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Abstract

Background: Alignment-free RNA quantification tools have significantly
increased the speed of RNA-seq analysis. However, it is unclear whether these
state-of-the-art RNA-seq analysis pipelines can quantify small RNAs as accurately
as they do with long RNAs in the context of total RNA quantification.

Result: We comprehensively tested and compared four RNA-seq pipelines on the
accuracies of gene quantification and fold-change estimation on a novel total
RNA benchmarking dataset, in which small non-coding RNAs are highly
represented along with other long RNAs. The four RNA-seq pipelines were of two
commonly-used alignment-free pipelines and two variants of alignment-based
pipelines. We found that all pipelines showed high accuracies for quantifying the
expressions of long and highly-abundant genes. However, alignment-free pipelines
showed systematically poorer performances in quantifying lowly-abundant and
small RNAs.

Conclusion: We have shown that alignment-free and traditional alignment-based
quantification methods performed similarly for common gene targets, such as
protein-coding genes. However, we identified a potential pitfall in analyzing and
quantifying lowly-expressed genes and small RNAs with alignment-free pipelines,
especially when these small RNAs contain mutations.
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Background
RNA-seq continues to pose great computational and statistical challenges. These

challenges range from accurately aligning sequencing reads to accurate inference

of gene expression levels [1, 2]. The central computational problem in RNA-seq

remains the efficient and accurate assignment of short sequencing reads to the tran-

scripts they originated from and using this information to infer gene expressions

[3–6]. Conventionally, read assignment is carried out by aligning sequencing reads to

a reference genome, such that relative gene expressions can be inferred by the align-

ments at annotated gene loci [2, 7]. These alignment-based methods are conceptually

simple, but the read-alignment step can be time-consuming and computationally

intensive despite recent advances in fast read aligners [4, 8, 9]. Recently, several

novel tools introduced alignment-free transcript quantification utilizing k-mer-based

counting algorithms [4–6]. These alignment-free pipelines are orders of magnitude

faster than alignment-based pipelines, and they work by breaking sequencing reads

into k-mers and then performing fast matches to pre-indexed transcript databases

[4]. To achieve fast transcript quantification without compromising quantification

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246967doi: bioRxiv preprint 

https://doi.org/10.1101/246967
http://creativecommons.org/licenses/by/4.0/


Wu et al. Page 2 of 28

accuracy, different sophisticated algorithms were implemented in addition to k-

mer counting, such as pseudoalignments (Kallisto [5]) or quasi-mapping along with

GC and sequence-bias corrections (Salmon [6]). Given the wide variety of choices

in RNA-seq tools, several studies have benchmarked subsets of read aligners and

quantification software. These studies generally suggest that most of the current

RNA-seq tools are comparably accurate [10–12].

However, the existing benchmarking studies were generally carried out on either

simulated RNA-seq datasets [12] or RNA-seq datasets that focused only on long

RNAs, such as messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs)

[10, 11, 13, 14]. Consequently, they did not evaluate whether these tools are suitable

for total RNA quantification in datasets that include small RNAs, such as transfer

RNAs (tRNAs) and small nucleolar RNAs (snoRNAs). To some extent, the lack of

a comprehensive comparison between small and long RNA quantification may be

due to the inability of most current RNA-seq methods to efficiently recover these

small RNAs [15]. Recently, however, a novel method has overcome this problem by

using a thermostable group II intron reverse transcriptase (TGIRT) during RNA-

seq library construction [15]. This method enables more comprehensive profiling of

full-length structured small non-coding RNAs (sncRNA) along with long RNAs in

a single RNA-seq library workflow [15–17]. Thus, it is now possible to benchmark

RNA-seq quantification tools on structured small non-coding RNAs.

To address whether current RNA-seq tools can quantify small RNAs as accurately

as they do with long RNAs, we tested four gene quantification pipelines on a pre-

viously sequenced TGIRT RNA-seq (TGIRT-seq) dataset [15] obtained from the

well-studied microarray/sequencing quality control consortium (MAQC) sample

set [18, 19]. Of the four tested pipelines, two are alignment-based and two are

alignment-free. We found that all four pipelines are mostly concordant in quantify-

ing common differentially-expressed gene targets, such as mRNAs and mRNA-like

spike-ins. However, with respect to quantifying small or lowly-expressed genes, we

found that the alignment-based pipelines significantly outperformed the alignment-

free pipelines.

Results
Study design. We tested four RNA-seq quantification pipelines, including two

alignment-free and two alignment-based pipelines (Fig. 1): (A) Kallisto, a k-

mer counting software that uses pseudoalignments for reducing quantification er-

ror and improving speed [5]; (B) Salmon, another k-mer counting software that

learns and corrects sequence-specific and GC biases on-the-fly, in addition to us-

ing quasi-mapping for further improvement in transcript quantification [6]; (C)

HISAT2+featureCounts, a conventional alignment-based pipeline aligning sequenc-

ing reads to human genome by a splice-aware aligner, HISAT2 [9], and quantifying

genes by featureCounts [3]; and (D) TGIRT-map, a customized alignment-based

pipeline using an iterative genome-mapping procedure (Additional File 1).

The benchmarking dataset we used here consists of TGIRT-seq libraries for four

well-defined samples (samples A–D) from the microarray/sequencing quality control
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consortium (MAQC [18, 19]), each obtained in triplicate [15]. The MAQC samples

A and B represent universal human reference total RNA and human brain reference

total RNA, respectively, that are mixed with corresponding External RNA Controls

Consortium (ERCC) spike-in transcripts. Samples C and D are mixtures of samples

A and B at different ratios [18, 19]. This known mix ratios in samples C and D

allow for the calculation of expected fold-changes between samples C and D from

the measured fold-changes between samples A and B for each gene [18, 19]. Map-

ping statistics of all pipelines are summarized in Additional File 2 Supplementary

Tables S1–4.

