given by:

[I]ron = [x2]pron
[x2]pron + cp

· Imax, (9)

where p and c are scalars, and Imax denotes the maximal amplitude of the
current through the co-receptor channel, whose value is empirically determined
through parameter sweeping.
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3.1 The Odorant Transduction Process Model 20

3.1.3 I/O Characterization of the OTP Model

Combining the equations introduced above, we rewrite the odorant transduction
process model in compact form as

[v]ron = Re
(∫

R
h(t− s)u(s)ds+ [γ]ron

∫
R
h(t− s)du(s)

)
 ẋ1

ẋ2
ẋ3


ron

=

 [b]ron · [v]ron · (1− [x1]ron)− [d]ron · [x1]ron
α2 · [x1]ron(1− [x2]ron)− β2 · [x2]ron − κ · [x2]2/3

ron · [x3]2/3
ron

α3 · [x2]ron − β3 · [x3]ron


[I]ron = [x2]pron

[x2]pron + cp
· Imax, (10)

for all r = 1, 2, ..., R, o = 1, 2, ..., O and n = 1, 2, ..., N . Re above denotes the rectifi-
cation function.

Remark 2. It is easy to see that [x1]ron and [x2]ron take values in [0, 1]. This is
because the value of the derivative [ẋ1]ron at [x1]ron = 0 is positive and the derivative
[ẋ1]ron at [x1]ron = 1 is negative. Same reasoning applies to [ẋ2]ron. Finally, we also
note that [x3]ron is positive.

Remark 3. The structure of the OTP model equations (10) above (see also Fig. 6)
is reminiscent of the structure of the identified circuit in Fig. 6(a) in [16].

Is the OTP model capable of qualitatively reproducing transduction currents as those
recorded in voltage clamp experiments? We empirically explore this question in the
example below.

Example 2. I/O Characterization of the OTP Model

We first empirically tuned the parameters of the odorant transduction process model
so as to generate similar transduction currents as recorded in the voltage-clamp setup
published in [22]. The value of the model parameters are given in Table 2. We
then set the binding rate and the dissociation rate of the OTP model to 1 and 132,
respectively, and tested the OTP model using step input stimuli with different con-
centration amplitude values, ranging between 1 and 101 with a step size of 5. As
shown in Fig. 7(a), the OTP model exhibits temporal response dynamics akin to
the adaption phenomena reported in [22]. Furthermore, we tested the OTP model
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3.1 The Odorant Transduction Process Model 21

with ramp and parabola stimuli of different concentration amplitude values, as shown
in Fig. 7. The waveform of the ramp and parabola stimuli is respectively given by
Eq. (5) and Eq. (6).

(a) Step (b) Ramp (c) Parabola

Figure 7: Characterizing the fruit fly odorant transduction process model in response to input
stimuli of different concentration amplitudes values, ranging between 1 and 101 ppm with a gap
size of 5 ppm. The binding rate and the dissociation rate of all OTP models were set to 1 and 132,
respectively. The rest of the parameters of the OTP model are given in Table 2 in Section 3.1.2.
(a) Step stimulus given by Eq. (4). (b) Ramp stimulus given by Eq. (5). (c) Parabola stimulus
given by Eq. (6).

Compared with the stimulus response of the active receptor model discussed in Exam-
ple (1), the response of the OTP model exhibits a complex temporal variability, that is
sensitive to both the amplitude and the gradient of the input stimulus waveform. For
example, as shown in Fig. 7(b), the response of the OTP model to the ramp stimulus
first increases linearly as the ramp stimulus increases, but then plateaus and remains
constant as the gradient of the ramp stimulus is a constant. In addition, as shown in
Fig. 7(c), the response of the OTP model to the parabola stimulus roughly resembles
a ramp function that closely matches with the gradient of the parabola stimulus.
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3.2 Biophysical Spike Generator Model 22

The complex temporal response of the OTP model is due to the feedback received by the
co-receptor channel from the calcium channel (see also Fig. 6). Without the calcium
channel feedback, the OTP model is reduced to a three-stage (peri-receptor processing,
bound receptor generator, and co-receptor channel) feedforward model. The feedback
enables the OTP model to encode the odorant concentration profile components, i.e.,
both the filtered odorant concentration and concentration gradient. In addition, the
nonlinearities embedded in the current generation of the co-receptor channel (see
also Eq. (9)) acts as a normalization block, that facilitates the OTP model to map a
stimulus with a wide range of amplitude values into a bounded transduction current.

3.2 Biophysical Spike Generator Model

We restrict our choice of the spiking mechanism of OSNs to biophysical spike gener-
ators (BSG) such as the Hodgkin-Huxley, the Morris-Lecar, and the Connor-Stevens
point neuron models. For simplicity of presentation, we only describe here the
Connor-Stevens (CS) neuron model. The CS model can be expressed in compact
form as

d

dt
[y]ron = f([y]ron, [I]ron),

with y = [V, n,m, h, p, q]T is a vector of state variables, f is a vector function of
the same dimension, and I is the transduction current generated by the OTP model.
Here ron takes the same values as the same subscript in the OTP model. A complete
formulation of the CS model is given in Appendix A. Compared with the classic
Hodgkin-Huxley neuron model, the CS neuron model has a a continuous F-I curve
[50], and is capable of encoding weak pulse stimuli with low spiking rates. It also
has a wide spiking rate range that sufficiently covers the spiking rate range of the
OSNs.

The CS neuron model does not fire spontaneously, and requires a minimum value of
the input current to trigger firing. OSNs are noisy and fire spontaneously on average
8 spikes/s, as discussed in section 2.2. To mitigate this mismatch, we added noise to
the CS neuron model,

d[y]ron = f([y]ron, [I]ron)dt+ d[W]ron, (11)
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3.3 Characterization of the OTP/BSG Cascade 23

where W = [0, σWn, σWm, σWh, σWa, σWb]T , and (Wn,Wn,Wh,Wa,Wb) are zero
mean, unit variance independent Brownian motion processes, and σ is a scalar. We
empirically determined the value of σ to be 2.05 by sweeping its value in the range of
(0, 2.5) so that the noisy CS model fires some 8 spikes per second. The F-I curve of the
CS neuron model for different values of σ is shown in Fig. 22 in Appendix A.

3.3 Characterization of the OTP/BSG Cascade

In what follows, we will refer for simplicity to the in silico OSN model consisting
of the OTP model followed by the BSG model (here the CS neuron model) as the
OTP/BSG cascade. The parameters of the OTP model are given in Table 2, and
the parameters of the BSG model are listed in Appendix A.

