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Neural learning aims at the maximization of reward and the typical gradient descent learn-
ing is an approximate causal estimator. However real neurons spike based on pre-synaptic
drive, creating discontinuities. The regression discontinuity method, popularized by eco-
nomics, uses such discontinuities to estimate causal effects. Here we show how the spiking
discontinuity can thus reveal the influence of a neuron’s activity on reward, producing a deep
link between simple learning rules and quasi-experimental causal inference.

Learning is typically conceptualized as changing a neuron’s properties to cause better performance or
improve the reward R. This is a problem of causality: to learn, a neuron needs to estimate its causal influence
on reward, βi. The typical solution linearizes the problem and leads to popular gradient descent-based (GD)
approaches of the form βGDi = ∂R

∂hi
. However gradient descent is just one possible approximation to the

estimation of causal influences and one that does not work when gradients are undefined, e.g. in the case of
spiking neurons. Focusing on the underlying causality problem promises new ways of understanding learning.

Gradient descent is problematic as a model for biological learning for two reasons. First, real neurons
spike, as opposed to units in artificial neural networks (ANNs), and their rates are usually quite slow so that
the discreteness of their output matters (e.g. [30]). Further, given physiological constraints on information
transmission, it remains unclear how mechanistically neurons might implement gradient descent. Given these
challenges we may ask if the brain uses different approaches for causal inference.

The most obvious approach to causality is intervention: if some spiking is random then the correlation
of performance with those random perturbations reveal causality. Perturbation-based methods have been
demonstrated in various settings [3, 7, 8, 20, 24]. Other approaches rely on intrinsically generated noise to
infer causality [35, 29], however these methods fail when the noise utilized for causal inference is correlated
among neurons. Yet noise correlations are a common phenomenon in neuroscience (e.g. Zylberberg et al 2016
[36]), which limits these methods’ applicability. One can think of injecting noise as equivalent to randomized
controlled trials in medicine [22] and A/B tests in computer science [16]. However requiring the injection of
extra noise decreases performance, prompting us to ask if it is necessary.

Econometricians have deeply thought about causality [1]. One of the most popular techniques is regression
discontinuity design (RDD) [15]. In RDD a binary treatment of interest, G, is based on thresholding an
input variable, called a forcing or running variable. We are interested in the treatment’s effect on an output
variable I. An example from education might be an exam cutoff for admittance to a selective high school
(Fig. 1a) [21]. How can we estimate the causal effect of the high school on future academic performance?

A naive estimate is just to compare the students who attend the selective school to those who attend a
less selective school, which we will term the observed dependence (OD):

βOD := E(I|G = 1)− E(I|G = 0).
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Figure 1: Applications of regression discontinuity design. a, (left) In education, the effect of manda-
tory classes given to students who fail an exam can be used to infer the effect of the classes by focusing
on students at the threshold. The discontinuity at the threshold is then a meaningful estimate of the local
average treatment effect (LATE), or causal effect. (right) In neuroscience, the effect of a spike on a reward
function can be determined by considering cases when the neuron is driven to be just above or just below
threshold. b, The maximum drive versus the reward shows a discontinuity at the spiking threshold, which
represents the causal effect. c, This is judged by looking at the neural drive to the neuron over a short
time period. Marginal sub- and super-threshold cases can be distinguished by considering the maximum
drive throughout this period. d, Schematic showing how RDD operates in network of neurons. Each neuron
contributes to output, and observes a resulting reward signal. Learning takes place at end of windows of
length T . Only neurons whose input drive brought it close to, or just above, threshold (gray bar in voltage
traces; compare neuron 1 to 2) update their estimate of β. e, Model notation.
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However there will be differences between the two groups, e.g. stronger students will tend have been admitted
to the more selective school in the first place. Effects based on student skills and the high school attended
will be superimposed, confounding the estimate.

A more meaningful estimate comes from focusing on marginal cases. If we compare the students that
are right below the threshold and those that are right above the threshold then they will effectively have the
same exam performance. And, since exam performance is noisy, the statistical difference between marginally
sub- and super- threshold students will be negligible. Therefore the difference in outcome between these two
populations of students will be attributable only to the high school attended, providing a measure of causal
effect (Fig. 1a). If χ is the threshold exam score, then RDD computes

βRD := lim
x→χ+

E(I|G = x)− lim
x→χ−

E(I|G = x).