Gene detection and quantification. To test if all four pipelines produced concor-

dant gene quantifications, we first compared the numbers of detected genes across

all methods. We considered a gene as detected if it was assigned with a transcripts

per million (TPM) value > 0.1. We found that the numbers of detected genes were

similar among all tested pipelines (Fig. 2a). Moreover, by comparing the identities

of the detected genes, we found that the vast majority of the genes were detected

by all tested pipelines (Additional File 3). However, we also found that Salmon and

TGIRT-map consistently detected more genes compared to the other two pipelines

(Friedman test, p = 4×10−7; Paired Wilcoxon test, p = 0.57 for Salmon vs TGIRT-

map, p = 5 × 10−4 for other pipeline comparisons).

Even though Salmon and TGIRT-map both detected more genes than did the other

two pipelines, the additional genes detected were different. Salmon primarily recov-

ered more long RNAs (labeled as antisense, other ncRNAs, and protein-coding

genes; Additional File 3). This enrichment in long RNAs could be pipeline-type-

specific (when compared to alignment-based pipelines) or algorithm-specific (when

compared to Kallisto). Pipeline-type-specific differences could be due to the prob-

abilistic gene quantification methods of Salmon [6]. While Salmon can assign frag-

ments to multiple genes, each fragment can only be assigned to a single gene by

the alignment-based pipelines under our parameters. In terms of algorithm, the

result might be due to how Salmon corrects for GC and sequencing biases or how it

handles equivalent classes (i.e. multiply-mapped reads) relative to Kallisto [6]. On

the other hand, TGIRT-map recovered more miRNAs (likely to be mis-counting of

fragmented exons or unannotated exons in these libraries), some long non-coding

RNAs (annotated as other ncRNAs), and small non-coding RNAs (annotated as

other sncRNA) (Additional File 3). These enrichments under TGIRT-map could

be pipeline-type-specific when compared to alignment-free pipelines, which may

be affected by the choice of k-mer size. The differences between TGIRT-map and

HISAT2+featureCounts were possibly the result of an additional alignment step

(BOWTIE2) [20] after the spliced-read mapping step (HISAT2) [9] in TGIRT-map

(Additional File 1).

To evaluate if gene expression level estimates were concordant among the tested

pipelines, we made pairwise comparisons of these estimates between pipelines (Ad-

ditional File 4). The gene expression level estimates were generally highly corre-

lated, with Pearson’s correlations ranging from 0.67–0.99 (Additional File 4). The
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Pearson’s correlation coefficients were consistently very high for pairwise compar-

isons between alignment-free pipelines (Kallisto vs Salmon; 0.98–0.99) or between

alignment-based pipelines (HISAT2+featureCounts vs TGIRT-map; 0.94–0.95). By

contrast, any pairwise correlation between an alignment-free tool and an alignment-

based pipeline was generally lower (0.67–0.72; Additional File 4).

Further analyses revealed that different gene types showed distinct variations in

gene expression level correlations for every pairwise pipeline comparison (Additional

File 4). For instance, ERCC spike-ins, in vitro transcripts that mimic protein-coding

transcripts, were recovered with very high correlations for all pairwise pipeline com-

parisons (Pearson’s correlations: 0.99–1; Additional File 4). In comparison to the

true abundances that were spiked into the RNA samples [15], the relative expression

levels of these ERCC spike-ins were estimated as they were designed and tightly cor-

related to their true concentrations. We observed a near-perfect linear relationship

between inferred TPM values and true concentrations (both log-transformed) for

all pipelines (Fig. 2b; R2 > 0.94 for every sample and pipeline; Kruskal-Wallis-test

p = 0.346). By contrast to ERCC transcripts, the gene expression level estimates

of other common gene targets (antisense, protein-coding genes, etc.) were not as

highly correlated among tested pipelines (Additional File 4). To identify the source

of this discrepancy, we divided genes into quantile groups of gene lengths or gene

expression levels, and found that the abundance estimation inconsistencies among

pipelines were largely caused by short gene lengths and low expression levels (Ad-

ditional File 5), as suggested previously [13].

Differential expression measurements of long genes. The most popular applica-

tion of RNA-seq is the detection of differentially-expressed genes. To compare the

accuracy of differential expression inferences among each pipeline, we plotted the

deviation of measured log2 fold-changes to the expected log2 fold-changes between

samples A and B for every ERCC spike-in transcript (Fig 3a; 23 ERCC transcripts

in each expected differentially-expressed group). For all pipelines, fold-changes be-

tween samples A and B were mostly underestimated (negative ∆log2 fold-changes;

Fig. 3a). To quantify the accuracies of fold-change detections for each method,

we computed root mean square errors (RMSE) for each ERCC group (Additional

File 2). Comparisons of the RMSE values for each ERCC group among pipelines

indicated that alignment-free pipelines had comparable performances to alignment-

based pipelines in estimating differential expression of ERCC spike-ins (Friedman-

test p = 0.016; two-sided paired Wilcoxon-test p > 0.1 for all pairwise comparisons).