In the rest of this subsection, we first characterize the I/O response of the OTP/BSG
cascade to step, ramp, and parabola stimuli in Section 3.3.1. Second, in Sec-
tion 3.3.2, we study the steady state response of the OTP/BSG cascade to con-
stant filtered stimuli with different amplitude values. Finally, in Section 3.3.3, we
demonstrate that the OTP/BSG cascade is capable of reproducing the 2D encoding
discussed in Section 2.2.

3.3.1 I/O Characterization of the OTP/BSG Cascade

To characterize the I/O response of the OTP/BSG model, we tested the OTP/BSG
model with the same set of step, ramp, and parabola stimuli we used in both Ex-
ample (1) and Example (2).

Example 3. We set the binding rate and the dissociation rate of all OTP models
to 1 and 132, respectively. The details of the simulation configuration and PSTH
computation are given in Remark 4 below.

The temporal response variability of the OTP/BSG cascade as shown in Fig. 8 is
similar to the one of the OTP model shown in Example (2). The similarity between
the responses of the OTP model and the OTP/BSG cascade, as respectively shown in
Fig. 7, and Fig. 8, suggests that the temporal variability of the odorant concentration
profile is primarily encoded in the OTP model. The BSG model is simply a sampling
device mapping input current waveforms into spike trains.
Remark 4. We evaluated the response to each of the stimuli by 50 OSNs, and com-
puted the PSTH using the resultant 50 spike sequences. The PSTH had a 20 ms bin
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(a) Step (b) Ramp (c) Parabola

Figure 8: Characterization of the OTP/BSG cascade in response to input stimuli of different
concentration amplitude values, ranging between 1 and 101 ppm with a step size of 5 ppm. The
parameters of the OTP model are given in Table 2. The binding rate and the dissociation rate
of all OTP models were set to 1 and 132, respectively. The details of the simulation configuration
and PSTH computation are given in Remark 4. (a) Step stimulus given by Eq. (4). (b) Ramp
stimulus given by Eq. (5). (c) Parabola stimulus given by Eq. (6).

size and was shifted by a 10 ms time interval between consecutive bins. The parame-
ters of all OTP models are given in Table 2. The binding rate was separately set for
each odorant-receptor pair. We used the same set of parameters for all 50 cascades,
but generated different sample paths for the Brownian motion term W in equation
Eq. (11). The parameters of the BSG model are listed in Appendix A.

3.3.2 Evaluating the Steady State Response of the OTP/BSG Cascade

We note that Eq. (3) can be written as,

1
[d]ron

· d
dt

[x1]ron = [b]ron
[d]ron

· [v]ron · (1− [x1]ron)− [x1]ron. (12)

where [b]ron/[d]ron is the odorant-receptor or ligand-receptor “affinity”.

The active receptor model postulated in Eq. (12) implies that in steady state the
product between the odorant-receptor affinity and the odorant concentration profile
is the main figure of merit for I/O characterization of the fruit fly OTP/BSG cascade.
To study its mapping into spike rate, we simulated OTP/BSG cascades with constant
stimuli, and evaluated the spike rate at steady state.
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The amplitude of filtered step stimuli ranges between 10−1 and 105 with a step size
of 0.1 on the logarithmic scale. The affinity ranges between 10−2 and 101 with a
step size of 0.01 on the logarithmic scale. The parameters of the OTP model are
given in Table 2, and the parameters of the BSG model are listed in Appendix A.
The step stimulus is 5 second long, and the OTP/BSG cascades reach steady state
roughly after 3 seconds. We calculated the spike rate using a window between 4 to 5
seconds, and plotted the results in both 2D and 3D in Fig. 9. Note that the x-axis
in Fig. 9 is on the logarithmic scale. As shown in Fig. 9, for different values of the
odorant-receptor affinity, the mapping of the filtered concentration amplitude into
spike rate shifts along the x-axis. A low affinity value requires a higher concentration
amplitude value in order to elicit spikes above the spontaneous activity rate.

Figure 9: The steady-state spike rate of the OTP/BSG cascade in response to 5-second-long con-
stant stimuli. The parameters of the OTP model are given in Table 2, and the parameters of
the BSG model are listed in Appendix A. The amplitude of the constant filtered stimuli ranges
between 10−3 and 103 with a step size of 0.1 on the logarithmic scale. The spike rate is calculated in
a window between 4 and 5 seconds. (left) 3D view of the transformation of the affinity and the fil-
tered concentration amplitude into spike rate. (right) Transformation of the filtered concentration
amplitude into spike rate for fixed values of the ligand-receptor affinity.

As shown in Fig. 9, the transformation of the product between the odorant-receptor
affinity and the filtered concentration amplitude into spike rate resembles a sigmoidal
function. The OTP/BSG cascade starts spiking only after the product exceeds a
certain threshold value. For odorant-receptor pairs with a low affinity, the firing
activity requires a larger minimal amplitude of concentration than for those with a
higher affinity value. This, again, coincides with experimental findings that odorant-
receptor pairs with lower affinity require higher odorant concentration values in order
to elicit spiking activity [7].
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3.3.3 Reproducing the 2D Encoding of the OSNs

To examine whether the fruit fly OTP/BSG cascade exhibits the 2D encoding prop-
erty, we stimulated the cascade with the set of 110 filtered triangular concentration
waveforms that were previously used in experiments [16] with Or59b and acetone.
The filtered triangular waveforms and their trajectories are plotted in Fig. 10(a-b).
We applied each of the filtered triangular waveforms to 50 OTP/BSG cascades, and
evaluated the PSTH using the spike train of all 50 cascades with a 20 ms bin size and
10 ms time shift between consecutive bins. The binding and dissociation rates of all
OTP/BSG cascades was set to 1 and 132, respectively. The parameters of the OTP
model and the BSG model were those listed in Section 3.1.2 and Appendix A,
respectively. The responses of the OTP/BSG cascade are given in Fig. 10(c-f). The
PSTH of the OTP/BSG cascade in response to different waveforms is color-coded
in both the 2D and 3D view, as shown in Fig. 10(c) and Fig. 10(d), respectively.
In addition, we applied the 2D ridge regression algorithm to identify a 2D encoding
manifold that best fits to the PSTHs. The manifold and its contour are depicted in
Fig. 10(e) and Fig. 10(f), respectively. Similarly to the case of the filtered staircase
waveform, the OTP/BSG cascade firing rate increases dramatically as the concen-
tration increases.