This estimates the causal effect of treatments without requiring the injection of noise. RDD uses local
regression near the threshold to obtain statistical power while avoiding confounding.

Neurons that are not subject to external noise injection have to solve exactly the same causal inference
problem (Fig. 1a). They spike when their maximal drive Zi exceeds a threshold, in analogy to the score in
the schooling example. Through neuromodulator signals a neuron may receive feedback on a reward signal
R [27, 5], analogue to the future achievement. The comparison in reward between time periods when a
neuron almost reaches its firing threshold to moments when it just reaches its threshold analogously allows
an RDD estimate of its own causal effect (Fig. 1b, c). Rather than using randomized perturbations from an
additional noise source, a neuron can take advantage of the interaction of its threshold with its drive.

To implement RDD a neuron can estimate a piece-wise linear model of the reward function at time
periods when its inputs place it close to threshold:

R = γi + βiHi + [αriHi + αli(1−Hi)](Zi − µ)

Here Hi is neuron i’s spiking indicator function, γi, αli and αri are the slopes that correct biases that would
otherwise occur from having a finite bandwidth, Zi is the maximum neural drive to the neuron over a short
time period, and βi represents the causal effect of neuron i’s spiking. The neural drive we will use here is
the leaky, integrated input to the neuron, that obeys the same dynamics as the membrane potential except
without a reset mechanism. By tracking the maximum drive attained over a short time period, marginally
super-threshold inputs can be distinguished from well-above-threshold inputs, as required to apply RDD.

How could a neuron use RDD to estimate causal effects? We analyze a simple two neuron network,
obeying leaky integrate-and-fire (LIF) dynamics. The neurons receive an input signal x with added noise,
correlated with coefficient c. Each neuron weighs the noisy input by wi. The correlation in input noise
induces a correlation in the output spike trains of the two neurons [31], thereby introducing confounding.
The neural output determines a non-convex reward signal R. This setting allows us to test if neurons can
conceivably implement RDD.

The difficulty in estimating a causal effect is that other neurons’ activity confounds activation with reward.
In the economics analogy we may think of large teams of interacting workers in a company producing some
goods: what is everyone’s contribution? A simplified RDD estimator that considers only average difference
in reward above and below threshold within a window p, rather than a linear model, reveals this confounding
(Fig. 2a). The locally linear RDD model, on the other hand, is more robust to this confounding (Fig. 2b).
Thus the linear correction that is the basis of many RDD implementations [15] allows neurons to readily
estimate their causal effect.

To investigate the robustness of the RDD estimator, we systematically vary the weights, wi, of the
network. RDD works better when activity is fluctuation-driven and at a lower firing rate (Fig. 2c). RDD
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Figure 2: Estimating reward gradient with RDD in two-neuron network. a, Estimates of causal
effect (black line) using a constant RDD model (difference in mean reward when neuron is within a window
p of threshold) reveals confounding for high p values and highly correlated activity. p = 1 represents the
observed dependence, revealing the extent of confounding (dashed lines). b, The linear RDD model is
unbiased over larger window sizes and more highly correlated activity (high c). c, Relative error in estimates
of causal effect over a range of weights (1 ≤ wi ≤ 20) show lower error with higher coefficient of variability
(CV; top panel), and lower error with lower firing rate (bottom panel). d, Over this range of weights, RDD
estimates are less biased than just the naive observed dependence. e,f, Approximation to the reward gradient
overlaid on the expected reward landscape. The white vector field corresponds to the true gradient field,
the black field correspond to the RDD (e) and OD (f) estimates. The observed dependence is biased by
correlations between neuron 1 and 2 – changes in reward caused by neuron 1 are also attributed to neuron
2.
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is less biased than the observed dependence (Fig. 2d). Thus RDD is most applicable in irregular but
synchronous activity regimes [4]. The causal effect can be used to estimate ∂R

∂wi
(Fig. 2e,f), and thus the

RDD estimator may be used for learning weights that maximize the expected reward (see Methods).
To demonstrate how a neuron can learn β through RDD, we derive an online learning rule from the linear

model. The rule takes the form:

∆ui =

{
−η[uTi ai −R]ai, θ ≤ Zi < θ + p (just spikes);

−η[uTi ai +R]ai, θ − p < Zi < θ (almost spikes),

where ui are the parameters of the linear model required to estimate βi, η is a learning rate, and ai are
drive-dependent terms (see Methods). This plasticity rule, where both a reward signal and activation can
switch the sign of plasticity, is compatible with the interaction of modulatory influences of neuromodulators
and neuronal firing [28, 2].