To test whether the four pipelines provided reliable gene expression level estimates

for calling differentially-expressed genes, we plotted the receiver operating charac-

teristic (ROC) curves for the prediction of ERCC spike-in transcripts differentially-

expressed status. For every pipeline, we used the p-values assigned to the differential

expression tests for binary prediction cutoffs and the known spike-in concentrations

for assigning true differential-expression status (Fig. 3b). By design, there are 23

spike-ins with same concentrations and 69 spike-ins with different concentrations

between samples A and B [21]. Using area under the curves (AUC) of the ROC
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curves, we found that alignment-free tools (Kallisto and Salmon) performed slightly

better than alignment-based pipelines in accurately calling differentially-expressed

spike-in transcripts (AUC: 0.65, 0.65, 0.71, and 0.68 for HISAT2+featureCounts,

TGIRT-map, Kallisto, and Salmon respectively; one non-differentially-expressed

and two differentially-expressed ERCC spike-ins had TPM = 0 in all pipelines). In

addition to analyzing in vitro ERCC transcripts, we also verified that all pipelines

performed nearly identically in terms of quantifying in vivo transcripts, by compar-

ing estimated expression levels to TaqMan qRT-PCR results published previously

(Additional File 6).

Whole transcriptome differential expression analysis. To benchmark the suitabil-

ity of different gene quantification pipelines for differential expression analysis of all

RNA types, we used the known sample mix ratios and the fold-change measurements

between samples A and B to construct the expected fold-changes between samples

C and D for every gene [18]. By comparing the measured to the expected fold-

changes between samples C and D, we found that both alignment-based pipelines

showed superior performances over alignment-free pipelines (R2 = 0.62, 0.61, 0.46,

and 0.42 for HISAT2+featureCounts, TGIRT-map, Kallisto, and Salmon, respec-

tively; Fig. 4a). Further analyses showed that low correlations between measured

and expected fold-changes were due to lowly-expressed genes (Fig. 4a), as sug-

gested previously [15, 19]. However, to our surprise, Kallisto and Salmon had ex-

ceptionally poor fits to the corresponding models for these lowly-expressed genes

(Fig. 4a; R2 = 0.44, 0.41, 0.13, and 0.06 for the lowest 75% expressed genes from

HISAT2+featureCounts, TGIRT-map, Kallisto, and Salmon, respectively).

In addition to lowly-expressed genes, we also found that short gene lengths greatly

decreased the accuracies in fold-change analyses, particularly for alignment-free

pipelines (Fig. 4b; R2 = 0.02, 0.05, −0.45, and −0.44 for the shortest 25% genes

from HISAT2+featureCounts, TGIRT-map, Kallisto, and Salmon, respectively). As

we are testing whether the measured (observed) fold-changes fit into the expected

fold-changes (model) constructed by the fold-changes between samples A and B and

the known mix-ratios of samples A and B in samples C and D, R2 values served as

a metric in quantifying the measurement errors relative to the known model. Thus,

a negative R2 indicates highly discordant measurements relative to the expected

fold-changes predicted by the known mix-ratios and the measured fold-changes be-

tween samples A and B [22], as illustrated in Additional File 7. These discordant

measurements reflect the incapabilities of the quantification tools in making accu-

rate fold-change predictions either between samples A and B or between samples C

and D for small genes.

To evaluate whether the deficiency in small genes quantification was specific to

certain gene types, we computed the root mean square errors (RMSE) for the

expected versus measured log2 fold-changes between samples C and D for genes

grouped by their gene types. Consistent with the gene quantification results, Salmon

and Kallisto showed slightly better fold-change estimation performances on ERCC
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spike-ins while alignment-based pipelines showed slightly better fold-change esti-

mations on protein-coding genes (Fig. 5a and Table 1). Furthermore, alignment-

based and alignment-free pipelines produced similar results for the majority of

small RNA types, such as snoRNAs. For snoRNAs and other small non-coding

RNAs (labeled as other sncRNA), Salmon and TGIRT-map recovered more genes

than did HISAT2+featureCounts and Kallisto, but Salmon and TGIRT-map also

showed similar RMSE values that were comparable to the RMSE values from

HISAT2+featureCounts and Kallisto (Fig. 5a and Table 1). However, for tRNAs,

alignment-based pipelines detected higher numbers of tRNA isoacceptors compared

to alignment-free pipelines and showed advantages in detecting differential tRNA

expression, yielding lower RMSE values (Fig 5b and Table 1).

As we showed distinct performances in tRNA fold-change analysis between

alignment-free and alignment-based pipelines and a performance decrease in small

gene quantification for alignment-free pipelines, we anticipated the comparison in

tRNA fold-change predictions among the different pipelines would give us insights

into the deficiency of alignment-free pipelines in small gene quantification. We

hypothesized that the deficiency of alignment-free pipelines in small gene quan-

tification was possibly due to the choice of a long k-mer size (31-mer) relative to

the sizes of the small RNA transcripts, such as 75 nt for tRNAs. To investigate

whether the choice of k-mer size had any effect on small RNA quantifications, we

tested Salmon with four different k-mer sizes, ranging from 11 to 31 (11, 15, 21,

and 31; default is 31 for both Salmon and Kallisto). We found that at k = 21,

higher R2 values were observed for total RNA (Additional Files 8). Using tRNA

as a model for comparisons in small gene quantifications, we also found a perfor-

mance improvement (detected higher number of tRNA and lower RMSE) using

k = 21. However, Salmon with this k-mer size still yielded two-fold higher RMSE

relative to TGIRT-map for tRNA fold-change prediction (Additional Files 2 and 8).

