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Summary 

We study the connectivity principles underlying the emergence of orientation selectivity 
in primary visual cortex (V1) of mammals lacking an orientation map. We present a 
computational model in which random connectivity gives rise to orientation selectivity 
that matches experimental observations. It predicts that mouse V1 neurons should 
exhibit intricate receptive fields in the two-dimensional frequency domain, causing shift in 
orientation preferences with spatial frequency. We find evidence for these features in 
mouse V1 using calcium imaging and intracellular whole cell recordings.  

Introduction  
  
Since its initial description by Hubel and Wiesel (Hubel and Wiesel, 1962), orientation 
selectivity has served as a platform for studying neocortical computations (Priebe and 
Ferster, 2012). V1 neurons in primates and carnivores are characterized not only by 
their preference for the orientation of bars or edges, but also that the preference for a 
bar or edge of a specific orientation is invariant to the spatial structure of the object 
displayed. For example, a V1 neuron which responds best to a vertical orientation 
should maintain that orientation preference despite changes in the width or movement of 
a presented bar (De Valois et al., 1982; Jones et al., 1987; Webster and De Valois, 
1985).  
 
Orientation selectivity emerges in V1 of primates and carnivores where a functional 
organization for this selectivity is also observed: neurons are organized in a columnar 
fashion with shared orientation preference across cortical layers and smooth changes in 
selectivity along the V1 surface (Hubel and Wiesel, 1977). This functional architecture is 
the product of the spatial arrangement of ON and OFF thalamocortical inputs that 
innervate V1 (Kremkow et al., 2016; Lee et al., 2016a) and of the vertical bias of 
intracortical connectivity (Song et al., 2005). These spatially offset ON and OFF afferents 
converge on individual V1 neurons to generate receptive fields that are orientation-tuned 
(Alonso et al., 2001) and well-described by Gabor functions (Jones and Palmer, 1987) 
(Fig. 1A).  
 
Such a functional architecture for orientation selectivity, however, is not common to all 
mammals: V1 of rodents and lagomorphs lack it but their neurons are still orientation 
selective (Drager, 1975; Girman et al., 1999; Metin et al., 1988; Murphy and Berman, 
1979). This raises the question of what connectivity rules guide afferent and intracortical 
circuitry to generate orientation selectivity in mammals that lack a functional architecture 
for orientation selectivity (Ohki and Reid, 2007).  
 
We recently showed in a model of rodent V1 that layer 2/3 can inherit orientation 
selectivity from orientation selective neurons in layer 4 even if recurrent as well as 
feedforward (L4 to L2/3) connectivity is random (Hansel and van Vreeswijk, 2012). In 
this model the L2/3 network operates in a ‘balanced’ regime (van Vreeswijk and 
Sompolinsky, 1996, 1998), in which excitatory and inhibitory inputs, are both strong,  and 
roughly cancel each other (Hansel and van Vreeswijk, 2012; Pehlevan and Sompolinsky, 
2014).  
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In this report we address the question of whether orientation selectivity can emerge in 
rodent V1 from random connectivity. We present a strongly recurrent model of the rodent 
V1 network in which neurons receive inputs from randomly chosen non-selective LGN 
cells. It does not necessitate sparse connectivity to generate selectivity, as is required in 
previous random network based models of orientation tuning (Ringach, 2004; Soodak, 
1987; von der Malsburg, 1973). Remarkably, orientation selectivity emerges in this 
network despite the lack of a Gabor like structure of the thalamocortical input with well 
segregated ON and OFF subfields. Furthermore, orientation selectivity in this network is 
robust to changes in the number of inputs. A key prediction of this model is that the 
orientation selectivity of V1 neurons may vary with the spatial content of the presented 
stimulus (Miller, 2016). It thus predicts that in mouse V1 neuron receptive fields in the 
frequency domain are intricate, containing dependencies between orientation and spatial 
frequency, in stark contrast to observations made in primates and carnivores, and 
predictions of Gabor receptive fields (De Valois et al., 1982; Jones et al., 1987; Webster 
and De Valois, 1985). To test these predictions we quantified in mouse V1 the degree to 
which orientation preference is linked to the stimulus spatial frequency using a 
combination of electrophysiological and imaging measurements.  In agreement with our 
model we found that orientation preference depends strongly on spatial frequency.  
 
Results  
 
To contrast different circuitry that could give rise to cortical orientation selectivity we 
constructed two model V1 neurons that receive input from the thalamus. In one model 
the V1 neuron receives ON and OFF thalamic inputs that are sampled on the basis of a 
Gabor filter: ON and OFF inputs have spatial preferences elongated along the preferred 
orientation axis and are spatially segregated (Fig. 1A). The temporally modulated 
component (F1) of the response is largest to horizontally oriented drifting gratings 
regardless of the spatial frequency (Fig. 1B). We also constructed a model V1 neuron in 
which ON and OFF inputs with nearby spatial preferences, which are randomly 
intermixed (Fig. 1C). Remarkably, this random connectivity model also exhibits 
orientation selectivity in the F1 component of the response. It emerges from the 
imbalances in ON and OFF inputs onto the target neuron. Unlike the ordered receptive 
field neuron, however, the preferred orientation of the F1 response of the cell changes 
with the stimulus spatial frequency. At high spatial frequency the F1 responses of the 
model neuron are largest for stimuli oriented at 30 degrees while at low spatial frequency 
responses are largest at -10 degrees (Fig. 1D). This shift in orientation preference is a 
product of the random connectivity onto the neuron: the imbalances of ON and OFF 
thalamic inputs are different as spatial scale changes, causing shifts in orientation 
preference.  
 
Orientation selectivity emerges in a model of rodent V1 with random wiring 
 
To study whether orientation selectivity in mouse V1 could result from random 
connectivity we constructed a large-scale conductance-based spiking network model of 
V1 (Sup. Fig. 1) in which cortical neurons receive feedforward excitation from randomly 
chosen thalamic relay cells as well as other cortical cells of similar retinotopic 
preferences (Sup. Fig. 1B; see Methods). Previously it has been shown that orientation 
selectivity can emerge on the basis of random inputs alone (Ringach, 2004; Soodak, 
1987; von der Malsburg, 1973). Orientation selectivity arises in these models because of 
asymmetries in the spatial preferences of the sparse inputs that converge onto a cortical 
neuron. As the number of convergent inputs increases, however, the selectivity declines 
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because the tuned temporally modulated component of the LGN input decreases relative 
to the time averaged  untuned component. To surmount this dependence of orientation 
selectivity on the number of inputs we employ a network model in which excitatory and 
inhibitory inputs are strong but balanced (van Vreeswijk and Sompolinsky, 1996, 1998) 
such that the mean and variance of the net input is on the order of the distance to 
threshold (Sup. Fig. 2). 
 