As shown Fig. 10(e-f), a 2D encoding manifold in a filtered concentration and filtered
concentration gradient space provides a quantitative description of the OTP/BSG
cascade. Examining Fig. 10(f), we note that the 2D encoding manifold is highly
nonlinear and that the OTP/BSG cascade clearly encodes the filtered odorant con-
centration and its rate of change. The OTP/BSG cascade responds very strongly
to even the smallest positive values of the gradient and encodes only positive con-
centration gradients at low odorant concentrations. At high concentrations the OSN
mostly encodes the filtered odorant concentration. Furthermore, the 2D encoding
manifold of the OTP/BSG cascade is qualitatively similar to the one of the OR59b
OSN, as depicted in Fig. 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Characterizing the 2D encoding (filtered concentration and filtered concentration gra-
dient) of the OTP/BSG cascade. (a) 110 filtered triangular concentration waveforms. (b) The
trajectories of triangular waveforms plotted in the filtered concentration and filtered concentration
gradient plane. (c) The PSTHs of the OTP/BSG cascade in response to filtered triangular con-
centration waveforms. Different colors correspond to distinct waveforms. PSTHs were computed
using a 20 ms bin size and a 10 ms time shift between consecutive bins. (d) The trajectories of
PSTHs plotted in the filtered concentration and filtered concentration gradient plane. Different
colors correspond to distinct triangular waveforms. (e) The 2D Encoding Manifold fitted to the
trajectories of PSTHs. The manifold is generated by applying a 2D ridge estimator to the PSTHs.
(f) The contour plot of the 2D manifold.
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3.4 Biological Validation of the OSN Model

The essential functionality of OSNs is to jointly encode both odorant identity and
odorant concentration. To address these two functional aspects we modeled in Sec-
tion 3.1 and Section 3.2 each OSN as an OTP/BSG cascade. To validate our
approach, we examine here the response of the OSN model to odorant waveforms
that were previously used in experiments with different odorants and receptors, and
compare the model responses with electrophysiological recordings. Our results show
that the model closely matches the complex temporal response of OSNs.

In the rest of this section, we first advance an algorithm for estimating the affinity
and the dissociation rate of an odorant-receptor pair. We then apply the algorithm
to estimate the affinity and dissociation rate for the (acetone, Or59b) pair using two
different datasets of electrophysiology recordings. Second, we evaluate the temporal
response of the Or59b OSN model to acetone with a multitude of stimuli, including
step, ramp and parabolic waveforms. We further interrogate the model with staircase
and noisy waveforms. Lastly, we evaluate the affinity and dissociation rate for differ-
ent odorant-receptor pairs including (methyl butyrate, Or59b) and (butyraldehyde,
Or7a).

3.4.1 Estimating the Affinity, Binding and Dissociation Rates for (Ace-
tone, Or59b)

As discussed in Section 3.1 and Section 3.2, the receptor expressed by an OSN
encodes an odorant as the pair ([b]ron · [v]ron, [d]ron), i.e., the product of the odorant-
receptor binding rate and the odorant concentration profile, and the odorant-receptor
dissociation rate. The OTP/BSG cascade then samples and presents this represen-
tation as a train of spikes.

Recall that Eq. (3) can be written as

1
[d]ron

· d
dt

[x1]ron = [b]ron
[d]ron

· [v]ron · (1− [x1]ron)− [x1]ron.

where [b]ron/[d]ron is the odorant-receptor or ligand-receptor “affinity”. We also note
that [d]ron · dt = d([d]ront) is, in effect, a time change. An algorithm to estimate the
values of the odorant-receptor biding and dissociation rates may, therefore,
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1. estimate the ligand-receptor affinity in steady state when the LHS of Eq. (3)
is zero for all values of the dissociation rate [d]ron, and

2. estimate of the dissociation rate [d]ron during a concentration jump assuming
the value of the ligand-receptor affinity to be the one obtained in 1. above.

We describe the procedure above in more detail in Algorithm 1.

Algorithm 1 Estimation of the Affinity, Binding and Dissociation Rates
1: procedure (given step stimulus, steady state spike rate, and peak spike rate).
2: Empirically determine the inverse mapping from spike rate to affinity.
3: Estimate the affinity value [b]ron

[d]ron
from the spike rate using the inverse mapping

obtained under 2 above.
4: Empirically determine the inverse mapping from peak spike rate to dissociation

rate given the estimated affinity value [b]ron

[d]ron
.

5: Estimate the dissociation value [d]ron from the peak spike rate using the inverse
mapping obtained under 4. above.

6: Compute the binding rate [b]ron from the product of estimated values of affinity
and dissociation rate, i.e., [b]ron

[d]ron
· [d]ron.

7: end procedure

Next, we applied Algorithm 1 to estimate the affinity, the dissociation rate, and the
binding rate for (acetone, Or59b) by using two different datasets of electrophysiology
recordings. The source of the two datasets is given in Appendix B. Each of the two
datasets contains the PSTHs obtained from the response of OSNs expressing Or59b
to acetone step waveforms with different concentration amplitudes. As required
by Algorithm 1, we first retrieved the peak and steady state spike rates from
the PSTH in response to each concentration amplitude recorded in the datasets.
Second, for each of the two datasets, we used the steady state spike rate to estimate
the value of the affinity for each concentration amplitude, and computed the mean
and variance of the affinity as shown in Fig. 11. With the mean of the estimated
affinity, we then used the peak spike rate to estimate the value of the dissociation
rate for each concentration amplitude, and computed the mean and variance of the
dissociation rate as shown in Fig. 12. For the first dataset, the mean and variance
of the estimated affinity are 3.141 · 10−4 and (1.312 · 10−4)2, respectively, and the
mean and variance of the estimated dissociation rate are 1.205 ·101 and (3.900 ·101)2,
respectively. For the second dataset, the mean and variance of the estimated affinity
are 3.201 · 10−4 and (1.001 · 10−4)2, respectively, and the mean and variance of the
estimated dissociation rate are 1.389 · 101 and (1.262 · 101)2, respectively. The values
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of the affinity estimated from the two datasets are almost identical, while the two
estimated dissociation rates are marginally different. This is because the steady
state spike rates of the two datasets are similar, but the peak spike rates of the two
datasets differ slightly, as shown in Fig. 23 in Appendix B.