To gain better understanding to the problem of small gene quantification in

alignment-free pipelines, we further inspected the tRNAs that were undetected

by both Salmon and Kallisto. Using TGIRT-map alignment results, we found

that the read alignments mapped to these tRNAs displayed a high abundance

of non-reference bases (Additional File 9). These non-reference bases may be

caused by post-transcriptionally modified RNA bases that could introduce reverse-

transcription errors by changing base-pairing interfaces [23, 24], as it is known that

tRNAs are post-transcriptionally-modified and have abundant base modifications

[15, 17, 25]. Thus, we predict that these abundant non-reference bases in small

RNAs, tRNA in this case, may have prevented k-mer-based algorithms from suc-

cessfully counting these reads.

Discussion
We have performed an in-depth comparison among four RNA-seq pipelines, includ-

ing two alignment-based and two alignment-free pipelines, to determine the relative

performance of these tools for simultaneous quantification of long and small RNAs.

The two alignment-based pipelines that we have tested were a widely-adopted align-

and-count pipeline (HISAT2+featureCounts) [3, 9] and a custom gene-counting
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procedure with multi-step iterative alignments (TGIRT-map; Additional File 1);

the two tested alignment-free pipelines were k-mer counting tools with and without

bias corrections (Salmon [6] and Kallisto [5]). We have tested these four pipelines

on quantification of both long and small RNAs in a novel benchmarking dataset

generated by a thermostable group II intron reverse transcriptase (TGIRT) [15].

This dataset is unique in that small non-coding RNAs are highly represented, while

the quality of long RNA quantification is comparable to that of other widely-

adopted RNA-seq methods [15]. Using this dataset, we have found that while all

four pipelines perform similarly on long and highly abundant RNAs, alignment-free

tools have clear limitations for small and lowly-expressed RNA quantification.

For long gene quantification, we have found that all four pipelines quantify com-

mon gene targets (e.g. ERCC spike-ins and protein-coding genes) with similar

results, confirming a previously benchmark study on poly-A selected RNA-seq [13].

Generally, gene quantification tends to be more similar between pipelines of the

same type (i.e., HISAT2+featureCounts and TGIRT-map, or Kallisto and Salmon)

than pipelines of the other type (alignment-based versus alignment-free). This re-

sult further supports a previous finding which showed more similar transcript iso-

forms quantifications were found among alignment-free or among alignment-based

pipelines than among pipelines of the different types [14], suggesting that alignment-

based pipelines may have somewhat different quantification biases than do the

probabilistic models of alignment-free pipelines. Regardless of the different in gene

quantifications, our results on differentially-expressed gene detections for long genes

have supported that all four pipelines performed comparably for ERCC spike-ins

and protein-coding genes when compared to their expected fold-changes (ERCC

spike-ins) [21] or MAQC TaqMan assay measurements (protein-coding genes) [18].

This result further confirmed previous benchmark studies where alignment-free and

alignment-based tools gave similar results differentially-expressed gene detection

[13, 14].

For total gene quantification and differential expression analysis, all tested pipelines

generally have performed similarly, with most disagreements occurring between

pipeline comparisons of different pipeline types (i.e. an alignment-based pipeline

vs an alignment-free pipeline). In the analyses of genes that were inconsistently

quantified among pipelines, our results have confirmed that both high gene ex-

pression and long gene length were crucial to consistent abundance estimation, as

suggested previously [13, 26]. Using fold-change analyses for comparisons in quan-

tification accuracies, we have found that alignment-based tools were more accurate

in quantifying lowly-expressed or small genes. This result likely reflects the nature

of probabilistic assignments of k-mers and the inferences of TPM values. Although

we have found that alignment-free pipelines were unreliable for quantifying ex-

tremely small RNAs (with shorter gene lengths) in total transcriptome analysis,

alignment-free tools have performed comparably to alignment-based tools for most

of the small RNA types, such as snoRNAs or other sncRNAs, in differential ex-

pression analyses. This disagreement between small non-coding RNAs and small

mRNAs is possibly due to their differences in secondary structures and their dif-

ferent sensitivities to RNA fragmentations prior to RNA-seq library constructions,
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which over-fragmented mRNA fragments may be dropped-out from alignment-free

quantifications.

Even though we have found that all pipelines perform similarly on the majority of

small non-coding RNAs, our results have revealed that pipelines involving genome-

alignment steps were superior to alignment-free tools in quantifying tRNAs specifi-

cally. We initially hypothesized the differences in performance were due to the choice

of k-mer size in alignment-free pipelines and we have found an improvement in small

gene quantifications when a moderately smaller k was chosen (k = 21). However, we

have also found that the performance of alignment-free quantification at this opti-

mal k was still not comparable to alignment-based pipelines for small genes. Using

tRNA as a model, our results have suggested that this performance difference was

likely due to a combinatorial effect of the choice of k-mer size and misincorporations

introduced by post-transcriptionally-modified RNA bases during reverse transcrip-

tions. We reason that a relatively long k-mer and erroneous sequencing reads likely

impede matching to the indexed transcriptome even when these sequencing reads

are shredded into k-mers since all k-mers inherit the same errors/mismatches. Since

mismatches on sequencing reads can either be reverse transcription errors or bio-

logical variations on small RNAs [27], we expect the same phenomenon may occur

if the small RNAs contain single-nucleotide polymorphisms or mutations.

Conclusions
In summary, we have shown that different types of pipelines performed similarly for

common differentially-expressed gene targets such as protein-coding genes. However,

accurate quantification of lowly-expressed or small RNA is difficult to achieve with

alignment-free pipelines. Using tRNA as a model, we have also found that k-mer

counting algorithms are not compatible for quantifying small genes with abundant

mutations regardless of the choice of k-mer size.