Networks with random connectivity operating in a balanced regime have previously been 
shown to maintain preferences present in the input (Hansel and van Vreeswijk, 2012). 
We hypothesized that orientation selectivity would emerge in our model if the spatial 
inhomogeneity in the aggregate thalamic input were maintained in the output by the 
balance of excitation and inhibition. In the balanced state the untuned time-averaged 
component of the input is largely suppressed by the intracortical feedback, leading to a 
net input in which the tuned modulation is comparable to the untuned component.  
Indeed orientation selectivity emerges in our model (Fig. 2A), varying between highly 
selective neurons (e.g model neuron E10371) to weakly selective (e.g model neuron 
E11763). This diversity of selectivity results in a distribution of orientation selectivity 
index (OSI) demonstrating that orientation selectivity emerges naturally in a random 
connectivity model (Fig. 2, Sup. Fig. 2B, 3,4). The emergent cortical orientation 
preference is matched to the preferred orientation of aggregate thalamic input (Sup. Fig. 
3C,D), as observed in mouse visual cortex (Li et al., 2013). In this balanced model the 
emergent orientation selectivity should be insensitive to the number of inputs. To verify 
this we varied this number from 25 to 100 and found that the degree of orientation 
selectivity was maintained (Fig. 2C, D, Sup Fig. 5). The emergent selectivity is also 
robust to changes in network size and in synaptic strength (Sup. Fig. 5A,C).  
 
Orientation selectivity emerges in our random connectivity model because of the spatial 
inhomogeneity in inputs to cortical neurons. In particular, the convergence of ON and 
OFF thalamic inputs onto model neurons are spatially offset from one another. The 
orientation of this offset may be related to the emergent orientation preference of 
neurons (Lien and Scanziani, 2013; Liu et al., 2010). To assess this relationship, we 
estimated the ON and OFF subfields of the thalamic inputs by presenting spots at 
different locations to the model network as in Lien and Scanziani (2013) (see Methods). 
The estimated ON and OFF subfields for 4 example neurons reveal different offsets.  
When ON and OFF subfields have large horizontal displacements (E14493, E14847) 
preference for the vertical orientation of the drifting grating at 0.03 cyc/deg tends to 
emerge whereas when ON and OFF subfields are vertically displaced preference for 
horizontal orientations tends to emerge (Fig. 3A, E14664). The offsets in ON and OFF 
subfields that emerge from the random connectivity model (Fig. 3B) are similar to those 
observed experimentally (Lien and Scanziani, 2013). When the ON/OFF offset is large 
there is a strong correspondence between the axis of the offset and the preferred 
orientation of the thalamic input (Fig. 3C). The ON and OFF displacement, however, is 
not the only factor that contributes to this orientation preference. The randomness in the 
feedforward connectivity generates ON and OFF subfields of the thalamic excitation that 
deviate from circularity. The shape of the subfields, and the interaction between the 
subfields, can create orientation preferences that deviate from that predicted from the 
offset of ON and OFF subfields (Fig. 3A, example 15022).  In sum, the offset of ON and 
OFF subfields, their interaction, and their shape influence the emergent thalamic 
orientation selectivity. Because the thalamic input selectivity is directly related to the 
cortical output selectivity (Sup. Fig. 3C,D) these factors impact the emergent cortical 
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orientation selectivity in the same way. The emergent orientation preference, however, is 
particularly sensitive to the spatial structure of the stimulus (Fig. 1). 
 
 
Dependence of preferred orientation on spatial frequency in the model 
 
We then characterized how much the properties of the neuronal responses vary with 
spatial frequency in the model.   First we investigated how the population average peak 
response and OSI were affected when changing spatial frequency (SF, Sup. Fig. 3A). 
We found that although the mean population response was modulated by spatial 
frequency  (maximal response for SF=0.035 cyc/deg) the overall selectivity of the 
population was less sensitive to SF (Sup. Fig. 3A,B). This mild effect across the 
population contrasts with the effect of spatial frequency changes on the preferred 
orientation of individual neurons. As we varied spatial frequency the preferred orientation 
of neurons often changed (top and bottom left panels in Fig. 4A; Fig. 4B,C, pink). We 
quantified this change by computing the circular correlation (CC, see Methods) of the 
preferred orientation at different spatial frequencies across neurons. This correlation was 
strong for nearby spatial frequencies whereas for spatial frequencies far apart it was 
(Fig. 4B,C). It declined from 0.71 for 0.04-0.03 cyc/deg to 0.00 for 0.04-0.01 cyc/deg (Fig 
5, ΔCC=0.71). We found that this effect was robust to changes in the network size, the 
number of connections per neuron and the synaptic conductance strengths (Sup. Fig. 
5B,D). We also found that it was qualitatively robust to changes in the spatial dispersion 
of the thalamic feedforward connections but that the decorrelation was weaker for 
smaller dispersions (Sup. Fig. 6). 
 
Dependence of preferred orientation on spatial frequency in mouse V1 
 
These theoretical results prompted us to determine whether spatial frequency has a 
similar effect on orientation preference in mouse V1. Varying spatial frequency yielded 
shifts in orientation preference for many, but not all, neurons when measured using 
intracellular, whole-cell, recordings (Fig. 4A, middle: top and bottom panels; Fig. 4C, 
blue panels). Changes in orientation preference were observed both at the level of spike 
rate and membrane potential (38 total cells) (Sup. Fig. 4). To gain access to this effect in 
large populations of V1 neurons we also examined it by measuring calcium responses 
using 2 photon microscopy (606 total cells) (Fig. 4A, left: top and bottom panels; Fig. 4B, 
C, green panels; Sup Fig. 7). As with our electrophysiological data we found a diversity 
of changes with spatial frequency: preference shifted dramatically for some neurons and 
not for others.  
 
These differences in preferred orientation observed from our Ca++ responses could be 
due to noise in our measurements. To be included in our population analysis cells were 
required to have a minimum peak response of 8% at both frequencies.  Using different 
thresholds to include cells yields similar declines in correlation when comparing 
orientation preference at 0.04 cyc/deg to 0.03 and 0.01 cyc/deg (8%: ΔCC=0.49, 10%: 
ΔCC=0.4, 12%: ΔCC=0.52). To address whether the observed effect was influenced by 
differences in response amplitude for different spatial frequencies we also restricted our 
analysis to neurons with differences in peak response amplitudes less than 10%.  This 
also did not alter the decline in circular correlation (ΔCC = 0.49). In sum, orientation 
preference changed with spatial frequency in electrophysiology records as well 
as calcium imaging measurements. 
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We have found that both the model and actual mouse V1 neurons exhibit changes in 
orientation preference with spatial frequency in a similar fashion (Fig. 5).  That is, for 
small frequency shifts the model and actual neurons have similar orientation 
preferences, as indicated by a high circular correlation, whereas large changes in spatial 
frequency cause substantial decreases in circular correlation. One notable discrepancy 
between the model and actual data is that nearby spatial frequencies have higher 
correlations for the model than for the data. A factor that contributes to this discrepancy 
is the amount of data collected in the model records relative to the physiological records. 
When we limit the records from which the model data are based to 20 seconds, instead 
of 80 seconds, ΔCC declines from 0.71 to 0.58. An additional factor we considered is the 
nature of the thalamocortical input. Orientation selectivity does exist in mouse thalamic 
neurons (Piscopo et al., 2013; Scholl et al., 2013a; Zhao et al., 2013), so we also 
explored the impact of elongated thalamic receptive fields on the properties of the 
cortical model (Sup. Fig. 8). This impact was modest, slightly altering the dependence of 
orientation preference on spatial frequency (Fig. 5, elongated thalamic receptive field 
model, ΔCC=0.73, Supp. Fig. 8 F,G), while increasing the overall orientation 
selectivity(mean OSI=0.32 vs 0.23 for circular thalamic receptive field) , Sup. Fig. 8B).  
  