When applied to the toy network, the online learning rule (Fig. 3a) estimates β over the course of seconds
(Fig. 3b). When the estimated β is then used to maximize expected reward in an unconfounded network
(uncorrelated – c = 0.01), RDD-based learning exhibits higher variance than learning using the observed
dependence. RDD-based learning exhibits trajectories that are initially meander while the estimate of β
settles down (Fig. 3c). When a confounded network (correlated – c = 0.5) is used RDD exhibits similar
performance, while learning based on the observed dependence sometimes fails to converge due to the bias
in gradient estimate. In this case RDD also converges faster than learning based on observed dependence
(Fig. 3d,e).

This paper is a first step to introduce the RDD to neuronal learning. It serves to illustrate the difference
in behavior of RDD and observed-dependence learning in the presence of confounding, but is by no means
optimized for performance. Further, in many ways it can and should be extended: our model does not solve
temporal credit assignment; it does not deal with large, interesting, systems; and it does not specify where
presynaptic variance comes from. Nonetheless, RDD is one of the few known ways of statistically dealing with
confounders, and an example of a larger class of methods called pseudo-experiments [23]. Demonstrations
that segregated neuronal models [11, 17] and synthetic gradient methods [6] can solve deep learning problems
at scale inspire future work.

Within reinforcement learning, there exist two popular approaches for estimating causality, each based
on utilizing different kinds of intrinsic noise. In perturbation-based methods, a separate noise process is
purposefully injected into the system and a mechanism for the system to understand responses as being
either ‘natural’ or ‘perturbation-caused’ is used [3, 7, 8, 20]. In REINFORCE-type schemes [34], the noise
instead comes from the biophysical properties of neurons, e.g. their Poisson spiking [35, 29]. In RDD
approaches, on the other hand, it is sufficient that something, in fact anything that is presynaptic, produces
variability. As such, RDD approaches do not require the noise source to be directly measured.

Further, in previous work, spiking is typically seen as a disadvantage and systems aim to remove spiking
discontinuities through smoothing responses [14, 13, 19]. The RDD rule, on the other hand, exploits the
spiking discontinuity. Moreover, finite difference approaches like the method derived here also have the
benefit that they can operate in environments with non-differentiable or discontinuous reward functions. In
many real-world cases, gradient descent would be useless: even if the brain could implement it, the outside
world does not supply us with gradients (unlike its simulators [33]). Spiking may, in this sense, allow a
natural way of understanding a neuron’s causal influence in a complex world.

The most important aspect of RDD is the explicit focus on causality. A causal model is one that can
describe the effects of an agent’s actions on an environment. Thus learning through the reinforcement of
an agent’s actions relies, even if implicitly, on a causal understanding of the environment [9, 18]. Here, by
explicitly casting learning as a problem of causal inference we have developed a novel learning rule for spiking
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Figure 3: Applying the RDD learning rule. a, Sign of RDD learning rule updates are based on whether
neuron is driven marginally below or above threshold. b, Applying rule to estimate β for two sample neurons
shows convergence within 10s (red curves). Error bars represent standard error of the mean. c, Convergence
of observed dependence (left) and RDD (right) learning rule to unconfounded network (c = 0.01). Observed
dependence converges more directly to bottom of valley, while RDD trajectories have higher variance. d,e,
Convergence of observed dependence (d) and RDD (e) learning rule to confounded network (c = 0.5).
Right panels: error as a function of time for individual traces (blue curves) and mean (black curve). With
confounding learning based on observed dependence converges slowly or not at all, whereas RDD succeeds.

neural networks. Causality is what really matters in life and, as such, we believe that focusing on causality
is essential when thinking about the brain.