Abbreviations
TGIRT: Thermostable group II intron reverse transcriptase; MAQC: microarray

quality control consortium; ERCC: External RNA controls consortium; RMSE: root

mean square error; ROC: receiver operating characteristic; AUC: area under the

curve; TPM: transcripts per million

Methods
Data and reference preparation. Raw sequencing reads for TGIRT-seq data gen-

erated from the well-studied MAQC samples were downloaded from the NCBI

Sequence Read Archive, accession number SRP066009 [15]. In brief, this dataset

includes triplicates of four different human total RNA samples (called A–D) spiked

with External RNA Control Consortium (ERCC) transcripts. ERCC spike-in tran-

scripts are 92 in vitro transcripts with 250–2000-nt long [21]. Two ERCC spike-in

mixes (mixes 1 and 2) with different concentrations for each transcript were spiked

into RNA samples A (universal human RNA) and B (human total brain RNA),

respectively, to provide known fold-changes of these spike-in transcripts between

these two samples [18, 21]. By design, these two spike-in mixes establish four differ-

ent differentially-expressed gene groups with relative ratios of 0.67:1, 1:1, 1:2, and
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1:4 between samples A and B. Samples C and D are mixes of samples A and B in

ratios of 3:1 and 1:3, respectively. For detailed library preparations, please refer to

Nottingham, et al [15].

Human transcriptome reference sequences were obtained from Ensembl (human

genome build version GRCh38.87) by downloading cDNA and non-coding RNA se-

quence FASTA files [28]. ERCC spike-in sequences were downloaded from the ven-

dor’s website (ThermoFisher). Transfer RNA (tRNA) annotations and sequences

were downloaded from the Genomic tRNA Database [29]. For tRNA sequences,

introns were removed, and all sequences were de-duplicated at the sequence level

to reduce multiply-mapped reads and improve tRNA counting. 5S rDNA (Gen-

Bank accession: X12811.1) and complete rDNA repeat unit (GenBank accession:

U13369.1) sequences were downloaded from GenBank (NCBI). These sequences

were merged and indexed with Kallisto v0.43.0 [5] and Salmon v0.8.2 [6] using

the default k-mer size (k = 31). Human genome sequences and annotations were

downloaded as FASTA and GTF files from Ensembl (human genome build version

GRCh38.88) [28], combined with ERCC spike-in sequences and rDNA sequences,

and indexed by HISAT2 v2.0.4 [9]. A HISAT2 splice-site file was created using the

human genome build GRCh38.88 GTF file [9]. Gene annotations were obtained as a

BED file using Ensembl biomaRt package in R [30, 31] from Genome build version

GRCh38.87 [28]. The gene annotation BED file was merged with tRNA, ERCC

spike-in, and rDNA annotations for gene counting. The merged gene BED file was

converted to a featureCounts SAF file [3] using the UNIX awk command.

Adaptor trimmings. Raw reads were adapter- and quality- trimmed by cutadapt

v1.13 [32] via:

cutadapt -m 15 -O 5 -n 3 -q 20 \

-b AAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \

-B GATCGTCGGACTGTAGAACTCTGAACGTGTAGA \

-o ${TRIMMED_FQ1} -p ${TRIMMED_FQ2} \

${FQ1} ${FQ2}

HISAT2 mapping. Reads were aligned to the genome using HISAT2 v2.0.4 [9] via:

hisat2 -k 10 --no-mixed -no-discordant \

--known-splicesite-infile={SPLICESITE_FILE} \

-1 ${TRIMMED_FQ1} -2 ${TRIMMED_FQ2}

HISAT2+featureCounts. Trimmed reads were aligned using HISAT2 mapping.

Gene counts from HISAT2 mapping were generated by featureCounts v1.5.0 [3]

via:
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featureCounts -F SAF -O -s 1 -M -T 24 \

--largestOverlap --minOverlap 10 \

--primary -p -P -d 10 -D 10000 -B \

-S fr -C -donotsort \

${LIST_OF_BAM_FILES}

TGIRT-map. Our custom pipleine TGIRT-map first filters out all trimmed reads

that can be aligned to tRNA or rRNA references to reduce multiply-mapped reads

(Additional File 1). The remaining unaligned reads are then sequentially aligned to

the human genome using a splice-aware aligner (HISAT2) [9] and a sensitive local

aligner (BOWTIE2) [20]. A single alignment locus is picked from the multiply-

mapped fragments by asserting the assumptions that (A) RNA-seq fragments are

small (smallest insert size), (B) ribosomal genes are abundant in the genome (ribo-

somal gene loci), and (C) fragments are unlikely to be originated from haplotype or

patch sequences (as defined by Ensembl annotations) of the artificially assembled

genome. Finally, gene quantification is done on genomic loci, except for tRNA and

rRNA which require an additional step of re-aligning and counting.