2-D spatial frequency filters of neurons in mouse V1 are non-separable  
 
The observed dependence of orientation preference on spatial frequency indicates that 
in mouse V1, neuron receptive fields are not simple orientation detectors. Instead they 
may be measuring components of the visual scene that are better characterized by a 
conjunction of 2-dimensional spatial frequency filters. We therefore measured responses 
of V1 neurons while varying vertical and horizontal spatial frequency components 
(Ringach et al., 2016) (24 cells, Hartley gratings, see Methods; Fig. 6A). Neurons whose 
orientation selectivity is invariant to spatial frequency, would exhibit preference profiles 
for which angle (orientation) does not change with the distance from the origin (spatial 
frequency). As before different neurons revealed a diversity of behaviors (similar to 
kernels shown in Ringach et al., 2016), from invariance (Fig. 6A, left) to systematic 
change in selectivity with spatial frequency (Fig. 6A, middle). We also recorded from a 
small number of inhibitory neurons with broad selectivity for orientation and spatial 
frequency (Niell and Stryker, 2008) Fig. 6A, right). Measures of orientation preference 
based on the Hartley stimulus qualitatively agree with those made by measuring 
orientation tuning curves at different spatial frequencies (compare top and bottom panels 
in Fig. 6A). This indicates that many V1 neurons are better characterized as containing 
receptive fields that are a conjunction of horizontal and vertical spatial frequency filters 
instead of invariant selectivity for orientation. We performed a comparable analysis in 
our V1 network model (see Methods) and found a similar behavior (Fig. 6B; Sup. Fig. 9).  
 
  
Discussion 
 
We have presented a network model for rodent V1 that demonstrates that orientation 
selectivity can emerge from random connectivity even if LGN cells are not selective. It 
makes the specific prediction that this selectivity should be sensitive to spatial form. 
Testing that prediction in mouse visual cortex we found a similar effect. Using a model 
that receives thalamic inputs which exhibited some orientation selectivity increased the 
degree of cortical orientation selectivity yielding distributions of OSI closer to 
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experimental estimates. This model also exhibited a similar dependence of orientation 
preference on spatial frequency.  
 
In our models there is a strong overlap of the ON and OFF subregions of the thalamic 
inputs as seen in experiments (Li et al., 2013; Lien and Scanziani, 2013; Liu et al., 
2010). When the offset between the centers of the ON and OFF subfields is large, the 
orientation of this offset can be predictive of the orientation preference of the neuronal 
response. Nevertheless, even when this offset is large, the orientation preference can 
change substantially with spatial frequency. In our model the orientation of the offset and 
the orientation preference of the neuronal response are strongly correlated for 
intermediate spatial frequency only (Sup. Fig. 10).  
 
Quantitatively, the decorrelation of preferred orientation with spatial frequency is 
somewhat weaker in experiments when compared to our models. One source of this 
discrepancy is related to the amount of data collected for the model and the 
experiments.  When records for the model are limited to 20 seconds, the model ΔCC 
was 0.59, close to the experimental value of 0.49. Another possible source for this 
difference is that we did not incorporate any feature specific component in the 
connectivity even though this has been shown to be present in mouse V1 after the 
critical period (Ko et al., 2013; Ko et al., 2011; Lee et al., 2016b).  
 
We have demonstrated that V1 neurons’ receptive fields are surprisingly intricate (Fig. 6, 
Supp. Fig. 9). This complexity stands in contrast to the V1 receptive fields in cats 
(Hammond and Pomfrett, 1990; Jones et al., 1987; Webster and De Valois, 1985) and 
primates (De Valois et al., 1982), where orientation preference is represented in a 
separable manner from spatial form. A similar dependence in the mouse V1 was 
reported in a study based on calcium imaging (Ayzenshtat et al., 2016). There it was 
demonstrated that a reduction in spatial frequency by one octave causes a mean shift in 
preferred orientation by 22.1°, comparable to our own estimates of the change in 
orientation when shifting from 0.04 to 0.02 cyc/deg (model: mean ΔPO = 29.8°, ephys: 
ΔPO =30.2°, ca++: ΔPO =22.2°). They proposed that the dependence could arise from 
separable selectivity in frequency domain.  We demonstrate here that while some V1 
neurons do have separable frequency domain receptive fields, V1 receptive fields exhibit 
diverse dependencies that yield spatial frequency invariant orientation preferences (Fig. 
6, first column) or spatial frequency dependent orientation preferences (Fig. 6, second 
column).  
 
Such receptive field complexity likely has an impact on connectivity patterns within V1. In 
primates and carnivores where preferred orientations are similar for different spatial 
frequencies, neurons with similar orientation preferences are much more likely to be 
connected (Bosking et al., 1997; Wilson et al., 2016). In mice, neurons with similar 
orientation preference have been reported to be somewhat more likely to be connected 
(Ko et al., 2013; Ko et al., 2011). However, in these experiments difference in preferred 
orientation was measured at only one spatial frequency (0.045 cyc/deg).  As we have 
shown this difference varies with spatial frequency and the connectivity is likely to 
depend on the similarity in response at all spatial frequencies.  Indeed, correlation in the 
response to natural stimuli was found to be a stronger factor than orientation preference 
at one spatial frequency in determining connection probability (Cossell et al., 2015; Ko et 
al., 2013).  
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The intricate receptive field profiles described here are akin to those observed in primary 
auditory cortex. Auditory cortex neurons are sensitive to the combination of many 
auditory cues (Wang et al., 2005), which may comprise a synthesis sufficient to detect 
auditory objects (Bar-Yosef and Nelken, 2007). The frequency domain receptive field 
profiles observed in mouse V1 neurons may therefore reflect a similar progression 
toward a representation for objects using a random connectivity scheme that occurs as 
information flows through the visual pathway.  
 
To conclude, our investigation demonstrates that random connectivity can be the 
dominant component accounting for emergent properties such as orientation selectivity. 
An important advantage of random wiring schemes is that they occur naturally, following 
the broader patterns of retinotopy that are formed by biochemical gradients. This natural 
emergence may thus reflect a wiring strategy that allows for selectivity without the cost 
associated with constructing specific afferent wiring connections.  
 
Methods 
 
Procedures for two-photon imaging and physiology were based on those previously 
described (Scholl et al., 2015; Scholl et al., 2013b). Animals were anesthetized for the 
duration of the experiments and stimuli were presented on calibrated CRT 
monitors. Analyses of physiological data were performed using routines in Matlab that 
have previously been employed (Scholl et al., 2013b). The computational model is 
composed of two networks. One represents LGN while the other represents layer 4 and 
layer 2/3. Neurons of the cortical network are described in terms of conductance-based 
models (Hansel and van Vreeswijk, 2012; Wang and Buzsaki, 1996). Details describing 
both the experimental and computational approaches are in the Online Methods Section. 
 
  
Figure Legends 
 
Figure 1:  Receptive fields, random connectivity, spatial frequency tuning and 
orientation tuning.  A. Hubel and Wiesel connectivity in which ON (red) and OFF (blue) 
thalamocortical afferents, with spatial receptive fields indicated by each circle, converge 
onto a neuron in primary visual cortex. The summation of these afferent receptive fields 
generates a Gabor like receptive field in visual cortex (inset). B. Orientation preference 
does not change with spatial frequency for such receptive fields. Tuning curves of the 
temporal modulation of the response for tow (red) medium (green) and high spatial 
frequencies are plotted. In frequency space these receptive fields maintain a peak 
response at a consistent angle that points toward the origin at the midpoint of the graph 
(inset).  C. Random connectivity from the LGN in which ON and OFF thalamocortical 
neurons with similar spatial receptive fields converge on cortical neurons also generates 
orientation selectivity in the temporal modulation of the response. The summation of 
LGN neuron receptive fields shows oriented profiles (inset). Scale bar indicates 35 
degrees. D. Orientation preference shifts for random connectivity as spatial frequency 
changes. Orientation tuning curves are plotted as in B. In frequency space these 
receptive fields tilt in a manner that does not project back to the origin.  
 