Methods

The causal effect

A causal model is a Bayesian network along with a mechanism to determine how the network will respond to
intervention. This means a causal model is a directed acyclic graph (DAG) G over a set of random variables
X = {Xi}Ni=1 and a probability distribution P that factorizes over G [25]. An intervention on a single variable
is denoted do(Xi = y). Intervening on a variable removes the edges to that variable from its parents, PaXi

,
and forces the variable to take on a specific value: P (xi|PaXi

= xi) = δ(xi = y). Given the ability to
intervene, the local average treatment effect (LATE), or just causal effect, between an outcome variable Xj

and a binary variable Xi can be defined as:

LATE := E(Xj |do(Xi = 1))− E(Xj |do(Xi = 0)).

We will make use of the following result. If Sij ⊂ X is a set of variables that satisfy the back-door criteria
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with respect to Xi → Xj , then it satisfies the following: (i) Sij blocks all paths from Xi to Xj that go
into Si, and (ii) no variable in Sij is a descendant of Xi. In this case the interventional expectation can be
inferred from

E(Xj |do(Xi = y)) = E (E(Xj |Sij , Xi = y)) . (1)

Given this framework, here we will define the causal effect of a neuron as the average causal effect of a neuron
Hi spiking or not spiking on a reward signal, R:

βi := E(R|do(Hi = 1))− E(R|do(Hi = 0)),

where Hi and R are evaluated over a short time window of length T .

Neuron, noise and reward model

We consider the activity of a network of n neurons whose activity is described by their spike times

hi(t) =
∑

δ(t− tis).

Here n = 2. Synaptic dynamics s ∈ Rn are given by

τsṡi = −si + hi(t), (2)

for synaptic time scale τs. An instantaneous reward is given by R(s) ∈ R. In order to have a more smooth
reward signal, R is a function of s rather than h. The reward function used here has the form of a Rosenbrock
function:

R(s1, s2) = (a− s1)2 + b(s2 − s21)2.

The neurons obey leaky integrate-and-fire (LIF) dynamics

v̇i = −gLvi + wiηi, (3)

where integrate and fire means simply:

vi(t
+) = vr, when vi(t) = θ.

Noisy input ηi is comprised of a common DC current, x, and noise term, ξ(t), plus an individual noise term,
ξi(t):

ηi(t) = x+ σi
[√

1− cξi(t) +
√
cξ(t)

]
.

The noise processes are independent white noise: E(ξi(t)ξj(t
′)) = σ2δijδ(t − t′). This parameterization is

chosen so that the inputs η1,2 have correlation coefficient c. Simulations are performed with a step size of
∆t = 1ms. Here the reset potential was set to vr = 0. Borrowing notation from Xie and Seung 2004 [35],
the firing rate of a noisy integrate and fire neuron is

µi =

[
1

gL

∫ ∞
0

1

u

(
exp

(
−u2 + 2ythi u

)
− exp

(
−u2 + 2yri u

))
du

]−1
, (4)

where ythi = (θ − wix)/σi and yri = −wix/σi, σi = σwi is the input noise standard deviation.

7

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/253351doi: bioRxiv preprint 

https://doi.org/10.1101/253351
http://creativecommons.org/licenses/by-nc/4.0/


We define the input drive to the neuron as the leaky integrated input without a reset mechanism. That
is, over each simulated window of length T :

u̇i = −gLui + wiηi, ui(0) = vi(0).

RDD operates when a neuron receives inputs that place it close to its spiking threshold – either nearly
spiking or barely spiking – over a given time window. In order to identify these time periods, the method
uses the maximum input drive to the neuron:

Zi = max
0≤t≤T

ui(t).

The input drive is used here instead of membrane potential directly because it can distinguish between
marginally super-threshold inputs and easily super-threshold inputs, whereas this information is lost in the
voltage dynamics once a reset occurs. Here a time period of T = 50ms was used. Reward is administered at
the end of this period: R = R(sT ).

Policy gradient methods in neural networks

The dynamics given by (3) generate an ergodic Markov process with a stationary distribution denoted ρ.
We consider the problem of finding network parameters that maximize the expected reward with respect
to ρ. In reinforcement learning, performing optimization directly on the expected reward leads to policy
gradient methods [32]. These typically rely on either finite difference approximations or a likelihood-ratio
decomposition. Both approaches ultimately can be seen as performing stochastic gradient descent, updating
parameters by approximating the expected reward gradient:

∇wEρR, (5)

for neural network parameters w. Here capital letters are used to denote the random variables drawn from
the stationary distribution, corresponding to their dynamic lower-case equivalent above.