Trimmed reads were first aligned to rRNA (GenBank accession numbers: X12811.1

and U13369.1) and tRNA sequences with BOWTIE2 v2.3.2 [20] via:

bowtie2 -D 20 -R 3 -N 0 \

-L 8 -i S,1,0.50 --no-mixed \

--norc --no-discordant \

-1 ${TRIMMED_FQ1} -2 ${TRIMMED_FQ2}

We define the mapped reads as tRNA and rRNA pre-mapped reads. Unmapped

reads were then aligned to the genome with HISAT2 as described above in HISAT2

mapping [9]. Unaligned reads from HISAT2 mapping were then rescued by re-

aligning locally to the genome with BOWTIE2 [20] via:

bowtie2 -D 20 -R 3 -N 0 -L 8 \

-i S,1,0.50 -p 24 -k 10 \

--no-mixed --no-discordant \

-1 ${FQ1} -2 ${FQ2}

All alignment pairs with > 10 nucleotides of soft-clipped bases on either reads or

were discordant pairs were discarded. Multiply-mapped reads from the two genome-

mapping steps were grouped and a pair of best alignment was chosen by the fol-

lowing ordered criteria: the alignment pair (A) had the smallest insert size, (B) was

mapped to ribosomal gene locus, or (C) was mapped to chromosome 1–23, X or

Y. If none of these criteria was met by a single alignment pair, a random align-

ment pair was chosen from the multiply-mapped loci. These filtered alignments

were then merged with the uniquely-mapped alignments. All reads that mapped
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to tRNA or rRNA loci were extracted by BEDtools v2.26 using pairtobed com-

mand with options -s -f 0.01 [33], combined with tRNA and rRNA pre-mapped

reads and re-aligned to tRNA and rRNA references. Counts were generated from

the aligned BAM file. Counts for each anticodon were aggregated. Other gene

counts were calculated by converting the genome alignments to fragment coor-

dinates in a BED file using the BEDtools bamtobed command and counted us-

ing the BEDtools coverage command [33]. TGIRT-map pipeline is available at:

https://github.com/wckdouglas/tgirt map.

Kallisto and Salmon. We used Kallisto v0.43.0 [5] and Salmon v0.8.2 [6] for our

alignment-free pipelines. In both cases, adaptor-trimmed reads were used as input.

We called Salmon with the following command-line arguments:

salmon quant \

--seqBias --gcBias \

--index ${INDEX} --libType ISF \

--writeMappings \

--threads=${THREADS} \

--auxDir ${RESULTPATH} \

--numBootstraps 100 \

--mates1 ${TRIMMED_FQ1} --mates2 ${TRIMMED_FQ2} \

--output ${RESULTPATH}

We called Kallisto with the following command-line arguments:

kallisto quant \

-i ${INDEX} -o ${OUTPUT_PATH} \

--fr-stranded --threads=${THREADS}\

${TRIMMED_FQ1} ${TRIMMED_FQ2}

Differential expression analysis. DESeq2 v1.14.1 [34] was used for all differential

expression analyses.

Because DESeq2 does not accept TPM values as input, transcript TPM values from

Salmon and Kallisto were converted to gene-level counts using Tximport [35] before

any differential-expression analyses.
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Figure 1 Analysis pipelines and experimental design. We used two pipelines each for the
alignment-based and alignment-free approach. The alignment-based pipelines consisted of (A) a
HISAT2+featureCounts pipeline using HISAT2 [9] for aligning reads to the human genome and
using featureCounts [3] for gene counting, and (B) TGIRT-map, a customized pipeline for
analyzing TGIRT-seq data. Further details regarding the custom TGIRT-map pipeline are provided
in Methods and in Additional File 1. Two alignment-free tools, Kallisto [5] and Salmon [6], were
used for quantifying transcripts. For alignment-free tools, gene-level abundances were summarized
by Tximport [35]. All differentially-expressed gene callings were done by DESeq2 [34].
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Figure 2 Gene detection and quantification. (a) Numbers and types of detected genes in every
sample and pipeline. Genes with TPM > 0.1 were labeled as being detected. The stacked bar
charts indicate the numbers of genes detected by each pipeline. The bar charts are grouped by
library (A1–D3), where A–D represent the RNA samples and the numbers represent replicate
identifiers. The stacked-bars are color-coded by RNA type. (b) ERCC spike-in quantifications
versus the true spike-in abundances. Log2 transcripts per million (TPM) values for every ERCC
transcript from every replicate are plotted against the known spike-in concentrations, grouped by
pipelines and samples. Blue lines indicate least-square regression lines. Coefficients of
determination are annotated in each panel.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246967doi: bioRxiv preprint 

https://doi.org/10.1101/246967
http://creativecommons.org/licenses/by/4.0/


Wu et al. Page 16 of 28

Figure 3 Differential expression analysis of ERCC spike-ins. (a) Violin-plots of deviations
between measured and expected log2 fold-changes of ERCC transcript between samples A and B.
The distributions of log2 fold-change errors for each ERCC transcript are grouped by their
expected differentially-expressed groups and are color-coded by the tested pipelines. The
horizontal dashed line indicates no error. (b) Receiver operating characteristic curves for calling
ERCC spike-ins as differentially-expressed. Areas under the curve were computed using p-values
assigned by the differential expression caller (DESeq2 [34]) on abundance estimations of each
ERCC transcript from each pipeline.
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Figure 4 R2 of measured versus expected log2 fold-changes between samples C and D. (a)
Gene expression level influenced accuracies of fold-change estimation. R2 values were computed
from the expected and measured log2 fold-change values between samples C and D for each
pipeline using different gene sets grouped by average gene expression levels. The first gene set,
labeled “Total RNA”, includes all genes. The subsequent gene sets include only the genes with
the top 1%, top 10%, top 25%, or bottom 75% expression levels, as indicated. Bars are
color-coded by pipelines. (b) Gene lengths influenced accuracies of fold-change estimation. Genes
from each pipeline were grouped by their gene lengths into four quantile groups. For each quantile
group, R2 values were computed from the expected and measured log2 fold-change values
between samples C and D. Bars are color-coded by pipelines. Coefficients of determination (R2)
were computed by R2 function from R caret package [36]. Negative R2 values indicate
exceptionally bad fold-change predictions [22] from the software as illustrated in Additional File 7,
where the fold-change output do not fit well to the samples mix-ratio.
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Figure 5 Pipeline performances of differential expression measurements for different gene
types. (a) Root mean square error (RMSE) values between measured and expected log2
fold-change values for each gene type. Bars indicate RMSE values for different gene types from
each pipeline and are color-coded by pipelines. (b) Cumulative absolute errors in tRNA log2
fold-change predictions. tRNAs (x-axis) were ordered ascendingly by the absolute errors in log2
fold-change predictions for each pipeline. Cumulative absolute errors for all detected tRNAs are
plotted. Lines are color-coded by pipelines.
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Table