Figure 2: Orientation selectivity emerges in the mouse V1 model.  A. Examples of 
tuning curves (peak firing rate) of three excitatory V1 neurons in the model. SF of the 
drifting grating is 0.03 cyc/deg. OSIs from left to right are: 0.62, 0.23, 0.15. B. 
Distribution of OSI  (peak response) over all the neurons (neurons in the central part of 
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the network; see Methods; n=5041). Mean OSI=0.24 (mean OSIs of the F0 and F1 
components of the response are 0.29 and 0.19). C. Examples of tuning curves of 
excitatory neurons in networks with different average number of thalamic inputs per 
neuron. From left to right: OSI=0.47, 0.48, 0.49. D. Average OSIs vs. average number of 
thalamic inputs. Red: Peak spike response. Black: F1 component of the spike response 
.Blue: F1 component of the thalamic excitatory input. 
 
Figure 3: The contribution of the offset of ON and OFF subregions of the  thalamic 
excitation to its orientation preference. The ON and OFF subfields of the thalamic 
inputs were estimated by presenting spots at different locations to the model network as 
in Lien and Scanziani (2013) (see Methods). A. Top panels:  ON (red) and OFF (green) 
subfields of the thalamic excitation for four example neurons. Dark spots: Center of 
mass of the subfields. The solid line indicates the axis of the offset of the two centers of 
mass.  Receptive fields based on the summed ON and OFF thalamic inputs are shown 
on the right. Bottom panels: Tuning curves of the thalamic excitation for these neurons. 
The SF of the drifting grating is 0.03 cyc/deg.  Vertical dashed-line indicates the 
orientation of the offset axis (0° corresponds to an horizontal axis). Offset amplitude and 
orientation and preference of the thalamic excitation is: E14493: 11.4°; 166.1°, 160.3°. 
E14847: 4.7°, 18.2°, 31.1°. E14664: 3.9°, 111.4°, 80.7°. E15022: 2.8°, 20.6°, 88.0°. B. 
Offset distribution across neurons (n=361; neurons are at the center of the network, see 
Methods). Mean offset: 4.1°.  D. Orientation preference of the thalamic input 
conductance (drifting grating with 0.03 cyc/deg) vs. orientation of the offset axis for all 
neurons with an offset  larger than 4° (n=170).  The circular correlation is: 0.24.   
 
Figure 4: Spatial frequency and orientation selectivity in the model and mouse V1. 
A. Example orientation tuning curves based on spike rate are plotted for neurons in the  
spiking network model (left), electrophysiology (middle) and based on fluorescence 
changes from calcium imaging experiments (right). Orientation tuning curves are plotted 
for different spatial frequencies, from 0.01 to 0.04 cyc/deg, indicated by color. If the error 
bars are not visible, they are smaller than the symbol size. B.  Top row: The relationship 
between preferred orientation in the model. Left: 0.04 cyc/deg and 0.01 cyc/deg.  Middle: 
0.04 cyc/deg and 0.02 cyc/deg. Right: 0.04 cyc/deg and 0.03 cyc/deg . Bottom row:  The 
same for  the calcium and electrophysiological records ( green and blue symbols, 
respectively). The bootstrapped vector average is used as the estimate of the preferred 
orientation. For calcium and spiking data, statistically significant shifts in orientation 
preference are indicated by filled circles. Number of cells in the imaging data for 
comparison of 0.01 and 0.04 cyc/deg is 90, for comparison of 0.02 and 0.04 cyc/deg is 
228 and for comparison of 0.03 and 0.04 cyc/deg is 288. Number of cells in the 
electrophysiological data for comparison of 0.01 and 0.04 cyc/deg is 32, for comparison 
of 0.02 and 0.04 cyc/deg is 28 and for comparison of 0.03 and 0.04 cyc/deg is 25. C. 
Histograms of the difference in orientation preference between 0.04 cyc/deg and 0.01 
(left), 0.02 (middle) and 0.03 (right) cyc/deg. Filled bars for electrophysiology and 
calcium imaging data indicate statistically significant changes in orientation preference. 
 
Figure 5: Comparison between model and experimental results. Graph indicates the 
observed circular correlation between preferred orientations of single neurons at two 
spatial frequencies. The pairs of spatial frequencies being compared are indicated on 
the X axis. Green: Calcium imaging. Blue: Electrophysiology,.Purple: Model  with circular 
thalamic  receptive fields (same as in Fig. 4), Red: Model with elongated thalamic 
receptive fields (see text and Sup. Fig. 9). Error bars are bootstrapped confidence 
intervals on the circular correlation.     
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Figure 6: Neuron receptive fields in the frequency domain are intricate. A. Mean 
membrane potential responses to Hartley stimuli (see Methods) are plotted for 
combinations of horizontal and vertical spatial frequencies (top row). Circles indicate 
stimulus combinations corresponding to oriented gratings at fixed spatial frequencies. 
Each panel corresponds to a different example cell. Orientation tuning curves for drifting 
gratings at 0.014 cyc/deg and 0.044 cyc/deg are shown for these four neurons (bottom 
row).   B. Example frequency receptive fields for four neurons in the model. Orientation 
tuning curves at 0.01 cyc/deg and 0.04 cyc/deg are shown for these neurons (bottom 
row) based on responses to drifting gratings.    
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Online Methods and Supplementary Materials 

Detailed experimental methods 
Physiology. Procedures for two-photon imaging and physiology were based on those 
previously described (Scholl et al., 2015; Scholl et al., 2016). Experiments were 
conducted using normal, adult male and female animals (n =33, P34 - P60). Mice were 
anesthetized with intraperitoneal injections of 1000 mg/kg urethane and 10 mg/kg 
chlorprothixene. Brain edema was prevented by intraperitoneal injection of up to 10 
mg/kg dexamethasone. Animals were warmed with a thermostatically controlled heat 
lamp to maintain body temperature at 37° C. A tracheotomy was performed and the 
head was placed in a mouse adaptor (Stoelting). A craniotomy and duratomy were 
performed over visual cortex. Eyes were kept moist with a thin layer of silicone oil. 
Primary visual cortex was located and mapped by multi-unit extracellular recordings with 
tungsten electrodes (1 mΩ, Micro Probes). The V1/V2 boundary was identified by the 
characteristic gradient in receptive locations (Drager, 1975; Metin et al., 1988). Eye drift 
under urethane anesthesia is typically small and results in a change in eye position of 
less than 2 degrees per hour(Sarnaik et al., 2014). 
 