Figure 11: Estimation of the affinity value for two datasets. Both datasets contain PSTHs of
OSNs expressing Or59b in response to acetone step waveforms. The source of the two datasets
is given in Appendix B. For each of the datasets, we computed the mean and variance of the
affinity empirically estimated for each data point. (Left 1) Dataset 1: Estimated affinity for the
is 3.141 · 10−4 with variance (1.312 · 10−4)2; (Left 2) Dataset 2: Estimated affinity is 3.201 · 10−4

with variance (1.001 · 10−4)2; (Right 2) Estimation of the affinity as a function of concentration
amplitude. (Right 1) The mean and variance of estimated affinity value.

Figure 12: Estimation of the dissociation rate for two datasets. Both datasets contain PSTHs of
OSNs expressing Or59b in response to acetone step waveforms. The source of the two datasets
is given in Appendix B. For each of the datasets, we computed the mean and variance of the
dissociation rates empirically estimated for each data point using the affinity obtained in Fig. 11.
(Left 1) Dataset 1: Estimated dissociation rate is 1.205 · 101 with variance (3.900 · 101)2; (Left
2) Dataset 2: Estimated dissociation rate is 1.389 · 101 with variance (1.262 · 101)2; (Right 2)
Estimation of the dissociation rate as a function of concentration amplitude. (Right 1) The mean
and variance of estimated dissociation rate.
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3.4.2 Evaluating the Temporal Response of the Or59b OSN Model to
Acetone

To evaluate temporal response, we stimulated the OSN model with multiple odorant
stimuli that were previously used in experiments designed for characterizing the
response to acetone of OSNs expressing Or59b. As obtained in Section 3.4.1, for all
OTP models considered below we set the odorant-receptor binding rate to 3.141·10−4

and the odorant-receptor dissociation rate to 1.205·101. The details of the simulation
setup are given in Remark 4.

Response of the Or59b OSN Model to Step, Ramp and Parabola Acetone
Waveforms

We first evaluated the response of the Or59b OSN model to step, ramp, and parabolic
stimulus waveforms as shown in the first row of Fig. 13. The temporal response of
the OTP/BSG cascade (the third row of Fig. 13) is similar to the one of the OTP
model (the second row of Fig. 13). For step stimuli, the OTP/BSG cascade generates
a chair-shaped response by first picking up the gradient of the filtered concentration
right after the onset of the odorant, and then gradually dropping down to a constant
value, that encodes the step value of the amplitude. For ramp stimuli, the initial
response of the OTP/BSG cascade rapidly increases, and then it plateaus as the
gradient of filtered ramp stimuli becomes constant. Lastly, for the parabolic stimuli,
the response of the OTP/BSG cascades resembles a ramp function, that corresponds
to the gradient of filtered parabolic stimulus waveforms.

Furthermore, we also compared the PSTH of the spike trains generated by the
OTP/BSG cascade with the PSTH of an Or59b OSN obtained from electrophysiology
recordings in response to acetone concentration waveforms [51]. As shown in Fig. 13,
the OTP/BSG closely matches the odorant response of the Or59b OSN.
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Figure 13: Characterization of the OTP/BSG cascade in response to step, ramp, and parabolic
stimuli. Odorant: acetone, receptor: Or59b. The stimulus waveforms are identical to the ones
used in [51]. The odorant-receptor binding and dissociation rates were set to 3.141 · 10−4 and
1.205 · 101, as obtained in Section 3.4.1. The details of the simulation configuration and PSTH
computation are given in Remark 4. (First Column) Step stimuli. (Second Column) Ramp
stimuli. (Third Column) Parabolic stimuli. (First row) Stimulus waveforms. (Second row)
The output of the peri-receptor process model. (Third row) The output of the OTP model.
(Forth row) PSTH computed from the output of the OTP/BSG output. (Fifth row) PSTH of
the spike train generated by the Or59b OSN in response to the stimulus waveforms (Reproduced
from Figure 2 in [51] using the original raw data).
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Response of the Or59b OSN Model to White Noise Acetone Waveforms

To further compare the response of the OTP/BSG cascade with the Or59b OSN
response, we stimulated OTP/BSG cascades with white noise stimuli, and compared
the PSTH of the model with the one from experimental recordings. The white noise
stimulus was previous used in the experimental setting of [16] for characterizing the
response of Or59b OSNs to acetone.

The output of each of the stages of the Or59b OSN model are shown in Fig. 14. The
odorant onset at around 1 second is picked up by the odorant concentration profile
(see the the second row of Fig. 14). In addition, the white noise waveform between
2 and 10 second is smoothed out. The smoothing effect is due to the peri-receptor
process filter. The OTP model further emphasizes the gradient encoding (the third
row of Fig. 14), and predominantly defines the temporal response of the OSN model
to white noise stimuli. The BSG output follows the OTP output, as the BSG is
simply a sampling device. Lastly, we compare the model output and the PSTH from
OSN recordings in [16] (the fifth and the sixth rows of Fig. 14). The Or59b OSN
model output PSTH closely matches the PSTH obtained from recordings.

The peri-receptor process filter is critical in processing the white noise waveforms,
but less critical in processing the static waveforms discussed in this section. The filter
prevents the model from overemphasizing the gradient of the white noise waveforms.
In absence of this filter, the response of the OTP/BSG cascade is severely limited in
matching the response of Or59b OSN [16] to acetone waveforms.
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Figure 14: Characterization of the OTP/BSG cascade in response to white noise stimuli previously
used in [16]. Odorant: acetone, receptor: Or59b. The odorant-receptor binding and dissociation
rates were set to 3.141 · 10−4 and 1.205 · 101, as obtained in Section 3.4.1. The details of the
simulation configuration and PSTH computation are given in Remark 4. (First row) White
noise stimulus. (Second row) The output of the peri-receptor process model. (Third row) The
output of the OTP model. (Forth row) The PSTH of the spike train generated by the OTP/BSG
cascade. (Fifth row) The PSTH of the spike train of the recorded OSN (Reproduced from Figure
4 in [16] using the original raw data). (Sixth row) Comparison between the PSTHs at the output
of the OTP/BSG cascade and the recorded OSN.
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Response of the Or59b OSN Model to Staircase Acetone Waveforms

Next, we asked whether the OTP/BSG cascade is capable of reproducing the tempo-
ral response similar to the experimental recordings shown in Fig. 2. We stimulated
OTP/BSG cascades with the staircase waveform that was previously used in exper-
iments [16], evaluated the PSTH from the resultant spike sequences, and compared
the model PSTH to the one from experimental recordings.