Table 1 RMSE values in differential expression measurements. Numbers of detected genes are shown
in parentheses. RNA-type annotations were generated from Ensembl [28]. ”Other ncRNA” represents
the following RNA types: sense intronic, 3prime overlapping ncRNA, processed transcript,
sense overlapping, lincRNA, and all pseudogenes. “Other sncRNA” represents the following RNA
types: misc RNA, snRNA, scaRNA, sRNA, scRNA. Mt represents all mitochondrial genes, including
mitochondrial-encoded tRNAs. vaultRNA represents any Ensembl gene names with Vault or VTRNA.

RNA type HISAT2+featureCounts TGIRT-map Kallisto Salmon

Antisense
0.46

(5397)
0.445

(5410)
0.475

(5014)
0.439

(5464)

ERCC
0.415
(88)

0.413
(88)

0.338
(88)

0.332
(88)

miRNA
0.524
(972)

0.533
(2064)

0.566
(880)

0.541
(1037)

Mt
0.201
(22)

0.143
(22)

0.201
(24)

0.189
(24)

Other ncRNA
0.462

(20360)
0.454

(20815)
0.495

(19406)
0.497

(22759)

Other sncRNA
0.503

(2188)
0.483

(3201)
0.503

(2678)
0.484

(3296)

protein-coding
0.229

(19962)
0.23

(20068)
0.324

(21553)
0.318

(21889)

rRNA
0.686

(4)
0.69
(4)

0.486
(113)

0.495
(304)

snoRNA
0.383
(646)

0.398
(750)

0.408
(692)

0.417
(834)

tRNA
0.261
(54)

0.141
(56)

0.461
(47)

0.458
(47)

vaultRNA
0.09
(6)

0.215
(8)

0.425
(7)

0.405
(8)
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Additional Files
Additional File 1—figureS1.png

Flow chart of the custom pipeline TGIRT-map. As TGIRT-seq simultaneously recovers a large fraction of small

structural RNAs in addition to regular long RNAs [15, 17], TGIRT-map was designed to optimize the quantification

of these small genes. The pipeline is similar to the Genobee-exceRpt small RNA-seq pipeline [37], where reads are

first aligned against the tRNA and rRNA sequences to avoid ambiguous assignments in later steps. Unaligned reads

(red arrow) are iteratively aligned to the human genome by HISAT2 [9] and BOWTIE2 [20] to minimize unassigned

reads. Multiply-mapped reads are extracted and assigned as uniquely-mapped at loci selected by the following

criteria in order: the pair of alignments (A) has the smallest insert size, (B) is mapped to ribosomal gene loci, and

(C) is mapped to chromosome 1-23, X or Y, otherwise a random pair of alignments is selected. From these genome

alignments, reads that aligned to tRNA or rRNA loci are extracted and combined with tRNA and rRNA reads from

the first step. Finally, these combined reads are realigned to the tRNA and rRNA sequences to generate gene counts.
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Additional File 2—supplementary tables.zip

Zip file containing several data tables in tab-separated format, as well as a readme file that explains the contents of

each data file.
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Additional File 3—figureS2.png

Intersections of detected genes among tested pipelines. Genes with TPM > 0.1 were defined as being detected.

(a-d) UpSet graphs of intersections of detected genes among pipelines. An UpSet graph describes intersections of

detected genes among subsets of tested pipelines. Each UpSet graph contains a bar chart and a sample-comparison

matrix. Bars indicate the numbers of detected genes in the specific intersection specified in the sample-comparison

matrix. Each bar indicates the number of genes detected only in the intersection of the set of compared pipelines.

The sample-comparison matrix at the bottom describes the set of pipelines within which the comparison is made.

Grey boxes in the matrix annotate the pipelines included in the comparison. (e) Uniquely-detected genes. The

heights of the stacked bars indicate the numbers of genes uniquely detected by the corresponding pipeline. Stacked

bars are color-coded with gene types.
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Additional File 4—figureS3.png

Pearson’s correlation coefficients for pairwise pipeline comparisons in gene quantifications. For every pairwise

pipeline comparison and each sample (A–D), Pearson’s correlation coefficients were computed using the average

log2 TPM of each gene across the triplicates for each sample. Bar heights indicate average correlations among the

four samples A–D. Error bars represent standard deviations among the four samples A–D. Red bars represent total

RNA correlation coefficients (all genes). Grey bars indicate correlation coefficients grouped by gene type. Each panel

represents a single pairwise pipeline comparison.
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Additional File 5—figureS4.png