Dye Loading and In vivo Two-Photon Microscopy. Bulk loading of a calcium sensitive 
dye under continuous visual guidance followed previous protocols in V1 (Golshani and 
Portera-Cailliau, 2008; Kerr et al., 2005; Mrsic-Flogel et al., 2007; Ohki et al., 2005; 
Stosiek et al., 2003). Dye solution contained 0.8 mM Oregon Green 488 BAPTA-1 AM 
(OGB-1 AM, Invitrogen) dissolved in DMSO (Sigma-Aldrich) with 20% pluronic acid 
(Sigma-Aldrich) and mixed in a salt solution (150 mM NaCl, 2.5 mM KCl, 10 mM 
HEPES, pH 7.4, all Sigma-Aldrich). 40-80 µM Alexa Fluor 594 (Invitrogen) was also 
included for visualization during and immediately after loading. Patch pipettes (tip 
diameter 2-5 µm, King Precision Glass) containing this solution were inserted into the 
cortex to a depth of 250-400 µm below the surface with 1.5% agarose (in saline) placed 
on top the brain. The solution was carefully pressure injected (100-350 mbar) over 10-15 
minutes to cause the least amount of tissue damage. OGB-1-AM is only weakly 
fluorescent before being internalized, so the amount of dye injected was inferred through 
the red dye. To ensure full loading we waited 1 hour before adding a glass coverslip for 
imaging. Metal springs were fastened on the attached head plate to place pressure on 
the glass coverslip and reduce brain pulsations. Fluctuations in calcium fluorescence 
were collected with a custom-built two-photon resonant mirror scanning microscope 
(Scholl et al., 2015) and a mode-locked (925 nm) Chameleon Ultra Ti:Sapphire laser 
(Coherent). Excitation light was focused by a 16X or 40x water objective (0.8 numerical 
aperture, Nikon). Images were obtained with custom software (Labview, National 
Instruments). A square region of cortex 300 µm wide was imaged at 256x455 pixels. In 
all experiments, multiple focal planes, separated by 20-25 µm, were used to collect data, 
starting around 150 µm below the cortical surface. Before each experiment neuron drift 
was measured over a 2-3 min period. If drift occurred then the glass coverslip and 
agarose were readjusted to stabilize the brain during stimulus protocol (7-20 minutes 
each focal plane). 
 
Stimuli. Visual stimuli were generated by a Macintosh computer (Apple) using the 
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) for Matlab (Mathworks). Gratings 
were presented using a Sony video monitor (GDM-F520) placed 25 cm from the animal’s 
eyes. The video monitors had a non-interlaced refresh rate of 100Hz,a spatial resolution 
of 1024x768 pixels, which subtended 40x30 cm, and a mean luminance of 40 cd/cm2. 
Drifting gratings (38 deg diameter for imaging, variable diameter for electrophysiology, 
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0.01-0.04 spatial frequency, 100% contrast, 2 Hz temporal frequency) were presented 
for 2-3 sec. Each stimulus was followed by a 3 sec blank (mean luminance) period in the 
imaging protocol. Spontaneous activity was measured during blank (mean luminance) 
periods interleaved with drifting grating stimuli, all presented in a pseudorandom 
sequence. Direction presented ranged from 0-330 deg. Different spatial frequencies 
used were either presented individually in separate blocks or interleaved within the same 
block. Hartley stimuli were presented for each spatial frequency combination for 250 ms 
(Malone and Ringach, 2008; Ringach et al., 2016). For each spatial frequency 
combination four phases were presented and the response to these phases were 
averaged. These were repeated 5-30 times per cell. During imaging sessions, each 
stimulation protocol was repeated 7-10 times at each focal plane. The microscope 
objective and photomultiplier tubes were shielded from stray light and the video 
monitors. 
 
Two-photon Calcium Imaging Analysis. Images were analyzed with custom Matlab 
software (Mathworks). Cells were identified by hand from structure images based on 
size, shape, and brightness. Cell masks were generated automatically following previous 
methods(Nauhaus et al., 2012). Glia were easily avoided due to their different 
morphology from both OGB-1 AM filled neurons. Time courses for individual neurons 
were extracted by summing pixel intensity values within cell masks in each frame. 
Responses (!!) to each stimulus presentation were normalized by the response to the 
gray screen (!!) immediately before the stimulus came on: 
 

∆! ! =  (!! −  !!) !! 
 
For each stimulus, the mean change in fluorescence ∆! ! was calculated in a 0.66 sec 
window of the response, identified by averaging responses to all stimuli and detecting 
the global peak. Visually responsive cells were identified if at least one orientation 
evoked a response with: 
 

(!!"#$%&%! −  !!"#$%&$'#(!) (!"!"#$%&%! +  !"!"#$%&$'#(!) > 1 
 
where !!"#$%&%! refers to the mean stimulus evoked response, !!"#$%&$'#(!   refers to the 
mean spontaneous activity, !"!"#$%&%! is the stimulus evoked response standard error, 
and !"!"#$%&$'#(!   spontaneous activity standard error. Additionally, identified responses 
were required to have distinct different trial-to-trial fluorescence time courses, so as to 
not be scaled versions of neuropil activity. The maximum peak response for each cell 
was also required to have a response amplitude greater than 0.08. Mean changes in 
fluorescence from visually responsive neurons were used to generate tuning curves for 
orientation selectivity. 
 
Electrophysiology Analysis: Spiking responses for each stimulus were cycled-averaged 
across trials after removing the first cycle. The Fourier transform of mean cycle-average 
responses was used to calculate the mean (F0) and modulation amplitude (F1) of each 
cycle-averaged response, after mean spontaneous activity was subtracted. The 
subthreshold membrane potential responses were also similarly computed after median 
filtering the voltage traces to remove spikes. Peak responses were defined as the sum of 
the mean and modulation (F0 + F1).  
 
Peak responses per trial across each condition for neuronal responses measured using 
electrophysiology and imaging were bootstrapped to compute the vector average 
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orientation. This was used as the preferred orientation for the neuron. For 
electrophysiology, cells were only included in the analysis, if the bootstrapped 
confidence intervals on mean of the maximum amplitude spiking response did not 
include zero. A double Gaussian curve was fit to the responses for characterizing 
orientation tuning (Carandini and Ferster, 2000): 

! ! =  !"! !! !!"#$
! !!! +  !"! !! !!"#$! ! ! !!! + ! 

   
Here !(!) is the response of the neuron to different orientations (!), σ is the width of the 
tuning curve, k is the mean activity, α and β are peak amplitudes, and !!"#$ is the 
orientation preference. Gaussian fits were used only for qualitative description of the 
tuning. The actual fit parameters have not been used in the analysis.  The orientation 
selectivity index was also computed (Ringach et al., 2002; Tan et al., 2011): 
 

!"# =  ( ! ! sin 2! )! + ( ! ! cos 2! )! 
!(!)  

 

The circular correlation (cc) between the preferred orientations (PO) is defined as:  

!! =  sin(!"! −  !"!) sin(!"′! −  !"′!)!,!

sin2(!"! −  !"!)!,! sin2(!"′! −  !"′!)!,!

 

where POi is the preferred orientation of neuron i for one spatial frequency and PO’i is 
the preferred orientation of the same neuron for another spatial frequency. This number 
is always in the range [-1:1], reaching 1 for perfect linear correlation between the 
preferred orientations in the two conditions.  

To determine if the difference in the preferred orientations computed at different spatial 
frequencies was statistically significant, we generated bootstrapped confidence intervals 
on the both the preferred orientations being compared. The difference was considered 
significant if these intervals did not overlap.  