As shown in the second row of Fig. 15, the filter h(t) in Eq. (2) has negligible effect
on the odorant concentration profile since the staircase is smooth unlike the white
noise stimulus discussed above. The encoding at jump times is strongly sharpened by
the OTP. Overall, the fruit fly OTP/BSG cascade indeed encodes both the filtered
concentration and concentration gradient. In particular, at each upward concentra-
tion jump, the PSTH of the OSN charges to a local maximum and then drops down
to a saturation point. In addition, at each downward concentration jump, the same
PSTH drops down first to a local minimum and then bounces back.

In short, the OSN model closely reproduces the temporal response of Or59b OSNs for
all tested stimuli. This suggests that the OPT/BSG cascade has enough complexity
to effectively model the fruit fly OSNs.
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Figure 15: Characterization of the OTP/BSG cascade in response to a staircase stimulus previously
used in [16]. Odorant: acetone, receptor: Or59b. The odorant-receptor binding and dissociation
rates were set to 3.141 ·10−4 and 1.205 ·101, as obtained in Section 3.4.1. The details of simulation
configuration and PSTH computation are given in Remark 4. (First row) Staircase stimulus.
(Second row) The output of the peri-receptor process model. (Third row) The output of the
OTP model. (Forth row) The PSTH of the spike train at the output of the OTP/BSG cascade.
(Fifth row) The PSTH of the spike train at the output of the recorded OSNs (Reproduced from
Figure 4 in [16] using the original raw data). (Sixth row) Comparison between the PSTHs at the
output of the OTP/BSG cascade and the recorded OSNs.
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3.4.3 Evaluating Affinity, Binding and Dissociation Rates of Other (Odor-
ant, Receptor) Pairs

We next interrogate the role of the binding and dissociation rates in the OTP/BSG
cascade. For a given receptor type and two odorants with different binding rates and
the same dissociation rate, responses of the OTP/BSG cascade are waveforms that
only differ by a scaling factor. This follows from Eq. (3).

Response of Or59b to Two Different Odorants

We verify the prediction mentioned above by stimulating the Or59b OSN model
with two odorant stimuli, acetone and 2-butanone, and compare the responses of
the cascade with the experimental recordings in [52]. The two stimuli in Fig. 16
have identical normalized waveforms scaled by two different factors. The affinity of
acetone and 2-butanone were estimated to be 3.141·10−4 and 7.864·10−4, respectively,
and the dissociation rate of the two odorants were estimated to be 1.205 · 101 and
1.203 · 101, respectively.

As shown in Fig. 16, the two odorant stimuli elicit almost exactly the same response
from the Or59b OSN. The difference in binding rate for acetone and 2-butanone
is perfectly counterbalanced by the scaling factors of the odorant waveforms in
Fig. 16.

Evaluating the Odorant-Receptor Response of the OTP/BSG Cascade

We further investigated the role of the binding rate using three odorant-receptor
pairs that were previously used in experimental settings [52]. In addition to the
binding rate estimated for (acetone , Or59b) as discussed in Section 3.4.1, we applied
Algorithm 1 to two additional odorant-receptor pairs using the original raw data
presented in [52]:

1. for (methyl butyrate , Or59b) an affinity value 4.264 · 10−4 and a dissociation
value 3.788 · 100 were obtained from the steady-state spike rate at 87 spikes
per second and the peak spike rate at 197 spikes per second in response to a
constant stimulus with amplitude 20 ppm;

2. for (butyraldehyde , Or7a) an affinity value of 7.649 · 10−3 and a dissociation
value 8.509 · 100 were obtained from the steady-state spike rate at 43 spikes
per second and the peak spike rate at 101 spikes per second in response to a
constant stimulus with amplitude 173 ppm;

We simulated the OSN model for each of the three odorant-receptor pairs with three
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Figure 16: Characterization of Or59b’s response to two odorant stimuli, acetone and 2-butanone.
The normalized waveform of the two stimuli is identical. (top) Normalized waveforms. (Bottom)
Normalized waveforms. (Reproduced from [52] using the original raw data.)

types of stimuli, step, ramp, and parabolic. The same set of parameters was used
for the OSN model as mentioned in Remark 4. The binding and dissociation rates
for different odorant-receptor pairs above were separately set.

As shown in Fig. 17, with only the change in the value of the binding and dissociation
rates, the OSN model closely matches the OSN’s response for all three tested odorant-
receptor pairs. The results in Fig. 17 suggests that a pair of binding and dissociation
rates is capable of closely matching the temporal response of different temporal
odorant concentration waveforms.

In summary, the binding and dissociation rate model together with the rest of the
OTP/BSG cascade define a family of OSN models, and provide the scaffolding for
studying the neural coding for odorant identity and odorant concentration in tem-
poral domain of AMP LPUs.
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3.4 Biological Validation of the OSN Model 39

Step stimuli

Ramp stimuli

Parabola stimuli
Figure 17: Characterization of the OTP/BSG cascade with multiple odorants and receptor types.
Three odorant-receptor pairs are tested: 1) Or59b and acetone, 2) Or59b and methyl butyrate, and
3) Or7a OSN and butyraldehyde. (First Column) Or59b OSN in response to acetone. (Second
Column) Or59b OSN in response to methyl butyrate. (Third Column) Or7a OSN in response
to butyraldehyde. (Odd rows) Stimuli. (Even rows) PSTH from the model output and ex-
perimental recordings [52] (Reproduced from [52] using the original raw data and the same color
code.)
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4 I/O Evaluation of the AMP LPU

In this section we will demonstrate how to evaluate the odorant transduction process
(OTP) and biological spike generator (BSG) cascade underlying the fruit fly OSN
model at the circuit level of the AMP LPU under two scenarios. First, we will em-
pirically estimate in Section 4.1 the odorant-receptor affinity of the active receptor
model in response to constant concentration odorants using the spike count records
in the DoOR database [9, 10]. Second, we will evaluate in Section 4.2 the temporal
response of the AMP LPU using a staircase odorant concentration waveform.

4.1 Estimating the Odorant-Receptor Affinity Matrix with
DoOR Datasets

As already discussed in Section 2.2, the DoOR database integrates OSN recordings
obtained with different measurement techniques [9, 10], including in situ spike counts
and calcium activity, among others. Spike counts are directly available from OSN
spike train recordings. Relating calcium activity to spike activity is, however, error
prone. We consequently focus here on the odorant-OSN response datasets of the
DoOR database that contain spike count information [7]. These datasets currently
contain spike counts of 24 OSN groups in response to 110 odorants with a constant
amplitude of 100 pm. The spike count is color coded and depicted on top of Fig. 18.