Manipulating the expectation using a likelihood-ratio trick leads to REINFORCE-based methods [34].
In neural networks, likelihood-ratio based algorithms are known to be higher variance than methods that
more directly approximate back-propagation (e.g. Rezende et al 2014 [26]). This motivates considering
methods that more directly estimate the gradient terms [26, 12], breaking down (5) as we would with the
deterministic expression. Here we focus on cases dominated by the mean reward gradient, meaning we
assume the following:

∇wEρR ≈ Eρ
[
(∇SR)

∂µ

∂w

]
, (6)

where µ is the mean activity vector of the neurons.
Fig. 2e suggests that the assumption (6) is reasonable for the case presented here. Of course in general

this assumption does not hold, however the method presented here can likely be extended to broader cases.
For instance, if we were to assume that the stationary distribution ρ can be approximated as Gaussian then
we have:

∇wEρR = Eρ
[
(∇SR)

∂µ

∂w
+

1

2
Tr

(
(∇2

SR)
∂Σ

∂w

)]
, (7)

for µ and Σ, the mean and covariance of the Gaussian random vector S [26]. In this case quasi-Newton
methods may be able to make use of the methods derived here. Alternatively, in some episodic learning
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cases, the gradient ∇w may be computed by unrolling the network so that the parameters separate from the
stochastic variables; this is sometimes known as the re-parameterization trick [10, 26, 12].

Thus we derive methods to estimate E(∇SR), and use it with (6) and (4) for stochastic gradient descent-
based learning. We deal with spiking networks, meaning S is discontinuous at spike times. Therefore it
makes sense to consider finite difference approximations to this gradient term.

Causal effect in neural networks

How can a neuron estimate E( ∂R∂Si
)? We show that the reward gradient term can be related to the causal

effect of a neuron on the reward signal. To show this we replace ∂
∂Si

with a type of finite difference operator:

DiR(Si,Sj 6=i) :=
1

∆s
(E(R|Si + ∆s,Sj 6=i)− E(R|Si,Sj 6=i)) .

Here Sj 6=i ⊂ X is a set of nodes that satisfy the back-door criterion with respect to Hi → R. When R is a
deterministic, differentiable function of S and ∆s → 0 this recovers the reward gradient ∂R

∂Si
and we recover

gradient descent-based learning. However this formulation has the advantage that it is defined when R is
not differentiable, it does not require R is a deterministic function of S, and does not require that ∆s be
small.

To consider the effect of a single spike, note that unit i spiking will cause a jump in Si (according to (2))
compared to not spiking. If we let ∆s equal this jump then it can be shown that E(DiR) is related to the
causal effect:

βi = E (R|do(Hi = 1))− E (R|do(Hi = 0))

= E (E (R|Sj 6=i, Hi = 1)− E (R|Sj 6=i, Hi = 0))

≈ ∆sE(E (DiR(Si,Sj 6=i)|Sj 6=i, Hi = 0))

= ∆sE(DiR(Si,Sj 6=i)|do(Hi = 0)). (8)

A derivation is presented in the supplementary material (Section A).

Using regression discontinuity design

For comparison we define the observed dependence βODi as:

βODi := E(R|Hi = 1)− E(R|Hi = 0).

This of course provides an estimate of βi only when Hi is independent of other neurons in the network. In
general the causal effect is confounded through correlation with other units.

As described in the main text, to remove confounding, RDD considers only the marginal super- and sub-
threshold periods of time. This works because the discontinuity in the neuron’s response induces a detectable
difference in outcome for only a negligible difference between sampled populations (sub- and super-threshold
periods). The RDD method estimates [15]:

βRDi := lim
x→θ+

E(R|Zi = x)− lim
x→θ−

E(R|Zi = x),

for maximum input drive obtained over a short time window, Zi, and spiking threshold, θ; thus, Zi < θ
means neuron i does not spike and Zi ≥ θ means it does.
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To estimate βRDi , a neuron can estimate a piece-wise linear model of the reward function:

R = γi + βiHi + [αriHi + αli(1−Hi)](Zi − θ),

locally, when Zi is within a small window p of threshold. Here γi, αli and αri are nuisance parameters, and
βi is the causal effect of interest. This means we can estimate βRDi from

βi ≈ E(R− αr(Zi − θ)|θ ≤ Zi < θ + p)− E(R− αl(Zi − θ)|θ − p < Zi < θ).