	
  
The computational model of mouse V1 
		

The model is composed of two networks. One represents LGN and has NL neurons. The 
second network represents layer 4 and layer 2/3 in mouse V1. For simplicity these two 
layers are collapsed into one single network, with NE excitatory and NI inhibitory neurons. 
In both networks the neurons are arranged on a square grid and the position (xiA,yiA), 
where (i,A) denotes the neuron i=1,...,NA of population A=E,I,L. The position of neuron 
(i,A) is given by !!" = ! !!

!!
 ; !!" = ! !!

!!
  where M is the size of the network (2mm), 

!! = ! − 1  !"# !!  and !! = ! − 1 / !! . Here !   is the largest integer equal to or 
smaller than x. All NA are square integers so that ix and iy are integers between 0 and 
!! − 1. Unless said otherwise we take NE=32400, NI=8100, NL=25600. 
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Cortical neurons:  They are described in terms of conductance-based models. The 
membrane potential of neuron (i,A), A=E,I, evolves in time according to 
 

! !"!"
!" =  −!!,!" − !!",!" − !!,!" −  !!"!#$,!" + !!"#,!" + !!"#,!" + !!,!" (1) 

where C is the membrane capacitance, !!,!", is the leak current, and INa,iA, IK,iA are the 
intrinsic sodium and potassium currents that shape the action potentials and Iadapt,iA is an 
adaptation potassium current which included in E neurons, only. The dynamics of these 
currents are as in (Hansel and van Vreeswijk, 2012). The current ILGN,iA describes the 
input from LGN, Irec,iA is the recurrent input from other cortical neurons and Iback, iA 
represents a background input from other cortical regions not explicitly included in the 
model. 

LGN neurons: LGN cells are modeled as Poisson neurons with time varying rates that 
depend on the visual stimulus. Neuron (i,L) responds to a luminosity field L(x,y,t) with an 
instantaneous firing rate  

!!" ! = !!" + !"!# !!" !, ! !(!, !, !) !  (2) 
 

where rsp is the spontaneous firing rate of the neuron, assumed to be the same for all	
LGN cells, RiL(x,y) is its receptive field and [x]+=x for x >0, [x]+=0 for x<0. .	The luminosity 
field of a sinusoidal drifting grating with orientation,	 θ,  spatial wavelength,	 λ,	 and 
temporal frequency, ω, is 

!(!, !, !) = !![1 + !  cos (!!  ! + !!! − !")  ]			 	 (3) 

where !! is the average luminosity,	ε	 is the contrast, and the wave-vector of the grating 
is: ! = !! , !! = (! cosӨ, ! sinӨ)  with ! = 2 π/ λ . The parameters used in our 
simulations are listed in Tables 1 and 2.	
	
The receptive field of neuron (i,L) has the form  
	

!!"  !,! = ±! 
!"# ! !!!

!!!"!
! !!!
!!!"!

!!!!"!!"
− !

!"# ! !!!

!!!"!
! !!!

!!!"!

!!!!"!!"
− ! 	 	 (4) 

where	!! = ! − !!" cosӨ!" + ! − !!" sinӨ!" ,	!! = − ! − !!" sinӨ!" + ! − !!" cosӨ!" 	,	
!		 is a parameter that controls the relative weights of the two subfields, U is a constant 
such that !" !" !!"  !, ! = 0  and R is a constant (1 Hz). The long and short axis of 
the center (resp. surround) region are denoted here by	!!"		and	 !!"	(resp.  !!"  and	 !!"). 
The global sign is +1 if the receptive field is ON center and -1 if it is OFF center.  We 
take this sign at random with equal probability to be +1 or -1.  

In all simulations except those in Supp. Fig. 8 we assume circular receptive fields for 
both center and surround subfields. In the simulations described in Supp Fig. 8 
surrounds are circular but centers are elongated. We use the following parametrization: 
!!" = 1 + !!,  !!" = !

!!! ,!!" =  !!" = !"  with ! ≡ !!"!!" . Therefore, !  =0 
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corresponds to a circular center and surround subfields. In this case the LGN cell is not 
selective to orientation. The degree of selectivity increases with α. 
 
The response of the LGN cells to a drifting grating can then be calculated based on 
 

!!" ! = !!" + !!" !, λ cos !" −  !!" !, λ !    (5) 

where 
 
!!" !, λ

= ! !! exp − !
λ

!
! + ! cos 2 ! − !!" − ! exp − ! !λ

!
1 − cos 2 ! − !!" /2  (6) 

with ! = (!! + 1)/2 and ! = (!! − 1)/2.  
 
The phase !!" !, λ  is: !!" !, λ = 2! !!"  cosӨ!" + !!"  sinӨ!" /λ   (!!" !, λ = ! +
2! !!"  cosӨ!" + !!"  sinӨ!" /λ)   for an ON (OFF) cell.  
 
Thalamo-cortical and recurrent connectivity: The connectivity between model LGN and 
cortex is random and does not depend on the functional properties of the cells. The 
probability that cortical neuron (i,A) is connected to LGN cell (j,L) is 

!!",!" = !!"! !!" − !!" ,!!"  ! !!" − !!" ,!!"         (7a) 

Where !!" is the mean number of LGN inputs received by a cortical cell in population A. 
and 

! !,! = !
!!!!  exp − !!!" !

! !!
!!
!,!!!!          (7b) 

is the periodic Gaussian with variance !!  .The recurrent interactions in the cortical 
network are also random and non specific. The probability of connection between 
neuron (j,B) and (i,A) (A=E,I; B=E,I) is 

!!",!" = !!"! !!" − !!" ,!!"  ! !!" − !!" ,!!" .      (8) 

The feedforward and recurrent synaptic currents: Thalamo-cortical synapses on cortical 
population A are all excitatory, have a reversal potential !! , a strength !!"  and a 
synaptic time constant !!. The thalamo-cortical current, !!"#,!",  in neuron (i,A) is 

!!"#,!"(!) = −!!" ! ! !!" − !! + 1 − ! !! − !!        (9) 

 

with: !!" ! =  !!"!! !!"!"!!
!!! exp − ! − !!,! /!!! , where !!"  is the !! ! !!  connectivity 

matrix of the thalamo-cortical projections (!!"!" = 1 if there is a connection from neuron 
(j,L) to neuron (i,A);  !!"!" = 0  otherwise), and  !!,! is the time of the k-th spike generated 
by neuron (j,L). The sum over k is over all the spikes with !!,! < !. 

	
The total recurrent current into neuron (I,A) is !!"#,!" = !!",!+!!",! where 
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  !!",! = −!!",! ! ! !!" − !! + 1 − ! !! − !!      (10) 

with  !!",! ! =  !!"!!"
!!"!"!!

!!! exp − ! − !!,! /!!" .!  
 

Finally, the background current in Eq. (1) is modeled as  

!!,!" = −!!,!" ! ! !!" − !! + 1 − ! !! − !!      (11) 

where !!,!" !  is a random Gaussian variable with mean !!! !!! and variance !!! !!! . 
This represents the effect of !! uncorrelated Poisson inputs, each of synaptic strength 
! ! . 
Note that in Eqs. (9,10) the right hand-sides comprise two contributions. The first is 
proportional to the driving force !!" − !!. Thus it modifies the input conductance of the 
neuron. This contrasts with the second contribution which does not depend on the 
membrane potential of the post-synaptic cell. We adopted this description to incorporate 
in a simplified manner the fact that the change in input conductance induced by a 
synapse depends on its location on the dendritic tree.	 Proximal synapses which 
substantially affect the neuron’s input conductance are represented by the first 
contribution. The second contribution accounts for the synapses which are distal and 
which affect the input conductance of the neuron less (see also Hansel and van 
Vreeswijk, 2012).	