By employing the Algorithm 1 discussed in Section 3.4.1, we empirically estimated
the affinity value for all 110 · 24 = 2, 640 odorant-receptors pairs. The affinity corre-
sponding to each entry of the spike rate matrix shown in Fig. 18 (top) is depicted
in Fig. 18 (bottom). The odorant-receptor affinity matrix together with the spike
rate matrix provide the macroscopic I/O characterization of the AMP LPU. How-
ever, in the absence of additional information, such as the slope, width, or peak of
the OSN response to the odorant onset, the dissociation rate can not be estimated
with Algorithm 1. Such information is currently not available, however, in the
DoOR database. Thus, whereas in Section 3.4.3 the affinity and the dissociation
rate are both estimated for multiple odorant-receptor pairs, only the affinity can be
estimated for the odorant-receptor pairs recorded in the DoOR database. The disso-
ciation rate together with the affinity are both required for reproducing the temporal
response of OSNs. The latter alone can only characterize the steady state response.
This illustrates some of the limitations of the DoOR datasets for characterizing the
temporal response properties of OSNs, despite their richness for characterizing the
steady state response of odorant-receptor pairs.
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4.1 Estimating the Odorant-Receptor Affinity Matrix with DoOR Datasets 41

Figure 18: Estimated odorant-receptor affinity matrix. (top) Spike rate matrix from the DoOR
database containing 24 odorant receptors and 110 odorants. The data was originally published in
[7]. Each column represents an odorant, and each row represents an OSN receptor type. (bottom)
Each entry of the affinity matrix is estimated from each entry of the spike rate matrix using the
inverse of the function empirically determined with Algorithm 1. Note the log-scale color map for
the affinity.
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4.2 Reproducing the Temporal Response of the AMP LPU

In Section 3.4, we investigated the temporal response of the OTP/BSG cascade
to various odorant waveforms, including step, ramp, parabolic, staircase, and white
noise waveforms. In addition, we biologically validated the cascade with electro-
physiological recordings of OSNs by demonstrating that the cascade is capable of
reproducing the complex temporal responses of OSNs for multiple odorant receptor
pairs.

Here, we study the temporal response of the entire AMP LPU, that consists of 50
OSN groups. Each of 50 OSN groups consists of 50 OTP/BSG cascades (neurons)
that express an unique receptor type. We tested the AMP LPU with the same
staircase waveform as in Section 3.4. For an assumed odorant, we assigned the
same odorant-receptor affinity to OTPs in the same OSN group. The value of the
affinity for each of the 50 OTP ranges between 2 · 10−4 and 10−2 with a step size
of 2 · 10−4. The dissociation rate for all OTP models is set to 102. For simplicity,
we used the same set of parameters for all cascades across all OSN groups. The
parameters of the OTP model are given in Table 2, and the parameters of the BSG
model are listed in section Appendix A. From the spike sequences generated by the
50 cascades we evaluated the PSTH for each of the 50 OSN groups.

We visualize the 50 PSTHs and provide the preview and the link to the animation
in Fig. 19. The animation is rendered by NeuroGFX, a key component of FFBO
(both NeuroGFX and FFBO will be discussed in Section 5). As shown, the top
plot in the animation (and in Fig. 19) shows the staircase odorant waveform, and
the bottom plot shows the 3D view of the 50 PSTHs. In addition, we provide a
“biological view” of the 50 PSTHs by visualizing the presynaptic activity of each of
the OSN groups in their cognate glomerulus. The biological view is reminiscent of
calcium imaging [45].

The resultant PSTHs exhibit distinct temporal responses across different OSN groups.
Both the filtered concentration and concentration gradient of odorants with (overall)
high binding rate values is 2D encoded. For receptors with extremely low (overall)
binding rate values, the transduction process reacts only after the input exceeds a
certain threshold. For example, as shown in Fig. 19, OSNs expressing receptors
with orange color code remain silent in the time interval between 2 to 6 seconds
under weak amplitude concentration stimulation, and start reacting to the odorant
stimulus at 8 seconds as the amplitude exceeds 100 ppm. This closely matches the
experimental recordings [7].
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Figure 19: Preview of the animation demonstrating the AMP LPU in response to a staircase
concentration waveform. The animation was rendered by NeuroGFX. Each of the OSN groups
consists of 50 fruit fly OTP/BSG cascades. The PSTH for each of the OSN groups was evaluated
from the spike sequences generated by 50 cascades. The affinity for each of the 50 OSN groups
is assumed to be ranging between 2 · 10−4 and 10−2 with a step size 2 · 10−4. The dissociation
rate for all OTP models is set to 102. The rest of parameters of both OTP and BSG are given in
section Section 3. (top left) Staircase odorant stimulus. (bottom left) 3D view of 50 OTP/BSG
PSTHs. The response curves are sorted in ascending order according to the amplitude of the binding
rate. (right) Visualization of the presynaptic activity of the OSNs. There is a one-to-one mapping
between the color code of the glomeruli shown on the right and the color code of the curves shown
on the left.

To further evaluate the AMP LPU, we used the affinity matrix estimated from the
DoOR database (see Section 4.1), and simulated 24 OSN groups in response to 110
different odorants. The dissociation rate for OSN groups is assumed to be 132, as it
can not be estimated from the available records in the DoOR database as discussed
in Section 4.2. We applied the same staircase odorant waveform as above, and
visualized the PSTH of OSN groups with an animation. In Fig. 20, we provide the
preview and the link to the animation. As shown, the top of the animation (also
Fig. 20) shows the staircase odorant waveform as a function of time, and the bottom
of the animation (also Fig. 20) shows the spike rate matrix for 24 OSN groups and 110
odorants at each time point. Each row of the matrix represents an OSN group, and
each column of the matrix corresponds to an odorant. The animation demonstrates
that the intensity of the spike rate matrix increases dramatically at each jump of the
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Figure 20: Preview of the animation of the spike rate matrix of 24 OSN groups in response to
110 odorants. Each of the OSN groups consists of 50 OTP/BSG cascades. The PSTH for each of
the OSN groups is evaluated from the spike sequences generated by the 50 cascades. Each row of
the matrix represents an OSN group, and each column of the matrix corresponds to an odorant.
The affinity for each pairs of OSN groups and odorant is estimated using the DoOR database, as
discussed in Section 4.1. The dissociation of all OSN groups is assumed to be 132. (top) Staircase
odorant waveform. (bottom) Dynamics of the spike rate matrix across time.

staircase waveform and drops down to a steady state value afterwards. This striking
feature is due to the large value of the concentration gradient at transition times and
clearly stands out in the animation.
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5 The AMP LPU as an Olfactory Information Pre-
Processor

As we already mentioned in the sections 2.2 and 4.1, the DoOR database [9, 10]
contains odorant-OSN response datasets originally measured in different experimen-
tal settings, and integrates these heterogeneous datasets into a single dataset. In
Section 5.1, we describe an Application Programming Interface (API) that enables
the easy extraction of all datasets from the DoOR database and their representation
in the NeuroArch database of the FFBO. In Section 5.2, we present the mechanics
of code execution of AMP LPU models, discuss the complexity of the fully inte-
grated (left and right) early olfactory system, and finally, describe the role of the
AMP LPU as an olfactory information pre-processor in the FFBO programming
environment.