A neuron can learn an estimate of βRDi through a least squares minimization on the model parameters
βi, αl, αr. That is, if we let ui = [βi, αr, αl]

T and at = [1, hi,t(zi,t − θ), (1− hi,t)(zi,t − θ)]T , then the neuron
solves:

ûi = argminu

T∑
t:(θ−p<zi,t<θ+p)

[
uTi at − (2hi,t − 1)Rt

]2
.

Performing stochastic gradient descent on this minimization problem gives the learning rule:

∆ui =

{
−η[uTi ai −Rt]ai, θ ≤ zi,t < θ + p (just spikes);

−η[uTi ai +Rt]ai, θ − p < zi,t < θ (almost spikes),

for all time periods at which zi,t is within p of threshold θ.

Implementation

python code used to run simulations and generates figures is available at: https://github.com/benlansdell/
rdd.

A The relation between causal effect and the finite difference op-
erator

Here we present a more detailed derivation of (8), which relates the causal effect to a finite difference
approximation of the reward gradient. First, assuming the conditional independence of R from Hi given Si
and Sj 6=i:

βi = E (R|do(Hi = 1))− E (R|do(Hi = 0))

= E (E (R|Sj 6=i, Hi = 1)− E (R|Sj 6=i, Hi = 0))

= E (E (E (R|Si,Sj 6=i) |Sj 6=i, Hi = 1)− E (E (R|Si,Sj 6=i) |Sj 6=i, Hi = 0)) . (9)

Now if we assume that on average Hi spiking induces a change of ∆s in Si within the same time period,
compared with not spiking, then:

ρ(si|Sj 6=i, Hi = 1) ≈ ρ(si −∆s|Sj 6=i, Hi = 0). (10)

This is reasonable because the linearity of the synaptic dynamics, (2), means that the difference in Si between
spiking and non-spiking windows is simply exp(−tsi/τs)/τs, for spike time tsi. We approximate this term
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with its mean:

∆s = E
(

1

τs
e−tsi/τs |Sj 6=i, Hi = 1

)
≈ 1

T

(
1− e−T/τs

)
, (11)

under the assumption that spike times occur uniformly throughout the length T window. These assumptions
are supported numerically (Suppl. Fig. 1).

Writing out the inner two expectations of (9) gives:

E (E (R|Si,Sj 6=i) |Sj 6=i, Hi = 1)− E (E (R|Si,Sj 6=i) |Sj 6=i, Hi = 0)

=

∫ ∞
0

E(R|Sj 6=i, Si = si) [ρ(si|Sj 6=i, Hi = 1)− ρ(si|Sj 6=i, Hi = 0)] dsi

from (10) =

∫ ∞
0

E(R|Si = si + ∆s,Sj 6=i)ρ(si|Sj 6=i, Hi = 0)− E(R|Si = si,Sj 6=i)ρ(si|Sj 6=i, Hi = 0) dsi,

after making the substitution si → si+∆s in the first term. Writing this back in terms of expectations gives
the result:

β ≈ E (E (E (R|Si + ∆s,Sj 6=i)− E (R|Si,Sj 6=i) |Sj 6=i, Hi = 0))

= ∆sE(E (DiR(Si,Sj 6=i)|Sj 6=i, Hi = 0))

= ∆sE(DiR(Si,Sj 6=i)|do(Hi = 0)).
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Figure 4: Supplementary Figure 1. Relation between Si and Hi over window T . a, Simulated spike
trains are used to generate Si|Hi = 0 and Si|Hi = 1. QQ-plot shows that Si following a spike is distributed
as a translation of Si in windows with no spike, as assumed in (10). b, This offset, ∆s, is independent of firing
rate and is unaffected by correlated spike trains. c, Over a range of values (0.01 < T < 0.1, 0.01 < τs < 0.1)
the derived estimate of ∆s (11) is compared to simulated ∆s. Proximity to the diagonal line (black curve)
shows these match. d, ∆s as a function of window size T and synaptic time constant τs. Larger time
windows and longer time constants lower the change in Si due to a single spike.
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