	
Numerical procedures and analysis: Numerical simulations were performed using a 4th-
order Runge-Kutta scheme to integrate the neuronal dynamics (Press, 1992). The 
synaptic interactions and the noise were treated at first order. The time step is !" =
0.05!".  

For each cortical neuron the mean firing rate, !!(!!), and firing rate temporal modulation 
(first Fourier component of the response)   !!(!!)  were estimated for each orientation, 
!! = ! − 1 20°, ! = 1, . . ,9 , by averaging the response upon 40s of stimulation, unless 
specified otherwise. We then computed the orientation averaged responses 

!! =  19 !!
!

!!!
!!      ! = 0,1	

and the complex numbers 

!! =  19 !!
!

!!!
!! !!!!!      ! = 0,1	

The Orientation Selectivity Index (OSI) and the Preferred Orientation (PO) of the peak 
response is then estimated from 

!"# = │!! + !!│
!! + !!
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!" = !"# (!! +  !!)	
	
The OSI is 0 if the response has no tuning and 1 if the neuron responds at only one 
orientation. These definitions for the OSI and PO are equivalent to those used in the 
analysis of the experimental data (see above). 

The definition of correlation coefficient is same as described above. 

We also fit the tuning curves of the mean, !! ! , and temporal modulation, !! ! , of the 

spike to periodic Gaussian functions 

!! ! = !! + !!  exp − ! − !" − !!
!

2 !!!
!∞

!,!!!∞
 

with n=0,1. We estimated the parameters !!,!!, !! , !! , for each neuron by minimizing 

the quadratic error: ! !!,!!, !!,!! = !
! !! !! − !! !!

!!
!!!  .  

 
Robustness of the results: To check that a time step, !" = 0.05!", was sufficiently small, 
we also performed several simulations with !" = 0.025!". To verify that our results were 
also robust to changes in system size we performed several simulations on networks 
with NE=78560, NI=19600, NL=40000, keeping the average number of connections into E 
and I cells the same.  

Structure of the ON and OFF subfield of the thalamic input: We characterized the 
thalamo-cortical input in the model by performing simulations with a protocol similar to 
the one in the experiments of Lien & Scanziani (2013). The stimuli used to map the 
receptive fields were Gaussian spots with a standard deviation of 5.6 degrees. The spots 
were presented in one of 64 locations arranged regularly in a square of 8x8 in the center 
of the network. The distance between the centers of adjacent spots was 7°. In order to 
characterize both ON and OFF receptive fields the stimuli were either brighter or dimmer 
than the background illumination. Each stimulus was presented during 1sec . During that 
time we evaluated the average of the conductance of the thalamic to each cortical 
neuron. We checked that the results were robust with respect to longer simulation times. 
The intensity of the stimulus (with respect to the background value) at the center of the 
Gaussian was l0=±0.075. After performing the simulations, the centers of the ON and 
OFF subfields were estimated by evaluating their center of mass: <r> = Σi  fi ri /Σi fi, where 
fi  is the average thalamic input for a stimulus at position is ri . In order to reduce the 
noise level we performed the sum only over the locations for which the average input is 
larger or equal than 30% of the maximal average input.   

Let us note that this way of estimating the center of the fields is only valid for cortical 
neurons whose feedforward inputs do not come from the border of the LGN network. 
Otherwise, because of the periodic boundary conditions of the LGN receptive fields, the 
linear estimation could combine inputs from opposite sides of the visual field. As the 
feedforward connectivity profile is topographically organized, neurons in the center of the 
cortex receive inputs from neurons in the center of the LGN. Therefore, boundary effects 
can be avoided by evaluating the center of mass only for neurons in the central part of 
the cortical network. In particular all the statistics of the ON and OFF subfields were 
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estimated from neurons  the square region of 14°x14° at the center of the network (361 
neurons).  

Parameters of the computational model:  The cortical network is assumed to have a size 
of 2mm x 2mm representing 1400x 1400 in the visual field(Kalatsky and Stryker, 2003). 

The synaptic dispersion of the recurrent connectivity is taken to be 200 µm, consistently 
with values reported in Reyes & Sakmann, 1999 (Reyes and Sakmann, 1999). Unless 
indicated otherwise, the dispersion of the feed-forward connectivity was 100 µm. 

The synaptic efficacies were as in Table 1. With these parameter values post-synaptic 
potentials have peak size is 0.5 mV (E->E interaction), -0.3 mV (I->E), 2.7 mV (E->I), -
0.9 mV (I->I), 0.9 mV (LGN->E), 0.8 mV (LGN->I). See Supplementary Figure 1a.  

We introduced heterogeneity in the parameters !!", !!", !,!. For each thalamic neuron 

these parameters were chosen from a log-normal distribution 

! ! = !
! ! !!  !!

(!"!!!)!
! !!   

where the parameters m and s are given by !!"# , !!"# , !!"# , !!"!, !! ,  !!, !! ,!! 
respectively. The values of these parameters are given in Table 2. Examples of 
receptive fields of LGN neurons in the model are plotted in Supp. Fig. 1B. The 
heterogeneity in the LGN receptive fields is depicted in Supp. Fig. 1C.  

In the simulations of Sup. Fig. 9, the preferred orientations of LGN neurons are chosen 

randomly with a distribution  

! ! = !!  !! + !!  exp (− !!
!!!!

) 	 	 	

where !! is a normalization constant.  The parameters we used in these simulations are 
given in Table 3. 
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NE	 32400	

NI	 8100	

KAB	(A,B=E,I)	 500	

KEL	 25	

KIL	 100	

gEE	 0.011	ms	mS/cm2	

gIE	 0.067	ms	mS/cm2	

gEI	 0.029	ms	mS/cm2	

gII	 0.098	ms	mS/cm2	

gEL	 0.04	ms	mS/cm2	

giL	 0.02		ms	mS/cm2	

!!"(A=E,I	;	B=E,I,L)		 3	ms	

!!" 	(A,B=E,I)	 200	µm	

!!" 	(A=E,I)	 100	µm	

VE	 0	mV	

VI	 -80	mV	

VL	 -65	mV	

ρ	 0.5	

Kb 500	

gb 0	

r0 1	Hz	

L0	 0.075	

ε	 1	

 

Table 1: Default parameters of the computational model of mouse V1 (Layer 4 and 
stimulus).  
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NL	 25600	

rsp	 1	Hz	

γ 1	

!!"#	(*)	 1.3	

!!"#(∗)	 2.7	

!!	 0.05	

!!"#(*)	 0.2	

!!"!(∗)	 0.2	

!!	 0.45	

 

Table 2: Parameters of the computational model of mouse V1: default values for the  
LGN cells. 

  

!!	 0	

!!	 0.2	

!! 		 142	

!!  	 1128	

!! 		 21.5	deg	

 

Table 3:  Parameters of the computational model of mouse V1: elongated receptive 
fields of LGN cells. 