5.1 Interfacing the FFBO with the DoOR Database

The Fruit Fly Brain Observatory (FFBO) [27] is an open-source platform for the
emulation and biological validation of fruit fly brain models in health and disease.
It provides users highly intuitive tools to execute neural circuit models with Neu-
rokernel [53], an open-source fruit fly brain circuits emulation engine. Neurokernel
has full data support from the NeuroArch [54, 55] database, a graph-based database
that stores biological and modeling data, and visualization support from an inter-
active graphical interface (see Fig. 21). Models of the AMP LPU populated in the
NeuroArch database can be efficiently queried and arbitrarily manipulated for al-
gorithmic generation of executable circuits, and then executed on the Neurokernel
engine.

We developed an API for the DoOR database under the FFBO programming envi-
ronment. The API extracts all datasets stored in the DoOR database, maps them
into graphical models, and incorporates the latter into the NeuroArch database.
Every odorants and every OSN types is represented as a node in the NeuroArch
database. Each of data points (for an odorant-receptor pair) in the DoOR database
is represented as a node that links to both the odorant node and the OSN node.
An odorant-OSN node stores the responses from the original datasets (e.g., cal-
cium activity and spike count) and the merged responses provided by the DoOR
database.
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Figure 21: The architecture of the Fruit Fly Brain Observatory with support for visualization,
manipulation, and execution of the antenna LPU. Solid lines depict data flow between software
components. The antenna (and other neuropils, e.g., the antennal lobe, lamina) are implemented
as software applications with NeuroGFX support for interactive user configuration and launching
of model execution. Neuroanatomy and executable circuit model data is stored in the NeuroArch,
a graphical database, and efficiently executed by Neurokernel, a fly brain simulation engine.
The FFBO Processor sets up direct network connections between the other components of the
architecture to accelerate data transfer during application execution.

5.2 Constructing, Executing, and Exploring the AMP LPU

The AMP LPU is implemented as an FFBO application, built on top of several key
FFBO software components, including NeuroArch, Neurokernel, and NeuroGFX.

The NeuroArch database stores the computational models for OSNs, including mod-
els of the odor transduction process (OTP) and models of biological spike generation
(BSG). The NeuroArch database also supports automatic generation of executable
code of computational models stored in it. For example, to construct an executable
model of the AMP LPU, we first retrieve the OTP models (e.g., a fruit fly trans-
duction model with different parameter instantiations) and BSG models (e.g., vari-
ous point neuron models) from the NeuroArch database. The NeuroArch database
algorithmically constructs the AMP LPU by combining executable models for all
OTPs and BSGs into a single program, that can be executed by the Neurokernel
engine.

The Neurokernel engine [53] explicitly enforces an LPU programming model that
separates its internal design from the connectivity supporting its external commu-
nications. In addition, the Neurokernel engine defines a mandatory communication
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interface for models exported by the NeuroArch database that enables their integra-
tion and execution on multiple graphics processing units (GPUs). The executable
model of the AMP LPU retrieved from the NeuroArch database is hence wrapped in
a Neurokernel LPU, coupled with a Neurokernel communication interface that facil-
itates the seamless interoperability of the AMP LPU with its downstream neuropil,
the antennal lobe.

NeuroGFX is the key FFBO component supporting the implementation of the AMP
LPU. NeuroGFX conjoins the simultaneous operations of model exploration on Neu-
roArch and model execution on Neurokernel with a unified graphical web interface
that renders interactive simulation results [56]. As exemplified in Fig. 19 and in
Fig. 20, NeuroGFX enables multiple selected spiking neuron responses to be con-
currently plotted in 2D or 3D with the concurrent visualization of the presynaptic
spiking activity at each of the glomeruli.

The AMP LPU serves as an interface between the external world of volatile odorant
molecules and the internal olfactory system of the fruit fly brain. The odorant
information is represented by spike trains generated by the AMP LPU for processing
by the downstream antennal lobe (AL).

Each AMP LPU consists of 50 groups of OSNs. Each OSN group has 25 OSNs
expressing the same receptor type. The left and right AMP LPUs have in total
2, 500 OSNs. Each OSN consist of an OTP, the fruit fly OR model, in cascade
with a BSG, the Connor-Stevens model. The OTP and BSG are each described by
5 and 6 differential equations, respectively. As a result, the implementation of a
complete AMP LPU consists of 2, 500 OTP/BSG cascades, that amount to nearly
30K equations.

For a single odorant, the simulation starts by reading out the corresponding entries
of the binding rate tensor. Every entry of the binding rate tensor is then used to
configure an OTP/BSG cascade. Finally, each OTP/BSG is executed by a single
GPU thread. The former two steps belong to the scope of the application plane [53],
while the last one is performed in the compute plane of the Neurokernel engine.

6 Conclusions and Future Work

Successful modeling of encoding of odorants by olfactory sensory neurons spread
across the antennae and maxillary palps requires means of easily constructing and
testing a range of hypotheses regarding the transduction of odorants into spike trains.
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The essential functionality of olfactory sensory neurons that we focussed on here is
their concurrent encoding of both odorant identity and odorant concentration. To
address these two functional aspects we presented an in-depth description of OSNs
modeled as two stage samplers that quantitatively encode both the odorant identity
and its concentration profile.

We devised a class of modular OSN models as a cascade consisting of an odorant
transduction process and a biophysical spike generator. The OTP model consists
of an active receptor model and a co-receptor channel model. The active receptor
models odorant identity as an odorant-receptor binding rate tensor modulated by
the odorant concentration profile and an odorant-receptor dissociation rate tensor.
The co-receptor channel in feedback loop with a calcium channel generates the trans-
duction current. The BSG model employed here was based on the Connor-Stevens
neuron model.