Impact of gene lengths and expression levels on gene quantification correlations among pipelines. (a) Gene lengths

influence gene expression estimation correlations. Genes were separated into quantile groups according to their

lengths. For every quantile group from each sample, Pearson’s correlation coefficients of average TPMs for each

gene across replicates were computed for every pairwise pipeline comparison and then averaged across the four

samples. Plotted are the average correlations versus the quantile groups. Each line represents a pairwise comparison

and is color-coded accordingly. (b) Gene expression levels influence gene expression estimate correlations. Genes

were separated into quantile groups according to their average expression values (TPMs). For every quantile group

from each sample, Pearson’s correlations were computed in the same way as in panel (a). Each line represents a

pairwise comparison and is color-coded accordingly.
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Additional File 6—figureS5.png

Differential expression analysis of protein-coding genes. (a) Comparison of measured fold-changes between samples

A and B from the TGIRT-seq analysis and the MAQC TaqMan assay. MAQC TaqMan assay data for the same

samples were downloaded from the NCBI Gene Expression Omnibus (GEO), accession number GSE5350 [18]. 972

unique protein-coding genes were compared. Log2 fold-changes were calculated from MAQC data and compared to

the DESeq2 results for each pipeline. Distributions of the deviations between RNA-seq and MAQC data log2

fold-changes were plotted as violin-plots. Distributions are color-coded by pipelines. (b) ROC curves for calling

differentially-expressed (DE) protein-coding genes. MAQC TaqMan assay genes were binary-labeled as DE if

absolute log2 fold-change >0.5 and not DE otherwise (739 DE and 225 non-DE), as suggested by a previous study

[10]. ROC curves for DESeq2 results from abundance estimates computed by each pipeline were plotted. AUCs were

computed for each ROC curve to quantify performances of the differential expression caller (DESeq2) [34] on

abundance estimates from each pipeline. ROC curves are color-coded by pipelines. The dotted diagonal line

indicates random guessing (AUC=0.5).
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Additional File 7—figureS6.png

Measured versus expected log2 fold-changes between samples C and D for Kallisto. Expected log2 fold-changes for

each gene (denoted by red line) were constructed from the (A) Kallisto-measured log2 fold-changes between

samples A and B and (B) the known sample mix ratio of samples A and B in samples C and D, using a

previously-described algorithm [18]. Each panel shows a two-dimensional kernel density estimation of the distribution

of measured vs expected log2 fold-changes between samples C and D for genes grouped by quantile groups of gene

lengths. Coefficients of determination for each group of genes are annotated as R2. Perfectly correlated log2

fold-changes are annotated by the diagonal red lines. Panels with high R2 generally show denser trends along the

red line, indicating the log2 fold-changes between samples C and D were accurately predicted by the software that

recapitulated the sample-mixing ratio and thus, fitted better to the model (red line). For groups with lower R2, a

denser (lighter color) horizontal trend was observed on the right side of the red line, indicating the software either

over-estimated log2 fold-changes between samples A and B that led to construction of an incorrect model or

under-estimated log2 fold-changes between samples C and D that led to a poor fit to the model.
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Additional File 8—figureS7.png

Performances of Salmon using different k-mer sizes of 11, 15, 21, and 31 (default). (a) Accuracies of fold-change

estimation in quantile groups of gene lengths. All detected genes from TGIRT-map or Salmon with different k-mer

sizes were grouped by their gene lengths into four quantile groups. For each quantile group, R2 values were

computed from the expected and measured log2 fold-change values between samples C and D. Bars are color-coded

by pipelines. Coefficients of determination (R2) were computed by R2 function from R caret package [36]. (b)

Cumulative absolute errors in tRNA log2 fold-change predictions for each k-mer size and TGIRT-map. tRNAs were

sorted in ascending order by their absolute errors in log2 fold-change predictions. Cumulative absolute errors for all

detected tRNA were plotted. Lines are color-coded by pipeline.
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Additional File 9—figureS8.png

Erroneous sequencing reads may have impeded k-mer counting for tRNAs. IGV genome browser screen-shots of

three tRNA alignments from Sample A1 aligned via TGIRT-map were shown. The three tRNA alignments being

shown are (a) TRR-CCG, (b) TRS-ACT, and (c) TRT-AGT. Arrows on the top of each panel indicate the

corresponding tRNA transcript strands (5’ to 3’) and sizes. Bar charts below the arrows represent coverages at every

position along the tRNA transcripts. Read alignments from Sample A1 aligned by TGIRT-map are shown below the

bar charts. Grey colors represent read bases that match the reference bases. Other colors indicate bases on the read

alignments that do not match the reference bases (purple, red, green, blue, and brown colors indicate insertions,

thymidines, adenosines, cytidines, and guanosines on the read alignments, respectively). These errors may reflect

post-transcriptionally-modified RNA bases, which interfere with canonical base-pairings and lead to

misincorporations during TGIRT reverse transcriptions [15, 17, 25]. Errors due to misincorporations at known and

unknown sites of post-transcriptionally modified RNA bases are highlighted with boxes (m2
2G26:

N2,N2-dimethylguanosine at position 26; m2G26: N2-methylguanosine at position 26; I34: Inosine at position 34;

m1A58: 1-methyladenosine at position 58; see also [15, 17, 38]). Unannotated mismatches from both ends can be

untrimmed adapters or tRNA-precusor sequences. We observe that on these tRNAs, the errors induced by

RNA-base-modification occurred at positions ∼ 20, 30, or 50 on ∼ 75 nucleotide long tRNA transcripts. Therefore,

we expect that every k-mer originating from an erroneous sequencing read inherits at least one of these errors, and

therefore k-mers cannot be matched accurately to the transcript database. The effect is worse when a large k-mer

size is selected, such as the default k = 31.
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