 

(*) Parameters of the log-normal distribution are normalized to obtain values in degrees. 
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Supplementary Figures     
   
Supplementary figure 1:  The large scale spiking model of V1. Parameters are as in 
Tables 1 and 2. A. PSPs for the cortical excitation (left), the cortical inhibition (middle) and 
the thalamic excitation (right). Red: PSPs for excitatory postsynaptic neuron.  Blue: PSPs for 
inhibitory post-synaptic neuron. B.  Receptive fields of thalamic neurons presynaptic to three 
representative cortical neurons. Thalamic neurons have circular receptive fields modeled as 
a difference of Gaussian describing OFF and ON subfields (see Methods). Red: ON subfield. 
Blue: OFF subfield. The radii of the plotted circles are the standard deviation (SD) of the 
corresponding Gaussians..  C. Histograms of the radii of center (left) and surround subfields 
(middle). Right: histogram for the ratio of the surround and the center subfields radii.   
 
 
Supplementary figure 2: The V1 model network operates in the balances state. A. 
Voltage traces for one excitatory neuron. Stimulus begins at t=500msec. The drifting grating 
(SF = 0.03 cyc/deg) is presented at two orientations:  40° (upper trace) and 120° (lower 
trace). The panels below the voltage traces depict the excitation/inhibition balance. The 
excitatory (red), inhibitory (blue) currents to the neuron are plotted (note that in simulations 
all these currents and the voltage are always simultaneously known). Right panel: The tuning 
curve of the neuron. Average firing rate averaged over 80 sec. Parameters are as in Tables 1 
and 2. B. Histograms of the peak firing rate (left), the coefficient of variation (CV) of the 
interspike distribution (middle). The stimulus is at 0° (SF=0.03 cyc/deg). Histograms are 
essentially the same for all stimulus orientations. The heterogeneity in firing rates and high 
temporal variability (CV around 1) of the neurons discharges are hallmarks of the balanced 
state. Right panel:: The OSI of the peak response (SF=0.03 cyc/deg).. Red: Excitatory 
neurons. Blue: Inhibitory neurons. Inhibitory neurons are much less selective than excitatory 
neurons in agreement with experimental results (Kuhlman et al., 2011).  
  
 
Supplementary figure 3: Dependence of the firing rate and selectivity on spatial 
frequency. A. Left: Population average of the peak firing rate at preferred orientation (E 
neurons) vs. grating spatial frequency (See Methods). Right: Population average OSI of the 
peak spike response vs. spatial frequency. B: Histograms of the OSI for different spatial 
frequency. (For 0.03 cycle/deg, see Fig. 3). The histograms are similar except for SF=0.01 
cyc/deg. C: Preferred orientation of the thalamic excitation vs. preferred orientation of the 
spike response of the cortical neurons for SF=0.03 cyc/deg (n=5041). The correlation is 
strong. D: The circular correlation (CC, see Methods) of the thalamic input and spike 
response preferred orientations vs. the spatial frequency. The dependence on spatial 
frequency  is weak except for low spatial frequency. 
 
 
Supplementary figure 4: Vm and spike orientation preferences show similar 
dependency on spatial frequency. A.  Each column represents a neuron. Each row is 
tuning curves for a different SF. Both the Vm and spikes based tuning curves show similar 
preference. B. The preferred orientation based on spikes vs. the preferred orientation based 
on Vm for all neurons. C. The orientation selectivity index (Methods) for spike rate (top row) 
and membrane potential (bottom row).  
 

Supplementary figure 5: Robustness to changes in network size and connectivity 
parameters. A. Bar charts for the population averaged peak response (orientation of the 
stimulus: 0°; SF=0.04 cycle/deg) for excitatory (E) and inhibitory (I) neurons (left) and 
population averaged OSI (right). Black: Default set of parameters (Table 1,2). Red: 
NE=78400, NI=19600, NL=40000; other parameters as in Table 1, 2. Green:  KEL=100; gEL 
was increased to keep in both populations the firing rate approximately the same.: gEL=0.009 
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mS msec/cm2; other parameters as in Table 1, 2. B. Correlation coefficient (CC)  for 
excitatory population between the preferred orientation of spike response for SF=0.04 
cyc/deg and SF=0.03 cyc/deg (left) and SF=0.02 cyc/deg (right). For SF=0.01 cyc/deg : 
CC=0.  Color code as in A. C, D. Same as in A,B but for changes in synaptic conductances. 
Black: Default values. Red: All conductances are multiplied by 0.75. Green : All 
conductances are multiplied by 1.25. Other parameters are as in Table 1,2. 
 
Supplementary figure 6: The decorrelation in orientation preference with spatial 
frequency depends on the dispersion of the thalamo-cortical projections. A. Population 
average OSI of the peak spike response of exciatory neurons vs. spatial frequency for σFF. = 
14° (black) , 21° (red) and 7° (green). Other parameters as in Table 1, 2. B. Histograms of 
the difference in orientation preference between 0.04 cyc/deg and 0.01 (left), 0.02 (middle) 
and 0.03 (right) cyc/deg. Top: σFF=7° . Bottom: σFF =21°. Compare with the corresponding 
histograms for σFF=14° (Fig. 4). Only neurons with OSI larger than 0.2 for each pair of spatial 
frequencies are included.  For σFF=7°: CCs are 0.72 (0.04-0.03 cyc/deg), 0.18 (0.04-0.02 
cyc/deg) and 0 (0.04-0.02 cyc/deg)..  For σFF=21°: CC=0.48, (0.04-0.03 cyc/deg), 0.03, (0.04-
0.02 cyc/deg),   0 (0.04-0.01 cyc/deg).  
  
Supplementary figure 7: Example calcium orientation selectivity in mouse V1 A,B,.. 
The calcium responses for three example neurons for different orientation conditions and two 
spatial frequencies (0.01 cpd, blue and 0.04 cpd, red). C. Example imaging plane.  D, E,. 
Orientation tuning curves for different SFs for the neurons represented in a and b. F. OSI 
distribution across all SFs used. 	
 
Supplementary figure 8: The V1 network model with elongated thalamic receptive. 
Parameters are as in Table 3. A. The central subfields of the receptive fields of LGN cells are 
elongated. Surround subfields are circular. Distribution of the aspect ratio for the center 
subfield is plotted.. Inset: Example of a thalamic neuron receptive field. B. Population 
average OSI for the spike peak response vs. spatial frequency. Red: E cells. Blue: I cells. 
Black: LGN cells. C. Histograms of the preferred orientations of the excitatory neurons for 
grating with 0.01 (left), 0.04 (middle) and 0.07 (right) cyc/deg. Preferred orientations are bias 
toward 0° because the distribution of the axis orientation of the center subfield of LGN cells is 
biased toward this orientation. D. Histograms of OSI for E neurons. Left to right: 0.01, 0.04, 
0.07 cyc./deg. E. Tuning curves of three example E cortical neurons. Black: 0.01 cyc/deg; 
Red: 0.04 cyc/deg. F, G. Population data demonstrating the change in prefrerred orientation 
with spatial frequency.  CC=0.77 (0.04-0.03 cyc/deg)., 0.33 (0.04-0.02 cyc/deg,) 0.04 (0.04 -
0.01 cyc/deg. 
  
Supplementary figure 9: Examples of Hartley RFs based on electrophysiology and the 
model. A. 20 example neuron membrane potential responses to the Hartley stimulus. B. 20 
example responses of model neurons to the Hartley stimulus. 

Supplementary figure 10:  Correlation coefficient between the orientation of the ON-
OFF offset axis and the orientation preference of the thalamic excitation vs. spatial 
frequency. Parameters of the model as in the default set. Black: All cells. Red: Offset > 2°. 
Blue: Offset > 4°.	
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