After developing the model, our focus was on the biological validation of the OTP/BSG
cascade. To validate our modeling approach, we examined the response of the fruit
fly OSN model to odorant waveforms that were previously used in experiments with
different odorants and receptors, and compared the model responses with electro-
physiology recordings. Our results show that the model proposed here indeed closely
matches the complex temporal response of OSNs.

We also provided a comprehensive approach to modeling and model execution of the
OSNs of the fruit fly spread across the antennae/maxilary palps. Our work visually
and convincingly demonstrates that the AMP LPU strongly reacts to changes in
odorant concentration. We believe that this feature is center stage for olfactory
encoding as already shown in the literature [16], [52], [51].

The open source Fruit Fly Brain Observatory makes it now possible to directly
employ the I/O visualization capabilities in systems neuroscience practice. This
is because the steady-state response to an odorant, that translates into an affinity
matrix, can easily be interpreted as the information carried by the spike rate matrix at
the input to glomeruli. The latter is currently available using calcium imaging. These
and future instantiations will enable the community of fly researchers and educators
to compare various computational models of the early olfactory system in fruit flies
and vastly accelerate collaborative efforts geared towards a better understanding of
the function of the early olfactory system.

Our approach amply demonstrates some of the limitations of the currently available
neurophysiology recordings. In particular, there is a need for more data in the DoOR
database that pertains to responses both at steady state for different concentration
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levels and at stimulus onset. Our work also suggests (and motivates) the need for
developing more algorithms for the identification of the OTP/BSG cascade, as well
as calls for new analysis tools for understanding the mathematics of transduction
models.

The odorant receptor and the pheromone receptor share similar temporal variabil-
ity in response to input stimuli [57], despite the differences in protein structure and
chemical signaling between the two receptor families. Therefore, the fruit fly OTP
model can be extended to model pheromone receptors. Pheromones can be mod-
eled as odorants with an extremely high single receptor binding and dissociation
rates.

The active receptor model can be readily extended to odorant mixtures. One inter-
esting question is to study the odorant encoding of OSNs in the presence of a back-
ground odorant. Another potential direction is to investigate the “cocktail party”
problem of odorant mixtures.
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A Connor-Stevens Neuron Model

The Connor-Stevens (CS) neuron model [25] is based on the classic Hodgkin-Huxley
(HH) neuron model [58]. In addition to the potassium channel K (with state variable
n), the sodium channel Na (with state variables m and h), and the leaky channel, the
CS model has an extra hypothetical “a”-channel with two additional state variables
p and q as follows,

dV

dt
= I − IK − Ileak − INa − Ia

dn

dt
= (n∞(V )− n)/nτ (V )

dm

dt
= (m∞(V )−m)/mτ (V )

dh

dt
= (h∞(V )− h)/hτ (V )

dp

dt
= (p∞(V )− p)/pτ (V )

dq

dt
= (q∞(V )− q)/qτ (V ),

where V denotes the membrane voltage of the neuron model, and I denotes the
external current. The CS model can be expressed in compact form as

d

dt
y = f(y, I), (13)

with y = [V, n,m, h, p, q]T is a vector of state variables, f is a vector function of the
same dimension. For simplicity, Eq. (13) omits the subscript notation in Eq. (11).
Similarly to the HH neuron model, the state variable n is a gating variable represent-
ing the activation of the potassium channel, while the state variables m and h are
gating variables representing the activation and deactivation of the sodium channel,
respectively. Furthermore, the variables p and q are the gating variables representing
the activation and deactivation of the “a”-channel. Finally,
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n∞(V ) = αn(V )
αn(V ) + βn(V )

nτ (V ) = 2
0.38(αn(V ) + βn(V ))

m∞(V ) = αm(V )
αm(V ) + βm(V )

mτ (V ) = 1
0.38(αm(V ) + βm(V ))

h∞(V ) = αh(V )
αh(V ) + βh(V )

hτ (V ) = 1
0.38(αh(V ) + βh(V ))

p∞(V ) = (0.0761 · exp((V + 94.22)/31.84)
1 + exp((V + 1.17)/28.93))0.3333

pτ (V ) = 0.3632 + 1.158
1 + exp((V + 55.96)/20.12)

q∞(V ) = ( 1
1 + exp((V + 53.3)/14.54))4

qτ (V ) = 1.24 + 2.678
1 + exp((V + 50)/16.027)

and,

αn(V ) = 0.01 · V + 55
1− exp(−V+55

10 )

βn(V ) = 0.125 exp(−V + 65
80 )

αm(V ) = 0.1 · V + 40
1− exp(−V+40

10 )

βm(V ) = 4 exp(−V + 65
18 )

αh(V ) = 0.7 exp(−V + 65
20 )

βh(V ) = 1
1 + exp(−V+35

10 )
.
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Figure 22: Characterization of the Connor-Stevens neuron model. The F-I curves of the model are
color-coded for different noise levels (σ in Eq. (11)).

Lastly, the current generated by each of the channels is given by,

IK = 20n4(V + 72)
INa = 120hm3(V − 55)
Ileak = 0.3(V + 17)
Ia = 47.7p3q(V + 75).
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B Two (Acetone, Or59b) Datasets

Each of the two datasets contains the PSTHs obtained from the response of OSNs
expressing Or59b to acetone step waveforms with different concentration amplitudes.
The peak and steady state spike rate as a function of concentration amplitude for
both datasets are given in Fig. 23.(a). The acetone step waveforms and the corre-
sponding PSTHs of Or59b OSN for the two datasets are shown in Fig. 23.(b-c).

The two datasets are part of a repository of electrophysiology recording data for the
olfactory system of the fruit fly. The details of the electrophysiology recordings setup
and the odorant delivery system are given in [16] and [51]. The first dataset is made
public in this RFC, while the second dataset was previously published in [51]. The
PSTH of the first dataset was computed using a 100 ms bin size and shifted by 25
ms between consecutive bins.

(a) (b) (c)

Figure 23: Two datasets of PSTHs of Or59b in response to acetone step waveforms. (a) The peak
and steady state spike rate as a function of concentration amplitude. (b) Dataset 1. (top) acetone
waveforms. (bottom) PSTHs of Or59b OSNs. (c) Dataset 2. (top) acetone waveforms. (bottom)
PSTHs of Or59b OSNs.
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